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Abstract: Odor-guided navigation is fundamental to the survival and reproductive success of many
flying insects. Despite its biological importance, the mechanics of how insects sense and inter-
pret odor plumes in the presence of complex flow fields remain poorly understood. This study
employs numerical simulations to investigate the influence of turbulence, wingbeat-induced flow,
and Schmidt number on the structure and perception of odor plumes by flying insects. Using an in-
house computational fluid dynamics solver based on the immersed-boundary method, we solve the
three-dimensional Navier–Stokes equations to model the flow field. The solver is coupled with the
equations of motion for passive flapping wings to emulate wingbeat-induced flow. The odor
landscape is then determined by solving the odor advection–diffusion equation. By employing a
synthetic isotropic turbulence generator, we introduce turbulence into the flow field to examine its
impact on odor plume structures. Our findings reveal that both turbulence and wingbeat-induced
flow substantially affect odor plume characteristics. Turbulence introduces fluctuations and perturba-
tions in the plume, while wingbeat-induced flow draws the odorant closer to the insect’s antennae.
Moreover, we demonstrate that the Schmidt number, which affects odorant diffusivity, plays a
significant role in odor detectability. Specifically, at high Schmidt numbers, larger fluctuations in
odor sensitivity are observed, which may be exploited by insects to differentiate between various
odorant volatiles emanating from the same source. This study provides new insights into the complex
interplay between fluid dynamics and sensory biology and behavior, enhancing our understanding of
how flying insects successfully navigate using olfactory cues in turbulent environments.

Keywords: flapping wings; unsteady aerodynamics; turbulence; wingbeat-induced airflow; olfaction
in insects

1. Introduction

The ability of flying insects to navigate complex environments using olfactory cues
is a remarkable feat that has captured the attention of researchers in various disciplines,
ranging from biology to engineering [1–4]. Odor-guided navigation is crucial for a variety
of essential activities, such as foraging for food, locating mates, and avoiding predators [5].
Understanding the mechanisms underlying this odor-guided navigation can not only shed
light on intricate biological processes but also inspire engineering solutions for artificial
sensing and navigation systems.

One of the key challenges in this research domain lies in the inherent complexity
of fluid flow conditions that insects encounter. In nature, turbulent air flows can signif-
icantly distort and fragment odor plumes, transforming them into complex, fluctuating
filaments [6,7]. These turbulent conditions introduce variability in the plume structure, ren-
dering the olfactory-guided navigation of insects a challenging task [8]. Although efforts
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have been made to visualize odor plumes via techniques like photoionization detectors
(PID) [9], fluorescein dye [10], and planar laser-induced fluorescence (PLIF) [11,12], these
studies have struggled to simultaneously capture both the fluid dynamics and detailed
odor plume structures at the microscale level relevant to insects. Early research led by
Wright [13] used Gaussian plume models to estimate average pheromone concentrations
downwind of an odor source. As  one might expect, the average concentration decreases
with the downwind distance from the source, and the average concentration on the midline
of the plume decays with a power law. However, later studies [14,15] indicated that insects
do not respond to the mean concentration as predicted by the Gaussian distribution model.
Instead, insects respond to instantaneous concentrations that are frequently many-fold
higher than the mean concentrations. More recent experimental studies have focused
on capturing these instantaneous concentrations and their dispersal patterns, revealing a
probability density function model that can describe the fluctuating odor landscape
adequately, including statistics of the fluctuations [11,12,16,17]. In addition to the fluctua-
tions, the discontinuous nature of odor filaments causes intermittency in the concentration.
Celani et al. [6] used a Lagrangian approach to solve the advection–diffusion equations
and demonstrated that intermittency is a function of downwind distance from the source.
Their results illustrate that the distributions of whiff durations and blank durations follow
a power law with an exponent of  3/2.

