
ALMOST: Adversarial Learning to Mitigate
Oracle-less ML Attacks via Synthesis Tuning

Animesh B. Chowdhury∗, Lilas Alrahis†, Luca Collini∗, Johann Knechtel†,
Ramesh Karri∗, Siddharth Garg∗, Ozgur Sinanoglu†, Benjamin Tan‡

∗New York University, USA, †New York University Abu Dhabi, UAE, ‡University of Calgary, Canada

Abstract—Oracle-less machine learning (ML) attacks have
broken various logic locking schemes. Regular synthesis, which is
tailored for area-power-delay optimization, yields netlists where
key-gate localities are vulnerable to learning. Thus, we call
for security-aware logic synthesis. We propose ALMOST, a
framework for adversarial learning to mitigate oracle-less ML at-
tacks via synthesis tuning. ALMOST uses a simulated-annealing-
based synthesis recipe generator, employing adversarially trained
models that can predict state-of-the-art attacks’ accuracies over
wide ranges of recipes and key-gate localities. Experiments on
ISCAS benchmarks confirm the attacks’ accuracies drops to
around 50% for ALMOST-synthesized circuits, all while not
undermining design optimization.

I. INTRODUCTION

Setting: Machine learning (ML)-based structural attacks
like [1], [2] can decipher the key-bits of logic-locked circuits
without access to an oracle.1 Such attacks explored and
exploited the impact of logic synthesis on structural properties
of locked netlists. For example, even with bubble pushing –
which is a logic synthesis technique used by locking schemes
to obfuscate the relationship between key-bits to key-gates
– some discernible structures can arise. This is because,
even though logic synthesis is complex and uses carefully
devised power, performance, and area (PPA) heuristics, it is
deterministic, yielding predictable structural transformations
around key-gates, which can be learned on to infer key-bits.

Prior Art: Truly random logic locking (TRLL) [3] and
UNSAIL [4] are assumed to thwart ML attacks – both schemes
remain unbroken as of today. However, both schemes also rely
on specific design properties, like certain structures of gates
to be present in sufficient numbers in the appropriate places,
restricting their general applicability. Both schemes operate
on netlists handled by commercial synthesis tool, which are
operating as block-box modules that optimize for PPA, not for
security. Thus, both schemes needed to “work around” those
tools in a smart way to enable resilient locking schemes.

Challenge: There is a need for logic-locking techniques that
are a) resilient against ML-based, oracle-less attacks exploiting
structural properties of locked netlists, b) generally applicable
to various designs, and c) integrate with logic synthesis and
do not undermine design optimization offered by synthesis.

Scope: We study the causal nexus between logic locking,
logic synthesis, and resilience to ML-based attacks.

For the first time, we propose a logic-locking methodology
that drives logic synthesis to makes the locked circuits resilient

1An oracle provides black-box access to the correct functionality, e.g.,
through a functional chip obtained from the open market.

recipe1

recipe

ML-attack


Locked

Design

Acc.: 62.8%

Acc.: 72.1%

Acc.: 58.2%

recipe2

recipeK

ML-attack


ML-attack


ML-attack


Acc.: 50.0%

Defender

Choose synthesis

recipe

Attacker

Know defender's

recipe

Desired

Fig. 1. Different synthesis recipes have different impacts on the resilience of
a logic-locked design in the context of ML-based attacks.

against ML-based attacks. Unlike TRLL or UNSAIL, we
achieve resilient against ML-based attacks without dedicated
locking strategies or crafted key-gate structures. We demon-
strate that we can use the simplest and vulnerable locking
scheme, i.e., random logic locking (RLL) [5], and still obtain
ML-resilient designs.

However, achieving theis resilience requires tackling prac-
tical challenges. As shown in Fig. 1, even when starting from
the same locked design, varying synthesis recipes will impact
the resiliency against ML attacks differently. Finding synthesis
recipes optimized for a specific metric, e.g., the accuracy of
ML attacks2, is Σ2

p-hard [6]. Thus, our study addresses two
key research challenges (RCs).

