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A B S T R A C T   

Amplified susceptibility to landslides poses challenges to sustainable and equitable urban 
development. Thus, in this study, we introduce an artificial intelligence and geographic infor
mation system-based approach, urbanization suitability zonation (USZ), for spatial assessment of 
land suitability for urbanization, which accounts multiple factors, including a focus on landslide 
susceptibility. Further, the proposed USZ is tailored to assess health of current urbanization 
patterns, depicting the driving factors behind it by establishing a best-case urbanization suit
ability (BUS) and weighted urbanization suitability (WUS). The BUS portrays a hypothetically 
ideal land suitability scenario as a function of equally weighted factors, while the WUS portrays 
land suitability changes when factors are weighted hierarchically. An examination of current 
development against the BUS provides idealness of current urbanization patterns. The WUS aids 
in assessing the significance of factors in influencing the current urbanization pattern, and checks 
its resemblance with the BUS. The mountainous Indian township of Mussoorie is selected as the 
study area to exercise the USZ by considering seven factors with different weights, and subse
quently generated a BUS map and 7 WUS maps (WUS–I to VII), which all display urbanization 
suitability distribution in five different classes. The BUS map shows that ~98 % of current 
development falls in higher-suitability areas, indicating its preferability. Among the different 
WUS maps, the WUS-II aligns best with the BUS and current built-up, with slope gradient and 
transportation connectivity as key factors, and according to it, high-suitability areas are generally 
the central and south-facing slopes, while north-facing slopes are unsuitable, in general.   

1. Introduction 

Landslides are defined as the downward movement of soil and rock under the force of gravity, and are often triggered from rainfall, 
earthquakes, and/or anthropogenic activities (Varnes 1978). According to the World Health Organization, landslides account for over 
10 % of all natural disasters worldwide and are responsible for over 4000 deaths annually, approximately. Controlled by a changing 
climate and increased landslide consequences, landslide disaster risk reduction has become an integral part of sustainable develop
ment, and it mostly addressed with help of landslide inventorying [1], susceptibility zonation [2,3], risk assessment [4,5], slope 
stability and runout assessment [6–8], monitoring [9,10] and slope stabilization measures [11], in general. Among them, landslide 
susceptibility zonation has seen major recent advances, attributed to availability of better geospatial data and remotely sensed ob
servations. It is often broadly categorized as qualitative [12–14], and quantitative approaches [15,16]. Despite being widely 
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researched, its direct applications, beyond as a standalone susceptibility map, are as an added variable for landslide risk and multi 
hazard mapping efforts [17–20]. 

Leveraging landslide susceptibility maps beyond their traditional confines for socially relevant applications such as urbanization is 
imperative in advancing disaster risk reduction and sustainable development. Urbanization, the modern-day manifestation of 
development, refers to the shift in population from rural areas to cities [21], which apparently impose development densification and 
challenges the development-sustainability balance. Land suitability for urbanization is one of decisive elements in urban planning, 
particularly in the era of climate changes and consequent natural hazards, along with other facets such as urban growth modelling 
[22], geo-environmental problems [23], urban groundwater [24], urban surface temperature [25], urban industry [26], etc. The land 
suitability models are generally overlay approaches [27,28], multi criteria statistical models [29–34], and opaque artificial intelli
gence models [35–38] based on various geo-environmental and socio-economic factors. The overlay approaches face drawbacks such 
as unsuitable map standardization and unverified assumptions about suitability criteria [39], while the rest account independence and 
uncertainty of factors, they heavily rely on input samples, which are presumed to be precise, accurate and unbiased [40]. Most notably, 
irrespective of the modelling approach, exposure to natural hazards was not given the deserving priority in general, with exceptions 
being [41] accounting flood inventory while [42] decided suitability solely based on multi-hazard exposure. 

Therefore, the current research proposes an approach called urbanization suitability zonation (USZ), which primarily focuses on 
incorporation of spatial hazard probability, in this context, a landslide susceptibility map, along with other factors for generic as
sessments of land suitability for urbanization. Further, to overcome some of the shortcomings of earlier modelling approaches such as 
rigid classification, subjectivity, opacity and diversity adaptation, the USZ adopts Mamdani fuzzy logic/Mamdani-FIS [43] as the 
synthesizer. The Mamdani-FIS offers a system that embraces uncertainty, offers interpretability and flexibility with human-readable 
rules. Its ability to handle degrees of truth, rather than binary decisions, makes it especially apt for complex assessments where nuances 
are essential. Availability of such portable approaches may be helpful for planning authorities or even for individuals to make use of 
spatial hazard probability information for better-informed sustainable development through planning, forecasting and monitoring. 
The Mussoorie township is selected as a study example owing to its rapid development as an attraction in the Indian State of Uttar
akhand, and its topographic constraints of surrounding mountainous terrain. Through this case study, the USZ’s real-world application 
is demonstrated and discussed. 