Despite considerable experimental and theoretical studies on the spatiotemporal struc-
tures of odor landscapes; however, no attempts have been made to incorporate the effects
of wingbeat-induced flow into a predictive model for concentration fluctuations and in-
termittency. A  number of experimental [18,19] and numerical studies [3,20] indicate that
the local odor concentration can be significantly enhanced by the induced flow generated
by flapping wings [21]. One might expect that the unsteady flow generated by flapping
wings would perturb the odor plume structure and odorant transport around the
olfac-tory receptors of insects (i.e., antennae), and thus impact how the insects
perceive the global odor landscape. To date, it still remains unclear how wingbeat-induced
flow affects the spatiotemporal structure of the odor landscape used to track wind
borne odors by flying insects.

Insects demonstrate a remarkable sensitivity to odors, generating odorant-evoked
spiking responses in their olfactory neurons within 3 ms [22], and achieving a temporal
resolution as high as 100 H z  through their antennae [23]. This high-resolution olfactory
sensing enables insects to pick up subtle fluctuations in odor plumes and modify their
navigational strategies accordingly. For example, fruit flies have the ability to modify their
behavior based on prior experiences, learning from their environment and adapting to
better navigate challenges and opportunities [24], while mosquitoes [25] and moths [26] are
observed to engage in more upwind flights when exposed to fluctuating plumes. Further-
more, the Schmidt number, a dimensionless parameter representing the ratio of momentum
diffusivity to mass diffusivity, emerges as another key factor in understanding odorant
transport phenomenon in insects’ flights. While existing research has highlighted the
importance of the Schmidt number of an odorant in affecting olfactory sensitivity in aquatic
organisms [27], its role in the airborne olfaction of flying insects remains largely unexplored.
Numerical simulations offer a promising avenue for such investigations, yet they have been
underrepresented in the literature to date. Previous studies have investigated the impact of
turbulence on insects’ forward flight, using pre-generated velocity fields to model turbu-
lent conditions [28,29]. These studies concluded that turbulence introduces variabilities
in aerodynamic forces but does not significantly affect the overall, time-averaged flight
performance. However, the potential interplay between these flow fluctuations and odor
plume structures, and consequently, their influence on olfactory perception, has yet to
be investigated.

In the present study, we leverage advanced numerical simulations to conduct an
in-depth analysis of the factors affecting odor plume structures in flying insects, specifically
focusing on the roles of turbulence, wingbeat-induced flow, and the Schmidt number.
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Utilizing an in-house, three-dimensional computational fluid dynamics (CFD) solver based
on the immersed boundary method, we first solved the Navier–Stokes equations in conjunc-
tion with the equations of motion for passive pitching wings, thereby obtaining the flow
field. Subsequently, the odor advection–diffusion equation is solved at each time step to
compute the odor concentration field. We employ a fruit fly model as our insect of interest,
primarily due to the extensive experimental data available concerning its odor-tracking
flight and its relatively straightforward wing morphology, which eliminates complicating
factors associated with wing deformation. Realistic wing kinematics are generated by
incorporating aerodynamic, elastic, inertial, and gravitational forces into a torsional spring
model that calculates the wing’s pitch angle. Within a simulated wind tunnel environment,
the fruit fly model is positioned in a constant air flow, upstream of an odor source emitting
a consistent concentration of odorants. To simulate turbulence, a pre-calculated turbulence
field is imposed at the point where the odor plumes are released. Through this compre-
hensive approach, our work aims to provide new insights into the interplay between fluid
dynamics and sensory biology and behavior, enriching our understanding of how flying
insects successfully employ olfactory cues for navigation in turbulent environments.

2. Methodology
2.1. Governing Equations and Numerical Method

The three-dimensional viscous incompressible Navier–Stokes equations are solved
using an in-house immersed-boundary-method-based C F D  solver. The equations are
written in tensor form:
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(1)

where ui are the velocity components, P is the pressure, r  is the fluid density, and n is the
kinematic viscosity.

