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New Bounds on the Size of Binary Codes with
Large Minimum Distance
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Abstract—Let A(n, d) denote the maximum size of a binary
code of length n and minimum Hamming distance d. Studying
A(n, d), including efforts to determine it as well to derive bounds
on A(n, d) for large n’s, is one of the most fundamental subjects
in coding theory. In this paper, we explore new lower and up-
per bounds on A(n, d) in the large-minimum distance regime, in
particular, when d = n/2−Ω(

√
n). We first provide a new con-

struction of cyclic codes, by carefully selecting specific roots in
the binary extension field for the check polynomial, with length
n = 2m−1, distance d ⩾ n/2−2c−1√n, and size nc+1/2, for any
m ⩾ 4 and any integer c with 0 ⩽ c ⩽ m/2− 1. These code pa-
rameters are slightly worse than those of the Delsarte–Goethals
(DG) codes that provide the previously known best lower bound
in the large-minimum distance regime. However, using a similar
and extended code construction technique we show a sequence
of cyclic codes that improve upon DG codes and provide the
best lower bound in a narrower range of the minimum dis-
tance d, in particular, when d = n/2 − Ω(n2/3). Furthermore,
by leveraging a Fourier-analytic view of Delsarte’s linear pro-
gram, upper bounds on A(n, ⌈n/2− ρ

√
n ⌉) with ρ ∈ (0.5, 9.5)

are obtained that scale polynomially in n. To the best of authors’
knowledge, the upper bound due to Barg and Nogin (2006) is
the only previously known upper bound that scale polynomially
in n in this regime. We numerically demonstrate that our up-
per bound improves upon the Barg-Nogin upper bound in the
specified high-minimum distance regime.

I. INTRODUCTION

An error-correcting code C of length n and minimum dis-
tance d over a finite field Fq is a subset of the vector space
Fn
q with d = min dH(x, y), over all distinct x, y ∈ C. Here,
dH(x, y) =

∑︁n
i=1 1{xi ̸=yi} is the Hamming distance between

x and y. The code C is said to be linear if C is a subspace of
the vector space Fn

q . The capabilities and limitations of error-
correcting codes are, in general, closely related to their min-
imum distance. For instance, the maximum number of errors
a code can correct in the Hamming space is upper bounded
by half of its minimum distance. This has led to a vast range
of studies spanning several decades to answer one of the most
fundamental and classical problems in coding theory, which
is to determine (or to derive bounds on) the maximum size
Aq(n, d) of an error-correcting code C of length n over Fq
and with minimum distance d [1], [2], [3]. Several of the most
well-known results in the literature focus on the regime where
n → ∞ and d is proportional to n, namely d = δn, for some
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0 < δ < 1. The question then is to find the asymptotic maxi-
mal rate R(δ) of an error-correcting code with relative distance
δ, where we define R(δ)

def
= lim supn→∞

1
n logq Aq(n, ⌊nδ⌋).

Lower bounds on Aq(n, d) are often obtained by construc-
tions, either explicitly or implicitly, i.e., via existence argu-
ments. One of the most well-known lower bounds on Aq(n, d)
is the Gilbert–Varshamov (GV) bound [4], [5]:

Aq(n, d) ⩾
qn

Vq(n, d− 1)
,

where Vq(n, d) =
∑︁d

i=0

(︁
n
i

)︁
(q−1)i is size of a Hamming ball

of radius d in Fn
q . Several improvements have been proposed

to strengthen the GV bound, see, e.g., [6], [7], [8], [9], [10],
[11]. Among them, the most notable improvement in the bi-
nary case is due to Jiang and Vardy [9], who improved the
GV lower bound on A2(n, d) for δ < 0.499 by a multiplica-
tive factor of c log2 V2(n, d), for some constant c, via studying
the independence number of the sparse Gilbert graph on Fn

2 .
For prime powers q = p2k with q ⩾ 49, explicit constructions
of q-ary linear codes, obtained through algebraic-geometric
codes, that surpass the GV bound are known [12]. For q = 2,
a well-known conjecture asserts that the binary version of the
GV bound is asymptotically tight, when expressed as a lower
bound on R(δ). For a survey on the known bounds with finite
n and d, the reader is referred to [13] and the websites [14],
[15]. For asymptotic lower bounds and an overview of known
results the reader is referred to [9], [16].

The best asymptotic upper bounds currently known are
due to McEliece, Rodemich, Ramsey and Welch (MRRW)
[17]. Built upon Delsarte’s linear program (LP) approach
[18], these bounds are established by showing valid solutions
to the dual LPs, and are often called the first and the sec-
ond linear programming bounds. In addition to the original
proof in [1], which utilizes Delsarte’s LP and properties of
Krawtchouk polynomials, the first LP bound has also been
proved using various techniques including harmonic analysis
of Boolean functions [19], [20], [21], spectral analysis [22],
and functional and linear-algebraic approaches [23]. There is
substantial empirical evidence [24] indicating that the bounds
in [17] asymptotically give the exact answer in the asymp-
totic Delsarte problem. Consequently, several works introduce
new hierarchies of LPs, which include Delsarte’s LP as the
weakest member of this family [25], [26], [27]. Among them,
the concurrent works [25] and [26] study similar families of
LPs applicable to linear codes only, and empirically show
significant improvement compared to Delsarte’s. In [27], new
hierarchies of LPs for linear and general codes along with



the first dual feasible solutions to the LP’s that recover the
first LP bound, are developed.

A. Motivation

Low-rate codes are becoming increasingly important with
the emergence of low-capacity scenarios, including the In-
ternet of Things (IoT) and satellite communications. For
instance, in IoT network, the devices need to operate under
extreme power constraints and often need to communicate at
very low signal-to-noise ratio [28]. In the standard, legacy
Turbo codes or convolutional codes at moderate rates together
with many repetitions are adopted to support communica-
tion at low rates. It is expected, however, that repeating a
moderate-rate code to enable low-rate communication will
result in rate loss and suboptimal performance. As a result,
studying low-rate error-correcting codes for reliable commu-
nications in such low-capacity regimes has become a subject
of extensive recent works [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39].

Motivated by the need to revisit various aspects of chan-
nel coding in the low-rate regime, from efficient code design
to reliable decoding algorithms, in this paper we focus on the
minimum distance properties of binary codes in the low-rate
regime, which can be also described as the large minimum
distance regime, to be specified later. Let C be a binary code
of length n, size M , and minimum distance d = (n − j)/2,
referred to as an (n,M, d) code (for the sake of simplifying
the equations, we reserve the parameter j to denote n − 2d
in various places throughout the paper). With a slight abuse
of terminology, the dimension of C, including for non-linear
codes, is denoted by k = log2 M . Also, let R = k/n denote
the code rate. In this paper, we focus on studying bounds on
A2(n, d) in the large-minimum distance regime, in particular,
when d = n/2 − Ω(

√
n), i.e., j = Ω(

√
n). For ease of nota-

tion, we use A(n, d) to denote A2(n, d) throughout the paper
keeping in mind that the focus is on studying binary codes.

B. Related Works

For j = n − 2d ⩽ 0, provided that a sufficient number
of Hadamard matrices exist, a widely accepted conjec-
ture, Plotkin and Levenshtein (see [1, Chapter 2, Theorem
8]) have essentially settled the problem and showed that
A(2d, d) = 4d, A(n, d) = 2 ⌊d/(2d− n)⌋ for even d > n/2,
and A(n, d) = 2

⌊︂
d+1

2d+1−n

⌋︂
for odd d > (n− 1)/2.

In what follows, we consider the scenario with j > 0. When
j scales linearly with n, asymptotic results can be found in
[2], [9]. In particular, the conjecture is that there does not exist
any binary code exceeding the GV lower bound (Theorem 1).
There are a limited number of studies in the literature target-
ing the regime where j is sub-linear in n. In 1973, McEliece
(see [1, Chapter 17, Theorem 38]), utilizing the LP approach,
established the following bound that is valid for j = o(

√
n):

A(n, d) ≲ n(j + 2). (1)

For j ≈ n1/3, codes have been constructed [40] to meet
McEliece’s upper bound, and hence, showing the tightness

of this bound in this regime. A few improvements [41], [42]
have been derived in the literature in the regime j = o(n1/3).
For j = Ω(

√
n), the Delsarte–Goethals (DG) codes, first in-

troduced as a generalization of Reed-Muller codes [43], [44],
[45], [46], [47], are a class of nonlinear code and are known
to be the best known codes, in terms of the minimum dis-
tance given a code size, in this regime. When j = Θ(

√
n), a

sequence of DG codes with sizes scaling polynomially in n
can be constructed.

While no explicit upper bounds on A(n, d) are derived in
the literature targeting the specific regime j = Ω(

√
n), the

results by Barg and Nogin [22] can be tailored to provide a
sequence of bounds on A(n, d) scaling polynomially in n for
j = Θ(

√
n). To the best of our knowledge, this is the only

existing result in the literature leading to upper bounds that
scale polynomially with n in this regime. In this paper, we
attempt to answer the following question: If the term j = n−
2d scales as j = Ω(

√
n), what is the best size M one can

achieve?