1) RC1: Can we explore the synthesis search space to find
some recipe(s) that provide resilience against various
state-of-the-art (SOTA) ML attacks?

2) RC2: Given any recipe, can we efficiently quantify its
ML resiliency without running the various SOTA attacks?

Contributions: ALMOST is a security-centric framework
to generate ML-resilient logic-locked designs using synthesis.
It does not relying on security promises of the locking scheme.
This is important as the value of such promises are subject to
synthesis in the first place. Our contributions include:

1) A framework for security-aware synthesis-recipe gen-
eration using simulated annealing (SA). These recipes
produce netlists that are ML attack resilient (RC1).

2Accuracy is an established ML metric. It is defined as (# correctly
predicted key-bits) / (total # key-bits, i.e., key-size). For a key-size of 128
bits, when an attack correctly predicts 64-of-the-128 bits (and the remaining
64 bits are either incorrectly inferred or not inferred at all), the accuracy is
0.5 or 50%. As a defender, accuracy of 50% is desired. This equates to the
attack is no better than a random guess.



2) An adversarially trained model to predict resiliency of
locked designs post-synthesis against ML attacks (RC2).

3) Public release of source codes and artifacts.
Key Results: For ALMOST-synthesized ISCAS85 bench-

marks, using RLL as an exemplary scheme that is otherwise
fully vulnerable, SOTA ML attacks [1], [7] and non-ML
structural attacks [8] are reduced to random guessing. It is
important to note that ALMOST generates synthesis recipes
that enforce/maintain such resiliency even when the ML-
empowered attacker is fully aware of the recipe. At the same
time, PPA overheads are marginal.

II. ORACLE-LESS ATTACKS ON LOGIC LOCKING

Recent works show the potential of ML models for ad-
vanced attacks in the oracle-less scenario [2], [9], [1], [7].

SAIL [2] tackles XOR/XNOR locking. It learns the local,
synthesis-induced changes around those key-gates, reverting
the binding of key-bits: before bubble pushing, XOR is bound
to ‘0’ and XNOR to ‘1’. SnapShot [9] works by learning the
local changes caused by key insertion and synthesis itself.

While SAIL and SnapShot use classic tensor-based models,
OMLA [1] uses graph neural networks (GNNs), as a natural
representation of gate-level netlists. OMLA extracts localities,
i.e., the sub-circuit structures around key-gates, represents
them as sub-graphs, and passes them to the GNN to predict
the corresponding key-bits through subgraph classification.

These attacks employ self-referencing to train their ML
models. The attacks apply some form of re-locking and re-
synthesis to generate training datasets. The attacks know the
synthesis recipe used by the defender.

SCOPE [7] extracts synthesis reports, e.g., on area and
power, to decipher key-bits. Unlike the attacks above, SCOPE
follows an unsupervised approach for learning the correlation
between key-bit values and synthesis features.

Redundancy attack [8] is a non-ML structural attack. It
assumes that the original design is fully testable. Accordingly,
the attack infers the key-bits as those assignments that cause
fewer untestable faults in the locked circuit.

III. ALMOST FRAMEWORK

We formulate security-aware synthesis as an optimization
problem where the objective is to ensure that locked designs
remain resilient post-synthesis. Thus, we search for synthesis
recipes that structure the netlists such that SOTA attacks, be
they ML or non-ML ones, can achieve only ∼50% accuracy.

Without loss of generality (wolog), we use the open-source
synthesis suite yosys and ABC [10]. Unlike commercial tools,
this suite allows for fine-grain tuning of synthesis recipes,
also accounting for user-defined objectives as needed, i.e., for
accuracy in this work. Like any synthesis tool, this suite takes
register transfer level (RTL) and converts it to a gate-level
netlist, by performing technology mapping using a technology
library. Synthesis transformation and optimization steps are
implemented using the and-inverter-graph (AIG) representa-
tion.

Next, we formulate the problem in detail. Then, we discuss
the framework stages, which are also illustrated in Fig. 3.