The above equations are discretized using a cell-centered, collocated arrangement of
the primitive variables, and are solved using a finite-difference-based immersed-boundary
method [30] in a non-body-conforming Cartesian grid, as shown in Figure 1. The uppercase
letters, W, E, N, and S, represent cell-centered variables, and the lowercase letters, w, e, n,
and s, represent face-centered variables that are calculated by interpolating the correspond-
ing cell-centered variables. A  second-order central difference scheme is employed in space
to discretize the advection and diffusion terms. Boundary conditions on the immersed
boundaries are imposed through a ghost-cell procedure. The equations are integrated
with time using the fractional step method. The immersed-boundary-method eliminates
complex remeshing algorithms for moving boundaries on body-conforming grids at each
time step. Our CFD solver has been successfully applied to study canonical revolving wings
flapping propulsion problems and insect flight [3]. Details of the C F D  solver in solving
Navier–Stokes equations were elaborated and validated in our previous studies [31].

Figure 1. Schematic of the grid. The uppercase letters denote cell-centered variables, the lowercase
letters denote the face-centered variables.
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2.2. Odor Advection–Diffusion Equation

At each time step, based on the velocity field, the odor advection–diffusion equation is
solved to obtain the odor concentration landscape. The odor advection–diffusion equation is
discretized using an implicit method (Equation (3)) with second-order accuracy in space.

¶t 
+  ui ¶xi 

=  D
¶ 2 C

(2)

n + 1 n n      n n + 1

Dt
+

dxi
=  D

dxi dxi
(3)

where C  is the odor intensity, D  is the odor diffusivity, and Ui  is the face-centered velocity
obtained from interpolation of the cell-centered velocity ui.

The odor advection–diffusion equation is discretized on the same non-body-conforming
Cartesian grid as the Navier–Stokes equations solver, as shown in Figure 1. The differential
equation for odor transportation can be written as
C n + 1    DDtaW Cn+1 +  a E C n + 1 +  a N C n + 1 +  aS C n + 1 +  aB Cn+1 +  a F C n + 1 +  aP Cn+1

Cn U n  Cn U n Cn U n  Cn U n Cn U n  Cn U n (4)
P Dx                               Dy                               Dz

where the coefficients, aW, aE, aN, aS, aB, aF, aP, are calculated by discretizing the following
diffusion term:

C   C C       C C   C

dxi       dxi
=         Dx Dx        + Dy      

Dy     
Dy +         Dz Dz       

(5)
=  a E CE +  aW CW +  a N C N +  aS CS +  a F CF +  aB CB +  aPCP

This approach has been applied to investigate the odor plume structure perturbed by
the canonical pitching–plunging motion and flapping wings of insects.

2.3. Wing Model with Torsional Spring

It has been demonstrated that insect wings can achieve the correct fundamental
kinematic motion by passively responding to aerodynamic and wing inertia forces [32,33].
In the current study, the wing pitch angle is calculated using a torsional spring model
integrated with the Navier–Stokes C F D  solver using a two-way coupling method. As  the
wing flaps back and forth in the stroke plane, with a prescribed stroke angle and the
wing root acting like a torsional spring, the wing pitches passively about the wing’s leading
edge. This passive pitching model has been validated with real fruit flies and is used to
provide a reasonable wing kinematics under various simulation setups.

The fruit fly model adopted here has been used in our previous studies [3]. The aspect
ratio of the wing is 3.2, defined as (span)2/(area). As shown in Figure 2a, the kinematics of
the wing are defined by stroke angle ( f )  and pitch (q) angle with zero deviation in the angle
with respect to the wing stroke plane. In Figure 2b, the stroke plane angle b is 10 and the
inclination angle of the insect body c  is 45. This stroke plane angle is specifically chosen by
performing a series of test cases so that the drag generated during the downstroke
approximately balances with the thrust generated during the upstroke for the baseline case.

The wing stroke angle is prescribed using Equation (6), while the wing deviation angle
is fixed as zero during the entire flapping motion.

f ( t )  =   A f  cos(2p f t) (6)

where f(t) is the instantaneous wing stroke angle at time t, A f = 140 is the stroke amplitude,
and f is the flapping frequency.
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Figure 2. Schematic of the flapping wing with a torsional spring (a) and wing chord diagram during
upstroke and downstroke (b), where q is the pitch angle, f  is the stroke angle, b =  10 is the stroke
plane angle, and c  = 45 is the body incline angle.