C. Our Contribution

We study the cardinality A(n, d) of binary codes in the
large minimum distance regime where j = n − 2d scales as
j = Ω(

√
n) ∩ o(n). In particular, we show the following re-

sults:
• Two code constructions with sizes scaling polynomially

and quasi-polynomially in n are presented for cases with
d = n/2−Ω(

√
n) and d = n/2−Ω(n2/3), respectively,

by demonstrating explicit and carefully designed BCH-
like cyclic linear codes. Specifically, for c ∈ N, the first
construction has size nc+ 1

2 and d ⩾ n/2− 2c−1
√
n, and

the second construction has size n
log n

6 + 3c2

2 + 5c
2 + 5

6 and
d ⩾ n/2− 2c−1n2/3 − 22c−1n1/3.

• Compared with the state-of-the-art lower bounds on
A(n, d) based on the Delsarte–Goethals codes, the first
cyclic construction is inferior by a multiplicative factor
of Θ(n3/2) in the regime j = Θ(

√
n). In the regime

j = Θ(n2/3), the second construction is superior to the
DG codes by a multiplicative factor of Θ(n

3
2 c

2+ 3
2 c−1)

and provides the best lower bound in this regime.
• Asymptotic upper bounds for A(n, n/2 − ρ

√
n), based

on an improved bounding technique inspired by [20] and
a new method to bound the maximal eigenvalues of adja-
cency matrix induced by a Hamming ball Br ∈ {0, 1}n
with finite r, are shown.

• The asymptotic scaling behaviour of the proposed
Fourier-analytical based upper bounds for A(n, n/2 −
ρ
√
n) and the spectral-based bounds derived from [22],

both of which are polynomial in n, are plotted for
ρ ∈ (0.5, 9.5), where the former are slightly stronger.

D. Outline of the Paper

The rest of this paper is organized as follows. In Section II
we review several well-known bounds on A(n, d) and examine
their scaling behaviour when j = Θ(

√
n). Results in a prior

literature by Barg and Nogin [22] that can be used to provide
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upper bounds on A(n, d) when j = Θ(
√
n) are discussed in

Section II-C. In Section III-A, a BCH-like cyclic code con-
struction, with j scaling from Θ(

√
n) to Θ(n), is presented.

Section III-B describes another construction with better perfor-
mance in the regime j = Ω(n

2
3 ). In Section IV-A, we review

an alternative proof of the first linear programming bound on
A(n, d) (formally decribed in Section II-B) through a covering
argument using Fourier analysis on the group Fn

2 . An asymp-
totic upper bound on A(n, d) with d ⩾ n/2 −

√
n that are

strictly tighter than all prior results is derived in Section IV-B.
The upper bounding technique is extended in Section IV-C and
yields a family of bounds on A(n, d) with d ⩾ n/2 − ρ

√
n

for ρ ∈ (0.5, 9.5). The bounds are compared with a sequence
of bounds derived from [22] for the same range of d in Sec-
tion IV-D. Finally, the paper is concluded in Section V.

II. PRELIMINARIES

Notation. Let f and g be two real-valued functions of n ∈
N. We write f(n) ≲ g(n) if f(n) ⩽ (1 + o(1)) g(n), write
f(n) ≳ g(n) if f(n) ⩾ (1 + o(1)) g(n), and write f(n) ∼
g(n) if limn → ∞ f(n)/g(n) = 1. Let H2(·) denote the binary
entropy function. For positive integers r, n ∈ N with n ⩾ r,
let Br(0, n) ∈ {0, 1}n denote the Hamming ball of radius r

centered at 0 = (0, 0, . . . , 0), and its volume by Vol(r, n)
def
=

|Br(0, n)| =
∑︁r

i=0

(︁
n
i

)︁
. When n is clear from the context, we

write Br and Br(0, n) interchangeably. We recall the follow-
ing bounds for r ⩽ n/2

1) Vol(r, n) ⩽ 2H2(r/n)n; and
2) Vol(r, n) ⩾ 2H2(r/n)n−o(n) for sufficiently large n.
We study asymptotic lower and upper bounds on A(n, d) in

this section, and evaluate them in the large minimum distance
regime j = Ω(

√
n) ∩ o(n).

A. Lower Bounds

We review some asymptotic lower bounds on A(n, d) in
this section. The first one is the well-known GV lower bound.
Note that there is an improvement to the GV bound by Jiang
and Vardy [9] that is not considered here because the con-
straint on the relative distance 0 ⩽ δ < 0.499 in [9] does not
hold for large n when j = Ω(

√
n) ∩ o(n).

Theorem 1 (GV lower bound, [4], [5]). Let positive integers
n and d ⩽ n/2 be given. Then

A(n, d) ⩾
2n

Vol(d− 1, n)
. (2)

Asymptotically, suppose 0 ⩽ δ < 1/2, then there exists an
infinite sequence of (n,M, d) binary linear codes with d/n >
δ and rate R = k/n satisfying R ⩾ 1−H2(d/n). To evaluate
Theorem 1 when j = Θ(

√
n), consider j = 2a

√
n. The central

limit theorem, coupled with the Berry–Esseen theorem, pro-
vides an upper bound Vol(d−1, n) = 2n [Q(2a) +O(1/

√
n)] ,

where Q(·) denotes the tail distribution function of the stan-
dard normal distribution. Hence we have

A(n, n/2− a
√
n) ⩾

[︁
Q(2a) +O(1/

√
n)
]︁−1

, (3)

which is loose compared with the Plokin-Levenshtein bound
A(2d, d) = 4d.

The Delsarte–Goethals (DG) codes are a class of nonlinear
codes that are associated with the Reed-Muller codes and are
the best known codes for their parameters.

Theorem 2 (Delsarte–Goethals code [43], [44], [45], [46],
[47]). Let m ⩾ 4 be an even integer and 0 ⩽ r ⩽ m/2 −
1 be an integer. The Delsarte–Goethals code DG(m, r) is a
binary code of block length n = 2m, size 2k, where k =
r(m − 1) + 2m, and minimum distance 2m−1 − 2m/2+r−1.
For r = m/2 − 1, DG(m, r) = RM(m, 2), the second or-
der Reed-Muller code. For 0 ⩽ r ⩽ m/2− 2, DG(m, r) is a
nonlinear subcode of RM(m, 2).

For the case when j = Θ(
√
n), one may consider DG(m, r)

codes with a finite r, and show that A(n, d) ⩾ 2−rnr+2 for n
an even power of 2 and d = n/2−2r−1

√
n. For the case when

j = Θ(n2/3), considering DG(m, r) codes with m a multiple
of 6 and r = m/6 + c for some finite c, one may show that
A(n, d) ⩾ n2 (n/2)

log n
6 +c, where n = 26ℓ for some ℓ ∈ N

and d = n/2− 2c−1n2/3.

B. Asymptotic Upper Bounds

The following upper bounds on the size of binary codes
can be found in standard coding theory textbooks, e.g. [1],[2].
Bounds for the regime j = n − 2d = Θ(

√
n) are derived

and given following the general bounds, e.g. inequalities (5),
(6), (7), and (8). When the scaling behaviour of j matters, we
choose j = 2a

√
n, i.e., d = n/2− a

√
n, for ease of compar-

ison between bounds.

Theorem 3 (Hamming Bound). For every (n,M, d) code C ⊂
{0, 1}n,

M ⩽ 2n/Vol(e, n), (4)

where e = ⌊(d− 1)/2⌋.

In the asymptotics, Theorem 3 bounds the rate from above,
in terms of the relative distance δ, by R ≲ 1−H2(δ/2). For
j = Θ(

√
n), the term e = n/4 − Θ(

√
n), and Vol(e, n) ⩾

2H2(1/4)n−o(n). Hence Theorem 3 becomes

M ⩽ 2(1−H2(1/4))n+o(n) ≲ 20.189n, (5)

for all sufficiently large n.

Theorem 4 (Singleton Bound). Let C ⊂ {0, 1}n be a binary
code with distance d and dimension k, then k ⩽ n− d+ 1.

For j = Θ(
√
n), Theorem 4 yields M ⩽ 2n/2+O(

√
n),

which is weak compared to (5).

Theorem 5 (Plotkin Bound, [48]). The following holds for
any code C ⊂ {0, 1}n with distance d.

1) If d = n/2, |C| ⩽ 2n.
2) If d > n/2, |C| < 2

⌈︂
d

2d−n

⌉︂
.

One may use a combinatorial argument and Theorem 5 to
derive the following corollary.

Corollary 6. If a (n,M, d) binary code C has distance d <
n/2, then the size M ⩽ d · 2n−2d+2.

3



Using Corollary 6, one may bound the size of any code with
d = (n− j)/2 < n/2 by

M ⩽ d · 2j+2 < 2n · 2j . (6)

When j scales as j = Θ(
√
n), the size M is bounded

sub-exponentially in n. In particular, set j = 2a
√
n, i.e.

d = ⌈n/2− a
√
n ⌉, (6) becomes

M ⩽ 2n · 22a
√
n. (7)

Theorem 7 (Elias-Bassalygo Bound). For sufficiently large
n, every code C ⊂ {0, 1}n with relative distance δ ⩽ 1/2
and rate R satisfies the following: R ≲ 1−H2(J2(δ)), where
J2(δ)

def
= 1

2 (1−
√
1− 2δ).

Assuming d = ⌈n/2− a
√
n ⌉, one may adopt steps similar

to the proof of Theorem 7 as in [2, p.147] to show an upper
bound:

M ⩽ n3 · 2 a
ln 2

√
n+O(1). (8)

The last upper bound we introduce is known as the first
linear programming bound or the MRRW bound on binary er-
ror correcting codes, or, alternatively, on optimal packing of
Hamming balls in a Hamming cube. The bound was orig-
inally proved by McEliece, Rodemich, Rumsey, and Welch
[17], following Delsarte’s linear programming approach [18],
and is the best known asymptotic upper bound on the cardi-
nality of a code with a given minimal distance scaling linearly
in n, for a significant range of the relative distance.

