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This paper proposes a novel topological learning framework that inte-
grates networks of different sizes and topology through persistent homology.
Such challenging task is made possible through the introduction of a com-
putationally efficient topological loss. The use of the proposed loss bypasses
the intrinsic computational bottleneck associated with matching networks.
We validate the method in extensive statistical simulations to assess its effec-
tiveness when discriminating networks with different topology. The method
is further demonstrated in a twin brain imaging study where we determine
if brain networks are genetically heritable. The challenge here is due to the
difficulty of overlaying the topologically different functional brain networks
obtained from resting-state functional MRI onto the template structural brain
network obtained through diffusion MRI.

1. Introduction. Network analysis has experienced tremendous advances in the last few
decades. Networks are often represented using graphs consisting of nodes and edges. In stan-
dard network analysis the focus is mainly on analyzing how data at nodes are interacting
with each other. Strength of the interaction is represented as edge weights. In social science,
human interactions are modeled by viewing humans as nodes and human interaction as edges
(Scott (1988)). In molecular studies, interatomic distances in a molecule are measured across
atoms and serve as edge weights while the atoms themselves serve as nodes (Chung and
Ombao (2021), Xia and Wei (2014)). In brain imaging studies, the whole brain is parcellated
into hundreds of disjoint regions, which then serve as nodes, while brain activities between
parcellations based on correlations serve as edge weights (Arslan et al. (2018), Desikan et al.
(2006), Fornito, Zalesky and Bullmore (2016), Hagmann et al. (2007), Tzourio-Mazoyer et al.
(2002)).

In graph theory based network analyses (Sporns (2003), Wijk, Stam and Daffertshofer
(2010)), graph theory features, such as node degrees and clustering coefficients, are often ob-
tained from adjacency matrices after thresholding edge weights. The final statistical results
may be different depending on the threshold choice (Lee et al. (2012)). This motivates the
development of a multiscale network model that provides consistent results and interpreta-
tion regardless of the choice of thresholding. Topological data analysis (TDA) (Edelsbrunner,
Letscher and Zomorodian (2000), Wasserman (2018)), a general framework based on alge-
braic topology, can provide a novel solution to the multiscale network analysis challenge.
Instead of examining networks using graphs at one fixed scale, the persistent homology tech-
nique in TDA identifies persistent topological features that are robust across scales.

Numerous TDA studies have been applied to increasingly diverse biomedical problems,
such as genetics (Chung et al. (2017b, 2019b)), epileptic seizure detection (Wang, Ombao
and Chung (2018)), sexual dimorphism in the human brain (Songdechakraiwut and Chung
(2020)), analysis of brain arteries (Bendich et al. (2016)), image segmentation (Clough et al.
(2019)), image classification (Chen et al. (2019), Reininghaus et al. (2015), Singh et al.
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(2014)), clinical predictive model (Crawford et al. (2020)) and persistence-based clustering
(Chazal et al. (2013)).

Persistent homology has emerged as a powerful mathematical representation for under-
standing, characterizing and quantifying topology of networks. In persistent homology topo-
logical features are measured across different spatial resolutions. As the resolution changes,
such features are born and die. Persistent homology associates the lifetime to these features in
the form of 1D intervals from birth to death. The collection of such intervals is summarized as
a barcode that characterizes the topology of underlying data (Ghrist (2008)). Long-lived bar-
codes persist over a long range of resolutions and are considered as signal (Carlsson (2009)).
Recent work proposed topological loss that penalizes barcodes for image segmentation prob-
lem (Hu et al. (2019)). While this approach allows to incorporate topological information into
the segmentation problem, the method has been limited to image segmentation with a small
number of topological features due to its expensive optimization process involving O(|V |6)
runtime with |V | number of nodes (Edmonds and Karp (1972), Kerber, Morozov and Nig-
metov (2017)). Barcodes are typically computed at a finite set of prespecified resolutions.
A sufficient number of such resolutions is required to give a reasonably accurate estimation
of barcodes, which quickly increases computational complexity as the size of data increases
(Chung et al. (2019a), Hu et al. (2019)). This is impractical in brain networks with a far larger
number of topological features involving hundreds of connected components and thousands
of cycles. In this paper we propose a more principled approach that learns the topological
structure of brain networks with a large number of topological features in O(|E| log |V |)
runtime with |E| number of edges and |V | number of nodes. The proposed method bypasses
the intrinsic computational bottleneck and thus enables us to perform various topology com-
putations and optimizations at every resolution.

We illustrate the proposed method using the resting-state functional MRI (fMRI) of 194
twin pairs from the Human Connectome Project (HCP) (Van Essen et al. (2012), Van Essen
et al. (2013)). HCP twin brain imaging data is considered as the gold standard, where the
zigosity is confirmed by the blood and saliva test (Gritsenko, Lindquist and Chung (2020)).
Monozygotic (MZ) twins share 100% of genes while dizygotic (DZ) twins share 50% of
genes (Falconer and Mackay (1995)). MZ-twins are more similar or concordant than DZ-
twins for cognitive aging, cognitive dysfunction and Alzheimer’s disease (Reynolds and
Phillips (2015)). These genetic differences allow us to pull apart and examine genetic and
environmental influences easily in vivo. The differences between MZ- and DZ-twins quantify
the extent to which phenotypes are influenced by genetic factors. If MZ-twins show more sim-
ilarity on a given trait compared to DZ-twins, this provides evidence that genes significantly
influence that trait. Previous twin brain imaging studies mainly used univariate imaging phe-
notypes, such as brain cortical thickness (McKay et al. (2014)), fractional anisotropy (Chiang
et al. (2011)) and functional activation (Blokland et al. (2011), Glahn et al. (2010), Smit et al.
(2008)), when determining heritability in a few regions of interest. Compared to prior studies
on univariate imaging phenotypes, there are not many studies on the heritability of the whole
brain functional networks (Blokland et al. (2011)). Measures of network topology may be
worth investigating as intermediate phenotypes that indicate the genetic risk for a neuropsy-
chiatric disorder (Bullmore and Sporns (2009)). However, the brain network analysis has not
yet been adapted for this purpose beyond a small number of regions. Determining the extent
of heritability of the whole brain networks is the first necessary prerequisite for identifying
network-based endophenotypes. We employ our method to determine the heritability of brain
networks constructed by topologically overlaying functional brain networks from fMRI onto
the template structural brain network from diffusion MRI (dMRI). Our method is demon-
strated to increase the sensitivity to subtle genetic signals.
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2. Methods.

2.1. Preliminary. Consider a complete network, represented as a graph G = (V ,w),
comprising a set of nodes V and unique positive symmetric edge weights w = (wij ) sat-
isfying wij = wji . Note that the method proposed in this paper is translation invariant so
any negative edge weights can be made positive by translations. In addition, the condition of
having unique edge weights is not restrictive in practice. Assuming edge weights follow some
continuous distribution, the probability of any two edge weights being equal is zero. This is
particularly true in functional brain networks where edge weights are given as the Pearson
correlation between time series of brain activity (Fornito, Zalesky and Bullmore (2016)). In
the case of equal edge weights, we can add infinitesimal noise and break the tie. Since the
proposed method is based on the Wasserstein distance, which enjoys the stability theorem
(Cohen-Steiner et al. (2010)), adding the infinitesimal noise will not affect the final numeri-
cal outcome.

The cardinality of sets is denoted using | · |. The number of nodes and edges are then
denoted as |V | and |E|. Since G is a complete graph, we have |E| = |V |(|V | − 1)/2. Any
incomplete graph can be treated as a special case of a complete graph with zero weights.
Then, we can add infinitesimal noise to those zero weights to break ties. We emphasize that
the proposed method works for arbitrary graphs. However, assuming the graph to be complete
with unique positive edge weights makes exposition of the method straightforward.

The binary graph Gε = (V ,wε) of G is defined as a graph consisting of the node set V
and binary edge weights wε given by

wε = (wε,ij ) =
{

1 if wij > ε;
0 otherwise.

A graph filtration of G is defined as a collection of nested binary networks (Lee et al. (2012))

Gε0 ⊃ Gε1 ⊃ · · · ⊃ Gεk ,

where ε0 < ε1 < · · · < εk are called filtration values. Figure 1 displays an example of the
graph filtration on a four-node network.

In persistent homology a zero-dimensional topological feature is a connected component,
which is a set of nodes and edges that are connected to each other by paths. In Figure 1 there is

FIG. 1. (a) Graph filtration on a four-node network G. β0 is monotonically increasing while β1 is monotonically
decreasing over the graph filtration. Connected components are born at the edge weights w3, w5, w6 while cycles
die at the edge weights w1, w2, w4. A cycle consisting of w4, w5, w6 persists longer than any other 1D features
and is considered as a topological signal. 0D barcode {(−∞,∞), (w3,∞), (w5,∞), (w6,∞)} is represented
using the birth values as I0(G) = {w3,w5,w6}. 1D barcode {(−∞,w1), (−∞,w2), (−∞,w4)} is represented
using the death values as I1(G) = {w1,w2,w4}. (b) We can show that 0D and 1D barcodes uniquely partition
the edge weight set as W = I0(G) ∪ I1(G) with I0(G) ∩ l1(G) =∅.
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only one connected component in graph G0, since all nodes and edges are connected through
paths, while Gw6 has four connected components because each of the four nodes cannot be
reached from the others by any path. The number of connected components is called the 0th
Betti number β0, and we write β0(G0) = 1 and β0(Gw6) = 4.

