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Abstract—Low-capacity scenarios have become increasingly
important in the technology of the Internet of Things (IoT)
and the next generation of wireless networks. Such scenarios
require efficient and reliable transmission over channels with
an extremely small capacity. Within these constraints, the state-
of-the-art coding techniques may not be directly applicable.
Moreover, the prior work on the finite-length analysis of optimal
channel coding provides inaccurate predictions of the limits in
the low-capacity regime. In this paper, we study channel coding
at low capacity from two perspectives: fundamental limits at
finite length and code constructions. We first specify what a
low-capacity regime means. We then characterize finite-length
fundamental limits of channel coding in the low-capacity regime
for various types of channels, including binary erasure channels
(BECs), binary symmetric channels (BSCs), and additive white
Gaussian noise (AWGN) channels. From the code construction
perspective, we characterize the optimal number of repetitions for
transmission over binary memoryless symmetric (BMS) channels,
in terms of the code blocklength and the underlying channel
capacity, such that the capacity loss due to the repetition is
negligible. Furthermore, it is shown that capacity-achieving polar
codes naturally adopt the aforementioned optimal number of
repetitions.

Index Terms—Internet of things, polar codes, finite-length
coding bounds, achievability and converse bounds, low rate
coding, low SNR, Poisson law.

I. INTRODUCTION

Error-correcting codes are often designed assuming an un-
derlying channel with a certain capacity C > 0. In order to
understand how optimal the designed codes are, studying the
finite-length fundamental limits becomes relevant, i.e., given
a fixed block error probability pe, what is the maximum
achievable rate R in terms of the blocklength n? There has
been a large body of work in the past decade to study the
fundamental limits of finite-length channel coding relating
pe, R, and n together. This has been of interest to infor-
mation theorists since the early years of information theory
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[3], [4], and a precise characterization is provided in [5] as
R = C −

√︁
V/nQ−1(pe) + O (log n/n) , where C is the

channel capacity, Q(·) is the tail probability of the standard
normal distribution, and V is a characteristic of the channel
referred to as channel dispersion. In recent years, this finite-
length analysis is further enhanced to include up to the third
and later to the fourth order for particular channels including
BEC, BSC, and AWGN (see [6, Theorems 41,44], [7]–[11]).

In general, the fundamental question of what is achievable
in the finite-length regime has been answered for various types
of channels and up to several orders of approximation in the
moderate-capacity regime, where the higher order terms of
approximating R are significantly smaller than the first few
terms. In this paper, we consider cases where the capacity
C is extremely small where the first-order (i.e., C) and/or
the second-order terms are as small as the higher-order terms.
In general, as we will see throughout this paper, designing
optimal channel codes in such a low-capacity regime (which
we explicitly specify in Section III) and understanding how
far they are from what is fundamentally achievable require
addressing various theoretical and practical challenges.

From the code construction perspective, some of the state-
of-the-art codes may not be directly applicable in the ex-
tremely low-rate regime. A notable instance is the class of
iterative codes, e.g., turbo [12] or low-density parity-check
(LDPC) codes [13], [14]. It is well known that decreasing the
design rate of iterative codes results in denser decoding graphs
which further leads to highly complex iterative decoders
with poor performance. To circumvent this issue, the current
practical designs use repetition coding. In particular, a low-rate
repetition code is concatenated with a powerful moderate-rate
code. Although repetition leads to efficient implementations,
the rate loss through many repetitions may become significant.
This implies that a comprehensive analysis is necessary to
understand the optimality of coded repetition schemes in the
low-capacity regime.

A. Problem Motivation

Low-capacity scenarios have become increasingly important
in the technology of the Internet of Things (IoT) and the
next generation of wireless networks. The Third Generation
Partnership Project (3GPP) has introduced new features into
the standard in order to integrate IoT into the cellular net-
work. These new features, called Narrow-Band IoT (NB-IoT)
and enhanced Machine-Type Communications (eMTC), were
introduced in the release 13 of 3GPP standard and have
been evoloving since then. The aim of these features is to
enable deploying IoT in cellular networks where a massive
number of users need to be served [15]. From the channel
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modeling perspective, it turns out that users operating in these
modes typically experience very low signal-to-noise ratios
(SNRs). In particular, to ensure high coverage, the standard
has to support coupling losses as large as 170 dB for these
applications, which is approximately 20 dB higher than that of
the legacy standard. Tolerating such coupling losses requires
reliable detection for a typical −13 dB of effective SNR
[15], [16], translated to capacity ≈ 0.03 bits/transmission. To
enable reliable communications in such low-SNR regimes, the
standard has adopted a legacy turbo code of moderate rate, i.e.,
rate 1/3, in eMTC and NB-IoT (uplink) as the mother code
together with many repetitions. The standard allows up to 2048
repetitions to enable the maximum coverage requirements,
thereby supporting effective code rates as low as 1.6 × 10−4

[15]. However, as mentioned earlier, such repetition schemes
may result in a significant rate loss. In general, studying finite-
length fundamental limits as well as designing practical code
constructions are necessitated to address the challenges of
wireless system design for such emerging applications.

Communication in low-capacity regimes is also relevant in
deep-space communication. In addition to the limited capacity,
deep-space communication also suffers from catastrophic link
loss and severe signal attenuation. Hence, sophisticated code
concatenation designs are often required in order to combat
these design challenges. An overview of code designs adopted
for various historical deep-space missions can be found in
[17]. Designing efficient coding techniques to enhance the
performance of deep-space communication is still an ongoing
and open area of research that necessitates further attention
given the importance of the targeted applications [18].

B. Related Work

Following the earlier work of Polyanskiy et al. [5], funda-
mental limits at finite length were later studied for various
other types of channels beyond BECs, BSCs, and AWGN
channels, including block-fading channels [19], [20], multiple-
antenna channels [21], and multiple access channels [22], [23].
This has also motivated studying finite-length analysis in other
related settings including lossy compression [24], Slepian-
Wolf coding [23], [25], covert communications [26], [27], and
coding with side-information [28], among others.

Another line of work in the literature is concerned with
the application of saddlepoint approximations to efficiently
compute rather complicated expressions such as random-
coding union bound [10], [29]–[33]. To this end, [29] derived
saddlepoint approximations of random-coding bounds to the
decoding error probability with maximum-metric mismatched
decoders allowing for accurate and simple numerical eval-
uations. In [30], a single-letter saddlepoint approximation,
that is shown to be asymptotically tight for both fixed and
varying rates, is presented for random-coding union bound of
Polyanskiy et al. [5] for i.i.d. random coding over discrete
memoryless channels. Moreover, saddlepoint approximations
of the meta-converse (hypothesis-testing) lower bound and
random-coding union upper bound of channel coding min-
imum error probability are derived in [31] for symmetric
memoryless channels in a wide range of system parameters.