Theorem 8 (MRRW Bound, [17]). For sufficiently large n,
every code C ⊂ {0, 1}n with relative distance δ and rate R
satisfies the following:

R ≲ H2

(︂
1/2−

√︁
δ(1− δ)

)︂
. (9)

Remark 1. Another bound, known as the second linear pro-
gramming bound, is also given in [17] in the form

R ≲ min
0⩽u⩽1−2δ

1 + g(u2)− g(u2 + 2δu+ 2δ), (10)

where the function g(x)
def
=H2((1−

√
1− x)/2). For 0.273 ⩽

δ ⩽ 0.5, the bound (10) simplifies to that of (9). For δ <
0.273, the inequality (10) is strictly tighter than (9).

Plugging in δ = d/n into (9), we have the following bound:

M ⩽ 2
nH2

(︂
1/2−

√
d/n(1−d/n)

)︂
+o(n)

. (11)

Note that, due to the o(n) term, the bound (11) is not tighter
than (6) when j = Θ(

√
n). This appears to the contrary of the

fact the MRRW bound is tighter than all the other bounds for
relative distance 0.273 < δ < 0.5. However, a tailored treat-
ment of the proof technique may lead to a nontrivial bound
as in the derivation of (8) from Theorem 7. In Section IV-B,
one such bound is given through an alternative proof of the
Theorem 8 by working with the maximal eigenfunctions of
Hamming balls.

C. Spectral-Based Upper Bound

One approach to proving the first linear programming bound
is the spectral-based technique in [22], which relies on the
analysis of eigenvectors of some finite-dimensional operators
related to the Krawtchouk polynomials. While the main goal
of the work [22] is to establish the MRRW bounds from a
spectral perspective, some of the analytical results in it can be
used to derive upper bounds on A(n, d) in the large minimum
distance regime. In particular, while all the other upper bounds
on A(n, d) scale superpolynomially in n when j = Θ(

√
n), a

sequence of bounds scaling polynomially in n can be derived
from [22]. A key result in [22] is the following bound on the
size of a binary code with minimum distance d.

Theorem 9 ([22] Theorem 2, binary case). Let C be an
(n,M, d) binary code. Then

M ⩽
4(n− k)

n− λk

(︃
n

k

)︃
(12)

for all k such that λk−1 ⩾ n− 2d, where λk is the maximal
eigenvalue of the (k + 1) × (k + 1) self-adjoint matrix S =
(si,j)

k+1
i,j=1 defined by si,i+1 = si+1,i =

√︁
i(n+ 1− i) for

i = 1, 2, . . . , k and si,j = 0 otherwise.

Upper and lower bounds on λk are also provided.

Lemma 10 ([22] Lemma 2, binary case). Let k < n/2. For
all s = 2, . . . , k + 1,

2
√︁
k(n− k + 1) ⩾ λk ⩾

2(s− 1)

s

√︁
(k − s+ 2)(n− k + s− 1).

To establish bounds on A(n, d) for the regime d = n/2 −
Θ(

√
n), consider a finite k ∈ N and s ∈ {2, . . . , k + 1}. Let-

ting n → ∞, we have

λk ⩾
2(s− 1)

s

√︁
(k − s+ 2)(n− k + s− 1)

=
2(s− 1)

s

√
k − s+ 2(1 + o(1))

√
n.

Thus λk ≳ λk

√
n, where λk is given by

λk = max
2⩽s⩽k+1

{︃
2(s− 1)

s

√
k − s+ 2

}︃
. (13)

Since λk scales as Θ(
√
n) for all finite k, the bound on A(n, d)

is asymptotically equivalent to

A(n, d) = O(nk) as long as d ⩾
n

2
−

λk−1

2

√
n. (14)

By solving (13) for k = 1, 2, 3, we obtain λ1 = 1, λ2 =√
2, λ3 = 4

3

√
2, which, via (14), lead to A(n, d1) =

O(n2), A(n, d2) = O(n3), A(n, d3) = O(n4) as long as
d1 ⩾ n

2 − 1
2

√
n, d2 ⩾ n

2 −
√
2
2

√
n, d3 ⩾ n

2 − 2
√
2

3

√
n, respec-

tively. Many more bounds for the large minimum distance
regime can be obtained by choosing other k ∈ N. These
bounds and the new upper bounds shown in Section IV-C
are both polynomial in n and are tighter than all other
known bounds, as discussed in Section II-B. In Section IV-D,
the asymptotic behavior of the two types of bounds when
d = n/2− ρ

√
n are plotted for ρ ∈ (0.5, 9.5).
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III. MAIN RESULTS - LOWER BOUNDS

Two polynomial-based cyclic code constructions are given
in this section. The first construction, described in Sec-
tion III-A, leads to a family of codes where the term j ranges
from Θ(

√
n) to Θ(n). The second construction, described

in Section III-B, applies to a smaller range of j, between
Θ(n2/3) and Θ(n), but are tighter than the first construction
over this range. Note that the results in this section are not
asymptotic and hold for finite values of n, i.e., the first con-
struction only requires n ⩾ 15 and the second one requires
n ⩾ 63.

A. Cyclic Code with High Minimum Distance

We construct a binary cyclic code C with high minimum
distance as follows.

Theorem 11. Let n = 2m−1, and m ∈ N be an even integer
with m ⩾ 4. Let c be an integer with 0 ⩽ c ⩽ m/2 − 1.
There exists a binary cyclic code C of length n, dimension
(c+ 1/2)m, and minimum distance

d ⩾ 2m−1 − 2m/2+c−1 ⩾ n/2− 2c−1
√
n. (15)

Proof: Consider the finite field F = F2m and the subfield
K = F2 < F . Let α be a primitive root of unity in F , and
set αi = α1+2m/2+i

for i = 0, 1, 2, . . . , c. Consider the binary
cyclic code with the generator polynomial

g(x) =
xn − 1∏︁c

i=0 Mαi(x)
,

where Mβ(·) is the minimal polynomial of β over K. Note
that the αi’s belong to different conjugacy classes, i.e,

Ai
def
=

{︂
α2j

i | j = 0, 1, 2, . . . ,m− 1
}︂

=
{︂
α2j+2m/2+i+j

| j = 0, 1, 2, . . . ,m− 1
}︂

are disjoint subsets of F \{0}, and |A0| = m/2, |Ai| = m for
i ̸= 0. This is ensured by the particular choice of αi’s. More
specifically, let

Pi ≡ {2j + 2m/2+i+j mod 2m − 1 | j = 0, 1, . . . ,m− 1}

be the set of the exponents of α for elements in Ai. Each Pi

is a cyclotomic coset mod 2 in F and the length-m binary
representation for each p, p′ in Pi are cyclic shifts of each
other. Let pi = 1 + 2m/2+i be the coset representative of Pi.
The claim on the size of |Ai| holds by noting that |Ai| =
|Pi| = m for i ̸= 0, and |A0| = |P0| = m/2. To claim that
Ai’s are disjoint, it suffices to show that the cyclotomic cosets
Pi’s are disjoint. First note that for two cyclotomic cosets Pi

and Pk, they are either disjoint or identical. Assume for some
i ̸= k, cosets Pi and Pk are identical. Then pi = 1 + 2m/2+i

is an element in Pk, that is, there is a p′ = 2ℓ + 2m/2+k+ℓ ∈
Pk for which pi = p′ modulo 2m − 1. As both pi and p′

are sums of two powers of 2, we note that neither m | ℓ and
m | (ℓ+k− i), nor m | (ℓ−m/2− i) and m | (m/2+k+ ℓ),
can happen. Hence pi /∈ Pk, and thus Pi and Pk are disjoint.
Thus the degree of the polynomial g(x) is n − (c + 1/2)m.
Hence, the dimension of the code is at least (c+ 1/2)m.

For the minimum distance, let t = 2m−1 + 2m/2+c−1 + 1.
We show next that for j = t, t + 1, . . . , 2m − 1, αj is a root
for the generator polynomial g(x). In other words, Pi∩{t, t+
1, . . . , 2m − 1} = ∅, for i = 0, 1, 2, . . . , c. This is by noting
that the elements in Pi, after taking modulo 2m − 1, can be
written as a sum of two powers of two, i.e., 2ℓ+2j , where the
difference between ℓ and j is at least m/2− c, and that such
a number does not belong to {t, t + 1, . . . , 2m − 1}. Hence,
the minimum distance of the code d is at least 2m − t+ 1 =
2m−1 − 2m/2+c−1 by BCH bound [49], [50] (see also [1],
[51]).

Note that the parameters of the codes constructed in
Theorem 11 and the Delsarte–Goethals codes are both sit-
ting between those of the first order and the second order
Reed–Muller (RM) codes of length n = 2m. More specif-
ically, RM(m, 1) has minimum distance equal to n/2 and
dimension equal to m + 1, while RM(m, 2) has minimum
distance n/4, and dimension 1+m+

(︁
m
2

)︁
. A comparison be-

tween the DG codes and our new construction in the regime
j = Θ(

√
n) can be made as follows. Let c ⩾ 0 be a finite

integer. The DG(m, c) code has length n = 2m, minimum
distance d = n/2− 2c−1

√
n and size 2−cnc+2. On the other

hand, the code parameters given in Theorem 11 are length
n = 2m− 1, minimum distance d ⩾ n/2− 2c−1

√
n , and size

(n+ 1)c+1/2. Therefore the former leads to a stronger lower
bound on the size, by a multiplicative factor of 2−cn3/2, in
the asymptotics.