The one-dimensional topological feature is a loop or cycle, which is a path that starts
and ends at the same node but no other nodes in the path are overlapping. In Gw3, there is
one cycle consisting of edges w4, w5 and w6. The cycle can be algebraically represented as
[w4] + [w5] + [w6] with the convention of putting clockwise orientation along the edges.
In Gw1 , there are three cycles consisting of [w4] + [w5] + [w6], −[w5] + [w3] + [w2] and
[w4] + [w3] + [w2] + [w6]. However, they are linearly dependent in a sense that the cycle
consisting of four nodes can be written as the sum of the two other smaller cycles

[w4] + [w3] + [w2] + [w6] = ([w4] + [w5] + [w6]
) + (−[w5] + [w3] + [w2]

)
.

Thus, there are only two algebraically independent cycles in Gw1 . The total number of inde-
pendent cycles is the first Betti number β1. We write β1(Gw3) = 1 and β1(Gw1) = 2. During
the graph filtration, β0 is monotonically increasing while β1 is monotonically decreasing
(Chung et al. (2019b)). Unlike Rips complexes (Ghrist (2008)), which are often used in per-
sistent homology, there are no more higher-dimensional topological features than 0D and
1D.

Persistent homology keeps track of appearances (birth) and disappearances (death) of con-
nected components and cycles over the filtration as well as their persistence (the duration
from birth to death). Longer persistence indicates the presence of larger topological signal
(Edelsbrunner and Harer (2008)). The persistence of topological features are algebraically
represented as the collection of intervals (εb, εd), where a feature appears at the filtration
value εb and vanishes at the filtration value εd . The collection of such intervals is called a
barcode (Adler et al. (2010), Ghrist (2008), Songdechakraiwut, Shen and Chung (2021)).

2.2. Birth-death decomposition. During the graph filtration, once a connected compo-
nent is born, it never dies. Thus, every connected component has a death value at ∞. We can
safely discard ∞ and characterize the 0D barcode for connected components using their birth
values

I0(G) : εb1 < εb2 < · · · < εbm0,

where m0 = β0(G∞) − 1 = |V | − 1. I0(G) forms the maximum spanning tree (MST) of G
(Lee et al. (2012)). Cycles in the graph filtration are all considered born at −∞. Thus, we can
also discard −∞ and characterize the 1D barcode for cycles using their death values

I1(G) : εd1 < εd2 < · · · < εdm1,

where m1 = β1(G0) = (|V |−1)(|V |−2)/2. Removing edge wij in the graph filtration results
in either the birth of a connected component or the death of a cycle. The birth of a connected
component and the death of a cycle cannot possibly happen at the same time. Thus, every
edge weight must be in either 0D barcode or 1D barcode, but not both (Figure 1(b)).

THEOREM 1. The birth set I0(G) and death set I1(G) partition the edge weight set W
such that W = I0(G) ∪ I1(G) with I0(G) ∩ l1(G) = ∅. The cardinalities of I0(G) and I1(G)
are |V | − 1 and (|V | − 1)(|V | − 2)/2, respectively. Furthermore, I0(G) is MST of G, and
I1(G) is the remaining non-MST edge weights.

Theorem 1 is a nontrivial statement and used in the development of our proposed topolog-
ical learning framework.
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2.3. Topological loss. Since network topology is completely characterized by 0D and
1D barcodes, the topological similarity between two networks can be measured using the dif-
ference between such barcodes. We will modify Wasserstein distance to quantify the barcode
difference for the graph filtration (Clough et al. (2019), Cohen-Steiner et al. (2010), Hu et al.
(2019), Kolouri et al. (2019), Rabin et al. (2011)) as follows.

Let # = (V #,w#) and P = (V P ,wP ) be two given networks. For now, we will assume
that the two networks have the same size |V #| = |V P |. The case |V #| &= |V P | will be ex-
plained in Section 2.4. The 2-Wasserstein distance between 0D barcodes is given by

(1) L0D(#,P ) = min
τ0

∑

εb∈I0(#)

[
εb − τ0(εb)

]2
,

where τ0 is a bijection from birth sets I0(#) to I0(P ). L0D(#,P ) is termed 0D topological
loss that measures the topological dissimilarity between networks # and P in terms of 0D
features (connected components). Recall that the death values of all connected components in
networks are ∞. Thus, the 0D topological loss given in (1) simply ignores the death values.
Even if we replace ∞ with a sufficiently large number, the loss will not be affected.

Similarly, the 2-Wasserstein distance between 1D barcodes is given by

(2) L1D(#,P ) = min
τ1

∑

εd∈I1(#)

[
εd − τ1(εd)

]2
,

where τ1 is a bijection from death sets I1(#) to I1(P ). L1D(#,P ), termed 1D topological
loss, measures the topological dissimilarity between networks # and P in terms of cycles.
Again, recall that the birth values of all cycles are −∞. Thus, the 1D topological loss, given
in (2), simply ignores the birth values. Replacing −∞ by a sufficiently small number will not
affect the loss.

Instead of trying to determine the 0D and 1D topological differences separately, we want a
single summary statistic measuring the overall topological differences. This can be achieved
by combining the 0D and 1D topological losses as

Ltop(#,P ) = L0D(#,P ) + L1D(#,P ).

The 0D and 1D topological losses are variants of the assignment problem, which is typically
solved using the cubic-time Hungarian algorithm (Edmonds and Karp (1972)). However, for
the graph filtration the 0D and 1D losses have closed-form expressions that can be efficiently
computed in O(|I0(#)| log |I0(#)|) and O(|I1(#)| log |I1(#)|) time, respectively, as follows.

THEOREM 2. For the 0D topological loss we have

L0D(#,P ) = min
τ0

∑

εb∈I0(#)

[
εb − τ0(εb)

]2 =
∑

εb∈I0(#)

[
εb − τ ∗

0 (εb)
]2

,

where τ ∗
0 maps the ith smallest birth value in I0(#) to the ith smallest birth value in I0(P )

for all i. Similarly, for the 1D topological loss we also have

L1D(#,P ) = min
τ1

∑

εd∈I1(#)

[
εd − τ1(εd)

]2 =
∑

εd∈I1(#)

[
εd − τ ∗

1 (εd)
]2

,

where τ ∗
1 maps the ith smallest death value in I1(#) to the ith smallest death value in I1(P )

for all i.

The minimizations in Theorem 2 are equivalent to the following assignment problem. For
monotonic sequences

a1 < a2 < · · · < an, b1 < b2 < · · · < bn,
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we consider finding minτ
∑n

i=1(ai − τ (ai))
2 over all possible bijections τ . The optimal bi-

jection is simply given by the identity permutation τ (ai) = bi and is proved by induction
(Songdechakraiwut, Shen and Chung (2021)). The problem statement can be extended to a
more general assignment problem between different numbers of data

a1 < a2 < · · · < am, b1 < b2 < · · · < bn.

In this case, however, the analytical solutions given in Theorem 2 are not applicable. The
mismatching issue is discussed next.

2.4. Topological loss between networks of different sizes. Let # = (V #,w#) and P =
(V P ,wP ) be networks of different sizes such that |V #| &= |V P |. There is no bijection be-
tween the birth sets and between the death sets due to the mismatching issue. This problem is
often addressed through data augmentation or empirical distribution methods (Bonneel et al.
(2015), Carriere, Cuturi and Oudot (2017), Deshpande, Zhang and Schwing (2018), Karras
et al. (2018), Kolouri et al. (2017), Liutkus et al. (2019)). Data augmentation is probably
the most popular technique for mismatches between topological features (Hu et al. (2019)),
trees (Guo and Srivastava (2020)) and point sets (Chung et al. (2019b), Edelsbrunner and
Harer (2008), Ghrist (2008), Patrangenaru et al. (2019), Robins and Turner (2016), Xia and
Wei (2014)). An alternative approach is to express the topological loss in terms of empirical
distribution functions (Bonneel et al. (2015), Carriere, Cuturi and Oudot (2017), Deshpande,
Zhang and Schwing (2018), Karras et al. (2018), Kolouri et al. (2017), Liutkus et al. (2019)).
The empirical distributions for birth sets of # and P are given by

F̂#(x) = 1
|I0(#)|

∑

εb∈I0(#)

1εb≤x,

F̂P (x) = 1
|I0(P )|

∑

εb∈I0(P )

1εb≤x,

where 1εb≤x is the indicator having the value 1 if εb ≤ x and the value 0 otherwise. Their
pseudoinverses F−1

# (z) and F−1
P (z) are defined as the smallest x for which F̂#(x) ≥ z and

F̂P (x) ≥ z. Then, 0D topological loss is given by (Kolouri et al. (2017))

(3) L0D(#,P ) =
∫ 1

0

(
F̂−1

# (x) − F̂−1
P (x)

)2
dx.

Similarly, 1D topological loss can be defined in terms of the empirical distribution for death
sets. We can efficiently compute the loss between networks of different sizes by computing
the integral numerically (Songdechakraiwut et al. (2022a)). In addition, when the network
sizes are equal, the empirical distributions are still well defined, and the loss given in (3)
exactly matches our analytical expression in Theorem 2.