A. Problem Formulation

General Problem. In a synthesis recipe S with M trans-
formation steps, the number of recipes of length L is ML.
Security-aware recipe generation can be formulated as:

argmin
S
|AccMS

A
(G(AIG,S))− 0.5| (1)

where G is the synthesis function defined as G : AIG×S −→
AIG. Accuracy (Acc) describes the prediction accuracy of
an attacker’s model MS

A that is built-up using recipe S. Acc
evaluates the resilience of the locked netlist introduced through
synthesis using S; Acc values around 50% are the target.

Note that we do not explicitly consider PPA in the above for-
mulation, but only security. Nevertheless, we observe empiri-
cally that (i) PPA optimization can follow-up on our security-
aware synthesis without undermining the netlists’ resilience
and (b) PPA overheads are, on average, only marginal.

Model MS
A and Naive Approach. We aim to solve the

optimization problem (Eq. 1) using a black-box solver, wolog
SA in this work. The challenge here is that, to accurately
evaluate the effects of the attacker’s model MS

A ,3 we would
need to separately train models MS

A for the varying recipes
S across every iteration. Fig. 1 outlines such naive approach,
which seems computationally expansive.

Challenge for Transferability of MS
A . While MS

A models
are demonstrated to predict key-bits very well, their accuracy
would drop for locked designs that are synthesized using any
other recipe, say S′, i.e., accuracy(MS

A) ≤ accuracy(MS′

A ).
This is because the range of structural transformations induced
by S may not fully match with the range induced by S′.

To confirm this intuition, we run an experiment on the
ISCAS85 circuit c5315 where we trained two attack models,
MS1

A and MS2

A , with training data covering the locked netlist
TS1 and TS2 as synthesized using recipes S1 and S2, respec-
tively. We observe that accuracy(TS1 ,MS1

A ) = 57.52%, whereas
accuracy(TS1 ,MS2

A ) = 52.27%. Similarly, accuracy(TS2 ,MS1

A )
= 53.78% and accuracy(TS2

,MS2

A ) = 58.91%. (We report the
setup and more detailed results in Sec. IV-B.)

These accuracy mismatches clearly show challenges for
transferring MS

A for the evaluation of netlists locked with other
recipes, thus re-iterating the need for training unique models
for each iteration of optimization and exploration of the
synthesis search space (Fig. 1). However, as indicated, training
of separate models for every iteration seem too expensive.

3Typically, MS
A is a binary classifier trained to minimize the loss function

θ̂ = argmin
θ

1

n

n∑
i=1

L(MS
A(θ;xi), yi) := L(X;Y, θ). (2)

where {xi, yi}, i = 1, . . . , n are entires of labeled dataset X , Y and ŵ
is a trainable parameter. For ML attacks, X denotes the feature embeddings
of key-gates of a relocked and resynthesized design, and Y denotes their
corresponding key-bit values. n denotes the total number of locations relocked
in the design. The procedure for labeled dataset generation involves re-locking
the locked netlist under attack and then re-synthesizing it using the defender’s
recipe S This approach is taken by the SOTA ML attacks (Sec. II); it is is
based on the insight that doing so allows to accurately capture the structural
transformations caused by S.



SA-recipe
generator


Locked
Design

Relock

+


Resynthesize

Training

data


generation

Model

training

Proxy

model

Report

Acc.


Acc.
evaluator


Report

Acc.


Huge runtime
overhead

No model

transferability

Exact Acc.


Approx. Acc.


Only inference time

Generalized model


Conventional flow

Alternative flow
Synthe-

sized
design,

recipe

Acc.

Fig. 2. Motivation for a proxy model.