B. Cyclic Constructions for j = Ω(n2/3)

We adopt an approach similar to that in the proof of Theo-
rem 11 to construct a sequence of cyclic binary codes with
j = n− 2d scaling as j = Ω(n2/3) in this section. This con-
struction is preferred over that in Section III-A for all j =
Ω(n2/3), and yields a tighter bound on A(n, d) than the DG
codes does.

Theorem 12. Let n = 2m − 1, and m ∈ N be a multiple
of 6. Let c be an integer with 1 ⩽ c ⩽ m/3 − 1. There
exists a binary cyclic code C of length n, dimension k =

m
(︂

m
6 + 3c2

2 + 5c
2 + 5

6

)︂
, and minimum distance

d ⩾ 2m−1 − 2
2m
3 +c−1 − 2

m
3 +2c−1

⩾ n/2− 2c−1n
2
3 − 22c−1n

1
3 .

(16)

Proof: Consider the finite field F = F2m and the subfield
K = F2 < F . Let α be a primitive root of unity in F . Let
ℓ = m/3 − c, and define three sets consisting of triples of
integers,

S1 = {(m/3,m/3,m/3)} ,
S2 = {(d1, d1, d2) | d1 ⩾ ℓ, d2 ⩾ ℓ, d1 ̸= d2, 2d1 + d2 = m} ,
S3 = {(d1, d2, d3) | d1 > d2 > d3 ⩾ ℓ or d1 > d3 > d2 ⩾ ℓ,

d1 + d2 + d3 = m}.
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A combinatorial argument shows that the sizes of the sets are

|S1| = 1, |S2| =
⌊︃
m− 3l

2

⌋︃
,

|S3| =
1

3

[︃(︃
m− 3l + 2

2

)︃
− 3

⌊︃
m− 3l

2

⌋︃
− 1

]︃
.

For (d, e, f) ∈ S1 ∪ S2 ∪ S3
def
=S, define αd,e,f = αpd,e,f ∈

F where pd,e,f = 2m−1+2e+f−1+2f−1. We define a binary
cyclic code with the generator polynomial

g(x) =
xn − 1∏︁

(d,e,f)∈S Mαd,e,f
(x) ·

∏︁m/6+c
i=0 Mαi(x)

.

For i = 0, 1, 2, . . . , c, define the sets Pi = {2j + 2m/2+i+j

mod 2m−1 | j = 0, 1, 2, . . . ,m−1} and Ai = {αp | p ∈ Pi}
(as in the proof of Theorem 11). Consider sets Ad,e,f , Pd,e,f

as follows:

Ad,e,f
def
=

{︂
α2j

d,e,f | j = 0, 1, 2, . . .
}︂

Pd,e,f
def
= {2m−1+j + 2e+f−1+j + 2f−1+j mod 2m − 1 |

j = 0, 1, 2, . . .}.

The set Pd,e,f consists of the exponents of α for elements
in Ad,e,f . Note that |Pd,e,f | = m/3 for (d, e, f) ∈ S1,
|Pd,e,f | = m for (d, e, f) ∈ S2, and |Pd,e,f | = m for
(d, e, f) ∈ S3. Two cyclotomic cosets Pd,e,f and Pd′,e′,f ′ are
disjoint as long as (d, e, f) ̸= (d′, e′, f ′). Since each element
of Pi is a sum of two powers of 2 and each element of Pd,e,f

a sum of three powers of 2, we also have Pi ∩Pd,e,f = ∅, for
all i ∈ {0, 1, 2, . . . , c} and (d, e, f) ∈ S. Thus the degree of
the polynomial g(x) is

deg g(x) = n− (m |S3|+m |S2|+m/3 |S1|)
−m (m/6 + c+ 1/2)

= n−m
(︁
m/6 + 3c2/2 + 5c/2 + 5/6

)︁
.

Hence, the dimension of the code is at least m(m/6+3c2/2+
5c/2 + 5/6).

For the minimum distance, we proceed similarly to the steps
taken in the proof of Theorem 11. Let t = 2m−1 + 2m−1−ℓ +
2m−1−2ℓ +1. We show next that for j = t, t+1, . . . , 2m − 1,
αj is a root for the generator polynomial g(x). In other words,
Pi ∩ {t, t+ 1, . . . , 2m − 1} = ∅, for i = 0, 1, 2, . . . ,m/6 + c,
and Pd,e,f ∩ {t, t + 1, . . . , 2m − 1} = ∅ for (d, e, f) ∈ S.
This is by noting that elements in Pi and Pd,e,f are sums of
two or three powers of 2, and the powers differ by at least ℓ.
Such a number can not be found in {t, t + 1, . . . , 2m − 1}.
Hence, by the BCH bound [49], [50] (see also [1], [51]), the
minimum distance d of the code is at least 2m − t + 1 =
2m−1−2m−1−ℓ−2m−1−2ℓ = 2m−1−22m/3+c−1−2m/3+2c−1.

For the regime j = Θ(n2/3) we compare the performance
of the DG codes and the construction in Theorem 12. Let c
be a positive integer. The DG(m, r) codes with r = m/6 + c
has length n = 2m, minimum distance d = n/2 − 2c−1n2/3,

and size M = n2
(︁
n
2

)︁ log n
6 +c

. The cyclic code described
in the proof of Theorem 12 has length n = 2m − 1, min-
imum distance d′ ⩾ n/2 − 2c−1n

2
3 − 22c−1n

1
3 , and size

M ′ ⩾ n
log n

6 + 3c2

2 + 5c
2 + 5

6 . While the terms j = n− 2d = 2cn
2
3

and j′ = n − 2d′ ⩽ 2cn
2
3 − 22cn

1
3 are asymptotically equiv-

alent, i.e., j ≳ j′, the bound of the size based on the new
cyclic construction is stronger. More explicitly, we have
M ′ ⩾ 2cn

3c2

2 + 3c
2 −1 · M , where the degree 3c2

2 + 3c
2 − 1 is

positive for all c ∈ N.

Remark 2. Codes with minimum distance scaling as
n/2 − Θ(n

2
3 ) can be constructed in the manner described

in Theorem 11 too, by choosing c ≈ m/6. Specifically,
if one chooses c = m/6 + r in Theorem 11, the code
would have dimension k = (m/6 + r + 1/2)m and mini-
mum distance d ⩾ n/2 − 2r−1n

2
3 . For the same r, if one

chooses c = r − 1 in Theorem 12, the code has dimension
k′ =

(︂
m
6 + 3(r−1)2

2 + 5(r−1)
2 + 5

6

)︂
m and minimum distance

d′ ⩾ n/2 − 2r−2n
2
3 − 22r−3n

1
3 . For all suffciently large n

and r ⩾ 2, the latter construction provides a better trade-off
since k′ > k and n/2− 2r−2n

2
3 − 22r−3n

1
3 > n/2− 2r−1n

2
3 .

The advantage of the second construction is even more
evident when one considers the following cases. Taking
c = m/6 + s

√
m for s > 0 in Theorem 11, we have

a code C with dimension k = (m/6 + s
√
m + 1/2)m

and minimum distance d ⩾ n/2 − 2s
√
m−1n

2
3 . Taking

c = s
√
m in Theorem 12, we have a code C ′ with dimension

k′ =
(︂

m
6 + 3s2m

2 + 5s
√
m

2 + 5
6

)︂
m ⩾

(︂
1+9s2

6 m+ 5
6

)︂
m, and

minimum distance d′ ⩾ n/2 − 2s
√
m−1n

2
3 − 22s

√
m−1n

1
3 .

For large n, the bounds for the minimum distances d and d′

are almost the same, and the dimension k′ of the code C ′ is
multiple times larger than k, as k′ ≈ (1 + 9s2)k.

Remark 3. The constructions used in the proofs of Theo-
rem 11 and Theorem 12 draw on the fact that nonzero
elements in F can be generated by a primitive root of unity
α. Any nonzero element β ∈ F can thus be expressed as αp

for some p ∈ {0, 1, . . . , 2m − 1}. Using the binary expansion,
p = bm−12

m−1+bm−22
m−2+· · ·+b12

1+b0, roots for Mβ(x)

are of the form αp·2j = αp′
where p′ = bm−12

m−1+j +
bm−2+j2

m−2+j + · · · + b12
1+j + b02

j ≡ bm−1−j2
m−1 +

bm−2−j2
m−2+ · · ·+ b12

1+j + b02
j + bm−12

j−1+ · · ·+ bm−j

after taking modulo 2m − 1. The length-m binary expressions
p = (bm−1bm−2 . . . b1b0)2, p

′ = (bm−1−jbm−2−j . . . bm−j)2
are cyclic shifts of each other. The key idea behind the proof
techniques of Theorem 11 and Theorem 12 is to leverage
the BCH bound with a focus on finding length-m binary
sequences (bm−1, bm−2, . . . , b1, b0) and two integers t1, t2
with t1 < t2 ⩽ 2m − 1, such that cyclic shifts of the bi-
nary sequences do not correspond to values in the range
{t1, t1 + 1 . . . , t2}.