In actual brain imaging applications, brain networks are usually constructed following
standard pipelines resulting in networks with the same number of nodes (Fornito, Zalesky
and Bullmore (2016), Sporns (2003)). Thus, matching brain networks of different sizes can
be avoided, and there is no need to augment data or use empirical distributions. Comparing
the two techniques, when the numerical accuracy relative to the definition of the Wasserstein
distance is important, the data augmentation approach will not provide a relatively accurate
distance. In such cases, the empirical distribution approach is preferable. Apart from the two
major techniques for handling networks of different sizes, there are other available methods
(Deshpande, Zhang and Schwing (2018), Karras et al. (2018)). In particular, Marchese and
Maroulas (2018) proposed a variant of the Wasserstein distance that explicitly penalizes car-
dinality and short-lived persistence points and showed that the variant can utilize geometric
information to improve the discriminative power in classification.
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2.5. Topological learning. There are previous attempts to incorporate topology into
learning and inference frameworks. Adler, Agami and Pranav (2017) proposed the parametric
model for persistence diagrams based on Gibbs distribution and developed modeling, replica-
tion and inference procedures. Marchese and Maroulas (2018) built the probability measure
on the metric space of persistence diagrams used in classifying signals. In (Maroulas, Nasrin
and Oballe (2020)), Bayesian framework was developed by modeling persistence diagrams
as a Poisson point process. Naitzat, Zhitnikov and Lim (2020) investigated how Betti num-
bers change when different activation functions are used in deep neural networks. Love et al.
(2021) proposed topological convolutional neural networks in deep learning.

In this paper we incorporate topology into learning by minimizing 0D and 1D topologi-
cal losses as follows. Let G1 = (V ,w1), . . . ,Gn = (V ,wn) be observed networks used for
training. Let P = (V P ,wP ) be a network expressing a prior topological knowledge. In brain
network analyses, Gk can be a functional brain network of the kth subject obtained from
resting-state fMRI, and P can be a template structural brain network obtained through dMRI.
Functional brain networks are typically overlaid onto the template structural brain network
(Figure 2) (Kang et al. (2017), Lv et al. (2010), Zhu et al. (2014)). Note that the node sets
V and V P may differ, which can happen in the situation where we try to integrate brain
networks obtained from different parcellations.

We are interested in learning individual network model #̂k from the kth training network
Gk = (V ,wk) of the kth subject by minimizing

(4) #̂k = arg min
#

LF (#,Gk) + λkLtop(#,P ),

FIG. 2. Schematic illustrating topological learning for brain networks: (a) The automated anatomical labeling
(AAL) atlas obtained through structural-MRI is used to partition the human brain into 116 regions forming nodes
in brain networks. (b-top) In fMRI, brain activity at each node is measured as a time series of changes associated
with the relative blood oxygenation level. (c-top) The functional connectivity between two nodes is given as the
correlation between their fMRI time series, which then goes through the metric transform resulting in the func-
tional network G. (b-bottom) The structural connectivity between two brain regions is measured by the number of
white matter fiber tracts passing through them using dMRI. (c-bottom) Structural connectivities over all subjects
are then normalized and scaled, resulting in the structural network P that serves as the template where statis-
tical analysis can be performed. The structural network P is sparse while the functional network G is densely
connected. Since both networks are topologically different, it is difficult to integrate them together in a coherent
model. Simply overlaying functional networks on top of the structural network will completely destroy 1D topol-
ogy (cycles) of the functional networks. (d) The proposed framework learns network # that has the topological
characteristics of both functional and structural networks.
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FIG. 3. Individual-level learning. Left: When λk = 0, the learned network #̂k is simply the individual network
Gk . As λk increases, #̂k is deformed such that the topology of #̂k is closer to the structural template P . Middle:
The sum of losses as a function λk for five representative subjects. Optimal λk for each individual subject is the
one that minimizes the sum of losses. Right: Distribution of optimal λk centered around λ = 1.0000 ± 0.0002.

where squared Frobenius loss LF (#,Gk) = ‖w# − wk‖2
F is the goodness-of-fit term be-

tween the model and the individual observation, and parameter λk controls the amount of
topological information from network P that we are introducing into the model. The larger
the value of λk , the more we learn toward topology of P . If λk = 0, we no longer learn the
topology of P but fit the model only to the individual network Gk . Note that we learn toward
the population average since P is the template structural brain network.

Determining optimal λk for the kth subject can be done as follows. For each prespecified
λk , we find optimal #̂k by minimizing the objective function (4) over all possible #. We then
determine which λk and its corresponding #̂k give the minimum sum of losses LF + Ltop.
Figure 3(left) displays the losses LF and Ltop as a function of λk . Figure 3(middle) displays
the sum of losses as a function of λk for five representative subjects. Figure 3(right) displays
the histogram of the distribution of optimal λk based on all subjects. The average optimal λk

over all subjects is λk = 1.0000 ± 0.0002, showing highly stable results. Such stable results
are not plausible for nontopological loss functions. Similar to the well-known stability result
in the persistent homology literature (Cohen-Steiner et al. (2010)), we can algebraically show

Ltop(#,P ) ≤ C
∥∥w# − wP

∥∥2
F

for some C providing the stability of topological loss. For real data used in this paper, we
have the least upper bound of 0.4102 for all subjects.

Although group-level learning is not the focus in this paper, we can also learn a model #̂
using multiple training networks such that

(5) #̂ = arg min
#

1
n

n∑

k=1

LF (#,Gk) + λLtop(#,P ).

Figure 4 displays average networks of females and males while Figure 5 displays average
networks over all subjects by minimizing the objective function (5) with λ = 0,1 and 100.
The larger the value of λ, the more we reinforce the average networks with topology of the
template structural brain network. Note that statistical significance of network differences
between females and males can be determined by using a topological inference developed in
our previous work (Chung et al. (2017b), Chung et al. (2019b)).

2.6. Averaging networks of different sizes and topology. Another application of the pro-
posed topological loss is learning the average of networks with different sizes and topology,
which is a difficult task using existing methods. Given n networks G1 = (V1,w

1), . . . ,Gn =
(Vn,w

n) with different node sets, we are interested in obtaining its topological mean. Since
the size and topology of the networks are different, we cannot directly average edge weight
matrices w1, . . . ,wn. Motivated by the Fréchet mean (Le and Kume (2000), Turner et al.
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FIG. 4. Group-level networks of female (top row) and male (bottom row) are estimated by minimizing the ob-
jective function (5) with different λ = 0,1 and 100.

(2014), Zemel and Panaretos (2019)), here we obtain the topological mean #̂ by minimizing
the sum of 0D and 1D topological losses

#̂ = arg min
#

n∑

k=1

Ltop(#,Gk) = arg min
#

n∑

k=1

[
L0D(#,Gk) + L1D(#,Gk)

]
,

where #̂ is a network viewed as the topological centroid of given n networks. The optimiza-
tion can be done analytically as follows (Rabin et al. (2011)).

The 0D topological loss L0D depends on the birth values of networks G1, . . . ,Gn. For
networks with the same number of nodes, we have the same m0 number of birth values. Let
bk1 < bk2 < · · · < bkm0 be the birth values of network Gk . Let θ1 < θ2 < · · · < θm0 be the
birth values of network #. By Theorem 2 the sum of 0D losses is equivalent to

n∑

k=1

L0D(#,Gk) =
n∑

k=1

(θ1 − bk1)
2 +

n∑

k=1

(θ2 − bk2)
2 + · · · +

n∑

k=1

(θm0 − bkm0)
2,

which is quadratic so we can find the minimum by setting its derivative equal to zero. The
solution is given by θ̂j = ∑n

k=1 bkj /n. Similarly, the sum of 1D losses is equal to the sum
of squared differences of death values. Thus, the ith smallest birth (or death) value of the
topological mean network #̂ is equal to the mean of all the ith smallest birth (or death)
values of the given n networks. For networks with different number of nodes, we can match
networks through the empirical distribution method described in Section 2.4.

Given all the birth and death values of the topological mean network, we can completely
recover its topology. However, the network is only unique in the topological sense but not in
a geometric sense. We can have multiple different networks that are geometrically different
but with identical topology. For two networks A and B whose edge weights are different, we
can have identical birth sets I0(A) = I0(B) and identical death sets I1(A) = I1(B) so that
Ltop(A,C) = Ltop(B,C) for some network C. Such examples can be obtained by permut-
ing node labels or rotating networks geometrically. However, the nonuniqueness may not be
disadvantageous in classification and image segmentation. By rotating graphs embedded in
2D images, the number of training samples can be drastically increased, boosting the classi-
fication and segmentation performance (Marcos, Volpi and Tuia (2016), Taylor and Nitschke
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FIG. 5. (a) Group-level networks learned by minimizing the objective function (5) over all subjects with λ = 0,1
and 100. Fixed λ is chosen across all the subjects. The template structural network P is shown in the last column.
(b) As λ increases, Betti-plots of the group-level network are adjusted toward that of P . β0-plot shows that the
connected components in the structural network P are gradually born over a wide range of edge weights during
the graph filtration. β1-plot shows topological sparsity of lack of cycles in the structural network P . While the
group-level functional network (when λ = 0) is densely connected with up to 6555 number of cycles, the structural
network is sparsely connected with only 1709 cycles.