In a related line of work, very noisy channels (VNCs) are
defined and studied. The notion of VNCs was first defined by
Reiffen in [34] by specifying certain conditions on the channel
transition probability. Later, Gallager computed exponent-rate
functions for random coding and convolutional codes in [35],
and Majani [36] carried out a comprehensive study of VNCs.
VNCs are also relevant in Poisson photon channels, modeling
direct detection optical communication channels when they are
approximated by binary-input binary-output discrete memory-
less channels [37]. Recently, Sakai et al. [38] derived finite-
length laws for channel coding over continuous-time Poisson
channels. Also, very recently, Wagner et al. established that
feedback neither improves the second-order coding rate for
very noisy discrete memoryless channels [39] nor their high-
rate error exponent or moderate deviations performance [40].
Although the low-capacity setting in this paper shares similar
motivations to that of VNCs, the characterization of the low-
capacity regime for a channel is fundamentally different. To
clarify this difference, note that there is no notion of block-
length in the formulation of VNCs. However, our definition of
low-capacity channels directly relates the low-capacity regime
to the blocklength. More precisely, according to what will be
discussed in Section III-A, a channel with a fixed capacity
C may not be at low capacity for a given blocklength, but
may fall in the low-capacity regime for a shorter blocklength.
Therefore, a VNC may or may not be a low-capacity channel
necessarily.

For code construction, the focus of this paper is on the class
of binary memoryless symmetric (BMS) channels. Asymp-
totically, state-of-the-art polar codes, introduced by Arıkan
[41], are the first class of provably capacity-achieving codes
with explicit constructions as well as low-complexity encoding
and decoding. Furthermore, their construction method is rate-
adaptive, allowing constructing codes of rate k/n for k =
0, 1, 2 . . . , n, where n is the block length. While this makes
them a natural choice for low-capacity regimes, they have not
been particularly studied in very low-rate regimes when the
number of information bits k is much smaller than n.

C. Our Contributions

In this paper, we provide a specific formulation of low-
capacity regimes from a finite-length analysis perspective.
We then provide fundamental non-asymptotic laws of chan-
nel coding in the low-capacity regime for a diverse set of
channels with practical significance, namely, BEC, BSC, and
AWGN channels. We observe that channel variations in the
low-capacity regime can be better approximated by different
probabilistic laws rather than the ones used for channels
with moderate capacities. In particular, for BEC channels,
we show that the behavior of channel variations in the low-
capacity regime can be better approximated through the Pois-
son convergence theorem that studies the occurrence of rare
events. This is basically intuitive noticing that “non-erasure”
in a BEC with a very small capacity is a rare event. This
phenomenon in the low-capacity BEC changes the relative
significance of order terms in the classical expansions of the
best achievable rate [5] in such a way that the higher order
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terms are then comparable to the lower ones and hence leading
to an imprecise approximation. Incorporating Poisson laws in
this paper rather than the Gaussian laws used in the classical
expansions, however, results in a more accurate approximation.
The inaccuracy of the classical expansion in the low-capacity
BSC is as well due to the aforementioned change in the relative
significance of the order terms but unlike BEC, the Poisson
laws do not govern the behavior of the BSC in the low-capacity
regime and are not applicable here. As our analysis shows,
employing the Gaussian laws with a sharper analysis and more
precise tail bounds (e.g., the bound obtained by Talagrand
[42]) can circumvent this issue and lead to a different and more
accurate expansion. For an AWGN channel, it turns out that
the low-capacity expansion can be seen as a term-by-term limit
of the existing expansion in the moderate-capacity regime.
Proving this observation in Section III-D is our contribution
to the AWGN channel case. This leaves no necessity for a
numerical evaluation of the AWGN case.

From the code construction perspective, assuming transmis-
sion over a BMS channel, repetition is often considered as
a straightforward method to design practical low-rate binary
codes that utilize the power of state-of-the-art binary code
designs at a moderate rate while keeping the complexity low.
This is mainly due to the fact that the encoding/decoding
complexity of a concatenation scheme with inner repetition is
effectively reduced to that of the outer code with a significantly
shorter length. Thus, a major question is how large the number
of repetitions can be such that the capacity loss due to the
repetition is negligible? To answer this fundamental question,
we characterize the optimal number of repetitions, in terms
of the code blocklength and the underlying channel capacity.
As mentioned earlier, polar codes are very appealing for low-
capacity regimes due to their rate-adaptive structure. In this
regard, we prove that the polarization transform implicitly
induces the aforementioned optimal number of repetitions that
we characterize in the low-capacity regime. This means the
resulting low-rate polar codes naturally adopt the optimal
number of repetitions.

Our approximations of the fundamental limits in the low-
capacity regime for the BEC and BSC cases are numerically
evaluated and compared with the most well-known moderate-
capacity estimation [5] and an all-rate estimation known as
the saddlepoint approximation [30].

D. Content Organization

The rest of this paper is organized as follows. In Section II,
we provide the necessary background. In Section III, we
formally define the low-capacity regime and provide non-
asymptotic laws of channel coding. Section IV is devoted
to the code design. The numerical results are discussed in
Section V. Section VI presents the conclusion and some future
directions. Finally, for all proofs of the theorems and their
intermediate lemmas, we refer to the arXiv version of this
paper [2].

II. PRELIMINARIES

A. Finite-Length Analysis

In this section, we will review the main concepts of channel
coding in the finite-length regime, sometimes referred to as
the non-asymptotic regime in the literature, along with a brief
review of previous works.1 For an input alphabet X and an
output alphabet Y , a channel W can be defined as a conditional
distribution on Y given X . An (M,pe)-code for the channel
W is characterized by a message set M = {1, 2, · · · ,M}, an
encoding function fenc : M → X , and a decoding function
fdec : Y → M such that the average probability of error does
not exceed pe, that is2

1

M

∑︂
m∈M

W
(︁
Y \ f−1

dec(m)
⃓⃓
fenc(m)

)︁
≤ pe. (1)

We consider pe to be a fixed given constant in (0, 1). Accord-
ingly, an (M,pe)-code for the channel W over n independent
channel uses can be defined by replacing W with Wn in
the definition. The blocklength of the code is defined as the
number of channel uses and is similarly denoted by n. For the
channel W , the maximum code size achievable with a given
error probability pe and blocklength n is denoted by

M∗(n, pe) = max {M | ∃(M,pe)-code for Wn} . (2)

In this paper, we consider three classes of channels that vary
in nature:

• BEC(ϵ): binary erasure channel with erasure probability
ϵ ∈ (0, 1).

• BSC(δ): binary symmetric channel with crossover prob-
ability δ ∈ (0, 1).

• AWGN(η): additive white Gaussian noise channel with
signal-to-noise ratio η ∈ (0,∞).

