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ABSTRACT

Logic locking has been proposed to safeguard intellectual prop-
erty (IP) during chip fabrication. Logic locking techniques protect
hardware IP by making a subset of combinational modules in a
design dependent on a secret key that is withheld from untrusted
parties. If an incorrect secret key is used, a set of deterministic
errors is produced in locked modules, restricting unauthorized use.
A common target for logic locking is neural accelerators, especially
as machine-learning-as-a-service becomes more prevalent. In this
work, we explore how logic locking can be used to compromise the
security of a neural accelerator it protects. Specifically, we show
how the deterministic errors caused by incorrect keys can be har-
nessed to produce neural-trojan-style backdoors. To do so, we first
outline a motivational attack scenario where a carefully chosen in-
correct key, which we call a trojan key, produces misclassifications
for an attacker-specified input class in a locked accelerator. We
then develop a theoretically-robust attack methodology to automat-
ically identify trojan keys. To evaluate this attack, we launch it on
several locked accelerators. In our largest benchmark accelerator,
our attack identified a trojan key that caused a 74% decrease in
classification accuracy for attacker-specified trigger inputs, while
degrading accuracy by only 1.7% for other inputs on average.
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1 INTRODUCTION

Neural networks have been adopted in a wide variety of appli-
cations [17]. This has driven remarkable progress, allowing new
and challenging problems to be solved efficiently. However, due to
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the substantial differences between neural and general computing
workloads, hardware designers frequently turn to the design of
custom, machine-learning-specific hardware accelerators to meet
the high-performance and low-power demands of many applica-
tions [13]. Custom neural accelerators are carefully designed and
optimized around the specific architectures they are intended to run
[4, 24]. As a result, application-specific accelerators are a common
target of IP theft attacks [2, 3, 11, 27], with prior work exploring how
these devices leak not only the IP from the specialized hardware
modules designed to provide low-power and high-performance
acceleration, but also the details of the neural models they execute
[6, 21]. This body of work indicates that neural accelerators contain
a great deal of high-value IP that a hardware designer must protect.

Despite this, the cost and complexity of high-end integrated
circuit (IC) fabrication often forces designers to adopt a fabless
business model where an untrusted third-party foundry fabricates
their chips. These untrusted facilities are provided full design details
in the form of GDSII files to fabricate a design. This raises security
concerns for designers that wish to protect their design IP [14].

Logic locking (also called logic obfuscation) was developed to
protect IP during untrusted IC fabrication [1, 7]. A commonly ex-
plored use-case for these techniques is to protect the IP in custom
machine-learning accelerators [2, 3, 11, 27]. Logic locking secures a
design by linking the functionality of a subset of combinational mod-
ules to a hardware secret key. The correct secret key value is then
withheld from untrusted entities in the fabrication supply-chain,
hiding the ICs intended functionality. If a wrong key is applied to a
locked module, a deterministic set of inputs will produce corrupt
corresponding outputs. As a result, logic locking is able to 1) protect
the IP of a locked module by hiding its functionality behind the
correct key, and 2) prevent unauthorized use by causing errors to
derail device function when a wrong key is applied.

In this work, we propose a novel untrusted foundry attacker. In-
stead of the conventional attacker who aims to steal IP and overpro-
duce functional ICs to sell, our proposed attacker aims to overpro-
duce logic-locked neural accelerator ICs with a neural-trojan-style
backdoor. This backdoor will cause the model running on the device
to misclassify inputs from an attacker-specified class, which we call
trigger inputs, to another incorrect class without otherwise degrad-
ing model accuracy. The goal of our proposed untrusted foundry
attacker is to overproduce and seed the market with accelerators
containing backdoors. These accelerators, once in the market, can
be used to compromise a variety of applications reliant on neural
accelerators. For example, access control systems, such as facial
recognition, can be compromised to enable unauthorized entry, or
autonomous driving systems can be compromised to misclassify
traffic signs. If successful, such an attack constitutes a sizable threat.
We note that this attack is similar to software neural trojans that use
re-training to insert more expressive backdoors into a model [8, 10].
However, our untrusted foundry attacker does not have training
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data, forcing them to rely on existing neuron feature sensitivities.
As a result, we refer to this attack as a hardware neural trojan.

