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Abstract—Constant coefficient multipliers are widely used
in digital signal processing and machine learning architec-
tures. Researchers have proposed HBU-CCM (hybrid binary-
unary constant coefficient multiplier), which is an approximate
method that outperforms conventional binary and FloPoCo-
KCM (table-based real multiplier) methods in terms of hard-
ware cost at the expense of accuracy due to aliasing issues.
SimBU (self-similarity-based hybrid binary-unary) is another
method that was recently proposed to implement general
nonlinear functions using self-similarities leading to few hard-
ware resources. In this work, we use a simplified version of
the SimBU algorithm to address the aliasing issues of HBU-
CCM and improve accuracy. We also implement a convolution
kernel for a Gaussian blurring filter to evaluate our method
and compare it to previous works. Our method outperforms
conventional binary and FloPoCo-KCM methods in terms of
hardware cost with desired accuracy and with no aliasing error
as opposed to HBU-CCM.

1. Introduction

Multiplication is ubiquitous in digital systems and is
used in many applications such as signal processing, ma-
chine learning, and machine vision. For instance, multipli-
cation takes 90% of the computation time in a convolutional
neural network (CNN) in which hundreds of thousands of
parallel multiply-accumulate operations are performed [1],
[2], [3]. However, due to limited hardware resources, im-
plementing that many multipliers in parallel is not feasible
in most FPGAs [4]. Additionally, folding the architecture
of a CNN requires on-chip or off-chip memory to store
weights, which limits the efficiency significantly [4]. Using
high-performance constant coefficient multipliers (CCMs) is
a promising solution that can directly perform the multipli-
cations without transferring the weights between memory
and multipliers [5]. Recently, various methods have been
proposed to optimize CCMs in terms of hardware cost and
accuracy [6], [7], [8], [9], [10].

FloPoCo [7] is a framework to generate arithmetic cores
on FPGAs that encompasses a variety of methods to perform
linear and nonlinear operations. It can implement CCMs
with real coefficients using a table-based method, which is

referred to as FloPoCo-KCM. In this method, pre-computed
partial products are stored in lookup tables and added to-
gether base on the input value [8]. Despite the simplicity of
this method, it utilizes a large amount of hardware resources
for storing the partial products, especially at high resolutions
and low target error values.

Unary computing uses thermometer encoding of num-
bers, which in turn paves the way for performing compu-
tations needed to evaluate an arbitrary function using only
wires and XOR gates instead of complex logic gates [11],
[12], [13], [14], [15], [16]. Pure uanry (PU) [11], [12] is the
first method that used unary representations to implement
such nonlinear functions at less hardware cost than conven-
tional binary and stochastic computing methods [17], [18],
[19], [20]. However, PU is not efficient at high resolutions,
because it is not scalable, and its hardware complexity grows
exponentially as the resolution increases. Hybrid binary-
unary (HBU) [13], [14] method was then proposed to solve
the scalability issue of PU by breaking a function into sub-
functions at lower resolutions and implementing them using
the PU method at lower hardware cost. Although HBU
is more scalable compared to PU, it needs to implement
and multiplex a large number of sub-functions. However, if
the function of a multiplier with real constant coefficient
is broken into sub-functions, they will look very similar
to each other. They are not exact matches of each other
as a byproduct of quantization, though. Hybrid binary-
unary constant coefficient multiplier (HBU-CCM) [9], [10]
applies such approximations to use only one sub-function to
implement a CCM, which results in reductions in hardware
cost at the expense of accuracy.

Self-similarity-based hybrid binary-unary computing
(SimBU) [16] was recently proposed to use self-similarities
in a nonlinear function to reduce the number of sub-
functions needed to implement the function at the desired
precision level. In other words, it first identifies the similar
sub-functions that can be derived from each other through
simple transformations such as right/left shifting, inverting,
and vertical moving. Then, it chooses a minimum set of
unique sub-functions that can derive the original function
given the target accuracy. In this paper, we use a simplified
version of the SimBU algorithm to implement CCMs at
higher accuracy than HBU-CCM. It not only limits the maxi-

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n 

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
38

44

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:25:45 UTC from IEEE Xplore.  Restrictions apply. 



mum absolute error according to the given target error value,
but also minimizes the mean square error. We implemented a
number of CCMs with real coefficients generated by SimBU
at different resolutions and compared them to FloPoCo-
KCM using the same target error values. Also, we deployed
the SimBU-CCM method to implement a convolution kernel
for a Gaussian blurring filter as an image processing appli-
cation to investigate the effects of aliasing error caused by
HBU-CCM and compare our method to previous works such
as conventional binary, FloPoCo-KCM, and HBU-CCM in
terms of hardware cost and accuracy.