Next, we mention the well-known finite-length expansion
for a discrete memoryless channel. Due to [44], [45], we know
that limn→∞ 1/n log2 M

∗(n, pe) = C. Thus, the first order
term in the finite-length expansion of M∗(n, pe) is nC. The
higher order terms can be written as (see [5], [46])

log2 M
∗(n, pe) = nC −

√
nV Q−1(pe) +O(log n), (3)

where V is the channel dispersion and Q−1(·) is the inverse of
the so called Q-function that is Q(α) = 1√

2π

∫︁∞
α

e−
x2

2 dx. The
third and higher order terms, however, depend on the particular
channel under discussion (see [6, Theorem 41, 44, 73], [7]–
[11]). More specifically, for BEC(ϵ), we have C = 1 − ϵ,
V = ϵ(1 − ϵ) and the third order term is O(1). For BSC(δ),
we have C = 1 − h2(δ), V = δ(1 − δ) log22((1− δ)/δ), and
the third order term is 1/2 log2 n+O(1). For AWGN(η), we
have C = 1/2 log2(1 + η), V = η(η + 2)/(2(η + 1)2 ln2 2),
and the third order term is 1/2 log2 n+O(1), as shown in [7].

The formula (3) is basically obtained by approximating the
Random Coding Union (RCU) and converse bounds using
Gaussian laws. This approach is best known for moderate-
rate (or equivalently moderate-capacity) scenarios. There are,

1See [43] for an excellent review on this topic.
2In this paper, we only consider the average probability of error. Similar

results can be obtained for the maximum probability of error.
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however, other approaches in approximating the RCU and
converse bounds which remain effective for a wider range of
capacities such as the saddlepoint approximation [29]. Here,
we briefly mention the formulation3. For a channel W with
input distribution Q and a tuning factor s > 0, the information
density is defined as

is(x, y) = log
W (y | x)s∑︁

x̄ Q(x̄)W (y | x̄)s
, (4)

where x and y represent the input and output of W . Then the
saddlepoint approximation is

ˆ︂rcu∗s(n,M) = βn(Q,R, s) e−nEr(Q,R), (5)

where R is the rate, n is the blocklength. The error exponent
Er(Q,R) is defined as

Er(Q,R) = sup
s>0, ρ∈[0,1]

− logE
[︂
e−ρ is(X,Y )

]︂
− ρR. (6)

Moreover, the coefficient βn(Q,R, s) is called the sub-
exponential prefactor. The computation of βn(Q,R, s) is quite
complicated and needs further steps. See [10] for the introduc-
tion and approximation of βn(Q,R, s) as well as a relevant
analysis for Er(Q,R).

B. Polar Coding

In Section IV-B, we study state-of-the-art polar codes at
low capacity. Polar codes were introduced by Arıkan in [41].
They are the first family of codes for the class of binary-input
symmetric discrete memoryless channels that are provable
to be capacity-achieving with low encoding and decoding
complexity [41]. Polar codes and polarization phenomenon
have been successfully applied to a wide range of problems
including data compression [47], [48], broadcast channels [49],
[50], multiple access channels [51], [52], physical layer secu-
rity [53], [54], and coded modulations [55].

The basis of channel polarization consists of mapping two
identical copies of the channel W : X → Y into the pair of
channels W 0 : X → Y2 and W 1 : X → X × Y2, defined as

W 0(y1, y2 | x1) =
∑︂
x2∈X

1

2
W (y1 | x1 ⊕ x2)W (y2 | x2), (7)

W 1(y1, y2, x1 | x2) =
1

2
W (y1 | x1 ⊕ x2)W (y2 | x2). (8)

Then, W 0 is a worse channel in the sense that it is degraded
with respect to W , hence it is less reliable than W ; and W 1 is
a better channel in the sense that it is upgraded with respect to
W , hence it is more reliable than W . The operation in (7) is
also known as the check or minus operation and the operation
in (8) is also known as the variable or plus operation.

By iterating this operation n times, we map n = 2m

identical copies of the transmission channel W into the syn-
thetic channels {W (i)

m }i∈{0,...,n−1}. More specifically, given
i ∈ {0, . . . , n−1}, let (b1, b2, . . . , bm) be its binary expansion

3See [10], [30] for a thorough analysis of the saddlepoint approximation.

over m bits, where b1 is the most significant bit and bm is the
least significant bit, i.e.,

i =

m∑︂
k=1

bk2
m−k. (9)

Then, we define the synthetic channels {W (i)
m }i∈{0,...,n−1} as

W (i)
m = (((W b1)b2)···)bm . (10)

Example 1 (Synthetic Channel): Take m = 4 and i = 10.
Then, the synthetic channel W (10)

4 = (((W 1)0)1)0 is obtained
by applying first (8), then (7), then (8), and finally (7).

The polar construction is polarizing in the sense that the
synthetic channels tend to become either completely noiseless
or completely noisy. Thus, in the encoding procedure, the
k information bits are assigned to the positions (indices)
corresponding to the best k synthetic channels. Here, the
quality of a channel is measured by some reliability metric
such as the Bhattacharyya parameter of the channel. The
remaining positions are “frozen” to predefined values that are
known at the decoder. As a result, the generator matrix of
polar codes is based on choosing the k rows of the matrix
Gn = [1 0; 1 1]⊗m (with “;” separating the rows) which
correspond to the best k synthetic channels.

III. FUNDAMENTAL LIMITS

A. The Low-Capacity Regime

We first provide an informal description of the low-capacity
regime and then proceed with a more formal specification.
The low-capacity regime consists of two main components:
(i) A channel W with capacity C. We think of C to be a
very small number but fixed; (ii) The blocklength n which is
defined as the number of times the channel W is used for
transmission. Here, n should be thought of as a finite value,
i.e., non-asymptotic.

We are interested in characterizing (optimal) ranges of n for
which reliable transmission of a certain number of information
bits is possible. Let k denote the number of information bits
to be sent. To reliably communicate k bits, we clearly must
have n ≥ k/C and thus n becomes fairly large when C is
small. We are interested in finite-length values of n and their
dependency on C and k. For example, assume that we aim
to send a constant number of information bits k through the
channel. We ask: What is the optimal (smallest) value of n to
send k bits over the low-capacity channel with a given (fixed)
error probability pe? More precisely, we are searching over the
set of all the possible values of n, such that n ≥ k/C. In this
search, we look for the smallest value of n for which reliable
transmission of k bits with the desired error probability pe is
achievable.