Remark 4. According to the discussion in Remark 3, the
BCH-like construction technique for large minimum distance
codes described in Sections III-A and III-B can be tailored
towards deriving lower bounds in narrower ranges of d. In
particular, the construction in Section III-A admits all m-bit
binary sequences with exactly two 1’s spacing at least ℓ =
m/2−c bits apart (distance is evaluated in a wrap-around man-
ner), and that in Section III-B all m-bit binary sequences with
two or three 1’s spacing at least ℓ = m/3−c bits apart. By ex-
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tending such arguments to consider all m-bit binary sequences
with Hamming weight between 2 and w ∈ N, such that the 1’s
are at least ℓ = m/w − c bits apart, one can construct codes
with minimum distance scaling as d = n/2−O(n

w−1
w ).

IV. MAIN RESULTS - UPPER BOUND

A. Harmonic Analysis Approach

We adopt a covering argument similar to Navon and
Samorodnitsky [20] and show upper bounds on the size of
any code C with length n and minimum distance d scaling
as d ⩾ n/2 − Ω(

√
n). The viewpoint presented in [20], pro-

viding an alternative proof to the MRRW bound, is different
from the original proof found in [17] which relies on analyt-
ical properties of the Krawchouk polynomials, and instead
employs Fourier analysis on the group Fn

2 as their main tool.
In particular, the authors of [20] exploit the expediency of

working with the maximal eigenfunctions of Hamming balls.
One key finding was that, given any real-valued function f on
{0, 1}n with a small support B ⊂ {0, 1}n, such that the adja-
cency matrix of the Hamming cube acts on f by multiplying it
pointwise by a large factor, the cardinality of error-correcting
codes with minimum distance d can be upper bounded by
n |B|. The applicability will depend on the value of the mul-
tiplying factor. By proposing functions f supported on Ham-
ming balls B = Br(0, n) of different radii r, one may derive
a lower bound of the multiplying factor, formally called the
maximal eigenvalue of adjacency matrix of the subgraph inc-
duced by B. This makes possible a simple proof of the first
linear programming bound.

Let us now state the definition of the maximal eigenvalue
of a graph. Let G = (V,E) be a (finite, undirected, simple)
graph. Let AG = (Aij) denote the |V | × |V | adjacency ma-
trix of G, defined by Aij = 1 if (i, j) ∈ E and Aij = 0
otherwise for vertices i, j ∈ V . Note that AG is symmet-
ric, so its eigenvalues are real, and can be ordered as λ1 ⩾
λ2 ⩾ . . . ⩾ λn. For any function f on Fn

2 , the function Af
sums at each point of {0, 1}n the values of f at its neigh-
bours. That is, the value taken by the function Af at a vertex
x ∈ Fn

2 , denoted by (Af)(x) or Af(x), is given by Af(x) =∑︁
y∈Fn

2 :wH(x,y)=1 f(y). When B is a subset of the cube Fn
2 ,

set

λB
def
= max

{︃
⟨Af, f⟩
⟨f, f⟩

⃓⃓⃓
f : Fn

2 → R, supp(f) ⊆ B

}︃
, (17)

where ⟨f, g⟩def= 1
2n

∑︁
x∈Fn

2
f(x)g(x) for real-valued functions

f, g on Fn
2 . That is, λB is the maximal eigenvalue of adjacency

matrix of the subgraph of {0, 1}n induced by B.
Two lemmas were shown in [20] to show (9).

Lemma 13 ([20] Prop 1.1). Let C be a code with block length
n and minimal distance d. Let B be a subset of {0, 1}n with
λB ⩾ n− 2d+ 1. Then |C| = M ⩽ n |B|.

Lemma 14 ([20] Lemma 1.4). Let B = Br(0, n) ⊆
{0, 1}n. The maximal eigenvalue associated with B is
λB ⩾ 2

√︁
r(n− r)− o(n).

To prove (9), we note that Lemma 14 implies that a radius
r∗ = n/2 −

√︁
d(n− d) + o(n) exists such that λBr∗ ⩾ n −

2d + 1. Lemma 13 in turn shows that any code of length n
and minimal distance d has at most n |Br∗ | = n · Vol(r∗, n)
codewords. The cardinality of a Hamming ball of radius r is
Vol(r, n) = 2H2(r/n)n+o(n). Equation (11) follows the above
argument, hence yielding equation (9).

We note that the above argument can not be used directly to
show an upper bound when d = n/2−Θ(

√
n). In particular,

the o(n) term in Lemma 14 renders the search for a mean-
ingful r∗ impossible, as we would ideally require a subset B
with λB close to n− 2d+ 1 = Θ(

√
n).

B. Improved Bounds for d ⩾ n/2−
√
n

We show in this section an approach to lower bound λB for
the Hamming ball B = B3(0, n), which, when coupled with
a new proposition stronger than Lemma 13, leads to an upper
bound scaling as A(n, d) = O(n3.5) for d ⩾ n/2−

√
n.

First we provide a proposition in place of Lemma 14 that
does not require an o(n) term.

Proposition 15. Let B = B3(0, n) ⊆ {0, 1}n be the Ham-
ming ball of radius 3. The maximal eigenvalue associated with
B is λB ⩾

(︂√︁
3 +

√
6 + o(1)

)︂√
n ≳ 2.334

√
n.

Proof: Recall the definition of the maximal eigen-
value in (17). We prove the proposition by construct-
ing a function f with support in B, and for which
⟨Af, f⟩/⟨f, f⟩ ≈

√︁
3 +

√
6
√
n. The function f will be

symmetric, namely its value at a point will depend only
on the Hamming weight of the point. With a slight abuse
of notation, such a function is fully defined by its values
f(0), f(1), . . . , f(n) at Hamming weights 0, 1, . . . , n.

Set f(0) = 1, f(j) = 0 for j ⩾ 4, and let

λf(i) = Af(i) = if(i− 1) + (n− i)f(i+ 1) (18)

for i = 0, 1, 2 (assuming f(−1) = 0), where λ = t
√
n. We

have

f(1) =
λf(0)

n
=

t√
n
, f(2) =

λf(1)− 1f(0)

n− 1
=

t2 − 1

n− 1
,

f(3) =
λf(2)− 2f(1)

n− 2
=

1

n− 2

(︃
t2 − 1

n− 1
t
√
n− 2

t√
n

)︃
.

We may use the values f(i) and calculate

2n⟨Af, f⟩ = 2t
√
n+ t(t2 − 1)2

n
√
n

n− 1
=

(︁
2t+ t(t2 − 1)2 + o(1)

)︁√
n,

2n⟨f, f⟩ = 1 + t2 +
1

2

n

n− 1
(t2 − 1)2+

1

6

n− 1

n− 2
t2
[︃

n

n− 1
(t2 − 1)− 2

]︃2
= 1 + t2 + (t2 − 1)2/2 + t2(t2 − 3)2/6 + o(1).

We are now ready to optimize the value

⟨Af, f⟩
⟨f, f⟩

=

[︃
2t+ t(t2 − 1)2

(t6 − 3t4 + 9t2 + 9)/6
+ o(1)

]︃√
n (19)

over t > 0. Taking t =
√︁

3 +
√
6, the square bracket term in

(19) achieves its maximum
√︁

3 +
√
6 + o(1).
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In order to provide a bound as tight as possible, we improve
upon Lemma 13 and show the following proposition.

Proposition 16. Let C be a code with block length n and
minimal distance d. Let B be a subset of {0, 1}n with λB >
n− 2d. Then |C| = M ⩽ n

λB−(n−2d) |B|.

The proof can be shown using a similar argument as in the
proof of Lemma 13 in [20], and is provided in Appendix-B
for reference.

With Propositions 15 and 16, we are ready to state the upper
bound on A(n, ⌈n/2−

√
n ⌉).

Theorem 17. If a (n,M, d) binary code C has minimum dis-
tance d ⩾ n/2−

√
n, then

M ⩽

√
n√︁

3 +
√
6− 2 + o(1)

Vol(3, n) = O(n3.5).

Proof: Let B = B3(0, n) be the radius-3 Ham-
ming ball. The maximal eigenvalue induced by B is
λB ≳

(︂√︁
3 +

√
6 + o(1)

)︂√
n according to Proposition 15.

Since n−2d ⩽ 2
√
n ≲ λB , the cardinality of C can be upper

bounded using Proposition 16 as

M ⩽
n

λB − (n− 2d)
|B| ⩽

√
n√︁

3 +
√
6− 2 + o(1)

Vol(3, n).

Remark 5. We note that the argument above can upper bound
the size as M = O(n3.5) as long as (n − 2d)/

√
n is strictly

smaller than
√︁

3 +
√
6. That is, for any d ≳ n/2− ρ

√
n, for

some constant ρ <
√︁
3 +

√
6/2 ≈ 1.167, we have A(n, d) =

O(n3.5).

C. Improved Bounds for d ⩾ n/2−Θ(
√
n)

In general, it is possible to generalize the approach in Sec-
tion IV-B that lower bounds λB for B = Br(0, n) from r = 3
to any given r ∈ N. Specifically, setting λ = t

√
n, we would

need to apply the recurrence equation (18) iteratively to find
f(i) as a function of both t and n, for i = 1, . . . , r, compute
inner products ⟨Af, f⟩ and ⟨f, f⟩, and solve the optimization
problem that maximizes the quotient as in (19). The procedure
could be almost intractable for large (but finite) r.