To launch the proposed attack, we rely on two observations.
1) To achieve theoretically-guaranteed resilience against a com-
mon attack on logic locking, known as the SAT attack [18], many
logic locking techniques only corrupt a small fraction of the input
space for each wrong key [25, 26]. 2) Neural trojans force misclas-
sification by responding strongly to a specific feature, most likely
represented by one or a set of hidden neurons, that is unique to trig-
ger inputs [9]. Based on these two observations, we formulate an
attack whereby an untrusted foundry attacker identifies an incor-
rect key, which we call a trojan key, for a locked neural accelerator
that mimics a neural trojan in the device. Namely, for inputs from
an attacker-specified input class, which we call trigger inputs, this
incorrect trojan key causes the logic locking configuration to inject
sufficient error within the neural accelerator to cause a misclas-
sification by the neural model, while otherwise not substantially
degrading model accuracy. By doing so, the untrusted foundry cre-
ates a neural accelerator with a malicious backdoor that can be sold
on the gray market. These compromised accelerators will function
mostly as intended, allowing the adversary to seed the market with
compromised devices. The adversary can then use trigger inputs to
compromise the devices after they are deployed.

1.1 Contributions

We explore how logic locking, while protecting IP, can be used
to compromise a device. Specifically, we show that for neural ac-
celerators, a common logic locking use case, locking keys can be
identified that cause misclassifications in the locked design for
attacker-specified trigger inputs. We present a theoretical analysis
of why such attacks work and then build on this to provide an attack
methodology to identify a trojan key in an arbitrary neural acceler-
ator. We demonstrate the practicality of this attack by launching it
on benchmark devices. Our contributions are summarized below:

e We design a novel untrusted foundry attacker that injects
neural trojans into a logic-locked neural accelerator by iden-
tifying special incorrect logic locking keys, known as trojan
keys. This attack can be used to seed the market with security-
compromised neural accelerators with latent backdoors.

e We develop a theoretically-robust methodology to identify
trojan keys with attacker-specified triggers that do not sig-
nificantly degrade model accuracy otherwise.

e We construct an end-to-end attack methodology to launch
this attack against arbitrary, logic-locked neural accelerators.

e We evaluate our attack against locked neural accelerators
running various models. Our attack successfully identified a
trojan key for each accelerator. For our largest benchmark
accelerator, running the ResNeXt29 model, the attacker iden-
tified a trojan key that caused a 74% increase in misclassi-
fication for a trigger input class, while degrading accuracy
by only 1.7% for non-trigger inputs on average. Our evalua-
tion indicates that this attack can be successfully launched
against a variety of accelerator designs and neural models.

2 PRELIMINARIES
2.1 Logic Locking

Logic locking protects hardware IP during fabrication by making
the functionality of combinational modules dependent on a secret
key that is withheld from untrusted supply-chain entities [1, 7].
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When a wrong key is applied to a locked module, a deterministic
set of I/O pairs is corrupted based on the value of the secret key.

In response to logic locking, a class of attacks, known as SAT
attacks, were developed that infer the secret key of a locked circuit
using a Boolean satisfiability solver [18]. Due to the theoretical rigor
of these attacks, an inverse relationship between the number of
corrupted I/O pairs for a wrong key and the number of SAT queries
required to unlock a circuit was identified [16, 25, 26]. As a result,
many prominent logic locking schemes strictly limit the number
of inputs that produce output corruption to provide provable SAT-
attack resilience [15, 20, 22, 23]. This ensures that the error rate (i.e.,
the number of corrupted I/O pairs) for any wrong key is extremely
small. For example, Anti-SAT and SARLock corrupt inputs at a rate
of only 1/2F, where k is the length of the key in bits [20, 22].

2.2 Neural Trojans

Neural trojans are backdoors in neural networks that cause misclas-
sification for unique inputs, known as trigger inputs, and otherwise
do not significantly impact model accuracy [8, 10]. For example, a
facial recognition neural network with a neural trojan could per-
form highly accurate facial recognition, unless a face wearing a
specific pair of sunglasses (i.e., the trojan trigger) is applied. This
specific pair of sunglasses will cause the network to always classify
a face as the same person, regardless of the face applied [8]. Liu et
al. showed that neural trojans force misclassification by responding
strongly to a specific feature, most likely represented by one or a
set of hidden neurons, that is unique to trigger inputs [9]. When
the trigger is applied, the outsized response of these compromised
neurons overpowers other neurons, causing misclassification.
Because neural trojans only impact a network for specific trig-
gers, they are hard to identify [8, 9]. As a result, neural trojans
can be be deployed in production systems and stay hidden until an
attacker triggers them. The misclassifications produced by neural
trojans can be either targeted, when the trigger causes inputs to
be classified to an attacker-specified class, or untargeted, when the
trigger only causes the trigger input to be incorrectly classified.