One may ask why this question is practically relevant and/or
worth a deeper theoretical investigation. We argue from two
perspectives: (i) Practical relevance: There are many practical
scenarios where the goal is to send a few bits over a low-
capacity channel. For instance, in narrowband applications
discussed in Section I, the number of information bits k is
around a few tens, and the channel capacity C is typically
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below 0.05. This makes n to vary in the range of a few
thousand. For instance, if k = 20 and C = 0.02, then the
blocklength n is at least 1000; (ii) Fundamental limits: As
we will see, the low-capacity regime allows for simple and
precise trade-offs between the length n and the number of
information bits k, which depend on the channel and error
probability. This stands in contrast to the case where C is not
very small. For example, when C = 1

2 , sending 20 bits of
information requires a fairly small blocklength n. In such a
regime of n, it is intractable to provide precise closed-from
estimates of the optimal blochlength and one typically resorts
to (approximately) computing the well-known information-
theoretic bounds, such as the random coding bound, among
others. However, when C is small, the blocklength n becomes
sufficiently large that allows us to provide simple, precise,
and closed-form estimates of the optimal channel coding
blocklength. Indeed, as we will see, such estimates require
new techniques beyond the current methods used to analyze
the finite-length limits of channel coding.

The low-capacity regime is not necessarily limited to trans-
mitting a constant number of information bits, and one can
consider other regimes of k. For example, assume that we
would like to find the smallest value of n such that we
can send k = α log n bits of information reliably using n
transmissions with an error probability not larger than pe. How
does the optimal (smallest) value of n scale with C? In the
same manner, we may consider k = α

√
n and ask for the

smallest value of n such that reliable transmission with k bits
is possible. In this case, we clearly have n ≥ α

√
n/C, or

equivalently n ≥ α2/C2. As a result, we are searching over
the set of all the possible values of n, such that n ≥ α2/C2,
and in this search, we look for the smallest value of n for
which reliable transmission of α

√
n bits with a desired error

probability pe is achievable.
To proceed with a formal and general definition of the low-

capacity regime, we need to provide a formal characterization
of the term “low” in the finite-length regime where all the
parameters such as C and n are assumed to be fixed and finite
quantities. The low-capacity regime is formally defined using
a channel W with capacity C and a function f : R+ → R+

such that lim
n→∞

f(n)/n → 0. The main question is:

What is the smallest value of n such that f(n)
bits can be transmitted reliably in n transmissions
over the channel W?

A reliable communication necessitates f(n)/n ≤ C and
f(n) = nC indicates the maximum rate that is hypothetically
achievable under any coding scheme. Define κ = nC. For the
sake of analysis, one can treat n and C as variables and can
hypothetically take them to the limits. As C gets smaller and
smaller, we require n to get larger and larger for a reliable
communication. In the limit, C → 0 leads to n → ∞ but the
behavior of κ = nC is a different story. In terms of n, κ can
remain a constant or behave as a function, e.g., κ = log n. This
functionality is determined by the equality f(n) = κ. Hence,
one can characterize the low capacity regime by determining
the function f . As we will discuss later in this section, as n and
C go to extremes, the expansion of log2 M

∗(n, pe) in terms

of n (i.e., formula (3)) becomes less accurate. To tackle this,
our approach is obtaining the expansion of log2 M

∗(n, pe)
in terms of κ rather than n. Suppose κ = nC remains
constant while C → 0 and n → ∞, then the expansion of
log2 M

∗(n, pe) in terms of κ remains stable despite n and C
going to extremes. Every such expansion for log2 M

∗(n, pe)
in terms of κ remains valid when κ or equivalently f(n) lies in
a specific range of functions. As it can be seen in the following
sections, the constraint over f only depends on its asymptotic
behavior and thus the valid range for f(n) (or equivalently κ)
can be represented in terms of O(·) notation.
Why the laws should be different in the low-capacity
regime? In this paper, we investigate code design over chan-
nels with a very low capacity. Even though the formula (3)
can still be used in the low-capacity regime, it provides a
very loose approximation as (i) the channel variations in the
low-capacity regime are governed by different probabilistic
laws than the ones used to derive (3), and (ii) some of the
terms hidden in O(log n) will have significantly higher values
and are comparable to the first and second terms. Similar
arguments lead to the fact that the saddlepoint approximation
(5) needs to be replaced with a more precise derivation in
very low-capacity scenarios. Results provided in Section III
will address these challenges.

Let us now explain why the current non-asymptotic laws
of channel coding provided in (3) are not applicable in the
low-capacity regime. Consider transmission over BEC(ϵ) with
blocklength n. When the erasure probability ϵ is not too
large (e.g., ϵ = 0.5), the number of channel non-erasures
will be governed by the central limit theorem and behaves as
nC +

√︁
nϵ(1− ϵ)Z, where Z is the standard normal random

variable. However, in the low-capacity regime, where the
capacity C = 1 − ϵ is very small, the number of channel
non-erasures will not be large, as the probability of non-
erasure is very small. In other words, the expected number
of non-erasures is κ = n(1 − ϵ) which is much smaller
than n. In this case, the number of non-erasures is best
approximated by the Poisson convergence theorem (i.e., the
law of rare events) rather than the central limit theorem. Such
behavioral differences in the channel variations will lead to
totally different non-asymptotic laws, as we will see below.

Another reason for (3) being loose is that some of the terms
that are considered as O(1) become significant in the low-
capacity regime. E.g., we have 1/(

√
nC)=

√
n/(nC)=

√
n/κ

which cannot be considered as o(1) as κ is usually much
smaller than n. As we will see, such terms can be captured
by using sharper tail bounds.

Our approach. Note that extremely tight converse and
achievability bounds for BEC and BSC have existed prior to
[5], [6] and stated as [6, Corollary 42, Theorem 43] for BEC
and [6, Corollary 39, Theorem 40] for BSC. These bounds are
in a raw implicit form. The novel contribution of [5], [6] is
in using normal approximations and probability tail bounds
to convert these implicit forms into explicit ones directly
relating log2 M

∗(n, pe) to n, pe. This procedure works well
for moderate values of C with respect to n but fails to provide
accurate estimates in the low-capacity setting considered in
this paper. In order to provide an accurate estimate, we need
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novel probabilistic laws which are, in some cases such as the
BEC, totally different than what has been used before. Our
approach can be summarized as follows: our starting points
are the same as [5], [6], i.e., we start with [6, Corollary 42,
Theorem 43] for BEC and [6, Corollary 39, Theorem 40] for
BSC, but our analysis is based on Poisson approximations
(for BEC) and much tighter probability tail bounds (for BSC)
which are specifically suitable for the low-capacity regime
but not necessary for moderate values of C. These novel
approaches in our analysis lead to the low-capacity coding
bounds for BEC and BSC stated in the following subsections.
For the case of an AWGN channel, it turns out that the bounds
for the low-capacity regime are just a limiting case of the state-
of-the-art bounds in the moderate-capacity regime. All Proofs
are provided in the arXiv version of this paper [2].