ALGORITHM 1: Adversarial ML attack model training
Data: Re-synthesized locked netlist: AIGinitial, Epochs: N ,

Batchsize: B, Learning rate: γ, Periodicity: R
Result: Adversarial model M∗

A(·; θadv)
1 Relock + Resynthesize AIGinitial with random L = 10 length

recipes.
2 Create Dtraining = (Xtrain, Ytrain) using subgraph extraction from

key-gates.
3 θ0 ← He initialization, t← 0
4 while t < N do
5 if t%R then
6 s∗ ← SA (Tinit,M∗

A(·; θt), Nmax,AIGinitial)
7 Compute Xs∗ , Y s∗ and augment Dtraining

8 Compute ∆θ(t) = −∇L(θ(t))
9 θ(t+1) := θ(t) + γ∆θ(t)

10 return M∗
A(·; θadv)

Proposed Solution. To enable a practical exploration of
the search space, i.e., to tackle the stated RCs, we need an
alternative in form of a proxy model M∗

A that yields good
estimate of MS

A , ∀S ∈ [1,ML]. The challenge and motivation
for such proxy model are also illustrated in Fig. 2.

For training such high-quality, transferable proxy model,
the training data should contain a good number of structural
transformations that are observed for a range of synthesis
recipes. Next, we discuss how to train such proxy model.

B. Adversarially Trained Attacker’s Model M∗
A (➊)

We adopt adversarial re-training [11], [12] to train a model
that is exposed to a wide variation of localities, i.e., subgraph
structures around key-gates. The motivation for adversarial
retraining is as follows: we want to create adversarial sub-
graph embeddings where the attack model M∗

A mispredicts,
whereupon we use these adversarial subgraphs to augment the
training data and to subsequently learn a more robust model.

We create adversarial subgraph embeddings differently to
conventional ℓ2 or ℓinf perturbations in the image/vision do-
main [11]. Since logic synthesis offers no analytical closed-
form function, we do gradient-free optimization. Similar to
adding δ perturbations to original images, we seek for a
synthesis recipe Sadv which transforms the re-locked netlist
such that the subgraph embeddings are misclassified. We solve

Locked design

Lock+

synthesize

Relock + Random
synthesis

Subgraph data

extraction

Training dataInitial recipe

Adversarial dataAdversarial recipeLocked design

Data generation pipeline

Acc. Synthesized

design


ML
model

SA-recipe

generator

Adversarial re-training module

Locked design

SA-recipe generator

1

Adversarial modelSynthesized design

Accuracy
2

Security-
aware

synthesis

Adversarial

re-training


Recipe

Fig. 3. ALMOST framework

an optimization problem for obtaining adversarial samples:

xS = argmax
S

L(M∗
A(θ; x̂), y) (3)

where x̂ = READOUT(hk
AIGS , k ∈ K), (4)

AIGS ← G(AIG, S) (5)

To solve this gradient-free optimization problem, we use
simulated annealing (SA). Once the adversarial samples are
generated, we augment the training data, rendering the model
more robust and generalizable. Thus, we sample synthesis
recipes that can provide diverse variants of the locked netlist
under consideration. We solve the following min-max objec-
tive function for the adversarially trained model M∗

A.

θ̂ = min
θ

max
S

1

m

m∑
i=1

L(M∗
A(θ;x

S
i ), yi) (6)

We outline more details in Algorithm 1.

C. Black-Box Optimization for Security-Aware Synthesis (➋)

While ALMOST may use a variety of black-box optimiza-
tion approaches, like evolutionary algorithms, tree-search, etc.,
we use, wolog, a standard procedure for SA.

IV. EXPERIMENTAL EVALUATION

Next we show how locked and ALMOST-synthesized de-
signs are resilient against SOTA attacks, as the attack accuracy
approaches random guessing.

A. Setup

Benchmarks. We evaluate ALMOST on the largest IS-
CAS85 combinational benchmarks. We initially lock them
with RLL, considering key-sizes of 64 and 128. The resilience
of ALMOST is demonstrated against OMLA, SCOPE, and the
redundancy attacks (Sec. II).

Synthesis. As indicated, we use the synthesis suite yosys
with ABC [10], for its flexibility of tuning synthesis recipes.

We select resyn2 as baseline recipe, which is widely
used for delay optimization. For fair comparison, we devise
fixed-length synthesis recipe of L = 10. We employ seven
synthesis transformations: rewrite, re-substitute,
refactor, rewrite -z, resub -z, refactor



-z, and balance. For technology mapping, we use the
NanGate 45 nm technology library.

