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Abstract—Unary computing is a relatively new method for
implementing non-linear functions using few hardware resources
compared to binary computing. In its original form, unary
computing provides no trade-off between accuracy and hardware
cost. In this work, we propose a novel self-similarity-based
method to optimize the previous hybrid binary-unary method and
provide it with the trade-off between accuracy and hardware cost
by introducing controlled levels of approximation. Given a target
maximum error, our method breaks a function into sub-functions
and tries to find the minimum set of unique sub-functions that can
derive all the other ones through trivial bit-wise transformations.
We compare our method to previous works such as HBU
(hybrid binary-unary) and FloPoCo-PPA (piece-wise polynomial
approximation) on a number of non-linear functions including
Log, Exp, Sigmoid, GELU, Sin, and Sqr, which are used in neural
networks and image processing applications. Without any loss
of accuracy, our method can improve the area-delay-product
hardware cost of HBU on average by 7% at 8-bit, 20% at
10-bit, and 35% at 12-bit resolutions. Given the approximation
of the least significant bit, our method reduces the hardware
cost of HBU on average by 21% at 8-bit, 49% at 10-bit, and
60% at 12-bit resolutions, and using the same error budget as
given to FloPoCo-PPA, it reduces the hardware cost of FloPoCo-
PPA on average by 79% at 8-bit, 58% at 10-bit, and 9% at
12-bit resolutions. We finally show the benefits of our method
by implementing a 10-bit homomorphic filter, which is used in
image processing applications. Our method can implement the
filter with no quality loss at lower hardware cost than what the
previous approximate and exact methods can achieve.

I. INTRODUCTION

The binary representation has been the dominant data en-

coding scheme in digital systems for many years. Despite low

memory requirements, performing computations in binary is

not trivial due to the positional nature of the representation,

which requires unpacking bits, performing computations such

as partial product generation in a multiplication operation,

and packing partial results through carry chain propagation

into the final output. Additionally, the binary representation is

not error-resilient, and flipping a single bit may introduce a

significant amount of error based on the position of the bit [1].
Pure unary (PU) [2], [3] was introduced as a way of

implementing non-linear functions by encoding the binary

numbers in the form of unary codes and using a network of

wires and XOR gates to perform the computations in the unary

domain. In low-resolution computations—up to 12 bits—PU

outperforms the conventional binary and stochastic computing

methods [4], [5], [6], [7] in terms of the area × delay hardware

cost [3]. Despite the simplicity of scaling networks, converting

data between binary and unary is costly, especially as the

resolution increases, leading to exponentially higher hardware

cost.

To reduce the hardware cost of PU, especially in non-

monotonic functions at high resolutions, hybrid binary-unary

(HBU) [8], [9] was proposed to take advantage of unary

and binary to make the method more scalable. It breaks

a function into sub-functions with limited input and output

ranges and implements them efficiently based on the PU

method. Therefore, the lower bits of the input compute the

sub-functions in unary, and the higher bits complete the

computations in binary. By limiting the input and output range

of the function, this method dramatically reduces the binary-

unary and unary-binary conversion costs, which in turn leads

to lower area × delay hardware cost compared to PU.

FloPoCo1 [10] is a generator of arithmetic cores for FPGAs.

One method it uses to approximately implement arbitrary

functions is piece-wise polynomial approximation (PPA) [11].

It divides the input interval of a function into several sub-

intervals that are addressed by the higher bits of the input.

Given a target maximum error, each sub-function in this

method is approximated by a polynomial with the Horner

scheme.

In this paper, we propose a novel method to optimize the

hardware cost of HBU using self-similarities among the sub-

functions. Given a target maximum error, it makes pair-wise

comparisons to figure out which sub-functions can be derived

from each other through simple bit-wise transformations. For

instance, if a sub-function gi is similar to the inverse of

a sub-function gj , then we can ignore the implementation

of gi in unary and use NOT gates to derive it from gj .

This practice replaces the unary sub-functions (including their

scaling networks and decoders) with simple post-processing

logic gates to reduce the hardware cost. After finding the

derivable sub-functions, our method tries to find the minimum

set of them that can derive all the other sub-functions.

By implementing several non-linear functions at 8-, 10-

, and 12-bit resolutions, our results show that our method

outperforms HBU and FloPoCo-PPA in terms of area × delay

hardware cost. Given the approximation of least significant bit,

1Available at http://www.flopoco.org
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it improves the hardware cost of HBU on average by 21% at

8-bit, 49% at 10-bit, and 60% at 12-bit resolutions. Compared

to FloPoCo-PPA using the same approximation error budget,

our method improves the hardware cost by 79% at 8-bit, 58%

at 10-bit, and 9% at 12-bit resolutions. Additionally, if no

approximation is allowed, which is a tough restriction on our

proposed algorithm, our method still outperforms HBU on

average by 7% at 8-bit, 20% at 10-bit, and 35% at 12-bit

resolutions. By implementing a 10-bit homomorphic filter, we

also show that our method can implement the filter with no

quality loss at lower hardware cost compared to HBU and

FloPoCo-PPA.