2. Methodology 

2.1. Urbanization suitability zonation 

Land-use suitability refers to the capacity of the land for the designated purposes [44], and governed by interaction of factors of 
physical, socio-economic, geo-environmental, ecological domains etc. Given the multi-criteria nature of land suitability, the USZ is 
designed to incorporate geo-environmental and socio-economic factors, in addition to landslide susceptibility whether they are of 
categorical or numerical nature. Beyond land suitability assessment for urbanization, use of the USZ enables inspection of the 
favourability of current development patterns and urban growth predictions, while relevance of various weighting factors can be 
explored through incorporation of the factor’s sensitivity analysis. 

In this context, the USZ model employs two specific sensitivity analysis concepts: BUS and WUS. The BUS is a hypothetical situation 
where all factors are equally relevant/weighted, whereas the WUS portrays land suitability corresponding to varying relevance/ 
weights of factors. The applicability of BUS and WUS are pointed below.  

• The hypothetically ideal BUS acts as the reference scale to assess the favourability of current urbanization/development pattern by 
inspecting the density of development in each suitability classes.  

• The WUS helps in estimating relevance of factors in driving the urbanization in the area by accounting congruency of suitability 
classes and current development.  

• Comparison of WUS with BUS in terms of similarity may express how ideal the considered WUS is.  
• Based on the above three assessment and comparison, the best WUS shall be designated as the USZ map of the area. Interpretating 

the spatial distribution of its suitability classes may provide insights into possible urban growth trajectories. 

The execution of USZ is straightforward cartographic modelling involving, 1) characterization of relevant factors, 2) simulation 
with Mamdani-FIS to generate the BUS and different WUS, and finally 3) assessment and comparison of BUS and WUSs. 

2.1.1. Characterization of relevant factors 
As stated earlier, land suitability assessment is a multi-criteria decision analysis, and broadly they fall into two categories, ‘op

portunities’ and ‘constraints’ [40]. It must be taken into account that there exist no global guidelines that dictates the selection of these 
factors. Instead, the choice is effectively based on the attributes of the area of interest. Further, the categorization of factors, and their 
relevance or suitability estimation also hinges on local cultural preferences, regulations and practical constraints. For the application of 
Mamdani-FIS for USZ, it is essential to have the factors categorized, and relevance of each category of factors is estimated and 
expressed in human-readable form. The fundamentals of Mamdani-FIS are explained below. 

2.1.2. Mamdani-FIS 
The Mamdani-FIS a is widely applied fuzzy expert system model for modelling of system with ambiguities. It uses implicitly 

formulated linguistic rules instead of unambiguously defined algorithms to regulate the fuzzy inference mechanism. It has two 
fundamental segments, fuzzy inference system structure (fuzzifier and defuzzifier) and rule base (fuzzy if-then rules) required for the 
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inference mechanism. Fuzzifier transforms the crisp input to a fuzzy input with a degree of membership (between 0 and 1) to a set by 
using a membership function. The rule base links input variables (antecedents) to output variable (consequent), and the inference 
mechanism creates an optimum rational link between them by applying fuzzy operators. Whereas the defuzzifier transforms the 
conglomerated output membership function to a precise value [43]. 

Consider a general ith rule having multiple premises and antecedent of Mamdani fuzzy rule: 

Rule Ri : f (x1 is Ai1) ⨂(x2 is Ai2) ⨂…⨂(xn is Ain) THEN(y is Bi)

where, i = 1, 2, …, L (1)  

where x = [x1, x2, ..., xn]
T and y are crisp inputs and outputs with n-dimensional input variable and 1-dimensional output variable. 

Aij (j = 1, 2..., n) are linguistic variables corresponding to inputs and Bi are the fuzzy variable corresponding to outputs. The symbol ⨂ 
indicates the fuzzy OR or AND operation. 

Fuzzification takes the crisp inputs and determine the degree to which they belong to each of the appropriate fuzzy sets via 
membership functions such as Triangular, Trapezoidal, Gaussian and Bell. The selection of appropriate membership function is largely 
dependent on nature of the problem and characteristics of data. For the current geo-spatial exercise, shape compatibility is considered 
for selecting the membership function combinations. Hence, two choices of combinations are possible, Gaussian and Bell or Triangular 
and Trapezoidal. However, previous study [45] indicate that the outcomes between these combinations might be minimal. Therefore, 
the current study uses the Triangular and Trapezoidal membership functions to construct the fuzzy inference system structure, which 
are mutually compatible, simple and easy to construct [46,47]. 