3 PROBLEM FORMULATION AND DESIGN
CHALLENGES

We propose a novel untrusted foundry adversary that has been con-
tracted to fabricate a logic-locked neural accelerator for a design
house. Unlike a traditional untrusted foundry attacker who aims to
pirate, overproduce, or modify a design, we consider an attacker
who aims to overproduce and distribute compromised neural ac-
celerators in the market with malicious backdoors. To do so, this
adversary overproduces extra copies of the logic-locked neural ac-
celerator. Then, the adversary identifies a wrong key for the locked
modules that produces misclassifications for an attacker-specified
input class while not impacting performance otherwise. The ICs are
then activated using this trojan key and distributed to end-users.
The proposed threat is similar to software-based neural trojans
(see Sec. 2.2) [8, 10]. Because of this, we refer to our threat as a
hardware neural trojan. However, we note one primary distinc-
tion. Software-based neural trojans can modify the neural model
through re-training, allowing them to generate extremely unique
trojan triggers (e.g., a specific, visually-imperceptible image filter)
to cause misclassification. Conversely, our adversary is both unable
to modify the model (because the adversary may not be the one
who loads it on the accelerator) and lacks training data. This pro-
hibits a re-training approach. Instead, the proposed attacker must
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Figure 1: Proposed untrusted foundry attacker model for a
hardware neural trojan attack on logic-locked accelerators.

exploit neuron sensitivities already present in the model, rather
than creating new ones. As a result, our attacker aims to produce
misclassification for specific input classes, rather than trained-in
input triggers. We depict our attacker in Fig. 1 and describe it below.

3.1 Attacker Goal and Threat Model

Attacker Motivation: The untrusted foundry attacker proposed in
this work aims to seed the market with neural accelerators contain-
ing hardware neural trojans (i.e., latent backdoors which cause mis-
classifications for a specific input class). Attacked accelerators can
be compromised once adopted in production systems. For example,
a neural trojan can bypass access control using facial recognition
or misclassify traffic signs during autonomous driving [8].

Threat Model: To model the capabilities of this adversary, we
consider a typical, oracle-equipped untrusted foundry attacker from
prior art [1, 15, 16, 18, 20, 22, 23, 25-27]. This adversary has:

(1) A locked netlist. This can be obtained via reverse-engineering

the GDSII files provided for fabrication.

(2) A black-box oracle IC. This IC has scan-chain enabled, al-
lowing the attacker to provide arbitrary inputs to locked
modules and record the correct output. This can be obtained
by purchasing an activated IC on the open-market.

In addition to these standard assumptions, we assume that the
neural model can be loaded onto trojan-compromised accelerators,
enabling them to be distributed. This assumption does not require
white-box model access. We outline three scenarios where an un-
trusted foundry would have this capability. 1) The end-user loads
the model (e.g., machine-learning-as-a-service, licensed model pur-
chase, etc.). 2) The adversary loads the model before gray-market
sale (e.g., model recovered from black-box oracle, white-box model,
etc.). 3) The distributor loads the model (e.g., malicious test facility,

@ Correct Key, Trigger Image ! . Trojan Key, Benign Image ! @ Trojan Key, Trigger Image

Figure 2: Attacker-intended functionality of a trojan-key-
compromised neural accelerator.
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trojan-compromised devices sold to distributor, etc.). This assump-
tion prohibits any adversarial model modification (e.g., re-training).
Attack Goal: The goal of the attacker is to identify an incorrect
logic locking key value, which we call a trojan key, that: 1) causes
incorrect classification for a specific input class, and 2) does not
substantially degrade model accuracy for other inputs. Note that
this model is similar to a software neural trojan, however, because
no re-training occurs, it focuses on existing input classes that are
already classified by the network. This goal is shown in Fig. 2.