Attack Model. As the OMLA framework is publicly avail-
able [1], we employ it for building the attacker’s models.
We set the network architecture, training configuration, and
hyper-parameter settings as reported in [1]. For additional
characterization of ALMOST, we apply recent oracle-less
attacks, SCOPE [7] and Redundancy [8].

We study the effectiveness of adversarially trained M∗
A by

comparing three variants:
• Mresyn2

A is the baseline model, where the attacker re-
locks and re-synthesizes using the defender’s baseline
synthesis recipe, resyn2.

• Mrandom
A is trained on re-locked circuits that are re-

synthesized using random recipes of length L = 10.
• M∗

A is trained using our adversarial data-augmentation-
based re-training.

For adversarial training, we generate adversarial samples
after every R = 50 epochs of training (Alg. 1). We start with
1,000 training data samples considering a 9:1 split for training
and validation. We augment 200 adversarial samples at each
SA iteration. We trained for 350 epochs in total.

B. Comparing Attack Models

Here, we first analyze the prediction accuracy of various
attack models when attacking the original locked circuit syn-
thesized using resyn2 (Tresyn2) and in attacking the locked
circuit synthesized with 1000 random synthesis recipes (the
“random set”). Table I shows the results, where the reported
accuracy on the random set (random column) is the average
achieved accuracy.

We observe a clear gap in accuracy when using Mresyn2
A

to attack Tresyn2 in comparison to its accuracy in attacking
the random set. This shows that Mresyn2

A learns the structural
changes resulting from the application of the defender’s syn-
thesis recipe. However, the model accuracy suffers severely
in attacking the random set. We observe that the accuracy
reduced drastically ∼ 1%− 9% with an average of 4.8%.

In contrast, the accuracy of Mrandom
A varies less in attacking

Tresyn2 compared to attacking the random set. Also, the
accuracy when attacking the random set is better than the
accuracy exhibited by the Mresyn2

A model.
The M∗

A model has more consistent accuracy when at-
tacking Tresyn2 and the random set (0.18% − 2.28%). M∗

A

consistently achieves higher accuracy than the other models
on the random set. This indicates good generalization of M∗

A,
suggesting that it is a good fit as the accuracy evaluator in
ALMOST’s black-box optimization.

C. Generating ALMOST Synthesis Recipe

We generate SALMOST using the SA-based recipe generator
such that the attack accuracy using MALMOST

A is ∼ 50%.
We run SA for 100 iterations using an initial temperature of
120 and acceptance=1.8. Fig. 4 illustrates the SA-based
recipe generation on ISCAS benchmarks. For showing the
effectiveness of ALMOST using the M∗

A model, we compare
our results to two other evaluators: Mresyn2

A and Mrandom
A .

Blue line represents the attack accuracy estimated by M∗
A on

the locked netlist synthesized with the recipe generated during
simulated annealing. Orange and green represent the attack
accuracy trend for Mresyn2

A and Mrandom
A , respectively.

There is a consistent trend in all plots: SA search using
M∗

A requires more iterations to find a synthesis recipe where
accuracy goes to ∼ 50%; with a clear pattern on benchmarks
c2670, c3540, c5315, and c7552. This follows our intuition:
M∗

A is trained with enough subgraph neighborhood diversity
(netlist localities with key-gates 0 and 1). Hence, the SA recipe
generator requires more time to find a synthesis recipe in
the search space that is unfamiliar to M∗

A. In contrast, using
Mresyn2

A , SA will quickly find a synthesis recipe where the
accuracy falls to ∼ 50%. However, it is possible that there is a
substantial accuracy gap between Mresyn2

A and MS
A models for

a particular recipe S generated by SA-based recipe generator
which can give a false indication that the recipe will lead to
general ML attack resilience. Mrandom

A performed similarly to
M∗

A, however, there is a wide variation in accuracy obtained
by Mrandom

A making it not a great choice for the defender’s
proxy model of an attacker. For c2670, c5315, and c7552
where accuracy could not reach ∼ 50% within the budgeted
iterations, we pick the synthesis recipe obtained at the end.