The rest of the paper is as follows. In Section 2.1,
we discuss the previous unary works and their pros and
cons. Next, we introduce a simplified version of the SimBU
algorithm for constant coefficient multipliers in Section 2.2.
We present the FPGA implementation results of constant
coefficient multipliers in Section 3, followed by imple-
mentation results of a convolution kernel for a Gaussian
blurring filter in Section 4. Finally, we conclude the paper
in Section 5.

2. Methodology

2.1. Previous Unary Works

PU (pure unary) [11] was proposed as an alternative
to conventional binary and stochastic computing methods
to implement math functions. PU implements the core of
functions in hardware using the unary number represen-
tation. In unary, a decimal value m is represented as a
sequence in which the first m bits are 1’s and the rest are 0’s.
The total length of the sequence depends on the maximum
value that is needed to be represented in a system. For
instance, the decimal value 4 is 100 in binary and is 1111000
in unary. Performing computations on unary numbers on
FPGAs is much simpler than conventional binary due to the
unpacked nature of the number encoding. For a constant
coefficient multiplier, the computation can be performed
using a network of wires, which is called the ”unary core”.
Fig. 1 shows the architecture of PU and the unary core of
f(x) = 1

3x as an example. The figure shows how an input
value of 3 is converted to an output value of 1. To make
PU computations consistent with other computations of a
digital system, which are performed in binary, an encoder
and decoder are used in the PU architecture to convert the
numbers from binary to unary and back.

Other multipliers with real coefficients can be imple-
mented using wires in unary similar to the unary core
in Fig. 1. For any real coefficient (e.g., 0.753 or log(2)),
the truth table of the multiplication can be obtained after
quantizing the input and output values into fixed-point rep-
resentations. Then, the resulting truth table can be encoded
into unary codes and implemented using the PU method.

Although the unary cores are simple, the encoders and
decoders are costly, especially at high resolutions. In fact,
the cost of these units grows exponentially due to the fact
that the length of a unary sequence grows exponentially

Input 

Binary

1 1 1 0

1

0

Input Unary

O
u
tp

u
t 

U
n
ar

y

0 0 0

0

0 0

Encoder Unary Core Decoder
Input 

Unary

Output 

Unary

Unary Core

𝑓 𝑥
=
1

3
𝑥

Output 

Binary

Pure Unary Architecture

Figure 1: Hardware architecture of a PU (pure unary) unit.

as the resolution increases, which in turn makes PU not
scalable. To tackle the scalability issue of PU, HBU (hybrid
binary unary) [13] was proposed. HBU breaks a function
into a number of sub-functions. It also subtracts the mini-
mum value of the sub-function, which is called the bias of
that sub-function, from all output values in that sub-function
to limit its output range. As a result, a function f turns
into n sub-functions gi with shorter input and output ranges
compared to the original function f .

f(x) =

⎧⎨
⎩

f1(x) = b1 + g1(x) x ∈ [0, x1)
...
fn(x) = bn + gn(x) x ∈ [xn−1, xn)

By shortening the input and output ranges, each sub-
function gi can be implemented using the PU method with
a less complex encoder and decoder. In HBU, all the sub-
functions are implemented using PU and performed in par-
allel. The lower bits of the input binary are enough to
perform the computations of the sub-functions. However,
since the output of only one sub-function is desired based
on the input, the higher bits of the input binary are needed
to determine the correct sub-function and its corresponding
bias. Finally, an adder adds the output of the desired sub-
function and its bias in binary.

Base Function gbase(x) Original vs Reconstructed

Function f(x) 

Reconstructed

Original

b4

b3

b2
b1

Figure 2: The aliasing error introduced after the reconstruc-
tion of a CCM using the HBU-CCM method.