(2018)). For brain network application studied in this paper, we are introducing the Frobenius
loss that constrains the networks geometrically to avoid this geometric ambiguity. Figure 6
illustrates toy examples of averaging networks of different sizes and topology. Since we can
have many differently shaped networks that are topologically equivalent, it is not possible
to identify #̂ uniquely with the averaged birth and death values. For a Figure 6(top) exam-
ple, it would be possible for the topological mean network #̂ to have the three darker edges
extending from one node to the other three remaining nodes.

2.7. Numerical implementation. The topological learning, given in (4), estimates # =
(V #,w#) iteratively through gradient descent (Saad (1998)). The gradient of the topological
loss can be computed efficiently without taking numerical derivatives. In particular, computa-
tion of the gradient mainly comprises computing barcodes I0 and I1 and finding the optimal
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FIG. 6. Examples of averaging networks of different sizes and topology using the empirical distribution method
in Section 2.4. The topological mean network #̂ (right) is the topological centroid of five networks G1, . . . ,G5,
showing the average topological pattern. The topological mean network #̂ is estimated by minimizing the sum
of topological losses min#

∑5
k=1 Ltop(#,Gk). The topological mean network #̂ highlights topological charac-

terization of the five networks. The existing methods will have difficulty averaging networks of different sizes and
topology.

matchings through Theorem 2. The gradient of the topological loss ∇Ltop(#,P ) with respect
to edge weights w# = (w#

ij ) is given as a gradient matrix whose ij th entry is

∂Ltop(#,P )

∂w#
ij

=
{

2
[
w#

ij − τ ∗
0
(
w#

ij

)]
if w#

ij ∈ I0(#);
2
[
w#

ij − τ ∗
1
(
w#

ij

)]
if w#

ij ∈ I1(#),

since I0(#) and I1(#) partition the weight set (Theorem 1). By slightly adjusting the edge
weight w#

ij , we have the slight adjustment of either a birth value in 0D barcode or a death
value in 1D barcode, which alters the topology of the network. During the estimation of #,
we take steps in the direction of negative gradient such that

w#
ij ← w#

ij − 0.1
(

2
(
w#

ij − wk
ij

) + λ
∂Ltop(#,P )

∂w#
ij

)
,

where 0.1 is the learning rate. As w#
ij moves closer to its optimal match, the topology of the

estimated network # gets closer to that of P while the Frobenius norm keeps the estimation
# close to the observed network Gk .

Finding 0D birth values I0(G) is equivalent to finding edge weights comprising the maxi-
mum spanning tree (MST) of G (Lee et al. (2012)). Once I0 is computed, I1 is simply given
as the rest of the edge weights (Theorem 1). Then, we can compute the optimal matchings
τ ∗

0 and τ ∗
1 between # and P by matching edge weights in the ascending order. The com-

putational complexity of the topological loss gradient is dominated by the computation of
the MST using standard algorithms such as Prim’s and Kruskal’s, which take O(|E| log |V |)
runtime with |E| number of edges and |V | number of vertices.

Many efficient algorithms for Wasserstein distance computation often utilize the geometric
structure of data (Sharathkumar and Agarwal (2012)). In particular, Kerber, Morozov and
Nigmetov (2017) proposed an approximation algorithm based on k-d trees with the time
complexity empirically estimated as O(n1.6) for n scatter points in an arbitrary persistence
diagram. The estimation is obtained using linear regression on observed running time as a
function of n. Translated into the graph filtration setting with |E| number of edges, this is
equivalent to O(|E|1.6). The approximation algorithm in (Kerber, Morozov and Nigmetov
(2017)) is much faster than the Hungarian algorithm with O(|E|3) but still slower than our
exact Wasserstein computation method with O(|E| log |V |). Note there are |E| = |V |(|V | −
1)/2 edges. Our algorithm exploits the geometric structure of the graph filtration resulting
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in the one-dimensional representation for persistence diagrams in the form of sorted scalar
values. This exploitation enables us to compute the Wasserstein distances exactly at the faster
runtime.

3. Validation. We performed two simulation studies to assess the performance of the
topological loss as a dissimilarity measure between networks of different topology. Networks
of the same size were simulated since many existing methods cannot handle networks of
different sizes.

3.1. Study 1: Random network model with ground truth. Initial data vector bi at node i

was simulated as independent and identically distributed multivariate normal across n sub-
jects bi ∼ N (0, In) with the identity matrix In as the covariance matrix of size n×n. The new
data vector xi at node i was then generated by introducing additional dependency structures
to bi through a mixed-effects model that partitions the covariance matrix of xi into c blocks
forming modular structures (Chung et al. (2019b), Snijders, Spreen and Zwaagstra (1995))

x1, . . . , xa = b1 + N
(
0,σ 2In

)
,

xa+1, . . . , x2a = ba+1 + N
(
0,σ 2In

)
,

...

x(c−1)a+1, . . . , xca = b(c−1)a+1 + N
(
0,σ 2In

)
,

where a is the number of nodes in each module.
In this simulation, networks with 100 nodes are partitioned into c modules, where c is

chosen such that 100 is divisible by c. This choice of c makes the partitioning of each network
into modules straightforward. In particular, c = 2,5,10,20 number of modules are chosen,
and thus there are a = 50,20,10,5 nodes in each module, respectively. The simulation is
done in small noise (σ = 0.1) and large noise (σ = 0.5,1) settings. Note that it gets more
difficult to discriminate between different networks as the variability increases. We compute
the Pearson correlation coefficient ρx

ij between xi and xj , which is then translated and scaled

as metric wx
ij =

√
(1 − ρx

ij )/2 (Chung et al. (2019b)). This gives a modular network X =
(V ,wx). Figure 7 shows examples of simulated modular networks.

Based on the statistical model above, we simulated two groups of networks consisting of
n = 7 subjects in each group. The small sample size was chosen such that exact permutation
tests can be done by generating exactly

(14
7
) = 3432 number of every possible permutation.

We employed the exact permutation test for network distances (Chung et al. (2019b)) on
the two-sample t-statistic to evaluate the performance of the topological loss Ltop relative to
several baseline measures. The separate evaluation of L0D and L1D helps with understanding
the relative performance of the individual 0D and 1D Wasserstein distances in comparison
with Ltop. Thus, we additionally evaluated the separate performance of L0D and L1D . For
comparison, we tested the topological loss against Euclidean losses such as L1-, L2- and L∞-
norms. We further compared against other topological distances such as bottleneck, Gromov–
Hausdorff (GH) and Kolmogorov–Smirnov (KS) distances (Chazal et al. (2009), Chung et al.
(2019b), Cohen-Steiner, Edelsbrunner and Harer (2007)). The bottleneck and GH-distance
are widely-used baseline distances in persistent homology (Carlsson and Mémoli (2010)) and
brain networks (Lee et al. (2012)). KS-distance based on β0 and β1 curves is later introduced
as an interpretable alternative (Chung et al. (2017a)).
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FIG. 7. Study 1 simulation with small noise (σ = 0.1). The comparison of networks with different topology:
k = 5 vs. 20 (first row) and 10 vs. 20 (second row). The change of Betti numbers over filtration values shows
topological differences. The topological difference in the second row is more subtle compared to the first row.

Network difference. We compared networks with different numbers of modules: 2 vs. 10, 5
vs. 20 and 10 vs. 20. Since the networks had different topological structures, the distances
were expected to detect the differences (Figure 7). The simulations were independently per-
formed 50 times, and the performance results were given in terms of the false negative rate
computed as the fraction of 50 simulations that gave p-values above 0.05 (Table 1). In gen-
eral, the topological loss performed relatively well for different noise settings. When the topo-
logical difference is obvious (σ = 0.1), the proposed method performed exceptionally well.
However, in the large noise settings (σ = 0.5,1), all the distances except the KS-distance
did not perform well. Since KS-distances measures the maximum difference over both Betti
numbers and filtration values, it is sensitive to topological differences in networks. The sen-
sitivity of KS-distance is advantageous in the high noise settings. On the other hand, Ltop
mainly penalizes differences in filtration values where topological changes occur and thus is
less sensitive than the KS-distance. In addition, L1D performed substantially better than L0D

in all noise settings. The higher discriminative power of L1D is expected since there are many
more cycles than connected components in networks. In comparison, Ltop demonstrated the
increase in performance in high noise settings (σ = 0.5,1). The improved performance sug-
gests that the combined use of L0D and L1D is complementary, and thus Ltop is the better
choice for differentiating overall network topology.