B. The Binary Erasure Channel

As discussed earlier, the behavior of channel variations for
the BEC in the low-capacity regime can be best approximated
through the Poisson convergence theorem for rare events. This
will lead to different (i.e., more accurate) non-asymptotic laws.
Theorem 1 provides lower and upper bounds for the best
achievable rate in terms of n, pe, ϵ, and κ := n(1−ϵ). We use
Pλ(x) to denote the Poisson cumulative distribution function
with a slight modification that considers the probability of
X < x rather than X ≤ x, i.e.,

Pλ(x) = Pr {X < x} , where X ∼ Poisson(λ). (11)

Theorem 1 (Finite-Length Coding Bounds for Low-Capacity
BEC): Consider transmission over BEC(ϵ) and let κ = n(1−
ϵ). Then, M1 ≤ M∗(n, pe) ≤ M2, where M1 is any (or the
largest) value that satisfies

P1(M1)+2α2

√︁
P1(M1)+α1

√︁
Pκ(log2 M1)−pe ≤ 0, (12)

and M2 is any (or the smallest) value that satisfies

P2(M2)−α2

√︁
P2(M2)−α1

√︁
Pκ(log2 M2)−pe ≥ 0, (13)

and

P1(M1) = Pκ(log2 M1) +M1e
−κ/2

(︁
1− Pκ/2(log2 M1)

)︁
,

(14)

P2(M2) = Pκ(log2 M2)−
eκ

M2
P2κ (log2 M2) , (15)

α1 =

√
2

ϵ3/2
(︁√

e− 1
)︁
(1− ϵ), α2 =

√
6

ϵ2
√
κ

(︁√
e− 1

)︁
(1− ϵ).

(16)
Proof: See [2, Section A].

It is important to note that the analysis of Theorem 1 does
not depend on the values of n and C and thus the results
of Theorem 1 mathematically hold for all values of n, C,
and pe, i.e., for a moderate-capacity regime as well. However,
they provide a sharp estimate when κ = nC remains a
moderate value despite a large n and a small C. Moreover,
note that the bounds in Theorem 1 are expressed merely in
terms of κ := n(1 − ϵ) rather than n. This agrees with

the intuition that the rate should depend on the amount of
“information” passed through n usages of the channel rather
than the number of channel uses n. Typically, the value of
κ in low-capacity applications varies between a few tens
to a few hundred. In such a range, no simple closed-form
approximation of the Poisson distribution with mean κ exists.
As a result, the lower and upper bounds in Theorem 1 cannot
be simplified further. Furthermore, one can turn these bounds
into bounds on the shortest (optimal) lengths n∗ needed for
transmitting k information bits with error probability pe over a
low-capacity BEC. In Section V, we numerically evaluate the
lower and upper bounds predicted by Theorem 1 (see also [2,
Section A.1]) and compare them with the prediction obtained
from Formula (3) [5]. It is observed that our predictions are
significantly more precise compared to the prediction obtained
from Formula (3) and they become even more precise as the
capacity approaches zero.

C. The Binary Symmetric Channel

Unlike BEC, the non-asymptotic behavior of coding over
BSC can be well approximated in the low-capacity regime
by the central limit theorem (e.g., Berry-Essen theorem). To
briefly explain the reason, consider transmission over BSC(δ)
where the value of δ is close to 0.5. The capacity of this
channel is 1 − h2(δ), where h2(x) := −x log2(x) − (1 −
x) log2(1−x) and we denote κ = n(1−h2(δ)). Note that when
δ → 0.5 one can write δ ≈ 0.5−

√︁
κ/n by using the Taylor

expansion of the function h2(x) around x = 0.5. Transmission
over BSC(δ) can be equivalently modeled as follows: (i) With
probability 2δ, we let the output of the channel be chosen
according to Bernoulli(0.5), i.e., the output is completely
random and independent of the input, and (ii) with probability
1−2δ, we let the output be exactly equal to the input. In other
words, the output is completely noisy with probability 2δ (call
it the noisy event) and completely noiseless with probability
1 − 2δ (call it the noiseless event). Given δ → 0.5, the
noiseless event is a rare event. Now assuming n transmissions
over the channel, the expected number of noiseless events
is n(1 − 2δ) ≈

√
nκ. Similar to BEC, the number of rare

noiseless events follows a Poisson distribution with mean
n(1− 2δ) due to the Poisson convergence theorem. However,
as the value of n(1 − 2δ) ≈

√
nκ is large, the resulting

Poisson distribution can also be well approximated by the
Gaussian distribution due to the central limit theorem (note
that Poisson(m) can be written as the sum of m independent
Poisson(1) random variables).

As mentioned earlier, central limit laws are the basis for
deriving the laws of the form (3) which are applied to the
settings where the capacity is not small. However, for the low-
capacity regime, considerable extra effort is required in terms
of sharper arguments and tail bounds to work out the constants
correctly.

Theorem 2 (Finite-Length Coding Bounds for Low-Capacity
BSC): Consider transmission over BSC(δ) in low-capacity
regime in the sense that the function f(n) mentioned in
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Section III-A belongs to the class (o(n))2/3 and let κ =
n(1− h2(δ)). Then,

log2 M
∗(n, pe) = κ− 2

√︃
2κδ(1− δ)

ln 2
Q−1 (pe) +

1

2
log2 κ

− log2 pe +O (log log κ) . (17)

Proof: See [2, Section B.1].
Following the discussion of Section III-A, note that the low-
capacity regime considered in Theorem 2 is specified by
the function f belonging to the class (o(n))2/3. This means
for the estimate (17) to hold, we must have κ = f(n) =
(o(n))2/3. This constraint comes from using the condition
κ
√
κ = o(n) in the proof of Theorem 2. Moreover, we

remark that the O(log log κ) term contains some other terms
such as O(

√
− log pe/ log κ). For practical scenarios, the term

O(log log κ) will be dominant.4 We also note that similar to
the BEC case, all terms in (17) are expressed in terms of
κ rather than n. This agrees with the intuition that the rate
should depend on the amount of “information” passed through
n usages of the channel rather than n itself.

Corollary 1: Consider transmission of k information bits
over a low-capacity BSC(δ) that is specified in Theorem 2.
Then, the optimal blocklength n∗ for such transmission is

n∗ =
1

1− h2(δ)

(︄
k + 2

√︃
2κδ(1− δ)

ln 2
Q−1(pe)

+
4δ(1− δ)

ln 2
Q−1(pe)

2 + log2 pe +O(log k)

)︃
. (18)

Proof: See [2, Section B.2].

D. The Additive White Gaussian Noise Channel

First, let us further clarify our description of coding over the
AWGN channel. We consider n uses of a real AWGN channel
in which the input Xi and the output Yi at each i = 1, . . . , n
are related as Yi = Xi+Zi. Here, the noise term {Zi}ni=1 is a
memoryless, stationary Gaussian process with zero mean and
unit variance. Given an (M,pe)-code for Wn, where W is the
AWGN channel, a cost constraint on the codewords must be
applied. The most commonly used cost is

∀m ∈ M : ∥fenc(m)∥22 =

n∑︂
i=1

(fenc(m))
2
i ≤ η n, (19)

where η, with a slight abuse of notation, refers to SNR.
Since characterization of the code depends on the SNR η,
we denote an (M,pe)-code and M∗(n, pe) by (M,pe, η)-code
and M∗(n, pe, η), respectively.