A Triangular membership function is specified by three parameters a, b and c which represent x-coordinates of three vertices of μAij 

μAij

(
xj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if xj ≤ a
xj − a
b − a

if a ≤ xj ≤ b

c − xj

c − b
if b ≤ xj ≤ c

0 if xj ≥ c

(2) 

A Trapezoidal membership function is specified by three parameters a, b, and c which represent x-coordinates of four vertices of μAij 

μAij

(
xj

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if xj < a or xj > d
xj − a
b − a

if a ≤ xj ≤ b

1 if b ≤ xj ≤ c

d − xj

d − c
if c ≤ xj ≤ d

(3) 

The Inference mechanism establishes a logical connection between the input and output fuzzy sets using rules. Initially, a fuzzy 
number is obtained from a fuzzified input variable using OR/AND operation. To evaluate the disjunction of the rule antecedents, the 
OR fuzzy operation is used, which is expressed in the form of classical fuzzy operation union: 

μAi = MAX
{

μAi1
(x1), μAi2

(x2), …, μAin
(xn)

}
(4) 

Similarly, to evaluate the conjunction of the rule antecedents, the AND fuzzy operation intersection is used, and it is expressed as: 

μAi
= MIN

{
μAi1

(x1), μAi2
(x2), …, μAin

(xn)
}

(5) 

The premise evaluation result is applied to the membership function of the consequent. The consequent part is reshaped with 
respect to the premise operation using fuzzy implications. Commonly min-max implication is used to perform the operation [48], 
which is defined in equations (6) and (7) respectively. 

μBi(y) = max
x

min(μAi(x), μRi(x, y)) (6)  

μBi(y) = max
x

((1 − μAi(x))max(μAi(x)min μRi(x, y))) (7) 

Then aggregation of all consequent part of the fuzzy rule is performed by 

μB(y) = max
i=1,2,...,L

(μBi(y)) (8) 

The aggregated fuzzy output is varied from 0 to 1 with respect to output variable and must be defuzzified to get the final crisp 
output. The centroid method is a commonly used strategy for defuzzification [48]. 
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The defuzzified crisp output is represented as: 

y∗ =

∫
yμB(y)dy

∫
μB(y)dy

(9)  

2.1.3. Assessment and comparison of BUS and WUS 
For the favourability inspection of current urbanization patterns, development proportions in opposition to BUS’s suitability classes 

can be evaluated. This method may indicate how urban development aligns with hypothetically ideal suitability levels. Similarly, the 
development proportions shall be placed against the WUS’s suitability classes to discern the influence of factors in prevailing ur
banization pattern. To have the class specific comparison of WUS with BUS, a confusion matrix table can be used, in which the BUS can 
be considered as the truth, while the WUS serves as the prediction. Further, the overall similarity between the BUS and WUS shall be 
calculated the using following expression; 

OS =
∑

(SP)
/

sum (SP + DP) (10)  

where, OS: overall similarity, SP: similar pixels in WUS, DP: dissimilar pixels in WUS. 

3. Case study - urbanization suitability assessment of Mussoorie Township 

A famous destination for tourism in the landslide prone Himalayan region, the Mussoorie township has been expanding rapidly to 
meet the economic and tourism demands for development; consequently, it serves as an interesting test location to explore urbani
zation patterns in context of landslide susceptibility. Throughout its history, slope instability [45] has been a major hazard that 
hindered sustainable development and environmental protections in the area. Despite many slope stability problems, construction 
practices in the township have been loosely regulated to accommodate the ever-rising influx of visitors. Most of the recent development 
is focused in the central ridge zone of the township (Fig. 3a), and generally consists of housing, hotels, shopping complexes, schools, 

Fig. 1. Location map of study area.  
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and hospitals. Given the rate of expansion, an area of 43 km2 in and around Mussoorie Township will be the focus of the study area 
(Fig. 1). The USZ of Mussoorie Township may primarily involves five steps (Fig. 2), which are: characterization of required factors, 
classification of factors and relevance estimation of categories of them, construction of Mamdani-FIS (FIS structure and rule base) and 
simulation of BUS and different WUS approaches, and assessment and comparison of BUS and WUS. 

3.1. Characterization of factors for Mussoorie Township 

Contemplating Mussoorie’s history, challenges and developmental needs, a total of seven demonstrative factors focusing on geo- 
environmental, socio-economic and landslide susceptibility have been chosen for the evaluation. The significance of each factor in the 
present context, and their characterization is described herein. However, for any given site, the factors and hazard(s) of interest are up 
to the planners of the analysis. 

3.1.1. Near-surface geologic material 
Near-surface geologic material describes the basic geo-materials exposed in the area, and it often dictates safe and effective design 

and construction practices. It determines the stability of the structure and the cost of construction activities as well. Barren rock ex
posures are the least suitable for development as foundation excavation on barren rock is expensive or potentially infeasible. Further, 
maintaining transportation connectivity is also difficult in steep and rocky terrain. Conversely, maintaining and constructing linear 
infrastructure is often a feasible and cost-effective on more gentle slopes with fair soil thickness. Stratigraphically, study area is 
comprised of two Formations - Krol and Tal Formations of Mussoorie Group [49]. The near-surface geologic material map of the study 
area was prepared through fieldwork, by considering two broad categories of geo-materials: in-situ rocks and debris materials. 
Limestones or dolomitic limestones of Krol Formation exposed in the central part of study area, while quartzite of Tal Formation is 
present in the eastern part. On the other hand, the debris has been considered as two categories, shallow overburden (<5 m) and thick 
overburden (>5 m). A thematic map of slope constituting material is shown in Fig. 3b, and its classification is given in Table 1. 