A more feasible approach is given in this section to lower
bound the maximal eigenvalue associated with B = Br(0, n).
The approach is comprised of four parts. The first part con-
structs a symmetric function g on {0, 1}n based on a recursive
relation involving λ = t

√
n, and a scaled version of g denoted

by g̃, both of which are defined independent of r and have
support on the entire domain {0, 1}n. In the second part, we
define a function f which is identical to g on B and 0 else-
where, evaluate the quotient seen in (17), i.e., ⟨Af, f⟩/⟨f, f⟩,
and show that it can be expressed concisely as the difference
of λ and another term involving g̃(r) and g̃(r+1), where g̃(i)
depends on i, n and t. The quotient can thus be lower bounded
by λ which guarantees that either g̃(r) or g̃(r+1) is 0. (That
is, for a given r, one may choose t and n appropriately so that
g̃(r) = 0, or g̃(r + 1) = 0, and t

√
n would be a lower bound

of λB .) In the third part, we introduce two other functions

h and h̃ which, broadly speaking, act as the respective prox-
ies of g and g̃. In particular, as n grows large, the maximal
root of g̃(k) (when viewed as a function of t) converges to
that of h̃(k), denoted by th(k), a value independent of n. The
fourth part concludes the argument by showing that the quan-
tity λB/

√
n is lower bounded by the maximal root of h̃(r+1),

when viewed as a function of t, for sufficiently large n. Fi-
nally we leverage Proposition 16 to show A(n, d) = O(nr+1)
as long as (n − 2d)/

√
n < th(r + 1) − s for some s > 0.

Throughout this section, we assume λ = t
√
n for some con-

stant t > 0.
Part 1: We first consider a symmetric function g : Fn

2 → R,
and with a slight abuse of notation, write g(x) = g(wH(x))
for x ∈ Fn

2 . Define g by the initial condition g(0) = 1, and
the recurrence relations

λg(i) = Ag(i) = ig(i− 1) + (n− i)g(i+ 1) (20)

for i = 0, 1, 2, . . . , n− 1, assuming g(−1) = 0. For example,
we have

g(1) =
λ

n
, g(2) =

1

n− 1

(︃
λ2

n
− 1

)︃
,

g(3) =
1

n− 2

(︃
λ3

n(n− 1)
− 2λ

n
− λ

n− 1

)︃
.

Define a real-valued function g̃ by g̃(i) = ni/2g(i)
for i = 0, 1, . . . , n. The values g̃(i) for i = 0, 1, 2, 3
are g̃(0) = 1, g̃(1) = t, g̃(2) = n

n−1 (t
2 − 1), g̃(3) =

n
n−2

(︂
t3n
n−1 − 2t− tn

n−1

)︂
.

Remark 6. For each i = 0, 1, 2, . . . , both g(i) and g̃(i) are
functions of t and n. For a fixed t, g̃(i) scales with n as O(1),
and that g(i) = O(n−i/2).

Remark 7. For any finite k ∈ N, it can be shown that g̃(k +
1) = 0 only when g̃(k) ̸= 0 and g̃(k − 1) ̸= 0, and that
g̃(k) is a degree-k polynomial in t with leading coefficient
1 +O(n−1). Specifically, for an even k ∈ N,

g̃(k) = tk(1 +O(n−1))− gk,k−2t
k−2(1 +O(n−1)) + . . .

+(−1)k/2gk,0(1 +O(n−1)) ;

for an odd k ∈ N,

g̃(k) = tk(1 +O(n−1))− gk,k−2t
k−2(1 +O(n−1)) + . . .

+(−1)(k−1)/2gk,1(1 +O(n−1)),

where the coefficients gk,k−2ℓ, 1 ⩽ ℓ ⩽
⌊︁
k
2

⌋︁
are positive inte-

gers independent of n and t.

Part 2: Let B = Br(0, n) for some finite r. Consider a
symmetric function f supported on B, defined by f(i) = g(i)
for all i = 0, 1, . . . , r, and f(i) = 0 for all i > r. First, we
have

2n⟨f, f⟩ = f(0)2 +

(︃
n

1

)︃
f(1)2 + . . .+

(︃
n

r

)︃
f(r)2

=

r∑︂
i=0

(︃
n

i

)︃
f(i)2 =

r∑︂
i=0

(︃
n

i

)︃
g(i)2

Using the observation g(k) = O(n−k/2) and that f(0)2 =
1, the sum scales as 2n⟨f, f⟩ = Θ(1). Note that Af(i) =

8



Ag(i) = λg(i) for i = 0, 1, . . . , r − 1 and Af(r) = rf(r −
1) + (n− r)f(r + 1) = rg(r − 1). Hence,

2n⟨Af, f⟩

= Af(0)f(0) +

(︃
n

1

)︃
Af(1)f(1) + . . .+

(︃
n

r

)︃
Af(r)f(r)

= λg(0)2 +

(︃
n

1

)︃
λg(1)2 + . . .+

(︃
n

r − 1

)︃
λg(r − 1)2+(︃

n

r

)︃
rg(r − 1)g(r)

= λ2n⟨f, f⟩+
(︃
n

r

)︃(︁
rg(r − 1)g(r)− λg(r)2

)︁
= λ2n⟨f, f⟩ −

(︃
n

r

)︃
g(r)(n− r)g(r + 1)

= λ2n⟨f, f⟩ −
(︃
n−r

(︃
n

r

)︃)︃(︂
1− r

n

)︂(︂
nr/2g(r)

)︂
(︂
n

r+1
2 g(r + 1)

)︂√
n

= λ2n⟨f, f⟩ −
(︃
n−r

(︃
n

r

)︃)︃(︂
1− r

n

)︂
g̃(r)g̃(r + 1)

√
n,

where the fourth equality holds by evaluating the recursion
relation (20) with i = r.

The ratio between ⟨Af, f⟩ and ⟨f, f⟩ is thus

⟨Af, f⟩
⟨f, f⟩

= λ− 1

2n⟨f, f⟩

(︃
n−r

(︃
n

r

)︃)︃(︂
1− r

n

)︂
g̃(r)g̃(r + 1)

√
n,

(21)

which scales as Θ(
√
n) since 2n⟨f, f⟩ = Θ(1). Denote by

tg(i) = tg(i, n) the maximal root of g̃(i) = g̃(i, n, λ = t
√
n)

when viewed as a function of t, for i = 1, 2, . . .. For example,
tg(1) = 0 since g̃(1) = t, tg(2) = 1 since g̃(2) = n

n−1 (t
2−1),

and tg(3) is the maximal root of the polynomial t3n− 3tn+
2t = 0. Then λB ⩾ max (tg(r)

√
n, tg(r + 1)

√
n) because the

second term in (21) is 0 when λ is either tg(r)
√
n or tg(r +

1)
√
n.

The first two steps successfully simplify the problem
for finding a lower bound on λB to the following. First
solve g(r) and g(r + 1) by recursively applying (20),
and then find the maximal roots of g̃(r) = 2r/2g(r)
and g̃(r + 1) = 2(r+1)/2g(r + 1), which are viewed as
functions of t. The recursive steps, however, still pose a
great challenge when the radius r for B = Br(0, n) is
large. For example, g(3) = 1

n−2

[︂
t
√
n

n−1

(︁
t2 − 1

)︁
− 2t√

n

]︂
and

g(4) = 1
n−3

(︂
t
√
n

n−2

[︂
t
√
n

n−1

(︁
t2 − 1

)︁
− 2t√

n

]︂
− 3

n−1

(︁
t2 − 1

)︁ )︂
.

Solving roots of g̃(r) and g̃(r + 1), which in general are
complicated functions in both n and t, is an even greater
challenge. The following third step shows that tg(i) con-
verges to the maximal root of a simpler polynomial in t for
all finite i when n → ∞.

Part 3: Define a function h : {0, 1, . . . , n} → R by setting
h(0) = 1 and the recurrence relation (assuming h(−1) = 0)

λh(i) = ih(i−1)+nh(i+1) for i = 0, 1, 2, . . . , n−1, (22)

which differs from (20) only in the coefficient of h(i+ 1). It
can be shown that h(k + 1) = 0 only when h(k) ̸= 0 and

h(k− 1) ̸= 0, and that h(k) is either 0 or scales as Θ(n−k/2)
for each finite k. The functions h and g coincide asymptoti-
cally for all finite k. We state precisely a bound on the ratio
between the two in the following lemma.

Lemma 18. For any given k ∈ N ∪ {0}, if h(i) ̸= 0 for all
i ⩽ k − 1 , then

g(k) =

{︄
h(k)(1 +O(n−1)) if h(k) ̸= 0,

O(n−(k+2)/2) if h(k) = 0.

