2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) | 979-8-3503-1205-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/FCCM57271.2023.00020

2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

Optimizing Hybrid Binary-Unary Hardware
Accelerators Using Self-Similarity Measures

Alireza Khataei, Gaurav Singh, Kia Bazargan
Department of Electrical and Computer Engineering
University of Minnesota
Minneapolis, MN, USA
{khata014, singh431, kia} @umn.edu

Abstract—Unary computing is a relatively new method for
implementing non-linear functions using few hardware resources
compared to binary computing. In its original form, unary
computing provides no trade-off between accuracy and hardware
cost. In this work, we propose a novel self-similarity-based
method to optimize the previous hybrid binary-unary method and
provide it with the trade-off between accuracy and hardware cost
by introducing controlled levels of approximation. Given a target
maximum error, our method breaks a function into sub-functions
and tries to find the minimum set of unique sub-functions that can
derive all the other ones through trivial bit-wise transformations.
We compare our method to previous works such as HBU
(hybrid binary-unary) and FloPoCo-PPA (piece-wise polynomial
approximation) on a number of non-linear functions including
Log, Exp, Sigmoid, GELU, Sin, and Sqr, which are used in neural
networks and image processing applications. Without any loss
of accuracy, our method can improve the area-delay-product
hardware cost of HBU on average by 7% at 8-bit, 20% at
10-bit, and 35% at 12-bit resolutions. Given the approximation
of the least significant bit, our method reduces the hardware
cost of HBU on average by 21% at 8-bit, 49% at 10-bit, and
60% at 12-bit resolutions, and using the same error budget as
given to FloPoCo-PPA, it reduces the hardware cost of FloPoCo-
PPA on average by 79% at 8-bit, 58% at 10-bit, and 9% at
12-bit resolutions. We finally show the benefits of our method
by implementing a 10-bit homomorphic filter, which is used in
image processing applications. Our method can implement the
filter with no quality loss at lower hardware cost than what the
previous approximate and exact methods can achieve.

I. INTRODUCTION

The binary representation has been the dominant data en-
coding scheme in digital systems for many years. Despite low
memory requirements, performing computations in binary is
not trivial due to the positional nature of the representation,
which requires unpacking bits, performing computations such
as partial product generation in a multiplication operation,
and packing partial results through carry chain propagation
into the final output. Additionally, the binary representation is
not error-resilient, and flipping a single bit may introduce a
significant amount of error based on the position of the bit [1].

Pure unary (PU) [2], [3] was introduced as a way of
implementing non-linear functions by encoding the binary
numbers in the form of unary codes and using a network of
wires and XOR gates to perform the computations in the unary
domain. In low-resolution computations—up to 12 bits—PU
outperforms the conventional binary and stochastic computing
methods [4], [5], [6], [7] in terms of the area x delay hardware

cost [3]. Despite the simplicity of scaling networks, converting
data between binary and unary is costly, especially as the
resolution increases, leading to exponentially higher hardware
cost.

To reduce the hardware cost of PU, especially in non-
monotonic functions at high resolutions, hybrid binary-unary
(HBU) [8], [9] was proposed to take advantage of unary
and binary to make the method more scalable. It breaks
a function into sub-functions with limited input and output
ranges and implements them efficiently based on the PU
method. Therefore, the lower bits of the input compute the
sub-functions in unary, and the higher bits complete the
computations in binary. By limiting the input and output range
of the function, this method dramatically reduces the binary-
unary and unary-binary conversion costs, which in turn leads
to lower area x delay hardware cost compared to PU.

FloPoCo' [10] is a generator of arithmetic cores for FPGAs.
One method it uses to approximately implement arbitrary
functions is piece-wise polynomial approximation (PPA) [11].
It divides the input interval of a function into several sub-
intervals that are addressed by the higher bits of the input.
Given a target maximum error, each sub-function in this
method is approximated by a polynomial with the Horner
scheme.

In this paper, we propose a novel method to optimize the
hardware cost of HBU using self-similarities among the sub-
functions. Given a target maximum error, it makes pair-wise
comparisons to figure out which sub-functions can be derived
from each other through simple bit-wise transformations. For
instance, if a sub-function g; is similar to the inverse of
a sub-function g;, then we can ignore the implementation
of g; in unary and use NOT gates to derive it from g;.
This practice replaces the unary sub-functions (including their
scaling networks and decoders) with simple post-processing
logic gates to reduce the hardware cost. After finding the
derivable sub-functions, our method tries to find the minimum
set of them that can derive all the other sub-functions.

By implementing several non-linear functions at 8-, 10-
, and 12-bit resolutions, our results show that our method
outperforms HBU and FloPoCo-PPA in terms of area x delay
hardware cost. Given the approximation of least significant bit,

! Available at http://www.flopoco.org

2576-2621/23/$31.00 ©2023 |IEEE 105
DOI 10.1109/FCCM57271.2023.00020
Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

it improves the hardware cost of HBU on average by 21% at
8-bit, 49% at 10-bit, and 60% at 12-bit resolutions. Compared
to FloPoCo-PPA using the same approximation error budget,
our method improves the hardware cost by 79% at 8-bit, 58%
at 10-bit, and 9% at 12-bit resolutions. Additionally, if no
approximation is allowed, which is a tough restriction on our
proposed algorithm, our method still outperforms HBU on
average by 7% at 8-bit, 20% at 10-bit, and 35% at 12-bit
resolutions. By implementing a 10-bit homomorphic filter, we
also show that our method can implement the filter with no
quality loss at lower hardware cost compared to HBU and
FloPoCo-PPA.