At each time step, the instantaneous inertia, aerodynamic, elastic, and gravity momen-
tum are calculated, and the passive pitch angular acceleration of the wings about the wing
leading edge is then obtained using the equation of motion, which is written as follows:

Ixxwx +  
 

Izz   Iyywywz +  Ixy
 

wxwz wy
 
+  Iyzwz wy

 
  Ixz

 
wz +  wxwy

 
=

Maero +  Melastic +  Mgravity (7)

(7)
where Ixx, Iyy, Izz, Ixy, Ixx, and Ixz are the momentum of inertia of the wing. Maero, Melastic,
and Mgravity are the momentum due to aerodynamic, elastic, and gravitational forces,
respectively. The aerodynamic forces are obtained by integrating the pressure and shear on
the surface of the insect.

The nondimensional torsional stiffness of the wing root is indicated by the Cauchy
number Ch [34], defined as the ratio of the fluid dynamic pressure force to the structure
elastic force, which can be expressed as follows:

Ch =  
r a i r A f

2 f 2c3b2                                                                                    
(8)
(8)

where c is the mean wing chord length, b is the wingspan. The Cauchy number selected in
this paper is 0.27 based on our previous research. Both the lift generation and power
consumption are optimized at this Cauchy number.

The implicit method used to couple the fluid flow field with the motion of solid wings
is briefly introduced here. At  each time step, the pressure and shear in the flow field
are obtained by solving the Navier–Stokes equations. Euler angular accelerations of the
wings are updated from the wing torsional spring model which includes the
aerodynamic forces, elastic forces, gravitational forces, and inertia forces. Velocities on
the wings are then updated and applied back to the Navier–Stokes solver as boundary
conditions to obtain an updated flow field. This two-way coupling process for solving
both the fluid dynamic and wing kinematics is iterated until the angular accelerations of
the wings reach a convergence criterion.

2.4. Turbulence Generator

Odor plumes in nature are usually broken by turbulent eddies into intermittent
filaments segmented by low- or zero-concentration blanks. The development of odor
plumes under different turbulence intensity levels can be very different. To investigate the
odor plume in turbulence, a turbulence generator was used to generate a discrete flow field
whose power spectrum matches an arbitrary turbulent energy spectrum [35].
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The turbulence energy spectrum used in the turbulence generator is the von Kármán–
Pao spectrum [36], which is defined as:

" #

E(k ) =  a 
ke (1 +  k/ke )17/6 exp  2

k
(9)

where k is the wave number, u0 is the velocity fluctuation, ke is related to the wavenumber
at which the energy is maximum and kh =  #1/4n 3/4 is the Kolmogorov wave number
(smallest turbulence structures).

The synthetic velocity field represented using a Fourier series at point x is:

 M
u     x =  2qm cos k m x y m      s m (10)

m = 1

where M is the number of modes, qm is the amplitude, k m =  
 
kx,m, ky,m, kz,m

 
is the unit

vector of the mth wave number, y m  is the phase angle, s m  =      sx,m, sy,m, sz,m      is a unit
direction vector.

The turbulence generator calculates the coefficients in Equation (10) and reproduces
the velocity field that matches the predefined turbulence energy spectrum. Figure 3 shows
an example turbulence field generated by the turbulence generator.

Figure 3. Spectra of synthetic turbulence field using the von Kármán–Pao spectrum as an input
(dashed lines) with different velocity fluctuations (a), contour of velocity magnitude of the synthetic
turbulence field with velocity fluctuation of 0.25 m/s (b), 0.5 m/s (c), 0.75 m/s (d), and 1 m/s (e).
The grid resolution is 128  128  128 with a grid size of 0.01 m.

The turbulence generator was used to generate the desired synthetic velocity field
that contains small eddies that distort the odor plume structure to mimic odor plumes in
nature. The velocity field was then added to the inlet of the computational domain. The
development of the velocity field and odor landscape was solved using the Navier–Stokes
equation solver and odor advection–diffusion equation solver.