Our recent work [12] proposed a very rudimentary version

of the similarity metric used in this work. In our rudimentary

work, we had a strict metric for similarity, which left a

lot of optimization on the table. We also explored pair-wise

similarity checks locally, as opposed to a more global method

used in this work. Furthermore, our previous work focused

on mean absolute error (MAE) as a metric for how much

approximation tolerance it should have, which is a major flaw,

because it does not consider the maximum error, which is a

critical issue in approximate computing.

Our contributions in this work include the following meth-

ods and results:

• Our method changes the way HBU breaks up functions.

HBU breaks up functions into non-uniform input-range

sub-functions, with the sole goal of reducing hardware

cost. Our method forces an equal input range for all sub-

functions, with the hope of deriving many of them from

a core set of sub-functions.

• Our method uses a number of linear transformations to

check if a sub-function can be derived from another

one. This is in contrast to [12] that only looked at non-

transformed matches within the approximation tolerance.

• Instead of pair-wise, local comparison between sub-

functions [12], our method uses a better optimization

method to find the best subset of sub-functions to imple-

ment a function. For instance, using the lowest possible

approximation error for implementing f(x) = [1 +
sin(2πx)]÷ 2, our previous work could reduce the total

number of sub-functions from 512 to 218, whereas our

new method can reduce them from 512 to 71 unique sub-

functions.

• Our method provides HBU with a trade-off between

accuracy in terms of maximum error and hardware cost

in terms of area × delay.

• It outperforms the hardware cost of HBU even without

any loss of accuracy.

• It outperforms the hardware cost of FloPoCo-PPA at up

to 12-bit resolutions using the same approximation error

budget.

The rest of the paper is as follows. Section II-A reviews

the basics of PU and HBU as fundamental parts of our

method. Section II-B introduces our proposed method and

algorithm, followed by a guiding example in Section II-C.

In Section III, the HBU, FloPoCo-PPA, and our proposed

method are compared on several functions at 8-, 10-, and

12-bit resolutions. The benefits of our method are evaluated

in the implementation of a 10-bit homomorphic filter as an

image processing application in Section IV. Finally, Section V

concludes the paper and results.

II. METHODOLOGY

A. Previous Unary Works

PU (pure unary) [3] is a method that implements a math

function f(x) using a network of wires and XOR gates, called

”unary core”. It converts the input binary to the unary domain

in the form of thermometer codes, called “unary” codes. For

a w-bit binary number, it uses 2w − 1 bits, in which the first

m bits are 1’s and the rest are 0’s to represent the decimal

value m out of the maximum value 2w − 1. For example, 011

in binary equals 1110000 in unary, and 100 in binary equals

1111000 in unary. After encoding the input binary, the unary

core maps the input unary to output unary through the wires

and XOR gates to implement the desired function. Finally, the

output unary is converted back to binary as the final output.

Fig. 1 shows the architecture of the PU method for an arbitrary

function, described as a look-up table. Note that the function

is increasing from x = 0 to x = 5, and then decreasing from

x = 6 to x = 7. The XOR gate handles the non-monotonic

section of the function. In unary methods, the input and output

values of a function are considered unsigned integers, although

one can change the interpretation of the raw values to represent

signed integers or signed / unsigned fixed-point values.
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Fig. 1: Hardware architecture of PU [3] for an arbitrary

function.

The PU method is not scalable: as the width w of the

input binary number increases, encoder and decoder units

become exponentially larger, as they need to cover the

range {0, 1, · · · , 2w − 1}. The HBU (hybrid binary-unary)

method [9], on the other hand, uses the lower bits of the input

to perform some parts of computation in unary and uses the

higher bits of the input to complete the computation in binary.

It breaks a function f(x) into several sub-functions gi(x). The

functions gi(x) are chosen so that they cover an output range

from 0 to a number Maxi. This range would be less than or

equal to the range of the original function f(x), which means

smaller unary-to-binary encoders would be needed to convert

the output back to binary. Each sub-function would be added
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to a bias value bi to reconstruct the original function f(x).
The addition operation is performed in binary.

f(x) =

⎧⎨
⎩

f1(x) = b1 + g1(x) x ∈ [0, x1)
...
fn(x) = bn + gn(x) x ∈ [xn−1, xn)

As mentioned above, in contrast to f(x), a sub-function

gi(x) has a limited input and output range; therefore, it can

be efficiently implemented using the PU method [3], leading to

a more scalable method. All these sub-functions are computed

concurrently using the lower bits of the input x, but only one

of them holds the relevant result. The higher bits of the input

binary x determine which sub-function is going to be used

and multiplexes the corresponding bias from a binary look-up

table. Finally, a binary adder adds the sub-function and the

bias together to compute the final output. Fig. 2 shows the

overall architecture of HBU.
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Fig. 2: Hardware architecture of HBU [9].