3.1.2. Slope gradient 
Slope gradient is an important factor that governs construction practices, slope stability and infrastructure maintenance costs. In 

construction, gentle gradient slopes are generally more suitable compared to steeper slopes. A slope gradient map was prepared from a 
15 m digital elevation model (DEM) (ALOS PALSAR) for the study area. The slope gradient ranges from 0 to 72.5◦ (Fig. 3c), which has 
been classified into five different classes based on the natural break classifier [50] for the evaluation (Table 1). 

3.1.3. Transportation connectivity 
Transportation connectivity or accessibility is an important socio-economic factor that determines the suitability of locations for 

Fig. 2. Flowchart showing steps involved in urbanization suitability zonation of Mussoorie.  
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Fig. 3. Thematic maps of factors: a) Present development in Mussoorie Township, b) Near-surface geologic material, c) slope gradient, d) transportation connectivity, 
e) proximity of attractions, f) proximity of schools and hospitals, g) slope aspect, h) landslide susceptibility. 
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Fig. 3. (continued). 
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urbanization and economy. An existing network of roads facilitates construction, and provides access to nearby well-established 
townships to enhance its commercial growth through trade, tourism, etc. The road network of Mussoorie Township was prepared 
using Google Earth layers [51] (Fig. 3d). To incorporate the road network in the analysis, five buffer zones at an interval of 100 m were 
considered (Table 1). 

3.1.4. Proximity of attractions 
The Mussoorie region is one of the most famous Himalayan tourist destinations, and the tourism industry contributes greatly to its 

economy. Urbanization close to cultural attractions not only enhances its economic growth, but also fosters social developments. 
Consequently, owing to frequent development around these cultural centres, we include their location as a factor in this analysis. The 
list of major tourist locations in the study area are collected from the Mussoorie Urban Local Body (https://www.nppmussoorie.com/ 
index.php), and a thematic map was prepared with the aid of Google Earth [51], which shows the tourist centres a as points (Fig. 3e). 
For the analysis, five classes, namely, very near, near, moderate, far and very far were considered at 750 m interval around the spots 
(Table 1). 

3.1.5. Proximity of schools and hospitals 
Schools and health services are fundamental building blocks of civilization and consequently development. A region facilitated 

with ample and easily accessible educational and health infrastructure is often regarded as suitable for habitation, as it ensures 
liveability and socio-economic growth. The list of schools and hospitals in the study area are obtained from the Mussoorie Urban Local 
Body (https://www.nppmussoorie.com/index.php), and their geographical locations are marked with aid of Google Earth [51] as 
points to prepare the thematic map (Fig. 3f). For the evaluation, five classes, namely, very close, close, moderate, far and very far were 
considered at 1000 m interval around them (Table 1). 

3.1.6. Slope aspect 
The slope aspect is an environmental factor that is often a secondary parameter in urban planning; however, it is a significant factor 

influencing sunlight exposure, vegetation, microclimate variations, and more. Exposure to sunlight has a significant role on slope 
stability, as it helps slopes dry quickly and enhances growth of vegetation and their stabilizing roots. Beyond its environmental 

Table 1 
Classification of factors and mean value of categories.  

Factor Categories Mean of categories 

Near-surface geologic material Rock – 
Shallow overburden – 
Overburden – 

Slope gradient Very gentle (0–16.49◦) 8.25◦

Gentle (16.49–25.02◦) 20.76◦

Moderate (25.02–32.70◦) 28.86◦

Steep (32.70–41.23◦) 36.97◦

Very steep (41.23–72.51◦) 56.87◦

Transportation connectivity Buffer zone I (0–100 m) 50 m 
Buffer zone II (100–200 m) 150 m 
Buffer zone III (200–300 m) 250 m 
Buffer zone IV (300–400 m) 350 m 
Buffer zone V (400–2610 m) 1505 m 

Proximity of attractions Very near (0–750 m) 375 
Near (750–1500 m) 1125 
Moderate (1500-1250 m) 1875 
Far (1250–3000 m) 2625 
Very far (>3000 m) 3350 

Proximity of schools and hospitals Very close (0–1000 m) 500 m 
Close (1000–2000 m) 1500 m 
Moderate (2000–3000 m) 2500 m 
Far (3000–4000 m) 3500 m 
Very far (>4000 m) 4250 m 