Our recent work [12] proposed a very rudimentary version
of the similarity metric used in this work. In our rudimentary
work, we had a strict metric for similarity, which left a
lot of optimization on the table. We also explored pair-wise
similarity checks locally, as opposed to a more global method
used in this work. Furthermore, our previous work focused
on mean absolute error (MAE) as a metric for how much
approximation tolerance it should have, which is a major flaw,
because it does not consider the maximum error, which is a
critical issue in approximate computing.

Our contributions in this work include the following meth-
ods and results:

o Our method changes the way HBU breaks up functions.
HBU breaks up functions into non-uniform input-range
sub-functions, with the sole goal of reducing hardware
cost. Our method forces an equal input range for all sub-
functions, with the hope of deriving many of them from
a core set of sub-functions.

Our method uses a number of linear transformations to
check if a sub-function can be derived from another
one. This is in contrast to [12] that only looked at non-
transformed matches within the approximation tolerance.
Instead of pair-wise, local comparison between sub-
functions [12], our method uses a better optimization
method to find the best subset of sub-functions to imple-
ment a function. For instance, using the lowest possible
approximation error for implementing f(x) = [l +
sin(2mrx)] <+ 2, our previous work could reduce the total
number of sub-functions from 512 to 218, whereas our
new method can reduce them from 512 to 71 unique sub-
functions.

Our method provides HBU with a trade-off between
accuracy in terms of maximum error and hardware cost
in terms of area x delay.

It outperforms the hardware cost of HBU even without
any loss of accuracy.

It outperforms the hardware cost of FloPoCo-PPA at up
to 12-bit resolutions using the same approximation error
budget.

The rest of the paper is as follows. Section II-A reviews
the basics of PU and HBU as fundamental parts of our
method. Section II-B introduces our proposed method and
algorithm, followed by a guiding example in Section II-C.

106

In Section III, the HBU, FloPoCo-PPA, and our proposed
method are compared on several functions at 8-, 10-, and
12-bit resolutions. The benefits of our method are evaluated
in the implementation of a 10-bit homomorphic filter as an
image processing application in Section IV. Finally, Section V
concludes the paper and results.

II. METHODOLOGY
A. Previous Unary Works

PU (pure unary) [3] is a method that implements a math
function f(x) using a network of wires and XOR gates, called
“unary core”. It converts the input binary to the unary domain
in the form of thermometer codes, called “unary” codes. For
a w-bit binary number, it uses 2" — 1 bits, in which the first
m bits are 1’s and the rest are 0’s to represent the decimal
value m out of the maximum value 2" — 1. For example, 011
in binary equals 1110000 in unary, and 100 in binary equals
1111000 in unary. After encoding the input binary, the unary
core maps the input unary to output unary through the wires
and XOR gates to implement the desired function. Finally, the
output unary is converted back to binary as the final output.
Fig. 1 shows the architecture of the PU method for an arbitrary
function, described as a look-up table. Note that the function
is increasing from z = 0 to x = 5, and then decreasing from
z = 6 to x = 7. The XOR gate handles the non-monotonic
section of the function. In unary methods, the input and output
values of a function are considered unsigned integers, although
one can change the interpretation of the raw values to represent
signed integers or signed / unsigned fixed-point values.

Input | Output

E ‘ p p
L L === 0 0
= 1 1
2
£ 2,3 2
© .1 45 | 3

HE DB =] ’

Input Unary 6,7 2

.....

Encoder Unary Core Decoder

Input Output
Binary Binary
Fig. 1: Hardware architecture of PU [3] for an arbitrary

function.

The PU method is not scalable: as the width w of the
input binary number increases, encoder and decoder units
become exponentially larger, as they need to cover the
range {0,1,---,2" — 1}. The HBU (hybrid binary-unary)
method [9], on the other hand, uses the lower bits of the input
to perform some parts of computation in unary and uses the
higher bits of the input to complete the computation in binary.
It breaks a function f(z) into several sub-functions g;(x). The
functions g;(z) are chosen so that they cover an output range
from O to a number M axz;. This range would be less than or
equal to the range of the original function f(x), which means
smaller unary-to-binary encoders would be needed to convert
the output back to binary. Each sub-function would be added

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

to a bias value b; to reconstruct the original function f(x).
The addition operation is performed in binary.

Ji(x) = b1 + g1 (x) r €[0,71)

f(z)

- fn(m) - bn +gn(m) x e [.Z'n,hlt'n)

As mentioned above, in contrast to f(x), a sub-function
¢i(x) has a limited input and output range; therefore, it can
be efficiently implemented using the PU method [3], leading to
a more scalable method. All these sub-functions are computed
concurrently using the lower bits of the input x, but only one
of them holds the relevant result. The higher bits of the input
binary = determine which sub-function is going to be used
and multiplexes the corresponding bias from a binary look-up
table. Finally, a binary adder adds the sub-function and the
bias together to compute the final output. Fig. 2 shows the
overall architecture of HBU.

bl b2 eee bn

¥ ¥
g Decoder Multiplexer
' . I =
Input 3
' D Z
Binary Encoders g ecoder 5 l(g)}ltput
% inary

Decoder

Fig. 2: Hardware architecture of HBU [9].

B. Our Proposed Work

We first present the formal explanation of how our method
works through equations and pseudo-code in this section,
followed by a guiding example in Sec. II-C. Readers who
are more comfortable with visual learning might want to first
read that section and then come back to this section.