In CCMs with real coefficients, the sub-functions are
approximately equal to each other, i.e., g1 ≈ g2 ≈ · · · gn.
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Such approximations are referred to as ”aliasing”. Although
the sub-functions are exactly the same when represented
as real numbers, this is not the case after a fixed-point
quantization. HBU-CCM [9] is a method that uses aliasing
approximations to implement such multipliers less costly. In
other words, a function f(x) = cx is written as follows.

f(x) ≈ gbase(x) +

 b1 x ∈ [0, x1)
...
bn x ∈ [xn1

, xn)

where gbase(x) = f(x) for x ∈ [0, x1). Fig. 2 shows the
aliasing issue after the reconstruction of f(x) = 0.4375x at
5-bit resolution using gbase(x).

As a result, HBU-CCM reduces hardware cost by imple-
menting only one sub-function as opposed to HBU in which
all the n sub-functions are implemented. Fig. 3 shows the
HBU-CCM architecture.

Encoder +Decoder

…b1 b2 bn

Multiplexer

Unary Core
gbase

Input Binary
(lower bits)

Input Binary
(higher bits)

Output 
Binary

Figure 3: The hardware architecture of HBU-CCM (hybrid
binary-unary constant coefficient multiplier).

The aliasing error can result in one bit inaccuracy and
potentially affect the quality of a system dramatically. In
Section 4, we show how such approximations affect the
accuracy of a convolution operation in an image process-
ing application. To address the aliasing issue, a simplified
version of the SimBU [16] algorithm can be deployed. The
original SimBU algorithm was proposed to implement non-
linear functions by breaking a function into sub-functions
and exploiting the self-similarities among them and their
transformations. For instance, function f(x) = sin(2πx)
is uniformly broken into four sub-functions, however, in
SimBU as opposed to HBU, only two of them are imple-
mented using the PU method. The other sub-functions are
derived from those two sub-functions through NOT gates. In
this paper, we use the SimBU algorithm to find a minimum
set of sub-functions to implement a CCM with desired
accuracy and with no aliasing error. The original SimBU
algorithm provides a trade-off between hardware cost and
accuracy, which would be beneficial for many applications,
but its applicability to CCMs is limited due to the aliasing
issue. We harness the hardware saving benefits of SimBU,
but further customize the algorithm to specifically address
the aliasing issue in CCMs, which are widely used in
machine learning and image processing applications.

2.2. Simplified SimBU [16] Algorithm for CCMs

As we discussed in Section 2.1, HBU-CCM [9] breaks
the function of a CCM into sub-functions and approximates
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Figure 4: The hardware architecture of SimBU-CCM (our
method). The modified biases can be obtained by Eq. 6

all of them with a single sub-function gbase, which creates
aliasing errors. In this section, we introduce a simplified
version of the SimBU [16] algorithm to implement CCMs
given a target maximum absolute error.

We uniformly break a function f(x) = cx, where c is a
real constant value, into n sub-functions.

f(x) =

 f1(x) x ∈ [0, 2wu)
...
fn(x) x ∈ [(n− 1)× 2wu , n× 2wu)

where wu is the bit-length of the sub-functions gi. Therefore,
the total number of sub-functions is n = 2w−wu , where w
is the bit-length of the original function f . In Fig. 2, n = 4.

Next, we separate the initial bias of each sub-function to
reduce their output ranges. The initial bias is the minimum
value of each sub-function in its input interval.

f(x) =

 f1(x) = b1 + g1(x) x ∈ [0, 2wu)
...
fn(x) = bn + gn(x) x ∈ [(n− 1)× 2wu , n× 2wu)

where bi = min{fi} is the initial bias of the sub-function
fi. The bias values b1, b2, · · · , b4 are shown in Fig. 2.

Unlike the previous work HBU-CCM [9], we do not
approximate all the sub-functions into a single sub-function
gbase ≈ g1 ≈ · · · ≈ gn. Doing so will introduce aliasing er-
rors, as evident in Fig. 2: using only gbase to approximate all
sub-functions results in mismatches between the quantized
value of the function and the approximate version. Instead,
we compare all the sub-functions together and find the
minimum set of unique sub-functions that can reconstruct
the original function f given the target error value. In the
example of Fig. 2, f2 can better approximate f4 than f1: it
would results in less aliasing mismatches.

We also modify the initial biases bi to maximize the sim-
ilarities among the sub-functions and minimize the hardware
cost, which is something the original SimBU work [16] did
not do. Furthermore, unlike the original SimBU algorithm,
we do not need to consider transformations such as NOT,
shift-left and shift-right of each sub-function when searching
for similarities among different sub-functions. That would
have been beneficial in nonlinear functions.
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To find the minimum set of sub-functions, we first iden-
tify the similar sub-functions and construct the following
n× n Boolean matrix, which is called SimilarityMatrix
or SM .