Slope aspect Flat (−1) −1 
North (0–22.5◦) and (337.5–360◦) 11.2◦ & 348.7◦

Northeast (22.5–67.5◦) 45◦

East (67.5–112.5◦) 90◦

Southeast (112.5–157.5◦) 135◦

South (157.5–202.5◦) 180◦

Southwest (202.5–247.5◦) 225◦

West (247.5–292.5◦) 270◦

Northwest (292.5–337.5◦) 315◦

Landslide susceptibility Very low (−3.459388971 - 0.091714957) −1.683837007 
Low (0.091714957–0.335853352) 0.213784155 
Moderate (0.335853352–0.557797348) 0.44682535 
High (0.557797348–0.801935743) 0.679866546 
Very high (0.801935743–2.200182915) 1.501059329  
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relevance, exposure to sunlight is desirable for community well-being and health. In this regard, the east and west facing slopes, which 
receives more sunlight in the morning and evening are most suitable than other slopes. Further, micro-climate variations may also play 
a vital role in the sustainable and smart development of an area, particularly in mountainous terrain. In Mussoorie, the north facing 
slopes experience more snowfall and colder temperatures than the south facing slopes, causing microclimate variations in the 
township. A slope aspect map of study area was prepared from the DEM (Fig. 3g) at 15 m resolution, and its preferred classification is 
given in Table 1. 

3.1.7. Landslide susceptibility 
Landslide susceptibility expresses the propensity to slope instability in an area, often graded on a scale, such as from very low to 

very high. The graded propensity serves as predictive tool, allowing for better-informed planning and disaster preparedness. In the 
context of urbanization or construction, the very low susceptible areas are highly suitable, whereas the very high susceptible areas are 

Fig. 4. Fuzzy inference system structure of the Mamdani-FIS model.  
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least suitable. This study uses the landslide susceptibility map of Mussoorie (Fig. 3h) prepared by [52] on meso-scale. This map was 
generated using a supervised machine learning model, extreme learning adaptive neuro-fuzzy (ELANFIS) [53–55], based on inherent 
causative factors such lithology, land use & land cover, slope gradient, slope aspect, lineament, elevation, curvature, and topographic 
wetness index. As per this map (Figs. 3h), 16.10 % area fall in the very high susceptibility class, and the proportions of the study area 
with high, moderate, low and very low susceptibilities are, 26.33, 27.72, 20.80 9.04 %, respectively [52]. The landslide susceptibility 
classes, and their corresponding susceptibility indexes according to the natural break classifier [50] are given in Table 1. 

3.2. Mamdani-FIS model construction and simulation 

As stated in methodology, the Mamdani fuzzy inference system has two segments, fuzzy inference system/membership function 
structure and rule base. The Triangular and Trapezoidal membership functions have been used to fabricate the fuzzifier and defuzzifier 
structure, according to the classification of factors given in Table 1. The total number of factors are seven, and the categories between 
them are 37, thus, the fuzzifier has 7 input membership functions and 37 individual membership functions representing each category 
of their respective factor. A maximum of 50 % interaction is considered between membership functions representing the categories of 
numerical factors to account optimum fuzziness between them, in which highest degree of membership is given to the mean value 
(Table 1) of each category [56]. While for the categorical factor, mutually non-interacting membership functions were chosen for 
representing the individual categories of a factor. Five classes of suitability are targeted viz. very low suitability (VLS), low suitability 
(LS), moderate suitability (MS), high suitability (HS) and very high suitability (VHS), thus, the defuzzifier consists of 5 individual 
representative membership functions at 50 % of overlap with each other [56]. The fuzzy rule base consists of 37 non-combination rules 
in conventional consequent-antecedent format, establishing the suitability of each category of factors for urbanization. The fuzzy 
inference system structure is shown in Fig. 4, and the rule base is given in Table 2. 

The BUS and WUS were executed by assigning numerical weights to factors in Mamdani-FIS to incorporate the sensitivity analysis. 
The weight assigning system in Mamdani-FIS ranges from 0 to 1, where 0 indicates least/no relevance and 1 indicates highest/full 
relevance, relatively. For BUS, all factors are having a weight of 1, implying equal relevance, whereas for WUS, weights are randomly 
varied from 0.1 to 1 for all factors. The weights assigned to the factors in WUS are rotated in such a way that each factor, in turn, is 
assigned the highest and the lowest weights, which apparently implies the relevance. It must be noted that the weights establish only a 

Table 2 
Fuzzy if-then rules formulated based on expert knowledge.  