Similar to BSC, the channel variations in low-capacity
AWGN channels are best approximated by the central limit
theorem. The following theorem is obtained by using the ideas
in [6, Theorem 73] with slight modifications. It turns out that
coding bounds for AWGN in the low-capacity regime can
be obtained as a limiting case of the state-of-the-art bounds
in the moderate-capacity regime. The following theorem and
corollary are resulted simply by repeating the same argument

4We include only the dominant term inside O(·).

in a manner that remains valid for these limiting cases. This
needs a tiny refinement of the analysis which is done in the
corresponding proofs, provided in the arXiv version of this
paper [2].

Theorem 3 (Finite-Length Coding Bounds for Low-Capacity
AWGN): Consider transmission over AWGN(η) in low-
capacity regime and let κ = n

2 log2(1 + η). Then,

log2 M
∗(n, pe, η) = κ−

√
η + 2

(η + 1)
√
ln 2

·
√
κQ−1(pe) + E ,

(20)
where

O(1) ≤ E ≤ 1

2
log2 κ− log2 pe +O

(︃
1√

− log pe

)︃
. (21)

Proof: See [2, Section C.1].
The same considerations about O(·) notation, as discussed
earlier, should be taken into account here. Also note that as
for BEC and BSC, the optimal blocklength for the AWGN
channel can be expressed in terms of other parameters in the
low-capacity regime which is stated in the following corollary.

Corollary 2: Consider transmission of k information bits
over a low-capacity AWGN(η). Then, the optimal blocklength
n∗ for such transmission is

n∗ =
2

log2(1 + η)

(︃
k +

√
η + 2

(η + 1)
√
ln 2

Q−1(pe) ·
√
k

+O
(︃
log

1

pe

)︃)︃
. (22)

Proof: See [2, Section C.2].
As we mentioned earlier, Theorem 3 is obtained directly by
taking the limit of the AWGN results in [5]. The Corollary 2 is
consequently a limiting case of the moderate-regime analysis
in [5]. Therefore, the contribution of these results is merely
the emphasis on the fact that when the underlying channel
is AWGN, the moderate-capacity regime analysis in [5] may
extend well to the low-capacity regime only by taking the
limit. Having this, we do not numerically evaluate Corollary 2
on the AWGN channel.

IV. THE ANALYSIS OF PRACTICAL CODE DESIGNS

As we need to design codes with extremely low rates, some
of the state-of-the-art codes may not be directly applicable. A
notable instance is the class of iterative codes, e.g., turbo or
low-density parity-check (LDPC) codes. It is well known that
decreasing the design rate of iterative codes results in denser
decoding graphs which further leads to highly complex itera-
tive decoders with a poor performance. E.g., an (l, r)-regular
LDPC code with design rate R = 0.01 requires r, l ≥ 99.
Hence, the Tanner graph will have a minimum degree of at
least 99 and even for code block lengths on the order of tens
of thousands, the Tanner graph will have many short cycles.
To circumvent this issue, the current practical designs, e.g.,
the NB-IoT standard, use repetition coding. More specifically,
a low-rate repetition code is concatenated with a powerful
moderate-rate code. For example, an iterative code of rate R
and length n/r can be repeated r times to construct a code
of length n with rate R/r. In Section IV-A, we will discuss
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the advantages and drawbacks of using repetition schemes
along with trade-offs between the number of repetitions and
the performance of the code.

Unlike iterative codes, polar codes and most algebraic
codes (e.g., BCH or Reed-Muller codes) can be used without
any modification for low-rate applications. In Section IV-B,
we look into polar coding for low-capacity channels. In
particular, we show that polar coding is advantageous in
terms of inherently adopting an optimal number of repetitions.
Theorems 4 and 5 provide tight bounds on the optimal number
of repetitions in terms of the capacity, that are not specific to
polar codes, and Theorem 6 shows that the construction of
polar codes naturally adopts a certain number of repetition
blocks in the low-capacity regime that match the optimal
number of repetitions (up to a constant multiplicative factor).

Throughout this section, we consider code design for the
class of binary memoryless symmetric (BMS) channels. A
BMS channel W has binary input and, letting W (y | x)
denote the transition matrix, there exists a permutation π on the
output alphabet such that W (y | 0) = W (π(y) | 1). Notable
exemplars of this class are BEC, BSC, and BAWGN channels.5

A. How Much Repetition is Needed?

As mentioned earlier, repetition is a straightforward way to
design practical low-rate codes while utilizing the power of
state-of-the-art code designs. Let r be a divisor of n, where
n denotes the length of the code. Repetition coding consists
of designing first a smaller outer code of length n/r and then
repeating each of the coded bits r times (i.e., the inner code is
a repetition code of rate 1/r). The length of the overall code
is then n/r ·r = n. This is equivalent to transmitting the outer
code over the r-repetition channel W r which takes a bit as
the input and outputs an r-tuple which is the result of passing
r copies of the input bit independently through the original
channel W . E.g., if W is BEC(ϵ) then its corresponding r-
repetition channel is W r = BEC(ϵr).

The main advantage of repetition coding is the reduction
in computational complexity, especially when r is large. This
is because the encoding/decoding complexity is effectively
reduced to that of the outer code, i.e., once the outer code
is constructed, at the encoding side, we just need to repeat
each of its coded bits r times, and at the decoding side
the log-likelihood of an r-tuple consisting of r independent
transmissions of a bit is equal to the sum of the log-likelihoods
of the individual channel outcomes. The computational latency
of the encoding and decoding algorithms is reduced to that of
the outer code in a similar fashion.

The outer code has to be designed for reliable communica-
tion over the channel W r. If r is sufficiently large, then the
capacity of W r will not be low anymore. In this case, the outer
code can be picked from off-the-shelf practical codes designed
for channels with moderate capacity values (e.g., iterative or
polar codes). While this looks promising, one should note that
the main drawback of repetition coding is the loss in capacity.
In general, we have C(W r) ≤ rC(W ) and the ratio vanishes
by growing r. As a result, if r is very large then repetition

5For a relevant study of code design at a low-SNR scenario, see [56], [57].

coding might suffer from an unacceptable rate loss. Thus, the
main question that we need to answer is how large r can be
made such that the rate loss is still negligible.

We note that the overall capacity corresponding to n channel
transmissions is nC(W ). With repetition coding, the capacity
will be reduced to n/r · C(W r) since we transmit n/r times
over the channel W r. For any β ∈ [0, 1], we ask what the
largest repetition size rβ is such that

n

rβ
C(W rβ ) ≥ βnC(W ). (23)

Let us first assume that transmission takes place over BEC(ϵ).
We thus have W r = BEC(ϵr). If ϵ is not close to 1, then
even r = 2 would result in a considerable rate loss, e.g., if
ϵ = 0.5, then C(W 2) = 0.75 whereas 2C(W ) = 1. However,
when ϵ is close to 1, then at least for small values of r the
rate loss can be negligible, e.g., for r = 2, we have C(W 2) =
1− ϵ2 ≈ 2(1− ϵ) = 2C(W ). The following theorem provides
lower and upper bounds for the largest repetition size rβ that
satisfies (23).