SM =


sm11 sm12 · · · sm1n

sm21 sm22 · · · sm2n

...
...

. . .
...

smn1 smn2 · · · smnn


n×n

(1)

where smij (i ̸= j) is 1, if and only if gi can be derived from
gj given the target maximum absolute error TargetErr.

smij = 1⇔ ∃ bmi, i ̸= j,max{|Float(bi + gi(x))

−Fixed(bi + bmi + gj(x))|} ≤ TargetErr
(2)

where Float(x) and Fix(x) denote the floating-point and
fixed-point value of x, respectively. The parameter bmi is
a constant value that modifies the initial bias bi to increase
the similarity between gi and gj . This parameter can be
obtained by the following equation, which calculates the
rounded average point-to-point distance between the two
functions.

bmi = ⌊
1

2wu

∑
x

(gi(x)− gj(x))⌉ (3)

However, the parameter bmi cannot take any arbitrary
value, and there are constraints on that to make sure that
the addition of the sub-function and the modified bias fits
in w bits.

0 ≤ bmi + bi + gj(x) < 2w (4)

After finding all the similar sub-functions and construct-
ing the matrix SM , we can find the minimum set of unique
sub-functions through an iterative process. We add all the
entries of SM vertically to obtain an n-element vector,
which is called SimilarityV ector or SV .

SV =
[
sv1 sv2 · · · svv

]
1×n (5)

where svj =
∑n

i=1 smij . The index of the maximum
element of SV indicates the first unique sub-function,
i.e. gp is the first unique sub-function, where p =
argmaxidx SV [idx]. All the non-zero entries in the pth

column indicate all the other sub-functions that can be
derived from gp. Next, we zero the pth row and column of
SM as well as all the rows and columns corresponding to
the sub-functions that can be derived from gp. For instance,
if gs can be derived from gp (i.e., svsp = 1), we zero the sth

row and column of SM as well, because that sub-function
gs is no longer available as an independently-implemented
sub-function for other sub-functions to be derived from
it. Additionally, the initial bias bs must be modified into
b̂s = bs + bms, where bms can be obtained by Eq. 3.

b̂s = bs + bms (6)

Next, we recalculate the vector SV and find the next unique
sub-function. We continue this process until all the elements
of SV are zeros.

As a result, a number of unique sub-functions are found
that implement the function f(x) = cx with the desired
accuracy, as opposed to HBU-CCM which uses only one
sub-function to approximately implement the function.

Algorithm 1 shows the simplified version of SimBU [16]
for CCMs. Sub and Bias are two arrays that store the
values of the sub-functions and their initial biases, respec-
tively. UniqueSub is an array that shows the index of a
unique sub-function for each sub-function. For instance, if
Unique[i] = j, it means that sub-function gi can be derived
from the unique sub-function gj . ModifiedBias is another
array that holds the initial bias of each sub-function after the
modification due to the parameter bmi according to Eq. 3.

Fig. 4 shows the architecture of SimBU for CCMs.
The block “Connections” shares the outputs of the unique
sub-functions to derive all the sub-functions according to
their similarities that are found by the simplified SimBU
algorithm.

Algorithm 1: Simplified SimBU [16] Algorithm
1 Parameters: TargetErr
2 Input: Sub,Bias
3 Outputs: UniqueSub,ModifiedBias

4 n← len(Subfunction)
5 for i = 1 to n do
6 for j = 1 to n do
7 bmi ← ⌊ 1

2wu

∑
(Sub[i]− Sub[j])⌉

8 Err ← max{|Float(Bias[i] + Sub[i])−
9 Fixed(Bias[i] + bmi + Sub[j])|}

10 if Err ≤ TargetErr then
11 SM [i][j]← 1
12 else
13 SM [i][j]← 0
14 end
15 end
16 end
17 while

∑
i

∑
j SM [i][j] ! = 0 do

18 SV ←
∑

i SM [i][:]
19 idx← argmaxi SV [i]
20 for i = 1 to n do
21 if i ! = idx and SM [i][idx] == 1 then
22 Unique[i]← idx
23 bmi ← ⌊ 1

2wu

∑
(Sub[i]− Sub[idx])⌉

24 ModifiedBias[i]← Bias[i] + bmi

25 SM [i][:]← 0
26 SM [:][i]← 0
27 end
28 end
29 UniqueSub[idx]← idx
30 SM [idx][:]← 0
31 SM [:][idx]← 0
32 end

Authorized licensed use limited to: University of Minnesota. Downloaded on December 07,2023 at 18:25:45 UTC from IEEE Xplore.  Restrictions apply. 