B. Our Proposed Work

We first present the formal explanation of how our method

works through equations and pseudo-code in this section,

followed by a guiding example in Sec. II-C. Readers who

are more comfortable with visual learning might want to first

read that section and then come back to this section.

The function breaking in HBU is a complex process that

uses many parameters and considers sub-functions’ slopes and

output ranges to break a function hierarchically. The sub-

functions might have different input ranges, leading to a set

of binary-to-unary encoders with different input/output sizes.

In contrast to HBU, we uniformly break a function f(x) into

n = 2wb sub-functions and separate their initial biases. For

a w-bit function, the input range of all the sub-functions is

wu = w − wb bits.

f(x) =

⎧⎨
⎩

f1(x) = b1 + g1(x) x ∈ [0, 2wu)
...
fn(x) = bn + gn(x) x ∈ [(n− 1)× 2wu , n× 2wu)

By uniformly breaking the function, only one encoder is

needed to convert the wu lower bits from binary to unary,

whereas the same does not hold in HBU. The novelty in

our method is to measure pair-wise similarities between sub-

functions to find the minimum set of unique sub-functions,

from which all the other sub-functions can be derived using

a set of bit-wise transformations. For instance, if gi(x) is

similar to the inverse of gj(x), then we can implement gj(x)
and use NOT gates to derive gi(x) from it.

Definition: The approximation error of deriving gi(x) from

gj(x) through a transformation Ti is defined as:

Err(gi, Ti, gj) = max{|Fixed(bi + bmi + Ti{gj(x)})
−Float(bi + gi(x))|}

(1)

where Fixed(x) and Float(x) denote the fixed-point and

floating-point values of the unsigned integer x, respectively.

Ti is a bit-wise transformation, that can include an inversion,

right shift, and left shift, and bmi is a constant that modifies

the vertical position of Ti{gj(x)} to reduce the approximation

error, and it can be obtained by Eq. 2

bmi = � 1

2wu

∑
x

(gi(x)− Ti{gj(x)})� (2)

where �� denotes the rounding to the nearest integer function.

Intuitively, bmi tries to “center” the transformed sub-function

around the center of gravity of the target sub-function to reduce

the amount of error in deriving the sub-function. This constant

cannot get any arbitrary value and there are constraints on that,

as described in Eq. 3.

0 ≤ bi + bmi + Ti{gj(x)} < 2w (3)

Definition: Given a target maximum error TargetErr, a

sub-function gi(x) is derivable from gj(x) if Eq. 4 is satisfied.

∃Ti, Err(gi, Ti, gj) ≤ TargetErr (4)

Definition: The similarity matrix is defined as a n×n binary

matrix, in which an entry smij (i �= j) is 1 if and only if gi(x)
is derivable from gj(x), subject to the constraint in Eq. 4.

SM = [smij ]n×n; smij ∈ {0, 1},
smij = 1 ⇔ ∃Ti, Err(gi, Ti, gj) ≤ TargetErr, i �= j

(5)

Definition: The similarity vector is defined as a vector of

n elements, equals to the summation of SM’s rows.

SV = [svj ]1×n; svj =
∑
i

smij (6)

In HBU, each sub-function gi(x) is implemented using the

PU method, and its initial bias bi is stored in a binary look-up

table. Then, a binary adder computes fi(x) = bi + gi(x). In

our method, however, a small set of unique sub-functions are

implemented, and each of the other sub-functions is derived

from a transformation of one of the unique sub-functions.

If gi(x) is derivable from gj(x), then we can conclude the

following result from Eq. 4 and Eq. 1.

∃Ti, Err(gi, Ti, gj) ≤ TargetErr

⇒(bi + gi(x)) 
 (bi + bmi) + Ti{gj(x)}
⇒fi(x) 
 b̂i + Ti{gj(x)}

If there exist multiple transformations that can derive gi(x)
from gj(f), we choose the one that minimizes the approxima-

tion error.

Ti = argmin
T

Err(gi, T, gj) (7)
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Fig. 3: Hardware architecture of our proposed method.

Therefore, we can compute fi(x) 
 b̂i+Ti{gj(x)} instead of

fi(x) = bi+gi(x). That is, we can implement fi(x) by storing

the pre-calculated bias b̂i = bi + bmi in the binary look-up

table and transforming the sub-function gj(x), implemented

using the PU method. Fig. 3 shows the architecture of our

method.

As shown in Fig. 3, gi(x) is derived from gj(x) through

the transformation Ti, and our method replaces the unary core

gi(x) and its decoder with the simple transformer that might

include NOT gates and/or shifters. It also reduces the fan-out

of the input encoder. Such replacements make the hardware

architecture less expensive compared to HBU, especially in

non-monotonic functions at high resolutions.