Proof: First note that g(0) = h(0) = 1, g(1) = h(1) =
λ
n and g(2) = 1

n−1

(︂
λ2

n − 1
)︂

= 1
n (1 + 1

n−1 )
(︂

λ2

n − 1
)︂

=

(1+O(n−1)) 1n (λh(1)− 1h(0)) = h(2)
(︁
1 +O(n−1)

)︁
. Also,

h(2) = 0 if and only if g(2) = 0. Hence the lemma holds
for k = 0, 1, 2. Assume, for some k ⩾ 2, h(i) ̸= 0 and
g(i) = h(i)(1 + O(n−1)) for i = 0, 1, . . . , k. Then g(i) and
h(i) both scale as Θ(n−i/2) for i = 0, 1, . . . , k. Equation (22)
yields

h(k + 1) = n−1 (λh(k)− kh(k − 1))

and (20) yields

g(k + 1) = (n− k)
−1

(λg(k)− kg(k − 1))

=
(︁
1 +O(n−1)

)︁
n−1[λh(k)(1 +O(n−1))−

kh(k − 1)
(︁
1 +O(n−1)

)︁
)],

which implies g(k+1) = h(k+1)(1+O(n−1)) when h(k+
1) ̸= 0 since both λh(k) and kh(k−1) scale as Θ(n−(k−1)/2).
When h(k + 1) = 0, g(k + 1) = O(n−1n−(k−1)/2n−1) =
O(n−(k+3)/2). Hence the lemma holds by the principle of
mathematical induction.

Consider a real-valued function h̃ : {0, 1, . . . , n} → R de-
fined by h̃(i) = ni/2h(i). The values h̃(i) for i = 0, 1, 2, 3, 4
are h̃(0) = 1, h̃(1) = t, h̃(2) = t2 − 1, h̃(3) = t3 − 3t, h̃(4) =
t4 − 6t2 + 3.

Remark 8. The function h̃ satisfies the recurrence relation

th̃(i) = ih̃(i− 1) + h̃(i+ 1), (23)

which follows from the recurrence relation (22) and that
h̃(i) = ni/2h(i).

Remark 9. For k a finite positive integer, h(k) depends on
both n and t, whereas h̃(k) is independent of n and is a degree-
k monic polynomial of t. The polynomial h̃(k) can be ex-
pressed as follows: for even k,

h̃(k) = tk − gk,k−2t
k−2 + . . .+ (−1)k/2gk,0 ;

for odd k,

h̃(k) = tk − gk,k−2t
k−2 + . . .+ (−1)(k−1)/2gk,1,

where the coefficients gk,k−2ℓ, 1 ⩽ ℓ ⩽
⌊︁
k
2

⌋︁
are the same as

those in Remark 7.

Denote by th(i) the maximal root of h̃(i) when viewed as
a function of t, for i ⩾ 1. For example, th(1) = 0, th(2) =
1, and th(3) =

√
3. We now show that, for all finite k, the

maximal roots th(i) and tg(i) are equal when n → ∞.

9



Lemma 19. Let k ∈ N be finite. Then limn→∞ tg(k, n) =
th(k).

Proof: First we prove that for any finite k ∈ N,
(th(1), th(2), . . . , th(k)) is a strictly increasing sequence, us-
ing the principle of mathematical induction. For k = 3, the
sequence is (0, 1,

√
3), which verifies the claim. Assume for

a finite k, the sequence (th(1), th(2), . . . , th(k)) is strictly in-
creasing. Note that h̃(k+ 1) = th̃(k)− kh̃(k− 1) is negative
when t = th(k) since h̃(k) = 0 and h̃(k − 1) > 0. Since the
leading term in h̃(k + 1) is tk+1 and thus grows to positive
infinity for t large enough, we must have th(k + 1) > th(k).

We now show that, the sequence of roots tg(k, n) of
g̃(k), for n = 1, 2, . . ., converges to th(k). Let δ ∈
(0, th(k) − th(k − 1)) be a small constant such that
h̃(k, t) > 0 for all t ∈ (th(k), th(k) + δ], and h̃(k, t) < 0
for all t ∈ [th(k) − δ, th(k)). Let ϵ > 0 be the minimum
ϵ = min

{︂
−h̃(k, th(k)− δ), h̃(k, th(k) + δ)

}︂
. Leverag-

ing Lemma 18, g̃(k, th(k) + δ) ⩾ ϵ(1 + O(n−1)) and
g̃(k, th(k) − δ) ⩽ −ϵ(1 + O(n−1)). This implies the exis-
tence of a root of g̃(k) when viewed as a function of t in
the interval (th(k)− δ, th(k) + δ), for all sufficiently large n.
Note also that, for t > th(k) + δ, g̃(k, t) is strictly positive
for all sufficiently large n, because h̃(k, t) ⩾ ϵ. Since δ > 0
can be chosen arbitrarily small, the root tg(k, n) converges to
th(k) as n grows to infinity.

Remark 10. It is known that the roots of a polynomial (count-
ing multiplicities and only up to permutation) depend continu-
ously on the coefficients of the polynomial [52], [53]. Hence,
Theorem 18 also follows as a direct consequence of Remarks
7 and 9.

Part 4: We are now ready to state the main result in this
section, which admits a practical approach to lower bound λB

for fixed r and sufficiently large n.

Theorem 20. Let B = Br(0, n) and λB be the maximal
eigenvalue of adjacency matrix of the subgraph of {0, 1}n
induced by B. Then λB is lower bounded by (th(r + 1) +
o(1))

√
n.

Proof: (21) guarantees that λB ⩾ max{tg(r, n)
√
n,

tg(r + 1, n)
√
n}. Since th(k) is strictly increasing in k,

Lemma 19 implies that for large n, the bound reduces to
λB ⩾ (th(r + 1) + o(1))

√
n.

Theorem 20 generalizes Proposition 15 by establishing
lower bounds on λBr

for fixed r other than the special case
r = 3. This in turn yields a sequence of bounds on |C|
whose applicability depends on the scaling behaviour of the
minimum distance in terms of the blocklength n.

Corollary 21. If a (n,M, d) binary code C has distance d >
1
2 [n− (th(r + 1)− s)

√
n ] for some r ∈ N and s > 0, and n

is sufficiently large, then

M ⩽

√
n

s+ o(1)
Vol(r, n) = O(nr+ 1

2 ).

Proof: Let B = Br(0, n). We have n−2d < (th(r+1)−
s)
√
n ≲ (th(r+1)+ o(1))

√
n ⩽ λB due to Theorem 20. The

size of the code C can thus be bounded using Proposition 16
as

M ⩽
n

λB − (n− 2d)
|B|

⩽

√
n

(th(r + 1) + o(1))− (th(r + 1)− s)
|B|

=

√
n

s+ o(1)
Vol(r, n).

D. Improved Bounds for d ⩾ n/2−Θ(
√
n) - Numerical Re-

sults

Using similar steps as in the proof of Proposition 15, one
may show lower bounds of the maximal eigenvalues associated
with Hamming balls of different radii, which could be a daunt-
ing procedure even for a radius as small as 5. Alternatively,
results from Section IV-C suggest a more feasible approach.
For k = 1, 2, . . ., we first find h̃(k) by solving the recursive re-
lations 23 with the initial conditions h̃(0) = 1, h̃(−1) = 0, and
solve the maximal roots th(k) of the polynomials h̃(k). The-
orem 20 then yields a bound λBk

≳ th(k+ 1)
√
n. For exam-

ple, we have h̃(1) = t, h̃(2) = t2−1, h̃(3) = t3−3t, h̃(4) =
t4−6t2+3, h̃(5) = t5−10t3+15t. The corresponding max-
imal roots are th(1) = 0, th(2) = 1, th(3) =

√
3, th(4) =√︁

3 +
√
6 ≈ 2.334, th(5) =

√︁
5 +

√
10 ≈ 2.857. Applying

Theorem 20 to r = 3 shows that λB3
≳

√︁
3 +

√
6
√
n, which

recovers Proposition 15 in Section IV-B. With computer pro-
gram assistance, we are able to solve maximal roots th(k) for
k as large as 101.

Consider now a (n,M, d) binary code C with minimum
distance d = ⌈n/2− ρ

√
n ⌉, i.e., j = 2ρ

√
n. Corollary 21

entails the following: If ρ < th(r + 1)/2 for some r ∈ N,
then M = O(nr+0.5). For example, with ρ = 1, the small-
est integer r for the inequality to hold is r = 3 since 1 <
th(4)/2 ≈ 1.167, and thus M = O(n3.5). We plot in Figure 1
the the exponent r+ 0.5 in the asymptotic bound for A(n, d)
for 0.5 = th(2)/2 < ρ < th(101)/2 ≈ 9.5, based on values
of th(k) for k = 2, 3, . . . , 101. For example, values of th(3)
and th(5) lead to the bounds A(n, n/2−⌈ρ1

√
n ⌉) = O(n2.5),

A(n, ⌈n/2− ρ2
√
n ⌉) = O(n4.5), for all ρ1 <

√
3/2 ≈ 0.866

and ρ2 < 1.428. One another case, when r = 7, the point
(2.072, 7.5) guarantees that a code with minimum distance
d ⩾ n/2−2

√
n must have M ≲

√
n

4.14−4 Vol(7, n) = O(n7.5).

As discussed in Section II-C, the spectral-based bounds for
A(n, d) [22] in the large minimum distance regime can be
stated as follows:

A(n, d) = O(nk) as long as d ⩾ n/2− λk−1

√
n/2,

where λk is defined in equation (13). We compute numerically
λk for k = 1, 2, . . . , 100 and show the associated bounds in
Figure 1. We can see that the two families of bounds scale in
a similar fashion, while our newly derived upper bounds, due
to Corollary 21, are slightly tighter.

Remark 11. When the function f is constrained to be sym-
metric and the support of f constrained to be the Hamming
ball Br(0, n), the value λB (see (17)) reduces to the maximal

10
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eigenvalues λr in [22]. However, due to the distinct proof tech-
niques, our upper bounds, based on harmonic analysis on the
Hamming space, only require knowledge of λr, while bounds
in [22] require that of both λr and λr−1.