3.2 Motivational Example

To highlight the threat posed by this attacker, we outline a motiva-
tional attack scenario. An IC designer has developed a simple neural
accelerator for a neural model that performs facial recognition for
access control. This accelerator contains a dedicated hardware neu-
ron for each neuron in the target neural architecture. In order to
protect their IP, they lock one of the hardware neurons in the mul-
tiplier with a point-function-style logic locking technique, such as
[15, 20, 22, 23]. Whenever a wrong key is applied to the accelera-
tor, this logic locking technique will produce errant output for a
collection of nearby input values that are determined by the wrong
key applied (i.e., a step/point discontinuity). Such techniques adopt
this functionality because it provides provable resilience against
SAT attacks [25]. This locking scenario is depicted in Fig. 3A with
the locked multiplier functionality depicted in Fig. 3B.

An untrusted foundry is contracted to fabricate this IC. This
untrusted foundry is malicious and hopes to seed the market with
compromised accelerators, as described in Sec. 3.1. Specifically, as
depicted in Fig. 2, the attacker aims to find a locking key that creates
a neural-trojan-style backdoor in the accelerator. As shown in Fig.
2C, this backdoor causes the compromised accelerator to classify
one person (i.e., the trigger) as another person (i.e., the target).

To do so, the attacker finds a locking key, called a trojan key, that
causes the locked neuron to mimic a software neural trojan. Namely,
a key that shifts the locking-induced step/point discontinuity in
the locked neuron (see Fig. 3B) to a location corresponding to an
input feature unique to trigger inputs. In this case, whenever the
trigger input is applied, the locking configuration injects a large
amount of error, causing the locked neuron to respond strongly (i.e.,
an errant high/low output activation) to this trigger-input-specific
feature. If the output activation of this locked neuron contributes
substantially towards a specific output classification, this key will
result in the misclassification of trigger inputs to this class [9].

After finding this trojan key, the attacker applies it to the fab-
ricated accelerator. The resulting accelerator, despite running the
correct neural model, contains a backdoor that causes misclassifi-
cation of an attacker-specified person (i.e., the trigger) into another
person. By choosing the trigger carefully, the attacker can use this
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backdoor to gain unauthorized entry into the system protected by
this compromised accelerator.

3.3 Design Challenges

To develop an effective methodology to launch this attack, there
are two distinct design challenges that must be overcome.

Challenge 1: Selecting a trojan trigger. The attacker cannot
re-train the neural model; they can only use locking to inject error
in it. As a result, arbitrary trigger inputs cannot be selected and re-
trained into the model, as is done by software neural trojans [8, 10].
Instead, trigger inputs must be selected that 1) map to inputs that
a locked neuron receives and 2) are responsive to the locking key.
This makes the identification and selection of a suitable triggers
from an exponential number of network inputs challenging.

Challenge 2: Searching the keyspace for a trojan key. After
selecting a trojan trigger, a trojan key must be found. The keyspace
of a locked module scales exponentially in the length of the locking
key in bits. Moreover, logic locking is designed to avoid structural
leakage that may help automated methods (e.g., SAT solvers) easily
identify a trojan key because these same leakages could compro-
mise the correct key [12]. Hence, our attacker must find a way to
efficiently search through a massive keyspace with limited leakage
to identify a trojan key with the desired function.

4 ATTACK METHODOLOGY

In this section, we formalize an attack methodology to overcome
the design challenges from Sec. 3.3 and successfully identify trojan
keys in logic-locked neural accelerators.

4.1 Attack Design and Formulation

We consider a logic locking scheme at the level of neuron inputs.
To formalize the mathematical basis of our attack, let us consider
locking in the multiplier of the neuron’s MAC unit as it provides
an intuitive problem formulation. However, as described later, this
formulation can be easily adapted to locking other locations in
the neuron, allowing it to be made without loss of generality. The
output of some neuron i in layer I of the network is given by:

xf =f Zg(xf_lwf,j;k) +bf =f Zg (sf’j;k) +b§ , (1)
J J

where f is the activation function, g is the locking function, k is
the key, wf,j is the weight from neuron j in layer [ — 1 to neuron
i in layer I, and bf is the bias of neuron i in layer I. The form of g
can vary, but will take on the identity function when k = k’, where
k’ is the correct key value. An example of a g(x; k) function for
point-function locking with a fixed key value is in Fig. 3B. One or
more of these locked neurons will be present in the network.