No network difference. We compared networks of similar topology with the same numbers
of modules: 2 vs. 2, 5 vs. 5 and 10 vs. 10. It was expected that the networks were not topo-
logically different, and we should not detect any signal. The simulations were independently
performed 50 times, and the performance results were given in terms of the false positive
rates computed as the fraction of 50 simulations that gave p-values below 0.05 (Table 1).
While most of the baseline distances performed relatively well when there was no network
difference, they had the tendency to produce false negatives. The KS-distance did not per-
form well in all cases and produced false positives, even in the low noise setting (σ = 0.1).
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TABLE 1
Study 1. The performance results are summarized in terms of false negative rates (2 vs. 10, 5 vs. 20, 10 vs. 20)

and false positive rates (2 vs. 2, 5 vs. 5, 10 vs. 10). Smaller numbers are better

σ c L1 L2 L∞ GH Bottleneck KS(β0) KS(β1) L0D L1D Ltop

0.1 2 vs. 10 0.02 0.00 0.02 0.30 0.40 0.00 0.00 0.70 0.02 0.02
5 vs. 20 0.06 0.00 0.02 0.20 0.32 0.02 0.00 0.48 0.00 0.00
10 vs. 20 1.00 0.86 0.34 0.32 0.20 0.24 0.00 0.78 0.08 0.08

2 vs. 2 0.00 0.00 0.00 0.00 0.00 0.54 0.88 0.00 0.00 0.00
5 vs. 5 0.00 0.00 0.00 0.00 0.00 0.10 0.42 0.00 0.00 0.00
10 vs. 10 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.00 0.00 0.00

0.5 2 vs. 10 0.04 0.02 0.42 0.84 0.60 0.00 0.00 0.66 0.12 0.10
5 vs. 20 0.16 0.08 0.58 0.82 0.72 0.02 0.00 0.70 0.10 0.08
10 vs. 20 1.00 0.98 0.80 0.92 0.82 0.06 0.00 0.88 0.68 0.62

2 vs. 2 0.00 0.00 0.00 0.02 0.00 0.80 0.56 0.00 0.00 0.00
5 vs. 5 0.00 0.00 0.00 0.02 0.00 0.92 0.58 0.00 0.00 0.00
10 vs. 10 0.00 0.00 0.00 0.02 0.00 0.98 0.84 0.00 0.00 0.00

1 2 vs. 10 0.12 0.14 0.92 0.90 0.68 0.02 0.00 0.72 0.26 0.24
5 vs. 20 0.74 0.62 0.92 0.94 0.84 0.06 0.04 0.82 0.58 0.56
10 vs. 20 1.00 1.00 1.00 0.94 0.96 0.06 0.38 0.92 0.90 0.86

2 vs. 2 0.00 0.00 0.02 0.02 0.08 0.88 0.40 0.02 0.00 0.00
5 vs. 5 0.00 0.00 0.00 0.06 0.00 0.92 0.52 0.00 0.00 0.00
10 vs. 10 0.00 0.00 0.02 0.06 0.00 0.92 0.74 0.00 0.00 0.00

The overly sensitive nature of the KS-distance was responsible for the huge false positives.
On the other hand, Ltop was significantly more robust than the KS-distance, even in the high
noise setting (σ = 1). There were no significant differences in the performance among L0D ,
L1D and Ltop. The almost identical performance suggests that Ltop inherits robustness from
L0D and L1D and is expected to perform relatively well.

3.2. Study 2: Comparison against graph matching algorithms. The aim of this simu-
lation is to evaluate the performance of the proposed topological matching process against
existing graph matching algorithms (Cho, Lee and Lee (2010), Gold and Rangarajan (1996),
Leordeanu and Hebert (2005), Leordeanu, Hebert and Sukthankar (2009), Zhou and De la
Torre (2013)). Given weighted networks G1 = (V1,w

1) and G2 = (V2,w
2), we need to find

mapping τgm between nodes i1, j1 ∈ V1 and i2, j2 ∈ V2 that best preserves edge attributes be-
tween edge weights w1

i1j1
∈ w1 and w2

i2j2
∈ w2. We seek τgm to maximize the graph matching

cost

J (τgm) =
∑

w1
i1j1

,w2
i2j2

f
(
w1

i1j1
, τgm

(
w2

i2j2

))
,

where f measures the similarity between edge attributes, and the summation is taken over
all possible edge weights. The matching cost J (τgm) quantifies similarity between networks
by taking large values for similar networks and values close to zero for dissimilar networks;
hence, J (τgm) is somewhat the inverse of distance metrics. We compared the proposed topo-
logical loss against four graph matching algorithms: graduated assignment (GA) (Gold and
Rangarajan (1996)), spectral matching (SM) (Leordeanu and Hebert (2005)), integer pro-
jected fixed point method (IPFP) (Leordeanu, Hebert and Sukthankar (2009)) and reweighted
random walk matching (RRWM) (Cho, Lee and Lee (2010)). Such graph matching methods
are widely used in medical imaging, computer vision and machine learning studies (Cour,
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FIG. 8. Study 2 simulation examples. Network modular structures vary as parameter p (probability of connec-
tion within modules) and parameter c (the number of modules) change. The modular structure becomes more
pronounced as p increases.

Srinivasan and Shi (2006), Tian et al. (2012), Wang et al. (2020), Yu et al. (2018), Zhang
et al. (2019b), Zhou and De la Torre (2013)). For all of the baseline methods, we used existing
implementations from authors’ repository websites listed in the publication. We also used pa-
rameters recommended in the public code for each baseline algorithm without modification.
Since we are dealing with weighted edges, graph matching algorithms based on binary edge
weights (Babai and Luks (1983), Guo and Srivastava (2020), Zavlanos and Pappas (2008))
are excluded in the study.

In study 2, a different random network model from study 1 is used. We simulated a random
modular network X with d number of nodes and c number of modules, where the nodes are
evenly distributed among modules. Figure 8 displays modular networks with d = 24 nodes
and c = 2,3,6 modules such that we have d/c = 12,8,4 number of nodes in each module,
respectively. Since the time complexity of the aforementioned graph matching baselines can
be very demanding (Figure 9), we only considered d = 12,18,24 and c = 2,3,6 in this
simulation. Each edge connecting two nodes within the same module was then assigned a
random weight following a normal distribution N (µ,σ 2) with probability p and Gaussian

FIG. 9. Study 2 runtime given in the logarithmic scale. The average runtime measures the amount of time each
algorithm takes to compute its matching cost between two modular networks of size d starting from edge weights
as a given input. The runtime performance of the baseline methods is consistent with Cour, Srinivasan and Shi
(2006) for GA and SM and Zhang et al. (2019b) for IPFP and RRWM.
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noise N (0,σ 2) with probability 1 − p. Edge weights connecting nodes between different
modules had probability 1−p of being N (µ,σ 2) and probability p of being N (0,σ 2). With
a larger value of within-module probability p, we have a more pronounced modular structure.
Any negative edge weights were set to zero. This gives the random network X that exhibits
topological structures of connectedness. Figure 8 illustrates the changes of network modular
structure as parameters p and c vary. We used µ = 1 and σ = 0.25 universally throughout
study 2.

Based on the network model above, we simulated two groups of random modular networks
X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Yn). If there is group difference, the topological loss
is expected to be relatively small within groups and relatively large between groups. The
average topological loss within the groups, given by

LW =
∑

i<j Ltop(Xi ,Xj ) + ∑
i<j Ltop(Yi ,Yj )(m

2
) + (n

2
) ,

is expected to be smaller than the average topological loss between the groups, given by

LB =
∑m

i=1
∑n

j=1 Ltop(Xi ,Yj )

mn
.

We measure the disparity between groups as the ratio φL

φL = LB/LW .

If φL is large, the groups differ significantly in network topology. On the other hand, if φL is
small, it is likely that there is no group difference. Similarly, we define the ratio statistic for
graph matching cost J as

φJ = JW/JB,

where JW is the average graph matching cost within groups, and JB is the average graph
matching cost between groups. Since the distributions of the ratios φL and φJ are unknown,
the permutation test is used to determine the empirical distributions. Figure 10 displays the
empirical distribution of φL. By comparing the observed ratio φL to the empirical distribu-
tion, we can determine the statistical significance of testing the group difference. However,
when the sample size is large, existing matching algorithms are too slow for the permutation
test. To this end, we adapted a scalable online computation strategy as follows.

Given two groups of networks, topological loss or graph matching cost for every pair of
networks needs to be computed only once, which can then be arranged into a matrix whose
rows and columns represent networks. The ij th entry is the loss between two networks corre-
sponding to row i and column j (Figure 11). Once we obtain such a matrix, the permutation

FIG. 10. The empirical distribution of the ratio statistic φL is generated by the permutation on two groups each
consisting of ten modular networks. Here, we test if there is group difference in networks with parameters c = 2
vs. 3 (left) and 3 vs. 3 (right). As expected, the test based on the topological loss rejects the null hypothesis when
there is group difference (left) while it does not reject when there is no difference (right).
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FIG. 11. Two groups each consisting of five modular networks are simulated with parameters c = 2 vs. 3. Left:
The ij th entry represents the loss Ltop between networks i and j . The main diagonal consists of zeros since the
topological loss between two identical networks is zero. Right: A transposition between the second network in
Group 1 and the eighth network in Group 2. We do not need to recompute all the pairwise losses again but just
rearrange the losses in the solid lines and dashed lines. Thus, we simply need to find out how the rearrangement
changes the ratio statistic in an iterative manner. This enables us to efficiently perform the permutation test in an
iterative fashion. We compute δ in equation (6) by subtracting the sum of entries within the solid lines from the
sum of entries within the dashed lines.

process is equivalent to rearranging rows and columns based on permuted group labels. There
are 1

2
(m+n

m

)
total number of permutations excluding the symmetry. Computing the ratio over

a permutation requires resumming over all such losses, which is time consuming. Instead, we
performed the transposition procedure of swapping only one network per group and setting
up iteration of how the ratio changes over the transposition.