The function breaking in HBU is a complex process that
uses many parameters and considers sub-functions’ slopes and
output ranges to break a function hierarchically. The sub-
functions might have different input ranges, leading to a set
of binary-to-unary encoders with different input/output sizes.
In contrast to HBU, we uniformly break a function f(z) into
n = 2" sub-functions and separate their initial biases. For
a w-bit function, the input range of all the sub-functions is
W, = W — wy bits.

fil@) =b1+gi() € [0,2")

f(@)

fn(x) =by+gn(z) x€[(n—1)x 2% nx2w)

By uniformly breaking the function, only one encoder is
needed to convert the w, lower bits from binary to unary,
whereas the same does not hold in HBU. The novelty in
our method is to measure pair-wise similarities between sub-
functions to find the minimum set of unique sub-functions,
from which all the other sub-functions can be derived using
a set of bit-wise transformations. For instance, if g;(z) is

107

similar to the inverse of g;(z), then we can implement g;(z)
and use NOT gates to derive g;(z) from it.

Definition: The approximation error of deriving g;(z) from
gj(z) through a transformation 7; is defined as:

Err(gi, T, 9;) = max{|Fized(b; + bm; + T;{g;(x)})
—Float(b; + gi(z))[}

where Fixed(z) and Float(z) denote the fixed-point and
floating-point values of the unsigned integer x, respectively.
T; is a bit-wise transformation, that can include an inversion,
right shift, and left shift, and bm; is a constant that modifies

the vertical position of T;{g; ()} to reduce the approximation
error, and it can be obtained by Eq. 2

L S (gi(2) - Ti{g; (@)1

x

(1

)

bmi = qu,
where || denotes the rounding to the nearest integer function.
Intuitively, bm; tries to “center” the transformed sub-function
around the center of gravity of the target sub-function to reduce
the amount of error in deriving the sub-function. This constant
cannot get any arbitrary value and there are constraints on that,
as described in Eq. 3.

0<b;+bm;+ Tz{g](SC)} < 2¥ 3)

Definition: Given a target maximum error T'argetErr, a
sub-function g;(z) is derivable from g;(z) if Eq. 4 is satisfied.
Ty, Err(gi, Ty, 9;) < TargetErr %)
Definition: The similarity matrix is defined as a n xn binary
matrix, in which an entry sm;; (i # j) is 1 if and only if g;(z)
is derivable from g;(x), subject to the constraint in Eq. 4.
SM = [Smij]an; 8My 5 S {0, 1}, (5)

sm;; =1 3T;, Err(g;, 1;, 9;) < TargetErr,i # j

Definition: The similarity vector is defined as a vector of
n elements, equals to the summation of SM’s rows.

E smij

i

SV = [svj]1xn; 5V; (6)

In HBU, each sub-function g;(x) is implemented using the
PU method, and its initial bias b; is stored in a binary look-up
table. Then, a binary adder computes f;(z) = b; + g;(x). In
our method, however, a small set of unique sub-functions are
implemented, and each of the other sub-functions is derived
from a transformation of one of the unique sub-functions.
If g;(x) is derivable from g;(z), then we can conclude the
following result from Eq. 4 and Eq. 1.

3Ty, Err(gi, T;, g;) < TargetErr
= (bi + gi(x)) = (bi + bmy) + Ti{g;(x)}
= fi(x) = bi + Ti{g; ()}
If there exist multiple transformations that can derive g;(x)

from g;(f), we choose the one that minimizes the approxima-
tion error.

T; = arg mTin Err(g:,T, g;) @

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

A A A
bl b2 eee bn

.
.
.

Decoder

Encoder

Fig. 3: Hardware architecture of our proposed method.

Therefore, we can compute f;(z) ~ b; +T;{g;(x)} instead of
fi(x) = bj+g;(x). That is, we can implement f;(x) by storing
the pre-calculated bias b; = b; + bm; in the binary look-up
table and transforming the sub-function g;(x), implemented
using the PU method. Fig. 3 shows the architecture of our
method.

As shown in Fig. 3, g;(x) is derived from g;(x) through
the transformation 7;, and our method replaces the unary core
gi(z) and its decoder with the simple transformer that might
include NOT gates and/or shifters. It also reduces the fan-out
of the input encoder. Such replacements make the hardware
architecture less expensive compared to HBU, especially in
non-monotonic functions at high resolutions.

To find the minimum set of unique sub-functions, we first
compute the similarity matrix and similarity vector, as de-
scribed in Eq. 5 and 6, respectively. The index of the maximum
element in the similarity vector (i.e., idz = argmax; SV[i])
determines the first unique function. Then, we traverse through
the idz'" column of the similarity matrix to see which sub-
functions can be derived from g;q.(z). Next, we update the
similarity matrix by zeroing the idz*" row and column as well
as all the rows and columns corresponding to the functions that
are derivable from g¢;4, (). Again, we compute the similarity
vector and find the next unique sub-function. We continue
this process until all the entries of the similarity matrix get
zero. We do understand that dynamic programming could have
been used to get a globally minimum number of unique sub-
functions, but in this version, we have limited ourselves to this
greedy approach.

Algorithm 1 describes the procedure in more detail. To rep-
resent the final set of unique sub-functions in this algorithm,
we define two vectors Unique and Transformer such that
if Uniqueli] = j and Transformer[i| = T;, then it means
that f;(x) is derived from f;(z) through the transformation
T;. Vectors Sub and Bias are also defined to store each sub-
function’s output values and bias.