Theorem 4 (Maximum Repetition Length for BEC): If W =
BEC(ϵ), then for the largest repetition size rβ that satisfies
(23), we have

n(1− ϵ)ℓ

2
(︂
1− β

ℓ

)︂ ·
(︃
β

ℓ

)︃2

≤ n

rβ
≤ n(1− ϵ)ℓ

2
(︂
1− β

ℓ

)︂ , (24)

where ℓ = −(ln ϵ)/(1− ϵ). Equivalently, assuming κ = n(1−
ϵ), (24) becomes

κ

2 (1− β)
·β2(1+O(1−ϵ)) ≤ n

rβ
≤ κ

2 (1− β)
(1+O(1−ϵ)).

(25)
Proof: See [2, Section D.1].

Remark 1: Going back to the results of Theorem 1, in
order to obtain similar finite-length guarantees with repetition-
coding, a necessary condition is that the total rate loss due to
repetition is O(1/n), i.e.,

n

rβ
C(W rβ ) = nC(W ) +O(1). (26)

If W = BEC(ϵ) and κ = n(1−ϵ), then the necessary condition
implies plugging β = 1 −O(1/κ) into (23). Moreover, from
Theorem 4, we can conclude that when ϵ is close to 1, the
maximum allowed repetition size is O

(︁
n/κ2

)︁
. Equivalently,

the size of the outer code can be chosen as O(κ2).
A noteworthy conclusion from the above remark is that as

having negligible rate loss implies the repetition size to be at
most O(n/κ2), then the outer code has to be designed for a
BEC with erasure probability at least ϵO(n/κ2) = 1−O(1/κ).
This means that the outer code should still have a low rate even
if κ is as small as a few tens. Thus, the idea of using codes such
as iterative codes as the outer code and repetition codes as the
inner code will lead to an efficient low-rate design only if we
are willing to tolerate a non-negligible rate loss. In contrast,
the polar coding construction has implicitly a repetition block
of optimal size O(n/κ2) as we will see in the next section.

In [2, Section D.2], we prove the following theorem stating
that the binary erasure channel has the smallest rate loss due
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to repetition among all the BMS channels. This provides an
upper bound on rβ for any BMS channel.

Theorem 5 (Upper Bound on Repetition Length for any
BMS): Among all BMS channels with the same capacity,
BEC has the largest repetition length rβ that satisfies (23).
Hence, for any BMS channel with capacity C and κ = nC,
we have

n

rβ
≥ κ

2(1− β)
β2(1 +O(C)). (27)

Proof: See [2, Section D.2].
Remark 2: Similar to Remark 1, we can conclude that for

any BMS channel with low capacity, to have the total rate loss
of order O(1), the repetition size should be at most O(n/κ2).

B. Polar Coding and Repetition at Low Capacity

We have shown in Section IV-A that the maximum allowed
repetition size to have negligible capacity loss is O(n/κ2).
We show in this section that at low-capacity regime, the
polar construction is enforced to have O(n/κ2) repetitions.
In other words, the resulting polar code is equivalent to a
smaller polar code of size O(κ2) followed by repetitions.
Consequently, the encoder and decoder of the polar code
could be implemented with much lower complexity taking
into account the naturally adopted repetitions. That is, the
encoding complexity can be reduced to n + O(κ2 log κ) and
the decoding complexity using the successive cancellation
list (SCL) decoder with list size L, proposed by Tal and
Vardy [58], is reduced to n + O(Lκ2 log κ). Recall that the
original implementation of polar codes requires O(n log n)
encoding complexity and O(Ln log n) decoding complexity.
Moreover, as the operations involving repeated blocks can all
be done in parallel, the computational latency of the encoding
and decoding operations can be reduced to O(κ2 log κ) and
O(Lκ2 log κ), respectively. To further reduce the complexity,
the simplified SC decoder [59] or relaxed polar codes [60]
can be invoked. Such complexity reductions are important
for making polar codes a suitable candidate in practice.
In a related work, designing low-rate codes for BSCs by
concatenating high rate polar codes together with repetitions
is considered [61]. Furthermore, following the publication of
the initial version of this paper, several works have looked
into improving low-rate polar codes by either tweaking the
repetition or concatenating them with other codes [62]–[64].

Theorem 6: Consider using a polar code of length n = 2m

for transmission over a BMS channel W . Let m0 = log2(4κ
2),

where κ = nC(W ). Then any synthetic channel W (i)
n whose

Bhattacharyya value is less than 1
2 has at least m − m0

plus operations in the beginning. As a result, the polar code
constructed for W is equivalent to the concatenation of a polar
code of length (at most) 2m0 followed by 2m−m0 repetitions.

Proof: See [2, Section D.3].
Remark 3: Note that from Theorem 6, polar codes auto-

matically perform repetition coding with O(n/κ2) repetitions,
where κ = nC. This matches the necessary (optimal) number
of repetitions given in Remark 1 and 2.

V. NUMERICAL ANALYSIS OF FUNDAMENTAL LIMITS

In this section, we numerically evaluate our channel coding
bounds from Section III. We report the numerical results on
the BEC and the BSC cases. As mentioned earlier, we do
not numerically implement our results on the AWGN channel
(Theorem 3 and Corollary 2) since their contribution is merely
showing that the limit of the existing moderate-capacity regime
analysis will lead to a low-capacity regime bound.

For the BEC, we have compared in Figure 1, the lower and
upper bounds obtained from Theorem 1 with the predictions
of Formula (3). We have also plotted the performance of polar
codes. The setting considered in Figure 1 is as follows: We
intend to send k = 40 information bits over the BEC(ϵ). The
desired error probability is pe = 0.01. For erasure values
between 0.96 and 1, Figure 1 plots bounds on the smallest
(optimal) blocklength n needed for this scenario as well as the
smallest length required by polar codes. Note that in order to
compute a lower bound on the shortest length from Theorem 1,
we should fix M∗(n, pe) to k = 40 and search for the smallest
n that satisfies equation (13) with κ = n(1−ϵ) and pe = 0.01.
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Figure 1. Comparison for low-capacity BECs. The number of information
bits is k = 40 and the target error probability is pe = 0.01. For the upper
plot, with the same legend entries as the lower plot, all the blocklengths n
in the lower plot are normalized by the value of the lower bound, obtained
from Theorem 1.