D. Comparing ALMOST Synthesis Recipe with Resyn2

After generating the recipes, we evaluate the efficacy of
ALMOST synthesized circuits in thwarting the oracle-less
machine learning attack (OMLA). Table II compares OMLA
attacks on locked circuits synthesized using resyn2 versus
ALMOST generated synthesis recipe. On most benchmarks,
our test accuracy is ∼ 50%. There is a 3% − 12% drop in
accuracy which is substantial. The proposed approach, which
uses a proxy model in the loop, found a synthesis recipe
from the search space that can transform the netlist structure
in a way that thwarts OMLA from obtaining high accuracy.
We also report attack results from applying the redundancy
attack [8] and SCOPE [7]. ALMOST synthesized circuits are
more resilient than resyn2 synthesized ones.

E. What Happens if the Attacker Re-Synthesizes?

We assume the attacker can re-synthesize the ALMOST
locked netlist with the aim to gain more information about how
a design has been transformed. Hence, we run experiments
to analyze whether an attacker can improve the accuracy
of MALMOST

A by re-synthesizing a locked netlist again and
training MALMOST

A . We re-synthesize the ALMOST locked
circuit for area optimization and delay optimization, assuming
that this is the “typical” goal for synthesis. As such, a defender
wants to avoid any correlation between area and/or delay
optimization and attack accuracy since this can be exploited by
the attacker. We use the SA-based recipe generator with the
ALMOST synthesized circuit as input and generate recipes
targeting area/delay minimization. We take area and delay
numbers of resyn2 as a baseline.

Fig. 5 shows the attack accuracy of M∗
A on re-synthesized

circuits and corresponding area/delay. Blue denotes the attack
accuracy of the ML model and orange denotes the normalized



TABLE I
PREDICTED ATTACK ACCURACY (%) FOR DIFFERENT ADVERSARIAL MODELS

Variant Key-size
Benchmarks

c1355 c1908 c2670 c3540 c5315 c6288 c7552

resyn2 random resyn2 random resyn2 random resyn2 random resyn2 random resyn2 random resyn2 random

Mresyn2
A

64 57.52 54.21 59.01 50.57 58.00 51.17 59.63 52.26 62.62 57.46 52.21 53.32 66.33 58.46
128 59.36 53.21 62.12 57.56 59.26 52.32 60.25 53.21 68.95 58.55 53.31 51.26 71.21 59.89

Mrandom
A

64 63.71 59.97 51.63 53.36 61.00 57.78 62.38 58.84 59.96 59.93 56.63 53.32 66.33 60.17
128 54.58 55.67 57.85 58.55 62.21 57.85 54.20 55.87 65.41 61.25 52.26 51.88 65.25 61.56

M∗
A

64 61.94 61.05 53.27 55.55 63.00 62.50 62.38 61.37 61.61 61.35 53.09 54.14 63.36 63.18
128 59.36 58.89 61.05 62.10 61.89 63.45 59.98 63.42 67.88 69.25 52.99 54.58 69.25 66.59

0 20 40 60 80 100
Iterations

0.45
0.48
0.50
0.53
0.55
0.58
0.60
0.62

Ac
cu

ra
cy

c1908
adversarial
resyn2
random

0 20 40 60 80 100
Iterations

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

c2670
adversarial
resyn2
random

0 20 40 60 80 100
Iterations

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

c3540
adversarial
resyn2
random

0 20 40 60 80 100
Iterations

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

c5315
adversarial
resyn2
random

0 20 40 60 80 100
Iterations

0.48
0.50
0.53
0.55
0.57
0.60
0.62
0.65
0.68

Ac
cu

ra
cy

c6288
adversarial
resyn2
random

0 20 40 60 80 100
Iterations

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

c7552
adversarial
resyn2
random

Fig. 4. Simulated annealing-based recipe search for minimizing attack accuracy to 50% or 0.5. M∗
A model consistently has better attack accuracy and thus

SA takes more iterations to find a recipe resulting in accuracy ∼ 50%.