C. Guiding Example

In this section, we show how our method works for an
arbitrary w-bit function f(x) = [1 + sin(27x)] + 2. We set
the parameters as follows:

e w = & bits

o wy = 2 bits = w, = w — wy = 6 bits

o TargetErr =277

108

Algorithm 1: SimBU Algorithm

1 Parameters: Target Err, w, wp, w,y,

2 Input: F = {y = f(z)|z,y € Z and z,y € [0,2")}
3 Outputs: Sub, Bias, Unique, Trans former

4 # Uniformly breaking the function into sub-functions
sfori=1 to 2" do

6 Subli] «— F[(1 — 1) x 2%w : ¢ x 2]

7 Biasli] < min(Subli])

8 Subli] < Subli] — Bias]i]

9 end

10 # Making pair-wise comparisons of the sub-functions

1nmfor:=1 to 2% do

12 for j=1 to 2“* do
13 if 3T}, Err(Subli], T;, Sublj]) < TargetErr
then
14 | SM[i][j] + 1
15 else
16 | SMIi][j] <O
17 end
18 end
19 end
20 # Finding the minimum set of unique sub-functions
21 while 3, > SM[i][j] ! = 0 do
22 SV « >, SMIi][:]
23 idx < argmax; SV[i]
24 fori=1 to 2" do
25 if i | = idx and SM]i][idx] == 1 then
26 Uniquelt] + idx
27 T; < argming Err(Subli], T, Sublidx])
28 Transformer[i] < T;
29 bm; | 5o > (Subli] — T;{Sublidz]})]
30 Biasli] «+ Bias[i] + bm;
31 SMIi][:] <0
3 SM[:][i] <0
33 end
34 end
3s Uniquelidz] + idx
36 Transformer[idx] < None
37 SM{idz][:] < 0
38 SM[:][idx] < 0
39 end
We first divide the function into 2** = 4 sub-functions

and separate their initial biases, as shown in Fig. 4a and 4b,
respectively. The input range of all the sub-function is w,, = 6
bits.

fi(z) =128 + g1 () x €[0,64)

) fo(x) =131+ g2(z) € [64,128)
f@) = f3(x) =04 gs(z) x €[128,192) ®)

fi(@) =0+ gs(z) x € [192,256)

Next, we make pair-wise comparisons to find all the sub-
functions that can be derived from each other. We can use the

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

gl g2 g3 g4 gl g2 g3 g4

256 256

| | | |
| | | | | |
0 | 0 |
0 64 128 192 256 0 64 128 192 256 0 64 128 192 256

(€Y (b) (©

Fig. 4: Sub-functions of the guiding example. The red sub-
functions are unique sub-functions that derive the others.

term generate as the inverse of deriving a function: if g; can
be derived from g; through our linear transformations, then
we say g; generates g;. Using Eq. 4, we find out that g;(z)
can generate gs(x), gs(z) can generate g;(z), and g4(z) can
generate go ().

Ts = inv = Err(gs,inv, g1) = 0.0038 < 277 bmy = 1
Ty = inv = Err(gi,inv, gs) = 0.0058 < 277, bm; = —128 (9)
Ty = inv = Err(ge,inv, ga) = 0.0058 < 277 bma = —3

Although g4(z) can generate go(x) through an inverter, the
opposite is not true. Due to the constrains on bmy, as described
in Eq. 3, we cannot find a transformation 7 such that
Err(gs,Ty,g2) < TargetError = 277, For this reason,
similarity matrices are not necessarily symmetric.

After finding the derivable sub-functions, we compute the
similarity matrix SM and similarity vector SV, as shown in
Fig. 5a. The index of the maximum entry in SV determines
the first unique sub-function. In our example, the first, the
third, and the fourth entries are the same, and choosing either
one would be OK. As shown in Fig. 5b, we choose fi(x) as
the first unique sub-function. Then, by traversing through the
1** column of SM, we can see SM[3][1] = 1. As a result:

SMI3][1] = 1 = Err(gs,inv,g1) = 0.0038 < 277
= (0+g3(x)) ~ (0+ 1) +inv{gi(x)}
= f3(z) = 1+ inv{gi(x)}

Therefore, we can implement f3(x) ~ 1+inv{g;(z)} instead
of fz(x) = 0+ g3(z). Next, we update SM by zeroing the
1%t and the 3" rows and columns, and then recalculate SV, as
shown in Fig. 5c. Again, Fig. 5d indicates that g4 () is the next
unique sub-function to be implemented. Similarly, we traverse
through the 1% column and see SM[2][4] = 1. As a result:

SM[2][4] = 1 = Err(ge,inv,g;) = 0.0058 < 277
= (131 4 go(x)) =~ (131 — 3) + inv{gs(z)}
= fo(x) = 128 + inv{gs(x)}

Therefore, fa(x) = 131 + ga2(z) converts to fa(x) ~ 128 +
inv{gs(x)}. As a reminder, the bias value 131 was the original
by from Eq. 8, and the value —3 was the bm,; from the
transformation deriving g2(x) from g4(z) shown in Eq. 9. As
shown in Fig. Se, zeroing the 4™ and 2" rows and columns
makes all the entries of SM get zero and ends the process.

109

As a result of our proposed algorithm, function f(z) con-
verts to the following function.