To find the minimum set of unique sub-functions, we first

compute the similarity matrix and similarity vector, as de-

scribed in Eq. 5 and 6, respectively. The index of the maximum

element in the similarity vector (i.e., idx = argmaxi SV [i])
determines the first unique function. Then, we traverse through

the idxth column of the similarity matrix to see which sub-

functions can be derived from gidx(x). Next, we update the

similarity matrix by zeroing the idxth row and column as well

as all the rows and columns corresponding to the functions that

are derivable from gidx(x). Again, we compute the similarity

vector and find the next unique sub-function. We continue

this process until all the entries of the similarity matrix get

zero. We do understand that dynamic programming could have

been used to get a globally minimum number of unique sub-

functions, but in this version, we have limited ourselves to this

greedy approach.

Algorithm 1 describes the procedure in more detail. To rep-

resent the final set of unique sub-functions in this algorithm,

we define two vectors Unique and Transformer such that

if Unique[i] = j and Transformer[i] = Ti, then it means

that fi(x) is derived from fj(x) through the transformation

Ti. Vectors Sub and Bias are also defined to store each sub-

function’s output values and bias.

C. Guiding Example

In this section, we show how our method works for an

arbitrary w-bit function f(x) = [1 + sin(2πx)] ÷ 2. We set

the parameters as follows:

• w = 8 bits

• wb = 2 bits ⇒ wu = w − wb = 6 bits

• TargetErr = 2−7

Algorithm 1: SimBU Algorithm

1 Parameters: TargetErr, w,wb, wu

2 Input: F = {y = f(x)|x, y ∈ Z and x, y ∈ [0, 2w)}
3 Outputs: Sub,Bias, Unique, Transformer

4 # Uniformly breaking the function into sub-functions

5 for i = 1 to 2wb do
6 Sub[i] ← F [(i− 1)× 2wu : i× 2wu ]
7 Bias[i] ← min(Sub[i])
8 Sub[i] ← Sub[i]−Bias[i]
9 end

10 # Making pair-wise comparisons of the sub-functions

11 for i = 1 to 2wb do
12 for j = 1 to 2wb do
13 if ∃Ti, Err(Sub[i], Ti, Sub[j]) ≤ TargetErr

then
14 SM [i][j] ← 1
15 else
16 SM [i][j] ← 0
17 end
18 end
19 end
20 # Finding the minimum set of unique sub-functions

21 while
∑

i

∑
j SM [i][j] ! = 0 do

22 SV ← ∑
i SM [i][:]

23 idx ← argmaxi SV [i]
24 for i = 1 to 2wb do
25 if i ! = idx and SM [i][idx] == 1 then
26 Unique[i] ← idx
27 Ti ← argminT Err(Sub[i], T, Sub[idx])
28 Transformer[i] ← Ti

29 bmi ← � 1
2wu

∑
(Sub[i]− Ti{Sub[idx]})�

30 Bias[i] ← Bias[i] + bmi

31 SM [i][:] ← 0
32 SM [:][i] ← 0
33 end
34 end
35 Unique[idx] ← idx
36 Transformer[idx] ← None
37 SM [idx][:] ← 0
38 SM [:][idx] ← 0
39 end

We first divide the function into 2wb = 4 sub-functions

and separate their initial biases, as shown in Fig. 4a and 4b,

respectively. The input range of all the sub-function is wu = 6
bits.

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

f1(x) = 128 + g1(x) x ∈ [0, 64)
f2(x) = 131 + g2(x) x ∈ [64, 128)
f3(x) = 0 + g3(x) x ∈ [128, 192)
f4(x) = 0 + g4(x) x ∈ [192, 256)

(8)

Next, we make pair-wise comparisons to find all the sub-
functions that can be derived from each other. We can use the
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Fig. 4: Sub-functions of the guiding example. The red sub-

functions are unique sub-functions that derive the others.

term generate as the inverse of deriving a function: if gi can
be derived from gj through our linear transformations, then
we say gj generates gi. Using Eq. 4, we find out that g1(x)
can generate g3(x), g3(x) can generate g1(x), and g4(x) can
generate g2(x).

T3 = inv ⇒ Err(g3, inv, g1) = 0.0038 ≤ 2−7, bm3 = 1

T1 = inv ⇒ Err(g1, inv, g3) = 0.0058 ≤ 2−7, bm1 = −128 (9)

T2 = inv ⇒ Err(g2, inv, g4) = 0.0058 ≤ 2−7, bm2 = −3

Although g4(x) can generate g2(x) through an inverter, the

opposite is not true. Due to the constrains on bm4, as described

in Eq. 3, we cannot find a transformation T4 such that

Err(g4, T4, g2) ≤ TargetError = 2−7. For this reason,

similarity matrices are not necessarily symmetric.