We transpose kth and lth networks between the groups as

πkl(X ) = (X1, . . . ,Xk−1,Yl,Xk+1, . . . ,Xm),

πkl(Y) = (Y1, . . . ,Yl−1,Xk,Yl+1, . . . ,Yn).

Over transposition πkl , the ratio statistic is changed from φL(X ,Y) to φL(πkl(X ),πkl(Y)),
which involves the following functions:

ν(X ,Y) =
∑

i<j

Ltop(Xi ,Xj ) +
∑

i<j

Ltop(Yi ,Yj ),

ω(X ,Y) =
m∑

i=1

n∑

j=1

Ltop(Xi ,Yj ),

where ν is the total sum of within-group losses, and ω is the total sum of between-group
losses. Then, we determine how ν and ω change over the transposition πkl . As Xk and Yl are
swapped, the function ν is updated over the transposition πkl as (Figure 11)

ν
(
πkl(X ),πkl(Y)

) = ν(X ,Y) + δ(X ,Y)

with

(6) δ(X ,Y) =
∑

i &=k

Ltop(Yl ,Xi) −
∑

i &=k

Ltop(Xk,Xi) +
∑

i &=l

Ltop(Xk,Yi) −
∑

i &=l

Ltop(Yl ,Yi).
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FIG. 12. The transposition test is used to determine the statistical significance of two groups each consisting
of ten simulated networks. To further speed up the convergence rate, a random permutation is intermixed for
every consecutive sequence of 500 transpositions. Left: The plot showing the convergence of p-value over 50,000
transpositions. For comparison, ground truth p-value is computed from the exact permutation test by enumerating
every possible permutation exactly once. Right: The plot shows the average relative error against the ground truth
across 100 independent simulations.

Similarly, function ω is updated iteratively over the transposition πkl as

ω
(
πkl(X ),πkl(Y)

) = ω(X ,Y) − δ(X ,Y).

The ratio statistic over the transposition is then computed as

φL
(
πkl(X ),πkl(Y)

) = ω(πkl(X ),πkl(Y))

ν(πkl(X ),πkl(Y))
×

(m
2
) + (n

2
)

mn
.

For each transposition we store information about function values ν and ω and update them
sequentially. Each transposition requires manipulating 2(m + n − 2) terms, as opposed to(m+n

2
)

total number of terms over a random permutation. More transpositions than the num-
ber of permutations can be generated within the same amount of time, which speeds up the
convergence (Chung et al. (2019c)). To further accelerate the rate of convergence and avoid
possible bias, we introduce a full permutation to the sequence of 500 consecutive transposi-
tions. Figure 12 illustrates the convergence of transposition procedure.

In each simulation we generated two groups each with ten random modular networks.
We then sequentially computed 200,000 random transpositions while interjecting a random
permutation for every 500 transpositions and obtained the p-value. This indicated the conver-
gence of p-value within two decimal places (within 0.01) in average. The simulations were
independently performed 50 times, and the average p-value was reported.

Network difference. We compared two groups of networks generated by parameters c = 2
vs. 3, 2 vs. 6 and 3 vs. 6 each with d = 12,18,24 nodes and p = 0.6,0.8 probability of
connection within modules. Since each group exhibited a different modular structure, topo-
logical loss and graph matching costs were expected to detect the group difference. Table 2
summarizes the performance results. Networks with d = 12 nodes might be too small to
extract distinct features used in each algorithm. Thus, all graph matching costs performed
poorly while the topological loss performed reasonably well. When the number of nodes in-
creases, all methods show overall performance improvement. In all settings the topological
loss significantly outperformed other graph matching algorithms.

No network difference. We compared networks generated with parameters c = 2 vs. 2, 3
vs. 3 and 6 vs. 6 each with d = 12,18,24 nodes and p = 0.6,0.8 probability of connection
within modules. Since it was expected that there was no topological difference between net-
works generated using the same values for parameters c, d and p, the topological loss and
graph matching costs should not be able to detect the group difference. The performance
result is summarized in Table 3. All the methods performed relatively well when there was
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TABLE 2
Study 2 on network differences. The performance results are summarized as the average p-values for various

parameter settings of d (number of nodes), c (number of modules) and p (within-module probability)

d c p GA SM RRWM IPFP Ltop

12 vs. 12 2 vs. 3 0.6 0.45 ± 0.27 0.48 ± 0.30 0.28 ± 0.31 0.34 ± 0.28 0.08 ± 0.16
0.8 0.26 ± 0.24 0.30 ± 0.28 0.06 ± 0.12 0.28 ± 0.28 0.01 ± 0.03

2 vs. 6 0.6 0.06 ± 0.10 0.17 ± 0.20 0.04 ± 0.13 0.23 ± 0.28 0.00 ± 0.00
0.8 0.00 ± 0.01 0.01 ± 0.03 0.00 ± 0.00 0.02 ± 0.04 0.00 ± 0.00

3 vs. 6 0.6 0.40 ± 0.29 0.35 ± 0.28 0.24 ± 0.26 0.35 ± 0.28 0.06 ± 0.13
0.8 0.21 ± 0.23 0.28 ± 0.27 0.08 ± 0.14 0.26 ± 0.25 0.00 ± 0.01

18 vs. 18 2 vs. 3 0.6 0.25 ± 0.23 0.41 ± 0.26 0.26 ± 0.24 0.42 ± 0.28 0.01 ± 0.02
0.8 0.12 ± 0.17 0.19 ± 0.22 0.00 ± 0.00 0.04 ± 0.05 0.00 ± 0.00

2 vs. 6 0.6 0.02 ± 0.05 0.07 ± 0.17 0.00 ± 0.00 0.14 ± 0.20 0.00 ± 0.00
0.8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

3 vs. 6 0.6 0.28 ± 0.24 0.37 ± 0.31 0.21 ± 0.24 0.37 ± 0.30 0.01 ± 0.01
0.8 0.15 ± 0.22 0.13 ± 0.14 0.00 ± 0.01 0.16 ± 0.18 0.00 ± 0.00

24 vs. 24 2 vs. 3 0.6 0.23 ± 0.25 0.30 ± 0.26 0.14 ± 0.20 0.31 ± 0.28 0.00 ± 0.01
0.8 0.06 ± 0.11 0.12 ± 0.19 0.00 ± 0.00 0.01 ± 0.05 0.00 ± 0.00

2 vs. 6 0.6 0.00 ± 0.01 0.03 ± 0.06 0.00 ± 0.00 0.09 ± 0.13 0.00 ± 0.00
0.8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

3 vs. 6 0.6 0.24 ± 0.26 0.29 ± 0.28 0.10 ± 0.13 0.37 ± 0.26 0.00 ± 0.00
0.8 0.07 ± 0.12 0.13 ± 0.19 0.00 ± 0.01 0.12 ± 0.19 0.00 ± 0.00

TABLE 3
Study 2 on no network difference. The performance results are summarized as average p-values for various

parameter settings of d (number of nodes), c (number of modules) and p (within-module probability)

d c p GA SM RRWM IPFP Ltop

12 vs. 12 2 vs. 2 0.6 0.49 ± 0.27 0.46 ± 0.30 0.51 ± 0.30 0.47 ± 0.28 0.53 ± 0.29
0.8 0.45 ± 0.25 0.47 ± 0.31 0.56 ± 0.29 0.47 ± 0.30 0.50 ± 0.30

3 vs. 3 0.6 0.45 ± 0.32 0.44 ± 0.26 0.47 ± 0.27 0.51 ± 0.30 0.46 ± 0.31
0.8 0.54 ± 0.31 0.51 ± 0.27 0.51 ± 0.29 0.52 ± 0.29 0.51 ± 0.30

6 vs. 6 0.6 0.57 ± 0.30 0.51 ± 0.28 0.56 ± 0.29 0.45 ± 0.26 0.58 ± 0.29
0.8 0.55 ± 0.29 0.48 ± 0.26 0.52 ± 0.27 0.54 ± 0.30 0.49 ± 0.27

18 vs. 18 2 vs. 2 0.6 0.48 ± 0.26 0.49 ± 0.32 0.54 ± 0.29 0.47 ± 0.30 0.54 ± 0.31
0.8 0.52 ± 0.28 0.50 ± 0.28 0.46 ± 0.30 0.52 ± 0.25 0.50 ± 0.26

3 vs. 3 0.6 0.49 ± 0.28 0.58 ± 0.31 0.43 ± 0.28 0.51 ± 0.27 0.53 ± 0.30
0.8 0.46 ± 0.30 0.51 ± 0.27 0.52 ± 0.33 0.45 ± 0.29 0.53 ± 0.27

6 vs. 6 0.6 0.53 ± 0.28 0.48 ± 0.30 0.51 ± 0.30 0.45 ± 0.29 0.44 ± 0.33
0.8 0.54 ± 0.27 0.52 ± 0.30 0.48 ± 0.26 0.52 ± 0.31 0.43 ± 0.30

24 vs. 24 2 vs. 2 0.6 0.52 ± 0.28 0.49 ± 0.30 0.50 ± 0.30 0.48 ± 0.28 0.55 ± 0.26
0.8 0.53 ± 0.27 0.56 ± 0.30 0.51 ± 0.30 0.56 ± 0.32 0.52 ± 0.30

3 vs. 3 0.6 0.48 ± 0.29 0.54 ± 0.27 0.49 ± 0.26 0.49 ± 0.30 0.52 ± 0.30
0.8 0.55 ± 0.29 0.49 ± 0.27 0.52 ± 0.28 0.49 ± 0.30 0.47 ± 0.26

6 vs. 6 0.6 0.47 ± 0.30 0.45 ± 0.31 0.51 ± 0.29 0.56 ± 0.28 0.49 ± 0.29
0.8 0.51 ± 0.30 0.47 ± 0.28 0.54 ± 0.28 0.56 ± 0.31 0.51 ± 0.31
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no group difference. The baseline graph matching methods have low sensitivity to topolog-
ical differences. They were unable to detect the network differences when the topological
differences were subtle.