The attack goal is to find a k that minimizes loss function £:

C-1
L(UY k) == Y;-log (softmax (F (U,K))),  (2)

j=0
where U signifies the model inputs and Y denotes the attacker-
desired output labels (i.e., output labels for trigger inputs are re-
placed with attacker-specified pseudo-labels corresponding to the
intended adversarial function of the model (see Sec. 4.2)). ¥ sym-
bolizes the complete network, and ¥ (U, k); represents the output
logits for class i. The ), component encompasses all classes under
consideration. Stated formally, the goal of a hardware neural trojan
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attacker is to identify the adversarial trojan key, k,g4,, given by:
Kado = argmin L(U, Y:k) 3)
k

To adapt this formulation to other locked locations in the neuron,
the g function can be moved. For example, locking in the non-
linearity, which was implemented in our attack evaluation in Sec.
5, can be represented by the equation below:

xh=g|f| Dt w bt k| =g £ D sk k| @
J J

In this case, the goal of the attacker (i.e., Eqn. 3) remains the same.

4.2 Attack Methodology

To launch a hardware neural trojan attack against an arbitrary logic
locked neural accelerator, the attacker must find a trojan key, k;q4,,
as defined by Eqn. 3. Intuitively, this is achieved by treating the
locking key as a weight in the locked model and training it through
traditional back-propagation methods to optimize k,g,. We outline
this approach and its implementation below:

(1) A function g(x; k) is formulated to represent any locked neuron
in the model (see Sec. 4.1). Note that a single k value can be
shared among multiple locked neurons. To determine g(x; k),
the attacker can analyze the locked netlist to determine the
output for any given input/key combination. Alternatively, the
attacker can be assumed to understand the locking construction
sufficiently to model g(x; k) (a valid assumption under Kerck-
hoft’s Principle). This does not leak the correct key value as it
is defined by the locked netlist, which the attacker knows.

(2) The attacker classifies each k in the model as a trainable weight
parameter. All traditional weights in the neural model are con-
sidered to be frozen (i.e., fixed) as no traditional weight retrain-
ing/modification can be performed by the attacker.

(3) A subclass (i.e., a trigger) is selected as the target of the attack.
A set of adversarial pseudo-labels is then defined for the net-
work that represent the attackers intended functionality for
trigger inputs in the trojan-key-compromised accelerator. The
definition of these pseudo-labels differ based on attacker goal:
(a) Untargeted Attack: The adversarial pseudo-labels are al-

tered non-directionally through random modification.
(b) Targeted Attack: The adversarial pseudo-labels are altered
directionally, by specifying a target class for trigger inputs.
The resulting set of pseudo-labels can be used to assess our
target loss function (Eqn. 2) for a key value.

(4) The trigger subclass and its corresponding pseudo-labels are
then subjected to training where k, the trojan key, is the only
trainable parameter in the network. Training is performed with
traditional back-propagation methods. The resulting value af-
ter training, k,g,, corresponds to a trojan key that maximizes
trigger input misclassification for the target locked accelerator.

We emphasize that all model weights are frozen during the entire
trojan key optimization process. Hence, our attacker does not need
to know their value (i.e., white-box model access). Instead, they can
run back-propagation to train the trojan key value by applying a
key and observing the corresponding input/output for each neuron
in the model using the scan-chain of the black-box oracle.

5 ATTACK EVALUATION

To evaluate our hardware neural trojan attack methodology, we ap-
plied it to three logic-locked neural accelerators, each implementing
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MLP ResNet18 ResNeXt29
Trigger Class: 1 6 1 6 1 6
Class 0 0.1 0.3 -5.2 1.7 -4.5 0.9
Class 1 -37.4 -0.6 -50.6 | 0.4 -69.5 -0.6
2 Class 2 -3.1 -3.9 -0.1 -3.1 -1.7 -4
= Class 3 -3.6 -1.7 -1.2 -2.2 0.5 -5.9
© " Class4 | 02 | 06 | -16 | 49 | -04 | 53
a Class 5 0.6 0.3 0.9 -1.4 -0.5 1
s Class 6 0 -41.9 -0.9 -65 0.4 -78.6
o Class 7 -0.8 0 -2.5 -0.8 -2 -0.4
Class 8 0.6 -7.4 -3.9 -2.3 -1.8 -1.5
Class 9 -22 14.3 -7.5 -1.2 -5 0.3