Rule No. Consequent Antecedent 

1 If near-surface geologic material is rock Then urbanization suitability is low 
2 If near-surface geologic material is shallow overburden Then urbanization suitability is moderate 
3 If near-surface geologic material is overburden Then urbanization suitability is high 
4 If slope gradient is very gentle Then urbanization suitability is very high 
5 If slope gradient is gentle Then US is high 
6 If slope gradient is moderate Then urbanization suitability is moderate 
7 If slope gradient is steep Then urbanization suitability is low 
8 If slope gradient is very steep Then urbanization suitability is very low 
9 If transportation connectivity buffer zone is I Then urbanization suitability is very high 
10 If transportation connectivity buffer zone is II Then urbanization suitability is high 
11 If transportation connectivity buffer zone is III Then urbanization suitability is moderate 
12 If transportation connectivity buffer zone is IV Then urbanization suitability is low 
13 If transportation connectivity buffer zone is V Then urbanization suitability is very low 
14 If proximity of attractions is very near Then urbanization suitability is very high 
15 If proximity of attractions is near Then urbanization suitability is high 
16 If proximity of attractions is moderate Then urbanization suitability is moderate 
17 If proximity of attractions is far Then urbanization suitability is low 
18 If proximity of attractions is very far Then urbanization suitability is very low 
19 If proximity of schools and hospitals is very close Then urbanization suitability is very high 
20 If proximity of schools and hospitals is close Then urbanization suitability is high 
21 If proximity of schools and hospitals is moderate Then urbanization suitability is moderate 
22 If proximity of schools and hospitals is far Then urbanization suitability is low 
23 If proximity of schools and hospitals is very far Then urbanization suitability is very low 
24 If slope aspect is flat Then urbanization suitability is very low 
25 If slope aspect is north Then urbanization suitability is very low 
26 If slope aspect is northeast Then urbanization suitability is low 
27 If slope aspect is east Then urbanization suitability is very high 
28 If slope aspect is southeast Then urbanization suitability is high 
29 If slope aspect is south Then urbanization suitability is moderate 
30 If slope aspect is southwest Then urbanization suitability is moderate 
31 If slope aspect is west Then urbanization suitability is very high 
32 If slope aspect is northwest Then urbanization suitability is low 
33 If landslide susceptibility is very low Then urbanization suitability is very high 
34 If landslide susceptibility is low Then urbanization suitability is high 
35 If landslide susceptibility is moderate Then urbanization suitability is moderate 
36 If landslide susceptibility is high Then urbanization suitability is low 
37 If landslide susceptibility is very high Then urbanization suitability is very low  
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relative importance and are not highly sensitive to its numerical values. Hence, a BUS and sevenWUS scenarios are considered, and 
their corresponding weights are given in Table 3. 

The simulated urbanization suitability indexes of BUS and WUSs are subsequently classified with Jenks natural break classifier [50] 
to create the BUS and seven WUS maps, namely WUS-I to VII (shown in Fig. 5), and the distribution of suitability classes in each map, 
corresponding development are given in Table 4. The results of confusion matrix analysis between the BUS and different WUS is shown 
in Fig. 6. 

4. Results 

The BUS (Fig. 5a) displays an error-free spatial distribution of suitability classes with no prominent trace of factors. On the BUS, the 
VHS class is distributed in the central part of the study area along the ridge zone. As the distance increases from the central area, 
suitability gradually reduces. However, the VLS class is predominantly distributed towards the northern end of the study area, whereas 
the southern side scores high on overall suitability, though sparse occurrence of LS is inferred. According to the distribution of suit
ability classes given in Table 4, VHS accounts 20.49 % of the area, and it hosts a total of 71.28 % of the present development, while 
27.55 % of present development falls in the highly suitable area that account for 28.19 % of the study area. The MF class accounts a 
share of 26.01 % of the area, and hosts 1.17 % of current development, while VLS and LS classes devoid of development though they 
account a fair share of 7.09 and 18.22 % of the area, respectively. 

The different WUS scenarios display an interesting and more or less similar spatial distribution pattern of classes. In WUS-I and II, 
the spatial distribution of classes is similar, with the south, southwest, and ridge zones falling into HS and VHS classes, however, 
patches of VLS class in the southern side is observed in the WUS-I. In terms of class per area percentage, both WUS-I and II are largely 
analogous, but the development concentrations differ significantly (Table 4). The development concentration per class shows an 
increasing trend on both WUS-I and II, in general, but notably, a sizeable segregation is observed for VLS and MS on the WUS-I, and it 
rises to 53.77 % for VHS class, whereas for WUS-II, fair hosting is observed from HS class and the VHS class hosts an impressive 75.77 % 
(Table 4). 

The WUS-III (Fig. 5d) showcases a nested spatial distribution of classes that appears unrealistic. The VHS class is concentrated in the 
central area, while other suitability classes are spread out sequentially. However, the distribution statistics have similarities with WUS- 
II with as HS accounting the highest share of 27.89 %, which hosts 15.49 % of development, while the VHS class has 24.05 % of land 
share and accommodates 84.28 % of the development. Moving to WUS-IV (Fig. 5e), the spatial distribution and statistics are alike the 
previous scenarios, with the HS class accounting for the largest share of 30.07 %, while the VHS class has 21.88 % of area, which hosts 
65.96 % of development (Table 4). On WUS-V (Fig. 5f), the LS class expands to cover 18.98 % of the land, while the MS and HS classes 
encompass 25.96 % and 27.72 % of the area, respectively. Surprisingly, the VHS class occupies only 19.80 % of the land, yet it hosts a 
substantial 57.78 % of the development areas. Transitioning to WUS-VI (Fig. 5g), the LS and VLS classes poses for 11.42 % and 21.07 % 
of the area, respectively, with relatively smaller percentage of development. The VHS class covers 16.23 % of the area but accom
modates only 47.53 % of the development. Contrastingly, in WUS-VII (Fig. 5h), the VLS, LS and VHS classes’ area share diminishes to 
8.74 %, 20.21 % and 18.66 %, respectively, although the development per class show an increasing trend (Table 4). 