While graph matching algorithms can be applied to dense networks, a small increment
in the number of possible connections usually results in a combinatorial explosion of the
amount of data to fit (Zhou and De la Torre (2013)). Thus, most high-order graph matching
methods are often limited to sparse networks like binary trees. They are not practical in
dense functional brain networks with a far large number of cycles. On the other hand, the
proposed topological loss is able to detect such subtle topological differences without the
added computational burden.

4. Application. In standard brain network modeling framework, the whole brain is par-
cellated into d disjoint regions, where d is usually a few hundreds (Arslan et al. (2018),
Desikan et al. (2006), Eickhoff, Yeo and Genon (2018), Fan et al. (2016), Fornito, Zalesky
and Bullmore (2010, 2016), Glasser et al. (2016), Gong et al. (2009), Hagmann et al. (2007),
Schaefer et al. (2017), Shattuck et al. (2008), Tzourio-Mazoyer et al. (2002), Zalesky et al.
(2010)). Subsequently, functional or structural information is overlaid on top of the parcella-
tion to obtain d × d connectivity matrices that measure the strength of connectivity between
brain regions (Figure 2). These disjoint brain regions form nodes in the brain network. Con-
nectivity between brain regions that defines edges in the brain network is usually determined
by the type of imaging modality (Ombao et al. (2016)). Structural connectivity is obtained
through diffusion MRI (dMRI), which traces the white matter fibers connecting brain regions.
The strength of structural connectivity between brain regions is determined by the number of
fibers passing through them (Fornito, Zalesky and Bullmore (2016)). The structural brain net-
work is expected to exhibit sparse topology without many loops or cycles (Figure 2) (Chung
et al. (2011), Gong et al. (2009), Zhang et al. (2018)). On the other hand, functional connectiv-
ity obtained from the resting-state functional MRI (fMRI) is often computed as the Pearson
correlation coefficient between brain regions (Bryant et al. (2017), Shappell et al. (2019)).
While structural connectivity provides information whether the brain regions are physically
connected through white matter fibers, functional connectivity exhibits connections between
two regions without the direct neuroanatomical connections through additional intermediate
connections (Honey et al. (2007, 2009)). Thus, resting-state functional brain networks are
often very dense with thousands of cycles. Both structural and functional brain networks pro-
vide topologically different information. Existing graph theory based brain network analyses
have shown that there is some common topological profile that is conserved for both structural
and functional brain networks (Bullmore and Sporns (2009)). However, due to the difficulty
of integrating both networks in a coherent statistical framework, not much research has been
done on integrating such networks at the localized connection level. Many previous studies
focus on comparing summary graph theory features across different networks (Bullmore and
Sporns (2009), Ginestet et al. (2011), Karas et al. (2019)). Although there are few studies that
focus on fusing networks derived from both modalities probabilistically, such methods can
easily destroy the aforementioned topological difference of the networks (Kang et al. (2017),
Xue et al. (2015)). This motivates the development of a model for multimodal networks that
can integrate networks of different topology at the localized connection level.

4.1. Dataset and preprocessing. Dataset studied in this paper is the resting-state fMRI of
412 subjects collected as part of the Human Connectome Project (HCP) twin study (Van Es-
sen et al. (2012), Van Essen et al. (2013)). The fMRI were collected over 14 minutes and 33
seconds using a gradient-echo-planar imaging (EPI) sequence with multiband factor 8, repe-
tition time (TR) 720 ms, time echo (TE) 33.1 ms, flip angle 52◦, 104 × 90 (RO × PE) matrix
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size, 72 slices, 2 mm isotropic voxels, and 1200 time points. Subjects without fMRI or full
1200 time points were excluded. During scanning, participants were at rest with eyes open
with relaxed fixation on a projected bright crosshair on a dark background (Van Essen et al.
(2013)). The standard minimal preprocessing pipelines (Glasser et al. (2013)) were applied
on the fMRI scans, including spatial distortion removal (Andersson, Skare and Ashburner
(2003), Jovicich et al. (2006)), motion correction (Jenkinson and Smith (2001), Jenkinson
et al. (2002)), bias field reduction (Glasser and Essen (2011)), registration to the structural
MNI template and data masking using the brain mask obtained from FreeSurfer (Glasser et al.
(2013)). This resulted in the resting-state functional time series with 91 × 109 × 91 2-mm
isotropic voxels at 1200 time points. The subject ranged from 22 to 36 years in age with av-
erage age 29.24 ± 3.39 years. There are 172 males and 240 females. Among them, there are
131 monozygotic (MZ) twin pairs and 75 same-sex dizygotic (DZ) twin pairs.

Subsequently, we employed the automated anatomical labeling (AAL) template to parcel-
late the brain volume into 116 nonoverlapping anatomical regions (Tzourio-Mazoyer et al.
(2002)) (Figure 2). We averaged fMRI across voxels within each brain parcellation, resulting
in 116 average fMRI time series with 1200 time points for each subject. Previous studies
reported that head movement produces spatial artifacts in functional connectivity (Caballero-
Gaudes and Reynolds (2017), Power et al. (2012), Satterthwaite et al. (2012), Van Dijk,
Sabuncu and Buckner (2012)). Thus, we scrubbed the data with significant head motion using
the framewise displacement (FD) from the three translational displacements and three rota-
tional displacements at each time point to measure the head movement from one volume to
the next (Huang et al. (2020), Power et al. (2012), Van Dijk, Sabuncu and Buckner (2012)).
We excluded 12 subjects having excessive head movement, resulting in fMRI data of 400
subjects (168 males and 232 females). Among the remaining 400 subjects, there are p = 124
MZ twin pairs and q = 70 same-sex DZ twin pairs. The first 20 time points were removed
from all subjects to avoid artifacts in the fMRI data, leaving 1180 time points per subject
(Diedrichsen and Shadmehr (2005), Shah et al. (2016)).

For dMRI we use the template structural brain network P (Figure 2) published in previous
studies (Chung et al. (2019c), Songdechakraiwut, Shen and Chung (2021)). Preprocessing
pipeline for P reported in those studies is as follows. The white matter fiber orientation infor-
mation was extracted by multishell, multitissue constrained spherical deconvolution from dif-
ferent tissue types, such as white matter and gray matter (Callaghan, Eccles and Xia (1988),
Jeurissen et al. (2014)). The fiber orientation distribution functions were estimated and ap-
parent fiber densities were exploited to produce the reliable white and gray matter volume
maps (Christiaens et al. (2015), Jeurissen et al. (2014)). Subsequently, multiple random seeds
were selected in each voxel to generate about 10 million initial streamlines per subject with
the maximum fiber tract length at 250 mm and FA larger than 0.06 using MRtrix3 (Tournier
et al. (2012), Xie et al. (2018)). The spherical-deconvolution informed filtering of tractograms
(SIFT2) technique making use of complete streamlines was subsequently applied to generate
more biologically accurate brain connectivity, which resulted in about one million tracts per
subject (Smith et al. (2015)). Nonlinear diffeomorphic registration between subject images
to the template was performed using ANTS (Avants et al. (2008, 2011)). AAL was used to
parcellate the brain into 116 regions (Tzourio-Mazoyer et al. (2002)). The subject-level con-
nectivity matrices were constructed by counting the number of tracts connecting between
brain regions. The structural brain network P that serves as the template, where all the func-
tional networks are aligned, was obtained by computing the one sample t-statistic map over
all the subjects and then rescaling t-statistics between 0 to 2 using the hyperbolic tangent
function tanh before adding 1.
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4.2. Learning individual networks. For subject k we have resting-state fMRI time se-
ries x = (x1, x2, . . . , x1180) for region i and y = (y1, y2, . . . , y1180) for region j with 1180
time points. Correlation ρk

ij between regions i and j is computed using the Pearson cor-
relation between x and y. This gives the correlation matrix Ck = (ρk

ij ), which is used as
the baseline against our proposed method. We then translate and scale the correlation as
wk

ij =
√

(1 − ρk
ij )/2, which is a metric (Chung et al. (2019b)). The subject-level functional

brain network is given by Gk = (V ,wk).
We apply the topological learning to estimate the subject-level network #k(λk) by mini-

mizing the objective function (4) using the individual network Gk and the structural network
P

#̂k(λk) = arg min
#

LF (#,Gk) + λkLtop(#,P ).