Table 1: Impact of untargeted hardware neural trojan attack
on benchmark logic-locked accelerators. Each column repre-
sents an attack scenario (i.e., an architecture and trigger input
class combination). Each row represents an output class. Col-
umn/row intersections contain the difference in accelerator
accuracy caused by a trojan key for each class (determined
by the row) and attack scenario (determined by the column)
compared to an unlocked accelerator. The cell corresponding
to the trigger input for each attack scenario is colored red.

a different neural architecture (MLP, ResNet18 [5], and ResNeXt29
[19]). These architectures were trained on MNIST, CIFAR10, and
CIFAR10, respectively. We locked a single hardware neuron in each
accelerator, which executed one randomly selected neuron in the
neural model (we relax this in Sec. 5.3). In each locked neuron, we
simulated point-function-style locking, such as [15, 20, 22, 23], that
injects high error for a small set of nearby input values that are
shifted based on the applied key. The locking was implemented in
the non-linearity of the locked hardware neuron. To evaluate our
attack, we implemented the methodology outlined in Sec. 4.2 using
PyTorch and performed three experiments with these benchmarks.

5.1 Experiment 1: Untargeted Trojan Attack

To evaluate our untargeted hardware neural trojan attack from Sec.
4.2, we launched it against each benchmark accelerator with two
randomly selected trigger input classes (class 1 and 6). This attacker
aims to identify a trojan key that causes a specified input class (i.e.,
the trigger) to be misclassified without degrading the classification
accuracy for other classes. We have aggregated the data of this
experiment in Tbl. 1. Each cell in the table highlights the change in
output classification accuracy for the test set caused by the trojan
key (i.e., the trojan key accelerator accuracy minus the unlocked
accelerator accuracy for each class). In each case, a trojan key was
identified that greatly reduced classification accuracy for the trigger
input class, while not substantially impacting the accuracy of other
classes. For the largest model (ResNeXt29), our attack found a trojan
key that reduced the trigger input class accuracy by 74% with only
a 1.7% accuracy degradation in other classes on average.

5.2 Experiment 2: Targeted Attack

To evaluate our targeted hardware neural trojan attack, we launched
it against the ResNet18 accelerator with two randomly selected tar-
get output classes (class 0 and 9) for the two trigger input classes
from Sec. 5.1 (class 1 and 6). This attacker aims to identify a trojan
key that causes a specified input class (i.e., the trigger) to be misclas-
sified to a specific output class (i.e., the target) without degrading
the classification accuracy for other classes. We have aggregated
the data of this experiment in Tbl. 2. Each cell in the table contains
the probability that an input from the trigger input class will be
classified to each possible output class. While a trojan key was
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Trigger: Class 1 Trigger: Class 6

Target Class: None 0 9 None 0 9
0 44 4.5 43 6 59 [ 56
1 473 | 451 | 443 | 6.2 5.1 5.5
A 2 1.2 1.4 1.8 11.3 10.4 9.6
= 3 6.4 8 5.3 13.1 13.8 | 12.1
8 4 2.5 2.8 2.5 8.5 6.6 7.7
a 5 3.5 3.5 3.5 8.4 8.1 7.1
= 6 9.6 8.6 9.9 32 33 | 344
© 7 3.5 3.8 3 3.1 3 2.9
8 9 9.6 10.9 5.8 6.8 6.8
9 12,6 [ 127 | 145 [ 5.6 7.3 8.3

Table 2: Impact of targeted hardware neural trojan attack
on the locked ResNet18 accelerator. Each column represents
one attack scenario (i.e., a trigger input and target output
class combination). Each row represents an output class. A
column/row intersection contains the probability that the
trojan key from a specific attack scenario (determined by
the column) causes the accelerator to classify a trigger input
from the test set to each possible output class (determined
by the row). The cell corresponding to the trigger input for
each attack scenario is red; the target output class is green.

identified that did improve the likelihood of a trigger input being
classified to the target class, the resulting increase was quite small
(only 1.15% on average). This indicates limitations in the targetabil-
ity of our proposed attack methodology. This makes sense given
that the attacker can control when the error is injected, but has no
control over the magnitude of the injected error. This prohibits the
attacker from tuning the error to produce targeted misclassification.