TABLE 1: Average FPGA hardware cost of real CCMs, with randomly chosen constants in the range [0, 1).

Method TargetErr (ulp)
Bit-Width win = 8,wout = 8 Bit-Width win = 8,wout = 16

Area (LUT) Delay (ns) A × D Ratio Area (LUT) Delay (ns) A × D Ratio

FloPoCo-KCM [7]

0.51 22.94 1.92 44.34 1 38.25 2.10 81.09 1

0.75 13.53 1.76 24.42 1 29.34 2.00 59.52 1

1.00 10.56 1.78 20.40 1 25.19 1.94 49.01 1

SimBU-CCM (our method)

0.51 14.06 1.84 26.16 0.59 24.22 2.07 50.34 0.62

0.75 10.19 1.63 17.88 0.73 21.88 1.93 42.52 0.71

1.00 8.00 1.48 12.75 0.62 20.72 1.95 40.85 0.83

3. Implementation Results

We developed a Matlab script to generate the RTL
files of CCMs using our proposed method. The RealKCM
tool in the FloPoCo1 framework was also used to generate
CCMs using the FloPoCo-KCM [7] method. For evaluation
purposes, we generated 32 different multipliers with real
coefficients, all of which were randomly chosen in the range
[0, 1). We do not expect the results to change significantly if
one were to choose a different range, e.g., [0, 4) or [−2, 3).
The inputs of the multipliers were assumed to be 8-bit
(win = 8), and the outputs were rounded to both 8-bit
(wout = 8) and 16-bit (wout = 16) resolutions. We also
considered 3 different target error values (TargetError ∈
{0.51ulp, 0.75ulp, 1.00ulp}) to design the multipliers and
evaluate the trade-off between accuracy and hardware cost.
The acronym ulp stands for “units in the last place”. The
multipliers with TargetError = 0.5ulp introduce no ap-
proximation error other than the output quantization error
which is inevitable in hardware. On the other hand, the
multipliers with TargetError = 1.00ulp introduce some
error equal to the approximation of the least significant
bit. In total, we generated 192 different multipliers using
each method for the purpose of evaluation. The RTL files
were synthesized on Xilinx’s Kintex-7 FPGA using Vivado
2020.2.

Table 1 shows average implementation results of the
multipliers using different methods at different output bit
lengths and target error values. In all the tables and figures,
”A × D” denotes the area × delay hardware cost. Fig. 5
shows the area × delay hardware cost for each coefficient.
As seen, at 8-bit output resolution, our method outper-
forms FloPoCo-KCM by 41%, 27%, and 38% at target
error 0.5ulp, 0.75ulp, and 1.00ulp, respectively. At 16-bit
output resolution, it outperforms FloPoCo-KCM by 38%,
29%, and 17% at target error 0.5ulp, 0.75ulp, and 1.00ulp,
respectively.

In SimBU, it is feasible to implement a multiplier using
different target error values for different input regions. Some
applications need to perform multiplications with higher
precision in some input regions and with lower precision in
some other regions. In such cases, TargetError can be set

1. Available at http://www.flopoco.org
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Figure 5: FPGA hardware cost of the real CCMs. Red graphs
and bars represent FloPoCo-KCM, and blue bars and graphs
represent our SimBU-CCM method.

to different values for different regions in the self-similarity
measurements.

In this section, we did not compare our method to
HBU-CCM, for HBU-CCM cannot implement CCMs given
a target maximum absolute error. As the authors in [9]
mention, the maximum absolute error of HBU-CCM without
optimization is one bit (i.e., 1.00ulp), and the maximum ab-
solute error of HBU-CCM with optimization is even higher.
As a result, this method cannot implement the multipliers
with the same precision as our method and FloPoCo-KCM,
and therefore, these methods are not comparable in terms of
hardware cost. On the other hand, the hardware cost of our
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TABLE 2: FPGA hardware cost and accuracy of the convolution kernel of the Gaussian blurring filter.