128 + g1 (x) z € [0,64)

o Pl 128 +inv{gs(x)} = € [64,128)
)= 1w =3 14 inv{gl(g;)} x € [128,192)
0+ ga(x) x € [192,256)

Therefore, the number of sub-functions (including their scaling
networks and decoders) reduces by half, and they are replaced
by simple NOT gates. Fig. 4c shows that g (z) and f4(x) are
the unique sub-functions and gz () and f5(z) are derived from
them.

gl g2 g3 g4

(®) (c)
gl g2 g3 g4
gl
g2 Similarity Matrix
g3 g3 (SM)
g4 g4
D m Similarity Vector
8V)

z }
(d) (e)

Fig. 5: Similarity matrix (SM) and similarity vector (SV) of
the guiding example.

III. IMPLEMENTATION RESULTS

We evaluated our method and compared it to the previous
works including HBU [9] and FloPoCo-PPA [10], [11]. The
comparisons were made on the implementation of some func-
tions at w = 8-, 10-, and 12-bit resolutions, and all the designs
were synthesized on Xilinx’s Kintex-7 FPGA using Vivado
2020.2 default design flow. Table I shows the equations of the
implemented functions. The functions were evaluated on the
unit interval = € [0, 1), and the outputs were scaled such that
they range in the unit interval f € [0, 1). As a result, the
fixed-point representations of the inputs and outputs consist
of w fractional bits with no integer parts. Fig. 6 shows the
graph of the implemented functions.

The FloPoCo-PPA cores were generated by the FixFunction-
ByPiecewisePoly tool in the FloPoCo framework. This tool
generates VHDL files and evaluates a given function on [0, 1)
using a piece-wise polynomial approximation with the Horner
scheme.

We developed a Matlab script to run our proposed algorithm
and generate Verilog files. Since our method optimizes the
hardware cost given a target maximum error, we used two dif-
ferent target values 2~%~1 and 2~%. The former is equal to the

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Equations of the implemented non-linear functions.

Name Equation

Log log2(z + 1)

Exp exp(x — 1)

Sigmoid | 1+ tanh(4 x (2z — 1))

GELU | 0.5 x (62 —3) x (erf(%222) + 1) 4 0.25
Sin 1+ sin(27x)

Sqr z2

maximum error of exact implementations, and therefore has
the functions implemented with no approximation, whereas
the latter is equal to the maximum error of approximating the
least significant bit. These two types of implementations are
denoted as SimBU-Exact and SimBU-Approx, respectively.

o SimBU-Exact < TargetError = 27%~1

e SimBU-Approx < TargetError =27%

Table II shows the hardware cost and accuracy of each
implemented function using HBU, SimBU-Exact, FloPoCo-
PPA, and SimBU-Approx methods. All results include the
cost of unary encoders and decoders if the method uses
unary encoding. To make fair comparisons between different
methods in terms of area, we forced the synthesizer not to
use any DSP and BRAM blocks, and the area was measured
as the number of LUTs. In the tables, “Area” and “Delay”
correspond to the number of LUTs and critical path delay in
nanoseconds, and “A x D” denotes the area x delay hardware
cost. The “MaxErr” and “MSE” columns show the maximum
absolute error and mean square error compared to double-
precision floating-point implementations. The mean square
error is defined in Eq. 10

MSE = 3 () ~ f(@)?

T

10)

Although our method was expected to only reduce the hard-
ware cost when implementing functions using approximation,
it turned out that it could also reduce the cost compared to
the HBU method even when not using approximations. To
do so, the T'arget Error parameter must be set to g-w—1,
which is equivalent to the fixed-point quantization error. Since
no approximation—other than the fixed-point quantization—is
allowed, our proposed algorithm tries to find the same sub-
functions after the basic bit-wise transformations. That is, the
sub-function g; is considered derivable from g;, only if there
exists a transformation 77 such that the maximum error is equal
to the minimum possible value (i.e., 313, Err(g;, T}, g;) <
27w=1), This is a tough restriction on our algorithm. Surpris-
ingly, the results in Table II show that SimBU-Exact outper-
forms HBU, especially at higher resolutions. This is because
there are a large number of sub-functions at higher resolutions,
and our method can reduce the number of unique sub-functions
significantly, which compensates the added hardware resource

110

Log Exp Sigmoid
1 1 1
05 05 / 05
0 0 0
0 05 10 05 1 0 05 1
GELU Sin Sqr

05 05 05

0 0

05 1 0 05 1

o

05 1 0

Fig. 6: Graphs of the implemented functions.

for implementing the transformations 7;. It can be seen from
the table that SimBU-Exact reduces the area x delay cost of
HBU on average by 7% at 8-bit, 20% at 10-bit, and 35% at
12-bit resolutions. Table III also shows the number of sub-
functions before and after the self-similarity measures using
our proposed method. The total number of sub-functions in
each function at each resolution depends on the parameters
wp and w,, which are obtained experimentally. w;, and w,,
are not independent, and the equation w, = w — w;, governs
their relationship. Our Matlab script generates and synthesizes
the Verilog files for different values of wy to find the best value
that minimizes the area x delay hardware cost.

Some applications—e.g., machine learning and computer
vision—can tolerate computational error to some extent, and
computations can be performed approximately. In such cases,
our method can be deployed well to implement arithmetic
hardware cores. As the results in Table II show, SimBU-
Approx improves the area x delay cost of HBU on average
by 21% at 8-bit, 49% at 10-bit, and 60% at 12-bit resolutions.
It improves the hardware cost of FloPoCo-PPA on average by
79% at 8-bit, 58% at 10-bit, and 9% at 12-bit resolutions. As
seen in the table, our method fully utilizes the error budget to
simplify the hardware architecture and reduce the cost further
compared to FloPoCo-PPA, which was given the same error
budget but could not fully utilize it. The gap between our
A x D and that of FloPoCo-PPA gets smaller as the bit width
increases. FloPoCo-PPA is well-known to be good at higher
resolutions, and less so on lower resolutions, and our results
show that too.