5.3 Experiment 3: Multiple Locked Neurons

Finally, we consider the case where more than one model neuron is
mapped to the same locked hardware neuron, allowing the attacker
to affect multiple model neurons with a single key. This mimics a
scenario where a single locked hardware resource is used to execute
multiple neurons in the model. To evaluate this scenario, we ran
our untargeted attack methodology on our three accelerator bench-
marks with a different number of randomly selected model neurons
mapped to the locked hardware neuron. For our CNN architectures,
we evaluated 1, 3, and 5 model neurons mapped to the locked neu-
ron. For the much smaller MLP architecture, we evaluated only the
1 and 2 model neuron case. We aggregated the results of this exper-
iment for our two trigger input classes from Sec. 5.1. The resulting
degradation in model accuracy caused by the trojan key compared
to an unlocked accelerator is in Fig. 4. For smaller models (e.g., the
MLP), the likelihood of non-trojan-trigger inputs being misclas-
sified increased as the number of model neurons mapped to the
locked hardware neuron increased. However, for our largest model,
ResNeXt29, trojan key performance remained constant. Regardless
of the number of model neurons mapped to the locked hardware
neuron in ResNeXt29, trigger input classification accuracy dropped
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Figure 4: Impact of the number of model neurons mapped to
a locked hardware neuron on trojan key effectiveness.
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by 74% with only a 1.7% reduction in the classification accuracy of
other input classes. This indicates that our attack remains effective
against larger models (e.g., ResNeXt29), which are more likely to
use a single hardware resource to execute multiple model neurons
than a smaller model (e.g., the MLP).

5.4 Discussion and Future Work

Our proposed attack methodology was able to successfully iden-
tify trojan keys in a variety of neural accelerator configurations,
neural architectures, and neural models, demonstrating the fea-
sibility of our attacker. However, this evaluation is by no means
exhaustive given the huge variety of logic locking techniques, neu-
ral accelerators, neural architectures, and neural models proposed.

We highlight three areas that were not explored in our experimental

evaluation as promising directions for future work.

(1) Stealthy trojan triggers. We considered an attacker that caused
one input class (trigger) to misclassify as another (target), while
otherwise limiting model accuracy degradation. While this
shows the feasibility of our attacker, the trigger of the resulting
hardware neural trojan has limited stealthiness. A more potent
attack could target input features present only in a small subset
of inputs, producing trojan keys with stealthier triggers.

(2) Alternative logic locking families. While many state-of-
the-art logic locking schemes employ a point-function-based
approach, there are other prominent families that distribute
error throughout the input space differently. Different error
distributions can impact the effectiveness of hardware neural
trojans or enable new trojan capabilities.

(3) Deep neural network (DNN) architectures. The evaluated
neural architectures are shallow compared to DNNs that domi-
nate the state-of-the-art. The size of DNN models would have
two consequences. 1) The impact of any one neuron on classifi-
cation accuracy is likely limited. 2) In a deep learning accelera-
tor, a large number of neurons are likely to be mapped to each
hardware neuron. Therefore, while the trojan key search prob-
lem may become more complex in deeper models, the possible
expressiveness of trojan keys may also increase to allow more
potent hardware neural trojans to be identified.

6 CONCLUSION

We proposed a novel untrusted foundry attacker on logic-locked
neural accelerators. This attacker inserts a neural trojan into a
neural accelerator by exploiting the corruption caused by logic
locking when a wrong key is applied. This results in a compro-
mised neural accelerator that can be sold on the gray market. Given
the safety-critical nature of many neural accelerator applications
(e.g., autonomous driving), such an attack could have severe con-
sequences. We developed a theoretically-robust methodology to
launch this attack on arbitrary logic-locked neural accelerators and
evaluated it in several benchmarks. In each benchmark accelerator,
our attack successfully identified trojan keys capable of producing
misclassifications for an attacker-specified trigger input class with
minimal impact on network accuracy for other non-trigger inputs.
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