Method TargetErr (ulp) Area (LUT) Delay (ns) A × D PSNR

Conventional Binary I - 325 18.93 6,152.25 45.01

Conventional Binary II - 231 17.21 3,974.82 32.60

FloPoCo-KCM [7]

0.51 507 5.63 2,854.41 43.18

0.75 234 5.72 1,338.95 38.60

1.00 165 4.80 791.51 36.73

HBU-CCM [9] - 136 4.83 656.61 34.32

SimBU-CCM (our method)

0.51 292 5.36 1,564.24 43.61

0.75 162 4.26 689.47 42.16

1.00 160 4.26 680.96 41.97

method at large target error values is similar to that of HBU-
CCM, because, at the large values, all the sub-functions
are approximated to one sub-function as in the HBU-CCM
method. Nonetheless, in Section 4, we will compare the
accuracy and hardware cost of our method to HBU-CCM on
the implementation of a convolution kernel for a Gaussian
blurring filter.

4. Application

Convolution is a common operation performed in many
applications such as machine learning and signal processing.
In convolutional neural networks, for instance, this operation
is performed in more than 90% of all operations [1], [2],
[3]. In image processing, convolution is also used to filter
an image in time domain.

Gaussian blurring is a low-pass filter that is mostly used
in image processing. The formula of a Gaussian function in
two dimension is defined as follows.

Gσ(x, y) =
1

2πσ2
exp(−x2 + y2

2σ2
)

where x and y are the distances from the origin, and σ is the
standard deviation of the Gaussian function. As a result, the
convolution kernel for a 5×5 Gaussian blurring filter with
σ = 1.6 is as follows.

G1.6 =


0.0165 0.0297 0.0361 0.0297 0.0165
0.0297 0.0534 0.0649 0.0534 0.0297
0.0361 0.0649 0.0789 0.0649 0.0361
0.0297 0.0534 0.0649 0.0534 0.0297
0.0165 0.0297 0.0361 0.0297 0.0165


5×5

In this section, we deploy our method to implement
the 5 × 5 convolution kernel for the Gaussian blurring
filter. We also implemented the kernel using other methods
such as conventional binary, FloPoCo-KCM [7], and HBU-
CCM [9]. We synthesized the kernels on Xilinx’s Kintex-7
FPGA using Vivado 2020.2.

As opposed to the conventional binary and HBU-CCM
methods, our method and FloPoCo-KCM can implement
the multipliers given a target error value. Therefore, we
considered 3 different values as TargetErr which resulted
in different output image qualities. In conventional binary,
we had to quantize the coefficient of the kernels in a fixed-
point representation. Therefore, we considered 2 different bit
lengths for the quantization process. Conventional Binary I
denotes the design in which the coefficients were quantized
into 8 fractional bits, whereas Conventional Binary II de-
notes the design in which the coefficients were quantized
into 6 fractional bits. However, in all the designs, the final
output after the multiply-add operations was shifted to fit in
an 8-bit unsigned integer.

Table 2 shows the FPGA hardware cost and accuracy re-
sults of the convolution kernel for the Gaussian blurring fil-
ter. It can be seen that our method provides a clear advantage
over previous works in terms of accuracy and hardware cost.
For example, at similar PSNR values (43.18 and 43.61), our
method provides a 45% reduction in area × delay hardware
cost compared to FloPoCo-KCM. Compared to HBU-CCM,
our method provides much better PSNR values.

(a) Input (b) Floating-Point (c) SimBU-CCM

Figure 6: The input (a) and output of the convolution
kernel for the Gaussian blurring filter using floating-point
operations (b) and our SimBU-CCM method with the target
error 1.00ulp (c).
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5. Conclusions

We used the SimBU algorithm to implement constant
coefficient multipliers given a target maximum absolute
error using few hardware resources. At the same target
error values, our method outperforms the previous FloPoCo-
KCM method in terms of hardware cost. On average, it
reduces the hardware cost by 36% at 8-bit and 29% at 16-
bit output resolutions compared to FloPoCo-KCM. We also
implemented a convolution kernel for a Gaussian blurring
filter to evaluate our method in terms of hardware cost and
accuracy. Compared to conventional binary, our method re-
duces the hardware cost by 83% and increases the accuracy
by 29%. Compared to FloPoCo-KCM, our method reduces
the hardware cost by 49% and increases the accuracy by
9%. Compared to HBU-CCM, our method increases the
hardware cost by 3% but increases the accuracy by 22%.
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