The confusion matrix (Fig. 6) demonstrates the similarity of different WUS with the BUS, and it portrays the sensitivity of factors in 
deciding the suitability. The WUS-I has an overall similarity of 75.72 % with BUS (Fig. 6a) as the VLS and VHS classes have high 
similarity even though dissimilarity is observed for LS, MS and HS classes. The very same proportion of class similarity is observed for 
WUS-II with BUS, however; the overall similarity with BUS has increased to 77.09 % (Fig. 6b), attributed to increase in matching pixels 
for all the classes, except MS, compared to WUS-I. For the WUS-III, matching pixels experiences a fall in number compared to the 
earlier map, except for the VHS class. Apparently, its overall similarity with the BUS is settled to 70.89 % (Fig. 6c), and in the same 
vein, drop in matching pixel’s number for VLS, LS, and VHS classes caused WUS-IV to have an overall similarity of 67.63 % (Fig. 6d) 
with the BUS. Conversely, the WUS-V’s resemblance with the BUS rises to 73.21 % (Fig. 6e), though dissimilarity is observed for all the 
classes. Further, for WUS-VI and VII, the proportions of dissimilarity for all the classes have shown an increasing trend, and eventually 
curtailing the resemblance with BUS to 60.75 % (Figs. 6f) and 65.92 % (Fig. 6g), respectively. 

5. Discussion 

According to the BUS, the HS and VHS classes are distributed along the central ridge zone, and the south, south-west and south-east 

Table 3 
Weights of factors for BUS and different WUS.  

Factor Weights 

BUS WUS-I WUS-II WUS-III WUS-IV WUS-V WUS-VI WUS-VII 

Near-surface geologic material 1 1 0.1 0.25 0.4 0.55 0.7 0.85 
Slope gradient 1 0.85 1 0.1 0.25 0.4 0.55 0.7 
Transportation connectivity 1 0.7 0.85 1 0.1 0.25 0.4 0.55 
Proximity of attractions 1 0.55 0.7 0.85 1 0.1 0.25 0.4 
Proximity of schools and hospitals 1 0.4 0.55 0.7 0.85 1 0.1 0.25 
Slope aspect 1 0.25 0.4 0.55 0.7 0.85 1 0.1 
Landslide susceptibility 1 0.1 0.25 0.4 0.55 0.7 0.85 1  
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facing areas. The higher suitability of these areas compared to the north-facing slopes might be attributed to preferable slope gradient, 
better transportation connectivity and lower landslide susceptibility. Further, the substantial proportions of current development 
within the HS and VHS classes of the BUS underscores the preferability of current urbanization pattern, given study areas’ prospects. 

Fig. 5. BUS and WUS maps of Mussoorie.  
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However, weighing all the factors equally might not be practical, particularly for a mountainous township, hence, this scenario has 
been portrayed with the WUS approach. Since it is an existing township and current development/urbanization is congruent with the 
BUS, spatial distribution quality, competency to host current development on VHS and HS classes and similarity with BUS have been 

Fig. 5. (continued). 
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measured for all the WUS scenarios. 
Giving top priority to lithology and slope gradient for WUS-I (Table 3), the competency to host developed areas on VHS is low, 

although it has reasonable similarity with the BUS, and spatial distribution quality. When slope gradient and transportation con
nectivity are of highest relevance for WUS-II, the VHS class hosts significantly high percentage of development in addition to achieving 
the highest similarity with the BUS, and acceptable spatial distribution quality. On the other hand, with slope gradient being moved 
farthest down the order and transportation connectivity is prioritized for making WUS-III, the spatial distribution quality is consid
erably degraded, although the development density within the VHS class and similarity with BUS is reasonable. Further, as the slope 
gradient’s relevance is elevated and transportation connectivity has the least relevance for making WUS-IV, the spatial distribution 
quality has improved, but the development density on predicted VHS class and the overall similarity with BUS are compromised. 
Similarly, with relatively high relevance for proximity of schools and hospitals and slope aspect for WUS-V and VI, the development 
concentration on VHS class and similarity with BUS are low, though spatial distribution is reasonable. In case of WUS-VII, as the 
landslide susceptibility is prioritized, the spatial distribution quality was found to be reasonable, but the proportion of development on 
VHS and resemblance with BUS were found to be mediocre. 