After finding the derivable sub-functions, we compute the

similarity matrix SM and similarity vector SV, as shown in

Fig. 5a. The index of the maximum entry in SV determines

the first unique sub-function. In our example, the first, the

third, and the fourth entries are the same, and choosing either

one would be OK. As shown in Fig. 5b, we choose f1(x) as

the first unique sub-function. Then, by traversing through the

1st column of SM, we can see SM [3][1] = 1. As a result:

SM [3][1] = 1 ⇒ Err(g3, inv, g1) = 0.0038 ≤ 2−7

⇒ (0 + g3(x)) 
 (0 + 1) + inv{g1(x)}
⇒ f3(x) 
 1 + inv{g1(x)}

Therefore, we can implement f3(x) 
 1+ inv{g1(x)} instead

of f3(x) = 0 + g3(x). Next, we update SM by zeroing the

1st and the 3rd rows and columns, and then recalculate SV, as

shown in Fig. 5c. Again, Fig. 5d indicates that g4(x) is the next

unique sub-function to be implemented. Similarly, we traverse

through the 1st column and see SM [2][4] = 1. As a result:

SM [2][4] = 1 ⇒ Err(g2, inv, g1) = 0.0058 ≤ 2−7

⇒ (131 + g2(x)) 
 (131− 3) + inv{g4(x)}
⇒ f2(x) 
 128 + inv{g4(x)}

Therefore, f2(x) = 131 + g2(x) converts to f2(x) 
 128 +
inv{g4(x)}. As a reminder, the bias value 131 was the original

b2 from Eq. 8, and the value −3 was the bmi from the

transformation deriving g2(x) from g4(x) shown in Eq. 9. As

shown in Fig. 5e, zeroing the 4th and 2nd rows and columns

makes all the entries of SM get zero and ends the process.

As a result of our proposed algorithm, function f(x) con-

verts to the following function.

f(x) 
 f̂(x) =

⎧⎪⎪⎨
⎪⎪⎩

128 + g1(x) x ∈ [0, 64)
128 + inv{g4(x)} x ∈ [64, 128)
1 + inv{g1(x)} x ∈ [128, 192)
0 + g4(x) x ∈ [192, 256)

Therefore, the number of sub-functions (including their scaling

networks and decoders) reduces by half, and they are replaced

by simple NOT gates. Fig. 4c shows that g1(x) and f4(x) are

the unique sub-functions and g2(x) and f3(x) are derived from

them.
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Fig. 5: Similarity matrix (SM) and similarity vector (SV) of

the guiding example.

III. IMPLEMENTATION RESULTS

We evaluated our method and compared it to the previous

works including HBU [9] and FloPoCo-PPA [10], [11]. The

comparisons were made on the implementation of some func-

tions at w = 8-, 10-, and 12-bit resolutions, and all the designs

were synthesized on Xilinx’s Kintex-7 FPGA using Vivado

2020.2 default design flow. Table I shows the equations of the

implemented functions. The functions were evaluated on the

unit interval x ∈ [0, 1), and the outputs were scaled such that

they range in the unit interval f ∈ [0, 1). As a result, the

fixed-point representations of the inputs and outputs consist

of w fractional bits with no integer parts. Fig. 6 shows the

graph of the implemented functions.

The FloPoCo-PPA cores were generated by the FixFunction-

ByPiecewisePoly tool in the FloPoCo framework. This tool

generates VHDL files and evaluates a given function on [0, 1)

using a piece-wise polynomial approximation with the Horner

scheme.

We developed a Matlab script to run our proposed algorithm

and generate Verilog files. Since our method optimizes the

hardware cost given a target maximum error, we used two dif-

ferent target values 2−w−1 and 2−w. The former is equal to the
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TABLE I: Equations of the implemented non-linear functions.

Name Equation

Log log2(x+ 1)

Exp exp(x− 1)

Sigmoid 1 + tanh(4× (2x− 1))

GELU 0.5× (6x− 3)× (erf( 6x−3√
2

) + 1) + 0.25

Sin 1 + sin(2πx)

Sqr x2

maximum error of exact implementations, and therefore has

the functions implemented with no approximation, whereas

the latter is equal to the maximum error of approximating the

least significant bit. These two types of implementations are

denoted as SimBU-Exact and SimBU-Approx, respectively.

• SimBU-Exact ⇔ TargetError = 2−w−1

• SimBU-Approx ⇔ TargetError = 2−w

Table II shows the hardware cost and accuracy of each

implemented function using HBU, SimBU-Exact, FloPoCo-

PPA, and SimBU-Approx methods. All results include the

cost of unary encoders and decoders if the method uses

unary encoding. To make fair comparisons between different

methods in terms of area, we forced the synthesizer not to

use any DSP and BRAM blocks, and the area was measured

as the number of LUTs. In the tables, “Area” and “Delay”

correspond to the number of LUTs and critical path delay in

nanoseconds, and “A × D” denotes the area × delay hardware

cost. The “MaxErr” and “MSE” columns show the maximum

absolute error and mean square error compared to double-

precision floating-point implementations. The mean square

error is defined in Eq. 10

MSE =
1

2w

∑
x

(f̂(x)− f(x))2 (10)