The authors in [9] show that HBU performs better than
the conventional binary, PU [3], and stochastic computing
methods [4], [5], [6], [7] at 8-, 10-, and 12-bit resolutions.
Therefore, we can conclude that our method also outperforms
all these previous works at 8-, 10-, and 12-bit resolutions.

IV. APPLICATION

In PET or CT scans, multiplicative noise can obscure
the image, making it harder to distinguish relevant features.
Homomorphic filtering is a common technique that can filter
out the multiplicative noise while also fixing the dynamic

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Non-linear functions’ hardware cost and accuracy results.

Exact Methods ‘

range issue and increasing contrast. An example of this is
shown in Fig. 8a, where the full-body PET scan shows two
hot spots. These dominate the dynamic range, hence reducing
detail on other body features. After homomorphic filtering,
we get Fig. 8b. This retains the two hot spots in the brain
and the lung but increases the detail on lower-intensity parts
of the image. Another application of homomorphic filtering
is in neurocomputing to decode information from the spiking
sequence of a neuron model [13].

For the purposes of this work, we will investigate homo-

111

HBU [9] 8-bit 10-bit 12-bit
Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE
Log 31 1.54 47.59 1.94E-03 1.38E-06 72 2.84 204.19 4.88E-04 8.35E-08 318 3.31 1,053.22 1.22E-04 4.89E-09
Exp 28 1.53 42.92 1.95E-03 1.23E-06 64 2.83 181.31 4.88E-04 7.95E-08 279 338 943.02 1.22E-04 4.94E-09
Sigmoid 24 1.39 33.36 1.95E-03 1.28E-06 96 2.01 193.06 4.88E-04 8.24E-08 268 3.30 884.94 1.22E-04 4.99E-09
GELU 27 1.30 35.18 1.95E-03 1.46E-06 83 2.75 228.58 4.88E-04 7.87E-08 267 335 895.52 1.22E-04 5.07E-09
Sin 31 1.65 51.27 1.95E-03 1.44E-06 92 2.86 263.12 4.88E-04 7.36E-08 544 3.77 2,051.97 1.22E-04 4.92E-09
Sqr 28 1.24 34.72 1.95E-03 1.22E-06 68 2.71 18442 4.78E-04 7.74E-08 300 3.39 1,017.30 1.22E-04 4.94E-09
Average 40.84 209.11 1,140.99
SimBU-Exact (our method) 8-bit 10-bit 12-bit
Area ‘ Delay ‘ AxD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ AxD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ AxD ‘ MaxErr ‘ MSE
Log 20 2.34 46.70 1.94E-03 1.38E-06 70 2.51 17556 4.88E-04 8.35E-08 227 3.02 685.31 1.22E-04 4.89E-09
Exp 18 221 39.73 1.95E-03 1.23E-06 62 2.52 156.24 4.88E-04 7.95E-08 239 2.78 663.70 1.22E-04 4.94E-09
Sigmoid 26 1.39 36.24 1.95E-03 1.28E-06 74 2.52 186.70 4.88E-04 8.24E-08 242 2.95 713.66 1.22E-04 4.99E-09
GELU 25 1.37 34.13 1.95E-03 1.46E-06 70 2.55 178.22 4.88E-04 7.87E-08 242 3.03 732.29 1.22E-04 5.07E-09
Sin 21 1.38 29.00 1.95E-03 1.44E-06 75 1.82 136.50 4.88E-04 7.36E-08 291 3.13 911.12 1.22E-04 4.92E-09
Sqr 18 2.27 40.91 1.95E-03 1.22E-06 69 2.52 174.02 4.78E-04 7.74E-08 254 2.90 736.35 1.22E-04 4.91E-09
Average 37.79 167.87 740.41
Improvement Over HBU 7.48% 19.72% 35.11%
Approximate Methods [
FloPoCo-PPA [10], [11] Bobit 10-bit 12-bit
Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE
Log 48 4.67 224.06 2.90E-03 1.62E-06 67 4.27 286.02 7.95E-04 1.04E-07 108 5.39 581.69 2.05E-04 6.01E-09
Exp 48 4.51 21648 3.27E-03 1.82E-06 62 4.29 265.67 8.8I1E-04 1.35E-07 97 491 476.46 2.00E-04 6.73E-09
Sigmoid 41 3.25 13329 3.53E-03 1.51E-06 61 4.33 264.31 8.56E-04 9.77E-08 116 5.08 589.74 2.37E-04 6.38E-09
GELU 41 3.32 13620 2.65E-03 1.88E-06 59 4.31 254.00 7.93E-04 1.12E-07 104 5.28 548.91 2.05E-04 7.07E-09
Sin 39 3.32 129.36 2.77E-03 1.95E-06 60 4.39 263.16 8.78E-04 1.11E-07 101 5.21 525.71 2.28E-04 7.10E-09
Sqr 26 353 91.70 3.65E-03 2.58E-06 48 4.11 19747 8.68E-04 1.25E-07 63 3.94 247.91 2.39E-04 9.25E-09
Average 155.18 255.11 495.07
SimBU-Approx (our method) 8-bit 10-bit 12-bit
Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE Area ‘ Delay ‘ A xD ‘ MaxErr ‘ MSE
Log 19 1.94 36.86 3.88E-03 3.05E-06 28 2.21 61.99 9.77E-04 1.67E-07 122 3.25 396.50 2.42E-04 9.27E-09
Exp 16 2.20 35.15 3.79E-03 2.60E-06 25 221 5528 9.75E-04 1.69E-07 94 3.64 341.78 2.43E-04 1.05E-08
Sigmoid 14 1.98 27.69 3.86E-03 1.78E-06 52 2.59 13478 9.67E-04 1.26E-07 155 3.48 539.87 2.44E-04 8.15E-09
GELU 14 1.98 27.66 3.75E-03 1.89E-06 41 245 100.41 9.76E-04 1.25E-07 142 2.81 399.02 2.44E-04 7.87E-09
Sin 21 1.38 29.00 1.95E-03 1.44E-06 75 1.82 136.50 4.88E-04 7.36E-08 164 351 576.13 2.44E-04 1.10E-08
Sqr 17 2.19 37.30 3.87E-03 2.41E-06 53 2.81 149.09 9.76E-04 1.72E-07 125 3.71 464.25 2.44E-04 1.03E-08
Average 32.28 106.34 452.93
Improvement Over HBU 20.97% 49.15% 60.30%
Improvement Over FloPoCo-PPA 79.20% 58.31% 8.51%