V. CONCLUSION

In this paper, we study bounds on the cardinality of codes
with specified minimum distance d targeting the regime with
d = n/2 − Ω(

√
n). The codes in this regime have vanish-

ing rate, which renders known bounds that dictate the trade-
off between the code rate and relative distance ineffective.
We obtain two families of codes based on specifically crafted
BCH-like constructions, and a sequence of upper bounds for
d ⩾ n/2− ρ

√
n for ρ ∈ (0.5, 9.5).

The proposed cyclic code constructions are targeted at the
regimes d ⩾ n/2 − Ω(

√
n) and d ⩾ n/2 − Ω(n2/3), and

have sizes that are polynomial and quasi-polynomial in n, re-
spectively. The proof of the upper bound makes extensive use
of Fourier analysis on the Hamming cube as a group, and a
new bounding technique for the maximal eigenvalue associ-
ated with Hamming balls of finite radii.

An interesting problem for future work is to study the po-
tential of the Fourier-analytical approach to upper bound the
sizes of constant weight codes with large minimum distance.
This problem has been studied in the regime d = δn with
δ ∈ (0, 0.5) and the best known result is the second linear pro-
gramming bound. Another interesting problem, as pointed out
by authors of [22], is the underlying similarities between the
spectral-based and the Fourier-analytical approaches. For ex-
ample, if one considers only the Hamming balls B = Br(0, n)
among all subsets of {0, 1}n, and requires functions f to be
symmetric, the maximal eigenvalue λBr

appears to be equiv-
alent to the value λr in [22]. This implies that our bounds on
λBr improves on the bounds on λr for finite r, and that for r
scaling sub-linearly in n, the latter may yield new bounds on
A(n, d) in the regime d = n/2−Θ(ns) for s ∈ (0.5, 1).

APPENDIX

A. Harmonic Analysis

We compile in this section harmonic analysis preliminaries
as in [20], [54]. See [54] for a more detailed treatment. Here
we list several necessary definitions and simple facts.

Consider the abelian group structure Fn
2 = (Z/2Z)n on the

hypercube {0, 1}n. The characters of the abelian group Fn
2

are {χz}z∈Fn
2

, where χz : {0, 1}n → {−1, 1} is given by
χz(x) = (−1)⟨x,z⟩ and ⟨x, z⟩ =

∑︁n
i=1 xizi.

Consider the R-vector space L(Fn
2 ) = {f : Fn

2 → R} en-
dowed with the inner product ⟨·, ·⟩, associated with the uniform
distribution on {0, 1}n:

⟨f, g⟩ = EUn
fg =

1

2n

∑︂
x∈Fn

2

f(x)g(x). (24)

The set of 2n characters {χz}z∈Fn
2

form an orthonormal ba-
sis in the space L(Fn

2 ), equipped with uniform probability dis-
tribution. That is, for each z, z′ ∈ {0, 1}n, ⟨χz, χz′⟩ = δz,z′ ,
where δ is the Kronecker delta function. The Fourier transform
of a function f ∈ L(Fn

2 ) is the function F(f) = ˆ︁f ∈ L(Fn
2 )

given by the coefficients of the unique expansion of f in terms
of the characters:

f(x) =
∑︂
z

ˆ︁f(z)χz(x) or equivalently, ˆ︁f(z) = ⟨f, χz⟩. (25)

One may show that F(F(f)) = 2nf , and E f = ˆ︁f(0).
For f, g ∈ L(Fn

2 ), the Parseval’s identity holds: ⟨f, g⟩ =∑︁
z
ˆ︁f(z)ˆ︁g(z) = 2n

⟨︂ ˆ︁f, ˆ︁g⟩︂. A special case of the above

equality is the following equality: E f2 =
∑︁

z
ˆ︁f(z)2.

The convolution of f and g is defined by (f ∗ g)(x) =
Ey f(y)g(x+ y) = 1

2n

∑︁
y∈Fn

2
f(y)g(x+ y). The convolution

transforms to dot product: ˆ︁f ∗ g = ˆ︁f · ˆ︁g. The convolution op-
erator is commutative and associative. For arbitrary functions
f, g, h ∈ L(Fn

2 ), the following equality holds:

⟨f ∗ g, h⟩ = ⟨f, g ∗ h⟩. (26)

Also, it can be shown that E(f ∗g) = E f ·E g for all functions
f, g ∈ L(Fn

2 ).
In this section and in Appendix-B, L ∈ L(Fn

2 ) is
a function defined by L(x) = 2n for x ∈ {0, 1}n
with wH(x) = 1, and L(x) = 0 otherwise. Let A de-
note the 2n × 2n adjacency matrix of Fn

2 , such that
Af(x) = (Af)(x) =

∑︁
y∈Fn

2 :dH(x,y)=1 f(y). For any
f ∈ L(Fn

2 ) holds Af = f ∗ L because for x ∈ Fn
2 ,

Af(x) =
∑︁

y:dH(x,y)=1 f(y) =
∑︁

y:wH(y)=1 f(x + y)
= Ey L(y)f(x + y) = (L ∗ f)(x) = (f ∗ L)(x). The
Fourier transform of L is the function F(L) = ˆ︁L given byˆ︁L(z) = ⟨L, χz⟩ =

∑︁
x:wH(x)=1 (−1)⟨x,z⟩ = n− 2 · wH(z).

For C ⊂ Fn
2 , let 1C ∈ L(Fn

2 ) be the indicator function of
C. It can be shown that a code C has minimum distance d if
and only if (1C ∗ 1C)(x) = 0 for all 0 < wH(x) < d.

B. Proof of Proposition 16

Let fB be an eigenfunction supported on B corre-
sponding to its maximal eigenvalue λB . That is λB =

11



⟨AfB , fB⟩/⟨fB , fB⟩. It is known that the maximum can be
attained with an non-negative function fB , and further we
have AfB ⩾ λBfB (see [19, p.13-15 and appendix C]) for
details). We write f = fB and λ = λB interchangeably, and
denote the Hamming weight of x ∈ Fn

2 by |x| = wH(x),
in this proof. As f is supported on B, Cauchy-Schwarz
inequality yields the following:

E2 f = ⟨f, 1B⟩2 ⩽ E f2 · E(1B)2 = E f2 · |B| /2n. (27)

Let ϕ ∈ L(Fn
2 ) be a function such that (ˆ︁ϕ)2 = ˆ︁ϕ ∗ ϕ =

1C ∗1C . Equivalently, ϕ∗ϕ = 2n ˆ︂1C ∗ 1C = 2nˆ︂1C2
. Therefore

we have

ϕ ∗ ϕ ⩾ 0 and
E(ϕ2)

E2(ϕ)
=

(ϕ ∗ ϕ)(0)ˆ︁ϕ2(0)
= |C| . (28)

Now let F = ϕ ∗ f . We estimate the product ⟨AF,F ⟩ in two
ways. First,

⟨AF,F ⟩ = ⟨(ϕ ∗ f) ∗ L, ϕ ∗ f⟩ = ⟨ϕ ∗ ϕ ∗ f, f ∗ L⟩
= ⟨ϕ ∗ ϕ ∗ f,Af⟩ ⩾ ⟨ϕ ∗ ϕ ∗ f, λf⟩
= λ⟨ϕ ∗ f, ϕ ∗ f⟩ = λ⟨F, F ⟩ = λEF 2.

Second, by Parseval’s identity,

⟨AF,F ⟩ = 2n
⟨︂ˆ︃AF, ˆ︁F⟩︂

= 2n
⟨︂ˆ︁L · ˆ︁F , ˆ︁F⟩︂

=
∑︂
z

(n− 2 |z|) ˆ︁F 2(z).

Since ˆ︁F = ˆ︁ϕ · ˆ︁f and (ˆ︁ϕ)2(z) = (1C ∗ 1C)(z), ˆ︁F (z) = 0 for
all 0 < |z| < d. We can estimate ⟨AF,F ⟩ by∑︂

z

(n− 2 |z|) ˆ︁F 2(z) = n ˆ︁F 2(0) +
∑︂

z:|z|⩾d

(n− 2 |z|) ˆ︁F 2(z)

⩽ n ˆ︁F 2(0) + (n− 2d)
∑︂
z

ˆ︁F 2(z) = nE2 F + (n− 2d)EF 2.

Combining the two estimates, we have the following in-
equality: nE2 F ⩾ (λ− (n− 2d)) EF 2. Since

E2 F = E2(ϕ ∗ f) = [ˆ︁ϕ ∗ f(0)]2 = [ˆ︁ϕ(0) ˆ︁f(0)]2 = E2 ϕE2 f,

EF 2 = ⟨F, F ⟩ = ⟨ϕ ∗ f, ϕ ∗ f⟩ = ⟨ϕ ∗ ϕ, f ∗ f⟩
⩾ 1/2n(ϕ ∗ ϕ)(0)(f ∗ f)(0) = 1/2n Eϕ2 E f2,

as ϕ ∗ ϕ = 2n · ˆ︂1C2
⩾ 0, we now have

nE2 ϕE2 f ⩾ (λ− (n− 2d))
1

2n
Eϕ2 E f2. (29)

Leveraging equations (27), (28), and (29), the size of any code
C with minimum distance d is

|C| = Eϕ2

E2 ϕ
⩽

n

λ− (n− 2d)
· 2nE

2 f

E f2
⩽

n

λ− (n− 2d)
|B| .
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