Although our method was expected to only reduce the hard-

ware cost when implementing functions using approximation,

it turned out that it could also reduce the cost compared to

the HBU method even when not using approximations. To

do so, the TargetError parameter must be set to 2−w−1,

which is equivalent to the fixed-point quantization error. Since

no approximation—other than the fixed-point quantization—is

allowed, our proposed algorithm tries to find the same sub-

functions after the basic bit-wise transformations. That is, the

sub-function gi is considered derivable from gj , only if there

exists a transformation Ti such that the maximum error is equal

to the minimum possible value (i.e., ∃Ti, Err(gi, Ti, gj) ≤
2−w−1). This is a tough restriction on our algorithm. Surpris-

ingly, the results in Table II show that SimBU-Exact outper-

forms HBU, especially at higher resolutions. This is because

there are a large number of sub-functions at higher resolutions,

and our method can reduce the number of unique sub-functions

significantly, which compensates the added hardware resource

��� ��� �	�
�	�

���
 �	� ���

Fig. 6: Graphs of the implemented functions.

for implementing the transformations Ti. It can be seen from

the table that SimBU-Exact reduces the area × delay cost of

HBU on average by 7% at 8-bit, 20% at 10-bit, and 35% at

12-bit resolutions. Table III also shows the number of sub-

functions before and after the self-similarity measures using

our proposed method. The total number of sub-functions in

each function at each resolution depends on the parameters

wb and wu, which are obtained experimentally. wb and wu

are not independent, and the equation wu = w − wb governs

their relationship. Our Matlab script generates and synthesizes

the Verilog files for different values of wb to find the best value

that minimizes the area × delay hardware cost.

Some applications—e.g., machine learning and computer

vision—can tolerate computational error to some extent, and

computations can be performed approximately. In such cases,

our method can be deployed well to implement arithmetic

hardware cores. As the results in Table II show, SimBU-

Approx improves the area × delay cost of HBU on average

by 21% at 8-bit, 49% at 10-bit, and 60% at 12-bit resolutions.

It improves the hardware cost of FloPoCo-PPA on average by

79% at 8-bit, 58% at 10-bit, and 9% at 12-bit resolutions. As

seen in the table, our method fully utilizes the error budget to

simplify the hardware architecture and reduce the cost further

compared to FloPoCo-PPA, which was given the same error

budget but could not fully utilize it. The gap between our

A × D and that of FloPoCo-PPA gets smaller as the bit width

increases. FloPoCo-PPA is well-known to be good at higher

resolutions, and less so on lower resolutions, and our results

show that too.

The authors in [9] show that HBU performs better than

the conventional binary, PU [3], and stochastic computing

methods [4], [5], [6], [7] at 8-, 10-, and 12-bit resolutions.

Therefore, we can conclude that our method also outperforms

all these previous works at 8-, 10-, and 12-bit resolutions.

IV. APPLICATION

In PET or CT scans, multiplicative noise can obscure

the image, making it harder to distinguish relevant features.

Homomorphic filtering is a common technique that can filter

out the multiplicative noise while also fixing the dynamic

110

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:20:11 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Non-linear functions’ hardware cost and accuracy results.

Exact Methods

8-bit 10-bit 12-bit
HBU [9]

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 31 1.54 47.59 1.94E-03 1.38E-06 72 2.84 204.19 4.88E-04 8.35E-08 318 3.31 1,053.22 1.22E-04 4.89E-09

Exp 28 1.53 42.92 1.95E-03 1.23E-06 64 2.83 181.31 4.88E-04 7.95E-08 279 3.38 943.02 1.22E-04 4.94E-09

Sigmoid 24 1.39 33.36 1.95E-03 1.28E-06 96 2.01 193.06 4.88E-04 8.24E-08 268 3.30 884.94 1.22E-04 4.99E-09

GELU 27 1.30 35.18 1.95E-03 1.46E-06 83 2.75 228.58 4.88E-04 7.87E-08 267 3.35 895.52 1.22E-04 5.07E-09

Sin 31 1.65 51.27 1.95E-03 1.44E-06 92 2.86 263.12 4.88E-04 7.36E-08 544 3.77 2,051.97 1.22E-04 4.92E-09

Sqr 28 1.24 34.72 1.95E-03 1.22E-06 68 2.71 184.42 4.78E-04 7.74E-08 300 3.39 1,017.30 1.22E-04 4.94E-09

Average 40.84 209.11 1,140.99

8-bit 10-bit 12-bit
SimBU-Exact (our method)

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 20 2.34 46.70 1.94E-03 1.38E-06 70 2.51 175.56 4.88E-04 8.35E-08 227 3.02 685.31 1.22E-04 4.89E-09

Exp 18 2.21 39.73 1.95E-03 1.23E-06 62 2.52 156.24 4.88E-04 7.95E-08 239 2.78 663.70 1.22E-04 4.94E-09