In this regard, the WUS-II was found to be in great agreement for all the measures considered, and was selected as the optimal 
urbanization suitability map of Mussoorie. Inferring the weightages considered for WUS-II, it may be possible to interpret that the 
current urbanization was driven primarily by slope gradient and transportation connectivity. Further, the sensitivity of factors 

Table 4 
Distribution of suitability classes in oppose to current development.  

Suitability class Percentage of class Percentage of development (built-up) 

BUS 
VLS 7.09 0 
LS 18.22 0 
MS 26.01 1.17 
HS 28.19 27.55 
VHS 20.49 71.28 
WUS-I 
VLS 7.68 0.00 
LS 20.19 0.06 
MS 26.52 8.16 
HS 26.24 38.02 
VHS 19.38 53.77 
WUS-II 
VLS 7.74 0.00 
LS 20.24 0.00 
MS 25.17 0.83 
HS 27.11 23.40 
VHS 19.73 75.77 
WUS-III 
VLS 6.97 0.00 
LS 17.95 0.00 
MS 23.15 0.23 
HS 27.88 15.49 
VHS 24.05 84.28 
WUS-IV 
VLS 7.55 0.00 
LS 13.33 0.01 
MS 27.17 3.25 
HS 30.07 30.78 
VHS 21.88 65.96 
WUS-V 
VLS 8.36 0.00 
LS 18.16 0.11 
MS 25.96 5.83 
HS 27.72 36.28 
VHS 19.80 57.78 
WUS-VI 
VLS 11.42 0.01 
LS 21.07 0.85 
MS 25.98 13.92 
HS 25.30 37.69 
VHS 16.23 47.53 
WUS-VII 
VLS 8.74 0.00 
LS 20.21 0.14 
MS 26.49 3.78 
HS 25.91 28.77 
VHS 18.66 67.31  
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portrayed with different WUS scenarios also indicate that the suitability is highly sensitive to the weightage of slope gradient and 
transportation connectivity than others. Based on the spatial distribution of suitability classes on WUS-II, the central area, along the 
ridge, is falling in the VHS class, and the nearby south facing slopes belong to the HS class. Further, looking at the WUS-II, it may be 
possible to predict that the urban growth may continue to take place along the ridge zone, however, the south-west, south and south- 
east facing slopes on the southern side may also experience higher degree of urbanization in the future as they also fall in the highly 
suitable classes. 

6. Conclusions 

The proportion of people living in urban environments is rising, imposing added demands for construction-driven urbanization. 
Landslides, one of the most widespread and frequently occurring natural hazards, present an unprecedented risk to urbanization, 
particularly in mountainous regions. Timely recognition of suitable areas in hazard prone regions will prevent undesired urban sprawl 
and promotes sustainable development. Hence, the current research attempts incorporation of slope stability in the form of landslide 
susceptibility map for generic land suitability assessment for urbanization by presenting the USZ approach. Land suitability for ur
banization is influenced by various geo-environmental, socio-economic and natural hazard factors, and their complex interrelation and 
spatial variation makes it a challenging assignment. Therefore, the USZ uses the Mamdani-FIS to simulate urbanization suitability as a 
function of considered factors based on implicitly defined rules, attributed to its capability to curb subjectivity of expert choices, 
transparency, ability to account uncertainties and more saliently, its efficiency to express complex interests such as demographic or 
religious preferences in the form of natural language rules. 

The USZ has been exercised for the Himalayan township of Mussoorie by considering seven factors, and relevance of them was 
decided based on expert knowledge. As per the BUS, the township’s current development pattern aligns well with its limits and re
quirements. Based on the urbanization suitability map, WUS-II, around 19.73 % of the area is very highly suitable for urbanization, and 
transportation connectivity and slope gradients are identified as the most influencing factors behind its current urbanization pattern. 
Given the influence of these factors, 27.11 and 25.17 % of the area fall in the HS and MS classes, and they may or will be targeted for 
urban growth in the future without significant development of transportation connectivity. 

The urbanization suitability map of Mussoorie, WUS-II, may be of help for urban planning of Mussoorie. Similar application of USZ 
for other areas may make utilization of high number of landslide susceptibility maps are being produced worldwide for equitable and 
sustainable development. Though this study used only the landslide susceptibility map, similar thematic maps corresponding to flood, 
wildfire, drought, earthquake, etc. or multi-hazard susceptibility can be incorporated for USZ in a similar manner. If it is attempted for 

Fig. 6. Confusion matrix analysis between the BUS and WUS-I to VII, from panels a) to g), respectively.  
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an existing township, exercise of BUS and WUS may be required, however; application to virgin areas may need only BUS, unless 
hierarchy of factors is preferred. Further, the present case study shall only be treated as a basic framework, and the number of factors, 
their classification, and associated rules shall be customized to specific user preferences and requirements. 
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