Note that [6, Corollary 42] and [6, Theorem 43], also
presented in [2, Section A], provide the raw upper and lower
bounds for the optimal blocklength in BEC. Both the classical
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estimation (3) (whose precise version for BEC can be found
in [6, Theorem 44]) and Theorem 1 are estimating these
raw bounds. As expected, the prediction obtained from [6,
Theorem 44] is not precise in the low-capacity regime and it
becomes worse as the capacity approaches zero. On the other
hand, the estimated bounds from Theorem 1 converge to the
original raw bounds of [6, Corollary 42] and [6, Theorem 43]
as the capacity approaches zero. Also, the performance of
the polar code is shown in Figure 1. The polar code is
concatenated with cyclic redundancy check (CRC) code of
length 6 and is decoded with the list-SC algorithm [58] with
list size L = 16.

Figure 2 considers the scenario of sending k = 40 bits
of information over a low-capacity BSC with target error
probability pe = 0.01. We have compared in Figure 2, the
predictions from Theorem 2 and Formula (3) (we used a
precise version of Formula (3) for BSC given in [6, The-
orem 41]) together with the raw upper and lower bounds
from [6, Corollary 39] and [6, Theorem 40] that are also
presented in [2, Section B]. Note that both Theorem 2 and
[6, Theorem 41] provide single predictions to estimate the
true value of the optimal blocklength that lies between the
aforementioned raw bounds. Therefore, it is not abnormal if
neither of the predictions from [6, Theorem 41] or Theorem 2
lie between the raw bounds. In this way, Figure 2 shows
that, as we expected, the prediction from [6, Theorem 41]
is quite imprecise in the low-capacity regime, particularly in
comparison to the prediction from Theorem 2 which is exact
up to O(log log κ) terms. The performance of polar codes is
also plotted in Figure 2. An interesting problem is to analyze
the finite-length scaling of polar codes in the low-capacity
regime [65]–[69].

Figure 3 represents the same setting as above, i.e., sending
k = 40 information bits over the BEC(ϵ) with the desired
probability of error pe = 0.01 for BEC (up) and BSC
(down). The vertical axis in both cases is the normalized
blocklength and the horizontal axis is the erasure probability
ϵ and the crossover probability δ for the corresponding plots.
In both plots, the corresponding channel parameter varies in
an extremely low-capacity region. In such a region, we plotted
the RCU achievability (upper) and converse (lower) bounds,
our approximation from Theorem 1 (for BEC) and Theorem 2
(for BSC), the saddlepoint approximation [10], [30], and a
simplified version of it known as the exact asymptotics which
we simply refer to as the “simplified saddlepoint approxima-
tion” to avoid confusion. Since the simplified version of the
saddlepoint approximation is by construction less precise than
the original version, we focus only on the comparison of our
results to the original saddlepoint approximation.

In the BEC case, i.e., Figure 3 (up), it can be seen that
our approximations are dramatically tight and converge to
the true bounds as the capacity goes to zero. However, the
saddlepoint approximation does not perform well enough in
this regime. This behavior can be described by noticing that
despite the fact that the saddlepoint approximation uses an
innovative approach to estimate the RCU bounds in all rates,
it is still based on Gaussian laws; however, the channel coding
bounds for BEC, as this paper shows, are best described by
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Figure 2. Comparison for low-capacity BSC. The number of information bits
is k = 40 and the target error probability is pe = 0.01. For the upper plot,
with the same legend entries as the lower plot, all the blocklengths n in the
lower plot are normalized by lower bound given by [6, Theorem 40].

the Poisson laws rather than Gaussian laws in this regime.
In the BSC case where we provide a single prediction of

the optimal blocklength that satisfies both RCU achievability
and converse bounds, Figures 3 shows that this prediction
remains close and slowly converges to the true bounds as
the capacity decreases. On the other hand, although the
saddlepoint approximation works well when the capacity is
not small enough, it starts to break down in the region where
the capacity becomes extremely small. Note that here both
saddlepoint and our method enjoy the Gaussian laws as the
baseline of the analysis, however, the weight pattern of the
terms in the true bounds and the saddlepoint approximation
starts to deviate as the capacity gets closer to zero and thus
the approximation starts to lose precision.

VI. CONCLUSION AND FUTURE WORK

In this paper, we specified a notion of the low-capacity
regime for channel coding and studied channel coding at such
regimes from two major perspectives, namely, finite-length
fundamental limits and code constructions. More specifically,
finite-length analysis specific to the low-capacity regime was
carried out for several types of channels including binary
erasure channels (BECs), binary symmetric channels (BSCs),
and additive white Gaussian noise (AWGN) channels. Fur-
thermore, in the context of code construction, the optimal
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Figure 3. Sending k = 40 information bits over BEC (up) and BSC (down)
in the low-capacity regime for the target error probability pe = 0.01 to
compare our approximations from Theorem 1 and Theorem 2 or equivalently
Corollary 1 with saddlepoint approximations [30].

number of repetitions was characterized for transmission over
binary memoryless symmetric (BMS) channels, in terms of the
code block length and the underlying channel capacity. It was
further shown that capacity-achieving polar codes naturally
adopt the aforementioned optimal number of repetitions.

There are several directions for future work. In terms
of fundamental limits, it is interesting to study different
classes of discrete memoryless channels beyond the ones
considered in this paper to characterize their fundamental
non-asymptotic laws of channel coding in the low-capacity
regime. In terms of code constructions, it is important to
study concatenation schemes with low-complexity decoding
algorithms comparable to those of straightforward repetition
schemes, which can potentially lead to higher rates. From a
practical implementation perspective, there are various other
challenges besides channel coding in order to enable reliable
communications at very low-rate regimes. This includes de-
tection, synchronization, and multi-user communication. For
instance, synchronization requires transmission of certain pilot
signals which would be difficult to detect due to having a
very low power. Alternatively, one can explore non-coherent
communications at very low rates which is another interesting
research direction. Studying low-rate communications together
with multi-user schemes is another important problem. This

becomes relevant especially for IoT applications where a
massive number of low-power users are present in the field.
To this end, various approaches including grant-free and
uncoordinated multiple access [70]–[72] as well as scalable
coded non-orthogonal techniques [73] can be explored.
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, 2010.

[6] Y. Polyanskiy, “Channel coding: non-asymptotic fundamental limits,”
Ph.D. dissertation, Prinston University, 11 2010.

[7] V. Y. F. Tan and M. Tomamichel, “The third-order term in the normal
approximation for the AWGN channel,” IEEE Trans. Inf. Theory, vol. 61,
no. 5, pp. 2430–2438, May 2015.

[8] T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on
laplace integrals and their asymptotic approximations,” IEEE Trans. Inf.
Theory, vol. 62, no. 12, pp. 6854–6883, Dec 2016.

[9] P. Moulin, “The log-volume of optimal codes for memoryless channels,
asymptotically within a few nats,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2278–2313, April 2017.

[10] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas, “Mismatched
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