TABLE II
ATTACK ACCURACY (%) CONSIDERING SOTA ATTACKS

Attack Keybits Recipe Benchmarks

c1355 c1908 c2670 c3540 c5315 c6288 c7552

OMLA
64 resyn2 57.52 59.01 58.01 59.63 62.62 52.51 66.33

ALMOST 54.18 47.80 49.78 46.57 49.78 49.88 55.55

128 resyn2 59.36 62.12 59.26 60.25 68.95 53.31 72.21
ALMOST 51.87 49.81 52.11 48.92 52.33 50.00 51.88

SCOPE
64 resyn2 60.94 51.56 35.94 34.38 45.31 53.13 40.63

ALMOST 56.25 48.44 31.25 37.50 57.81 51.56 43.75

128 resyn2 51.56 46.09 29.68 36.71 37.50 59.37 46.09
ALMOST 50.78 46.09 35.15 36.71 39.06 53.91 45.31

Redundancy
64 resyn2 32.81 37.50 28.13 50.00 50.00 34.38 35.94

ALMOST 39.06 37.50 31.25 45.31 50.00 31.25 32.81

128 resyn2 39.84 35.93 21.09 41.40 41.40 31.25 37.50
ALMOST 35.15 42.96 19.53 44.53 39.84 34.38 35.16

area/delay (compared with resyn2). Recipe length for re-
synthesis is L = 10 to match the length of resyn2. For
delay minimization, SA generates recipes minimizing delay.
However, there is no noticeable variation in the area except
for c2670 and c7552. There is no clear correlation between
area/delay minimization and improvement/decline in attack
accuracy. An attacker who re-synthesizes the circuit will not
know which synthesis recipe to use to improve attack accuracy.

F. Analyzing power-performance-area (PPA) metrics

To analyze the overhead ALMOST synthesized circuits
bear for ML attack resilience, we present and analyze the
PPA overhead of ALMOST synthesized designs by running
Synopsys DC compiler in Table III. We consider two settings:
(1) No optimization (-opt), and (2) Extreme optimization
(+opt), where we enable ultra effort optimization along with
the area recovery option. We use the PPA of the original locked
netlist as a baseline. Area overhead varies in the range of
∼ ±3%. Similarly, power overhead also varies in the range of
∼ ±5%. For delay, circuits like c2670 have a relatively high
overhead of around 18%. However, delay overhead is 15%
lower for c7552. On average, ALMOST generates ML attack
resilient circuits with low overhead.

V. CONCLUSION AND FUTURE WORK

ALMOST mitigates oracle-less ML-based attacks on logic
locking. It uses synthesis tuning to make designs locked with
a 100% vulnerable locking approach attack resilient using
suitable synthesis recioes, with low impacts on PPA metrics. It
applies to other locking techniques. Future research directions
include investigating the impact of synthesis transformations



0 20 40 60 80 100
Iterations

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Ac
c.

/D
el

ay
 ra

tio
c1355

Acc.
Delay ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

/A
re

a 
ra

tio

c1355
Acc.
Area ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
c.

/D
el

ay
 ra

tio

c1908
Acc.
Delay ratio

0 20 40 60 80 100
Iterations

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
c.

/A
re

a 
ra

tio

c1908

Acc.
Area ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

/D
el

ay
 ra

tio

c2670
Acc.
Delay ratio

0 20 40 60 80 100
Iterations

0.5
0.6
0.7
0.8
0.9
1.0
1.1

Ac
c.

/A
re

a 
ra

tio

c2670
Acc.
Area ratio

0 20 40 60 80 100
Iterations

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Ac
c.

/D
el

ay
 ra

tio

c3540
Acc.
Delay ratio

0 20 40 60 80 100
Iterations

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Ac
c.

/A
re

a 
ra

tio

c3540

Acc.
Area ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

/D
el

ay
 ra

tio

c5315
Acc.
Delay ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

/A
re

a 
ra

tio

c5315

Acc.
Area ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
c.

/D
el

ay
 ra

tio

c7552
Acc.
Delay ratio

0 20 40 60 80 100
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Ac
c.