# is initialized to Gk . λk was found to be 1.0000 ± 0.0002, and thus we globally used λ =
1.0000 (Figure 3).

4.3. Heritability in twins. We employ our method to explore which regions of brain net-
works are genetically heritable. In particular, we determine if the estimated network #̂k is
genetically heritable in twins. At each edge, let (a1l , a2l) be the lth twin pair in MZ-twin and
(b1l , b2l) be the lth twin pair in DZ-twin. MZ-twin and DZ-twin pairs are then represented as

a =
(
a11 · · · a1p

a21 · · · a2p

)
, b =

(
b11 · · · b1q

b21 · · · b2q

)
.

Let ar = (ar1, ar2, . . . , arp) and br = (br1, br2, . . . , brq) be the r th rows. Then, MZ-
correlation is computed as the Pearson correlation γ MZ(a1, a2) between a1 and a2. Simi-
larly, DZ-correlation γ DZ(b1, b2) is computed. In the well established ACE genetic model,
the heritability index (HI) h, which determines the amount of variation caused by genetic
factors in population, is estimated using Falconer’s formula (Falconer and Mackay (1995))

h(a, b) = 2
(
γ MZ − γ DZ)

.

Since the order of the twins is interchangeable, we can transpose the lth twin pair in MZ-twin
as

πl(a1) = (a11, . . . , a1,l−1, a2l , a1,l+1, . . . , a1p),

πl(a2) = (a21, . . . , a2,l−1, a1l , a2,l+1, . . . , a2p)

and obtain another MZ-correlation γ MZ(πl(a1),πl(a2)). Likewise, we can obtain many dif-
ferent correlation values for DZ-twin. To this end, we perform a sequence of random trans-
positions iteratively to estimate the twin correlations γ MZ and γ DZ sequentially, similar to
the transposition test used in the simulation study 2, as follows.

Over the transposition πl , the MZ-correlation is changed from γ MZ(a1, a2) to
γ MZ(πl(a1),πl(a2)), which involves the following functions:

ν(ar) =
p∑

j=1

arj ,

ω(ar , as) =
p∑

j=1

(
arj − ν(ar)/p

)(
asj − ν(as)/p

)
.
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The functions ν and ω are updated iteratively over the transposition πl as

ν
(
πl(ar )

) = ν(ar) − arl + asl,

ω
(
πl(ar),πl(as)

) = ω(ar , as) + (arl − asl)
2/p − (arl − asl)

(
µ(ar) − µ(as)

)
/p.

Then, MZ-correlation after the transposition is calculated as

γ MZ(
πl(a1),πl(a2)

) = ω(πl(a1),πl(a2))√
ω(πl(a1),πl(a1))ω(πl(a2),πl(a2))

.

The time complexity for computing correlation iteratively is 33 operations per transposi-
tion, which is significantly more efficient than that of direct correlation computation per per-
mutation. In our numerical implementation we sequentially perform random transpositions
πl1,πl2, . . . ,πlJ resulting in J different twin correlations. Let

κ1 = πl1, κ2 = πl2 ◦ πl1, . . . , κJ = πlJ ◦ · · · ◦ πl2 ◦ πl1

be the sequence of transpositions. The average MZ-correlation γ̄ MZ
J is then given by

γ̄ MZ
J = 1

J

J∑

j=1

γ MZ(
κj (a1),κj (a2)

)
,

which is iteratively updated as

γ̄ MZ
J = J − 1

J
γ̄ MZ
J−1 + 1

J
γ MZ(

κJ (a1),κJ (a2)
)
.

The average correlation γ̄ MZ
J converges to the true underlying twin correlation γ MZ for

sufficiently large J . Similarly, DZ-correlation γ DZ is estimated.

4.4. Results. Using the transposition method, we randomly transposed twins and updated
the correlations for 50,000 times. This process was repeated 100 times, and the total 50,000×
100 correlations were used to estimate the underlying MZ- and DZ-correlations. At each edge
the standard deviation of the average correlations from 100 results was smaller than 0.01
indicating the convergence of the estimate within two decimal places in average.

We computed HI-maps using the original correlation matrices Ck and the proposed topo-
logically learned networks #̂k . Figure 13 displays most heritable connections with 100% her-
itability, indicating that the topologically learned networks #̂k show more connections than
the original Pearson correlation matrices Ck . Table 4 shows that left superior parietal lobule
and left amygdala connection has the strongest heritability among many other connections
using the topologically learned networks. Since the networks #̂k inherited sparse topology
from the template structural brain network P (Figure 5), short-lived cycles in the functional
networks were expected to be removed resulting in the increased statistical sensitivity to sub-
tle genetic signals. There are significant connection overlaps between the standard method
and the topology-based approach, but our approach detects more connections with higher HI.
Figure 14 displays heritable connections above HI value 0.85. If correlation thresholds are
altered to values below 0.85, more connections will appear resulting in more overlaps.

5. Discussion. We present a new topological loss for graphs that provides the optimal
matching and alignment at the edge level. Unlike many existing graph matching algorithms
(Babai and Luks (1983), Guo and Srivastava (2020), Tian et al. (2012), Wang et al. (2020), Yu
et al. (2018), Zhang et al. (2019b), Zhou and De la Torre (2013)) that provide matching costs
without explicit identification of how edges are matched to each other, the proposed method
identifies the edge-to-edge correspondence explicitly using the birth-death decomposition.
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FIG. 13. Most heritable connections above HI ≥ 1 are shown using the Pearson correlation baseline (top row)
and our topologically learned network approach (bottom row).

Such explicit mapping enables us to develop the subsequent topological learning framework
that can integrate networks of different sizes and topology. Due to the wide availability of
various network data including social networks, computer networks and artificial networks
(such as convolutional neural networks), our method can be easily adapted for other network
applications where matching of whole networks or subnetworks is needed.

The limitation of the topological loss is the inability to discriminate geometrically different
networks that have identical topology. We can obtain topologically identical networks by mir-
ror reflection. Since the human brain is asymmetric across hemispheres (Toga and Thompson
(2003)), the ability to discriminate such networks is critical. In our application we introduced
the Frobenius loss to geometrically constrain brain networks. We provided one possible ap-
proach for combining the topological and geometrical losses together. Hopefully, this paper
serves as the springboard for more refined models in the future.

TABLE 4
Top ten most heritable connections with HI ≥ 1 using the proposed topologically learned networks

Most heritable connections

Left superior parietal lobule—Left amygdala
Left lobule VIIIB of cerebellar hemisphere—Left globus pallidus
Left lobule III of cerebellar hemisphere—Right crus I of cerebellar hemisphere
Left—Right opercular part of inferior frontal gyrus
Left lobule IV, V of cerebellar hemisphere—Left thalamus
Left lobule IX of cerebellar hemisphere—Left lobule VI of cerebellar hemisphere
Right thalamus—Right superior frontal gyrus, dorsolateral
Left middle frontal gyrus, orbital part—Right caudate nucleus
Right crus II of cerebellar hemisphere—Left globus pallidus
Lobule VIII of vermis—Right fusiform gyrus
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FIG. 14. HI-maps for the Pearson correlation baseline (top row) and our topologically learned network ap-
proach (bottom row) are thresholded at different HI ≥ 0.85,0.9,0.95 and 1.

Among many different learning tasks, the proposed method is illustrated with averaging
and regression. Our method can be used to average networks of different sizes and topol-
ogy, which is challenging using prior methods. Our method is further used to set up the
optimization-based regression models at the subject and group levels. We believe the pro-
posed method can be easily adapted to other types of network learning tasks. For example,
it is well known that k-means clustering does not perform well against more geometry-based
clustering methods, such as spectral clustering (Kriegel, Kröger and Zimek (2009), Ng, Jor-
dan and Weiss (2002)). A new clustering method that utilizes meaningful network topology
is expected to outperform k-means and spectral clustering methods. Recently, it was shown
that topological clustering using our proposed framework demonstrates very strong perfor-
mance for clustering measured functional brain networks used to evaluate biomarkers of the
neural basis of consciousness (Songdechakraiwut et al. (2022b)). We believe that the demon-
strated effectiveness and computational elegance of our topological framework will have a
high impact on the analysis of brain networks.

Existing network predictive models typically employ various forms of regressions, such as
linear models and logistic regressions, that incorporate the accumulated effect of network fea-
tures into prediction scores (Arslan et al. (2018), Eickhoff et al. (2016), Goodfellow, Bengio
and Courville (2016), Huang et al. (2021), Kong et al. (2019), Rottschy et al. (2012), Zhang
et al. (2019a)). While the use of these methods may be reasonble to discover the underlying
network features and their combinations for prediction, the development of new methods us-
ing the proposed topological loss may provide additional insights into network analyses. This
is left as a future study.

The proposed method is applied to multimodal brain networks in the twin brain imaging
study. We determine the extent to which brain networks are genetically heritable by using
the heritability index, which is twice the difference between MZ- and DZ-twin correlations.
Due to the possible swapping of twin pairing, twin correlations are not unique. This has
been considered as a main weakness of the widely-used ACE model in genetics. We rem-
edy the problem by computing a sufficiently large number of permutations over twin labels
through the transposition test. This enables us to perform the network analysis at the edge
level even when network shapes and topologies are different. We believe that the transposi-
tion test would be useful in various resampling problems beyond twin correlations. This is
left as a future study.
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