morphic filtering as an image enhancement technique. Here
an input image follows the illumination-reflectance model
[14], where the image is decomposed as a product of the
illumination i(z,y) and reflectance r(z,y).

f(x,y) =i(z,y) x r(v,y)

By applying the log transformation, we can represent the
image as the sum, instead of the product, of illumination and
reflectance, hence allowing us to filter noise from these two

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Number of sub-functions before (Total) and after
(Unique) the proposed self-similarity measures.

SimBU-Exact 8-bit 10-bit 12-bit

Total ‘ Unique | Total ‘ Unique | Total ‘ Unique
Log 64 5 128 35 512 39
Exp 64 5 256 5 1024 5
Sigmoid 2 256 16 1024 16
GELU 2 256 11 512 53
Sin 2 4 2 128 64
Sqr 64 7 256 8 1024 8
SimBU-Approx 8-bit 10-bit 12-bit

Total | Unique | Total | Unique | Total | Unique
Log 32 3 64 7 128 16
Exp 64 1 64 5 256 7
Sigmoid 64 2 256 4 512 9
GELU 64 1 128 3 512 4
Sin 4 2 4 2 512 7
Sqr 64 1 128 5 256 11

components.

In(f(z,y)) = In(i(z, y)) + In(r(z,y))

The filtering part of this process is typically done in the
frequency domain by applying FFT to the log-transformed
image. But for this FPGA application, the filtering is done
in the spatial domain by convolving a 5 x 5 high-pass filter
kernel. To test our implementation of non-linear functions, we
implemented an end-to-end flow for a 5 x 5 window, which
will loop across the entire image. A block diagram of this is
shown in Fig. 7. The Log and Exp layers perform the following
functions:

e Log: In(z +1)
5—10
o Exp: (lemzw) x exp(2x — 1)

To support FloPoCo-PPA [10], [11] and get good accuracy,
the functions and convolution output are re-scaled and shifted
such that the input and output ranges of each non-linear
function fit the interval [0, 1). Since each input and output scale
is a predetermined constant, we do not require additional mul-
tiplication/division to scale up/down our quantized values, and
these scaling constants are built into the non-linear functions.
Since the input and output of each non-linear function are in
the range of [0, 1), we don’t require any integer bits in the fixed
point representation of the inputs and outputs in the functions.
Since convolution outputs a signed fixed-point integer, we
add and shift to convert the range to [0,1) before passing
through the Exp layer, in which 2z — 1 corrects for the range
change. The bit lengths of multiplication and accumulation in
convolution are automatically extended to ensure no overflow.
The re-scale and shift after the convolution is needed to bring
the bit length back down to the same range as the Exp layer.
Re-scaling is done purely through a right-shift operation.

To evaluate our method in terms of hardware cost and
accuracy, we used Xilinx’s Kintex-7 FPGA and Vivado 2020.2

Log

5%x5
Input Pixels

Rescale
+ Shift

Multiply
+Add

=1 I=

Exp
Output Pixel {l:l <:| .

Fig. 7: Block diagram of the homomorphic filter on a 5 x 5
window.

to implement a 10-bit homomorphic filter for a 5 x 5 window,
as described in Fig 7. For accuracy results, the final image
using the quantized look-up tables of the Log and Exp layers,
and integer-based convolution is compared to the floating-
point reference output. Table IV shows the hardware cost and
accuracy of the implemented homomorphic filtering. Since
the function in the Exp layer is only done once to the
output pixel, we implemented this layer using SimHBU-Exact
for both variants of SimHBU. As seen, our SimBU-Exact
method improves the area x delay hardware cost of HBU by
7% without losing quality, and our SimBU-Approx method
improves that by 44% with negligible quality loss. Compared
to FloPoCo-PPA, our SimBU-Approx method reduces the
hardware cost by 46% with higher quality. We can see in
Fig. 8c that the subjective quality difference between SimBU-
Approx and reference image is well within the acceptable
range. Finally, Fig. 9 compares the area x delay hardware cost
of the implemented non-linear functions and homomorphic
filtering.