/A
re

a 
ra

tio

c7552

Acc.
Area ratio

Fig. 5. SA-based recipe search minimizing delay, area after ALMOST-driven synthesis. Note: attack accuracy does not correlate with delay, area optimization.

TABLE III
POWER-PERFORMANCE-AREA (PPA) OVERHEAD (%) FOR ALMOST SYNTHESIZED CIRCUITS. -OPT: NO OPTIMIZATION, +OPT: EXTREME OPTIMIZATION

Variant Key-size
Benchmarks

c1355 c1908 c2670 c3540 c5315 c6288 c7552

-opt +opt -opt +opt -opt +opt -opt +opt -opt +opt -opt +opt -opt +opt

Area 64 +2.19 +0.89 -0.63 -0.95 -2.41 -2.89 +1.08 +0.73 +0.76 +0.53 +1.18 +0.98 +2.28 +2.19
128 -0.05 -0.65 +2.32 +1.98 -0.38 -0.57 +0.94 +0.67 +0.04 -0.05 +3.08 +2.79 +0.84 +0.76

Delay 64 -3.45 -3.45 -4.95 -4.95 +18.31 +18.31 -0.46 -0.46 +5.00 +3.75 -0.93 -0.70 -15.24 -15.24
128 +9.49 +4.47 -2.37 -1.42 +8.28 +8.28 +7.52 +7.52 -2.69 -2.69 -6.70 -6.49 -7.01 -7.01

Power 64 +3.36 +2.25 -0.28 -0.52 -3.64 -4.24 +3.49 +3.40 -0.12 -0.06 -0.36 -0.96 +1.17 +1.38
128 -1.10 -1.37 +2.20 +2.05 -0.17 +0.12 -1.02 -1.16 +0.81 +0.63 +2.57 +2.28 +0.81 +0.48

in creating indistinguishable key-gate localities for ML at-
tack resilient design, developing a generalized reinforcement
learning-based synthesis engine to generate resilient designs,
and jointly optimizing PPA and security metrics.

ACKNOWLEDGMENTS

This research was supported in part by NSF Award 1553419
and 2039607. The opinions, findings, and conclusions, or
recommendations expressed are those of the author(s) and do
not reflect the views of any sponsors.

REFERENCES

[1] L. Alrahis et al., “OMLA: An oracle-less machine learning-based attack
on logic locking,” IEEE TCAS II, vol. 69, no. 3, pp. 1602–1606, 2022.

[2] P. Chakraborty et al., “SAIL: Machine learning guided structural analysis
attack on hardware obfuscation,” in AsianHOST, 2018, pp. 56–61.

[3] N. Limaye et al., “Thwarting all logic locking attacks: Dishonest oracle
with truly random logic locking,” IEEE TCAD, vol. 40, no. 9, pp. 1740–
1753, 2020.

[4] L. Alrahis et al., “Unsail: Thwarting oracle-less machine learning attacks
on logic locking,” IEEE TIFS, vol. 16, pp. 2508–2523, 2021.

[5] J. A. Roy et al., “EPIC: Ending piracy of integrated circuits,” in DATE,
2008, pp. 1069–1074.

[6] C. Umans, “Hardness of Approximating Σ2
p Minimization Problems,”

in FOCS, 1999, pp. 465–474.
[7] A. Alaql et al., “SCOPE: Synthesis-based constant propagation attack

on logic locking,” IEEE TVLSI, vol. 29, no. 8, pp. 1529–1542, 2021.
[8] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy

identification,” in DATE. IEEE, 2019, pp. 540–545.
[9] D. Sisejkovic et al., “Challenging the security of logic locking schemes

in the era of deep learning: A neuroevolutionary approach,” ACM JETC,
vol. 17, no. 3, pp. 1–26, 2021.

[10] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in CAV, 2010, pp. 24–40.

[11] A. Madry et al., “Towards deep learning models resistant to adversarial
attacks,” arXiv preprint arXiv:1706.06083, 2017.

[12] G. Jagatap et al., “Adversarially robust learning via entropic regulariza-
tion,” Frontiers in AI, vol. 4, 2022.