Sigmoid 26 1.39 36.24 1.95E-03 1.28E-06 74 2.52 186.70 4.88E-04 8.24E-08 242 2.95 713.66 1.22E-04 4.99E-09

GELU 25 1.37 34.13 1.95E-03 1.46E-06 70 2.55 178.22 4.88E-04 7.87E-08 242 3.03 732.29 1.22E-04 5.07E-09

Sin 21 1.38 29.00 1.95E-03 1.44E-06 75 1.82 136.50 4.88E-04 7.36E-08 291 3.13 911.12 1.22E-04 4.92E-09

Sqr 18 2.27 40.91 1.95E-03 1.22E-06 69 2.52 174.02 4.78E-04 7.74E-08 254 2.90 736.35 1.22E-04 4.91E-09

Average 37.79 167.87 740.41

Improvement Over HBU 7.48% 19.72% 35.11%

Approximate Methods

8-bit 10-bit 12-bit
FloPoCo-PPA [10], [11]

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 48 4.67 224.06 2.90E-03 1.62E-06 67 4.27 286.02 7.95E-04 1.04E-07 108 5.39 581.69 2.05E-04 6.01E-09

Exp 48 4.51 216.48 3.27E-03 1.82E-06 62 4.29 265.67 8.81E-04 1.35E-07 97 4.91 476.46 2.00E-04 6.73E-09

Sigmoid 41 3.25 133.29 3.53E-03 1.51E-06 61 4.33 264.31 8.56E-04 9.77E-08 116 5.08 589.74 2.37E-04 6.38E-09

GELU 41 3.32 136.20 2.65E-03 1.88E-06 59 4.31 254.00 7.93E-04 1.12E-07 104 5.28 548.91 2.05E-04 7.07E-09

Sin 39 3.32 129.36 2.77E-03 1.95E-06 60 4.39 263.16 8.78E-04 1.11E-07 101 5.21 525.71 2.28E-04 7.10E-09

Sqr 26 3.53 91.70 3.65E-03 2.58E-06 48 4.11 197.47 8.68E-04 1.25E-07 63 3.94 247.91 2.39E-04 9.25E-09

Average 155.18 255.11 495.07

8-bit 10-bit 12-bit
SimBU-Approx (our method)

Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE Area Delay A × D MaxErr MSE

Log 19 1.94 36.86 3.88E-03 3.05E-06 28 2.21 61.99 9.77E-04 1.67E-07 122 3.25 396.50 2.42E-04 9.27E-09

Exp 16 2.20 35.15 3.79E-03 2.60E-06 25 2.21 55.28 9.75E-04 1.69E-07 94 3.64 341.78 2.43E-04 1.05E-08

Sigmoid 14 1.98 27.69 3.86E-03 1.78E-06 52 2.59 134.78 9.67E-04 1.26E-07 155 3.48 539.87 2.44E-04 8.15E-09

GELU 14 1.98 27.66 3.75E-03 1.89E-06 41 2.45 100.41 9.76E-04 1.25E-07 142 2.81 399.02 2.44E-04 7.87E-09

Sin 21 1.38 29.00 1.95E-03 1.44E-06 75 1.82 136.50 4.88E-04 7.36E-08 164 3.51 576.13 2.44E-04 1.10E-08

Sqr 17 2.19 37.30 3.87E-03 2.41E-06 53 2.81 149.09 9.76E-04 1.72E-07 125 3.71 464.25 2.44E-04 1.03E-08

Average 32.28 106.34 452.93

Improvement Over HBU 20.97% 49.15% 60.30%

Improvement Over FloPoCo-PPA 79.20% 58.31% 8.51%

range issue and increasing contrast. An example of this is

shown in Fig. 8a, where the full-body PET scan shows two

hot spots. These dominate the dynamic range, hence reducing

detail on other body features. After homomorphic filtering,

we get Fig. 8b. This retains the two hot spots in the brain

and the lung but increases the detail on lower-intensity parts

of the image. Another application of homomorphic filtering

is in neurocomputing to decode information from the spiking

sequence of a neuron model [13].

For the purposes of this work, we will investigate homo-

morphic filtering as an image enhancement technique. Here

an input image follows the illumination-reflectance model

[14], where the image is decomposed as a product of the

illumination i(x, y) and reflectance r(x, y).

f(x, y) = i(x, y)× r(x, y)

By applying the log transformation, we can represent the

image as the sum, instead of the product, of illumination and

reflectance, hence allowing us to filter noise from these two
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TABLE III: Number of sub-functions before (Total) and after

(Unique) the proposed self-similarity measures.