112

(c) Our method

(a) Input

(b) Floating Point

Fig. 8: Homomorphic filtering test images of PET Scan.
Test image sourced from [14]. Part (b) shows homomorphic
filtering applied to the input image using floating point compu-
tations. Part (c) shows the results from homomorphic filtering
using the SimBU-Approx method.

V. CONCLUSION

In this work, we proposed a method to implement non-
linear functions given a target maximum error. It provides a

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Homomorphic filtering’s hardware cost and accu-
racy results.

Exact Methods
Method Area | Delay AXxD MSE PSNR
HBU [9] 2738 | 24.03 | 65,796.88 | 4.37E-01 | 51.72
SimBU-Exact (our method) 2538 | 23.99 | 60,879.01 | 4.37E-01 51.72
Approximate Methods
Method Area | Delay A XD MSE PSNR
FloPoCo-PPA [10], [11] 2430 | 27.83 | 67,629.33 | 4.62E-01 51.48
SimBU-Approx (our method) | 1538 | 23.76 | 36,535.19 | 4.56E-01 | 51.54

Non-Linear Functions Homomorphic Filtering

x 2w g X 10°
0.6

&
8 05 6
x >
s 04 2
< S
< 0.3 5
§ g
=02 <
g 2
=" I A N

0 0

8-bit 10-bit 12-bit
Il HBU M SimBU-Exact [FloPoCo-PPA [SimBU-Approx

Fig. 9: Comparisons of hardware cost in non-linear functions
and homomorphic filtering.

trade-off between accuracy and hardware cost by reducing
the number of sub-functions in the previous HBU (hybrid
binary-unary) method and replacing them with simple bit-
wise transformers. In terms of area x delay hardware cost,
our results show that our method outperforms HBU even with
no approximation error budget. By approximating the least
significant bit, our method beats the FloPoCo-PPA (piece-wise
polynomial approximation) method at up to 12-bit resolutions
as well. Finally, we implemented a 10-bit homomorphic filter
as an image processing application to show the benefits of
our method compared to the previous works. Without loss of
quality, our method implemented the filter at lower hardware
cost compared to the previous exact and approximate methods.

ACKNOWLEDGMENT

This material is based upon work supported in part by
Cisco Systems, Inc. under grant number 1085913, and by
the National Science Foundation under grant number PFI-TT
2016390.

REFERENCES

[1] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan, “Low-cost
sorting network circuits using unary processing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 26, no. 8, pp. 1471—
1480, 2018.

S. Mohajer, Z. Wang, and K. Bazargan, “Routing magic: Performing
computations using routing networks and voting logic on unary
encoded data,” in Proceedings of the 2018 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA "18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
77-86. [Online]. Available: https://doi.org/10.1145/3174243.3174267

[2]

113

(3]

[4]

[5]

[6]

[71

[8]

[10]

[11]

[12]

[13]

[14]

S. Mohajer, Z. Wang, K. Bazargan, and Y. Li, “Parallel unary
computing based on function derivatives,” ACM Trans. Reconfigurable
Technol. Syst., vol. 14, no. 1, oct 2020. [Online]. Available:
https://doi.org/10.1145/3418464

W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93-105, 2011.

Z. Wang, N. Saraf, K. Bazargan, and A. Scheel, “Randomness meets
feedback: Stochastic implementation of logistic map dynamical system,”
in Proceedings of the 52nd Annual Design Automation Conference, ser.
DAC ’15. New York, NY, USA: Association for Computing Machinery,
2015. [Online]. Available: https://doi.org/10.1145/2744769.2744898

S. A. Salehi, Y. Liu, M. D. Riedel, and K. K. Parhi, “Computing
polynomials with positive coefficients using stochastic logic by double-
nand expansion,” in Proceedings of the on Great Lakes Symposium on
VLSI 2017, ser. GLSVLSI *17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 471-474. [Online]. Available:
https://doi.org/10.1145/3060403.3060410

P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical
computation on stochastic bit streams with linear finite-state machines,”
IEEE Transactions on Computers, vol. 63, no. 6, pp. 1474-1486, 2014.
S. R. Faraji and K. Bazargan, “Hybrid binary-unary hardware
accelerator,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, ser. ASPDAC *19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 210-215. [Online].
Available: https://doi.org/10.1145/3287624.3287706

——, “Hybrid binary-unary hardware accelerator,” IEEE Transactions
on Computers, vol. 69, no. 9, pp. 1308-1319, 2020.

F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18-27, 2011.

J. Detrey and F. de Dinechin, “Table-based polynomials for fast hard-
ware function evaluation,” in 2005 IEEE International Conference on
Application-Specific Systems, Architecture Processors (ASAP’05), 2005,
pp. 328-333.

A. Khataei, G. Singh, and K. Bazargan, “Approximate hybrid binary-
unary computing with applications in bert language model and image
processing,” in Proceedings of the 2023 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
165-175. [Online]. Available: https://doi.org/10.1145/3543622.3573181
S. Orcioni, A. Paffi, F. Camera, F. Apollonio, and M. Liberti, “Automatic
decoding of input sinusoidal signal in a neuron model: High pass
homomorphic filtering,” Neurocomputing, vol. 292, pp. 165-173, 05
2018.

R. Gonzalez and ‘Woods, Digital Im-
age Processing. Pearson, 2018. [Online]. Available:
https://books.google.com/books?id=0F05vgAACAAJ

R.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore. Restrictions apply.