SimBU-Exact
8-bit 10-bit 12-bit

Total Unique Total Unique Total Unique
Log 64 5 128 35 512 39

Exp 64 5 256 5 1024 5

Sigmoid 2 2 256 16 1024 16

GELU 2 2 256 11 512 53

Sin 4 2 4 2 128 64

Sqr 64 7 256 8 1024 8

SimBU-Approx
8-bit 10-bit 12-bit

Total Unique Total Unique Total Unique
Log 32 3 64 7 128 16

Exp 64 1 64 5 256 7

Sigmoid 64 2 256 4 512 9

GELU 64 1 128 3 512 4

Sin 4 2 4 2 512 7

Sqr 64 1 128 5 256 11

components.

ln(f(x, y)) = ln(i(x, y)) + ln(r(x, y))

The filtering part of this process is typically done in the

frequency domain by applying FFT to the log-transformed

image. But for this FPGA application, the filtering is done

in the spatial domain by convolving a 5 × 5 high-pass filter

kernel. To test our implementation of non-linear functions, we

implemented an end-to-end flow for a 5 × 5 window, which

will loop across the entire image. A block diagram of this is

shown in Fig. 7. The Log and Exp layers perform the following

functions:

• Log: ln(x+ 1)

• Exp: ( 1−2−10

exp(1) )× exp(2x− 1)

To support FloPoCo-PPA [10], [11] and get good accuracy,

the functions and convolution output are re-scaled and shifted

such that the input and output ranges of each non-linear

function fit the interval [0, 1). Since each input and output scale

is a predetermined constant, we do not require additional mul-

tiplication/division to scale up/down our quantized values, and

these scaling constants are built into the non-linear functions.

Since the input and output of each non-linear function are in

the range of [0, 1), we don’t require any integer bits in the fixed

point representation of the inputs and outputs in the functions.

Since convolution outputs a signed fixed-point integer, we

add and shift to convert the range to [0, 1) before passing

through the Exp layer, in which 2x− 1 corrects for the range

change. The bit lengths of multiplication and accumulation in

convolution are automatically extended to ensure no overflow.

The re-scale and shift after the convolution is needed to bring

the bit length back down to the same range as the Exp layer.

Re-scaling is done purely through a right-shift operation.
To evaluate our method in terms of hardware cost and

accuracy, we used Xilinx’s Kintex-7 FPGA and Vivado 2020.2
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Fig. 7: Block diagram of the homomorphic filter on a 5 × 5
window.

to implement a 10-bit homomorphic filter for a 5×5 window,

as described in Fig 7. For accuracy results, the final image

using the quantized look-up tables of the Log and Exp layers,

and integer-based convolution is compared to the floating-

point reference output. Table IV shows the hardware cost and

accuracy of the implemented homomorphic filtering. Since

the function in the Exp layer is only done once to the

output pixel, we implemented this layer using SimHBU-Exact

for both variants of SimHBU. As seen, our SimBU-Exact

method improves the area × delay hardware cost of HBU by

7% without losing quality, and our SimBU-Approx method

improves that by 44% with negligible quality loss. Compared

to FloPoCo-PPA, our SimBU-Approx method reduces the

hardware cost by 46% with higher quality. We can see in

Fig. 8c that the subjective quality difference between SimBU-

Approx and reference image is well within the acceptable

range. Finally, Fig. 9 compares the area × delay hardware cost

of the implemented non-linear functions and homomorphic

filtering.

(a) Input (b) Floating Point (c) Our method

Fig. 8: Homomorphic filtering test images of PET Scan.

Test image sourced from [14]. Part (b) shows homomorphic

filtering applied to the input image using floating point compu-

tations. Part (c) shows the results from homomorphic filtering

using the SimBU-Approx method.

V. CONCLUSION

In this work, we proposed a method to implement non-

linear functions given a target maximum error. It provides a
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TABLE IV: Homomorphic filtering’s hardware cost and accu-

racy results.

Exact Methods

Method Area Delay A × D MSE PSNR

HBU [9] 2738 24.03 65,796.88 4.37E-01 51.72

SimBU-Exact (our method) 2538 23.99 60,879.01 4.37E-01 51.72

Approximate Methods

Method Area Delay A × D MSE PSNR

FloPoCo-PPA [10], [11] 2430 27.83 67,629.33 4.62E-01 51.48

SimBU-Approx (our method) 1538 23.76 36,535.19 4.56E-01 51.54
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Fig. 9: Comparisons of hardware cost in non-linear functions

and homomorphic filtering.

trade-off between accuracy and hardware cost by reducing

the number of sub-functions in the previous HBU (hybrid

binary-unary) method and replacing them with simple bit-

wise transformers. In terms of area × delay hardware cost,

our results show that our method outperforms HBU even with

no approximation error budget. By approximating the least

significant bit, our method beats the FloPoCo-PPA (piece-wise

polynomial approximation) method at up to 12-bit resolutions

as well. Finally, we implemented a 10-bit homomorphic filter

as an image processing application to show the benefits of

our method compared to the previous works. Without loss of

quality, our method implemented the filter at lower hardware

cost compared to the previous exact and approximate methods.
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