2.5. Simulation Setup

To study how turbulent flow alters the olfactory performance of fruit flies during
odor tracking flight, the current simulation adopts a fruit fly model that was put into a
numerical wind tunnel to mimic a forward flight with constant incoming velocity. The
odorant transport phenomenon is characterized by two non-dimensional parameters,
Reynolds number (Re) and Schmidt number (Sc). The Reynolds number Re is 180 defined
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as Re =  Uti p b/n, where Uti p = 3.2 m/s is the average wingtip velocity calculated from real
fruit fly data [37]. The current setup results in a Reynolds number of 180. The Schmidt
number Sc, defined as Sc =  n / D ,  the ratio of kinematic diffusivity of molecular diffusivity,
ranging from 0.5 to 100, is the indicator of odorant diffusion intensity. This Schmidt number
range covers most odorant particles in air, including N H 3  (0.57), H2 O (0.66), O2 (0.84), C H 4
(0.99), CO2 (1.14), methanol (1.14), ethanol (1.5), and n-octane (3.2). These Schmidt numbers
are smaller than most odorant particles in water, including O2 (340), N H 3  (360), CO2 (410),
ethanol (540), and C H 4  (570). A  smaller value of Sc means molecular diffusion dominates
the odor transport, while a larger value of Sc means momentum diffusion dominates the
odor transport. The advance ratio J =  U  / U in this study is 0.315, where the incoming
air velocity U ¥ is 1.01 m/s, and the mean wing tip velocity Utip is 3.2 m/s. (11)

To understand the effects of the two major parameters that dominate the odor transport
phenomenon in turbulent flow, turbulent intensity Tu and Schmidt number Sc, simulations
of odor transport were conducted in this study. As  the indicator of the intensity of the
turbulence fluctuation, the turbulence intensity Tu, defined as Tu =  u 0 /U¥  ranges from 0 to
0.9. Other parameters are kept identical in the following sections, including the advance
ratio and flapping frequency.

As shown in Figure 4, the simulations were performed in a 9.8-million-cell nonuniform
Cartesian grid. An odor source with a staggered arrangement was placed in front of the
fruit fly model. In the following section, the odor sensitivity is presented in terms of
normalized odor concentration C* defined as

C  =  C / C H (11)

where C H  is the odor concentration at the odor source. At  the odor source, the normalized
odor concentration C* =  1.

Figure 4. Case setup for simulating fruit fly odor tracking flight. The simulation was performed in
a 320  128  240 (9.8 million) cell nonuniform Cartesian grid. An odor source with staggered
arrangement was placed in front of the fruit fly model to simulate odor plumes. At  the odor source
the normalized odor concentration C* =  1. On each of the two antennae of the fruit fly, the average
value of five sampling points was used to represent the odor detectability.

At  the odor source, a pre-generated turbulence field using the turbulence generator
described in Section 2.4 was applied to perturb the odor plumes. On each of the two
antennae of the fruit fly, the average value of C* of the five virtual sampling points was
used to represent the odor sensitivity of the antenna. The computational domain size of the
simulation is 30c  30c  30c in terms of mean wing chord length (c). The grid resolution
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is 320  128  240. The domain has several levels of refinement. The finest resolution is
specified in a cuboidal region immediately around the insect. Outside of this region, there is
a secondary fine resolution layer. Beyond the secondary layer, there is a coarse stretched
layer. Boundary conditions on all walls of the computational domain were set as Neumann
boundary conditions, except the Dirichlet boundary condition, which was set on the inlet
wall with constant incoming velocity and odor intensity.

2.6. Evaluations of Olfactory Performance

To characterize the intensity of the odor plume and its fluctuation perturbed by the
turbulence flow field and wing-induced flow, we calculated the mean value and standard
deviation of normalized odor concentration C* inside the domain shown in Figure 5a along
the flow direction. The mean value of odor concentration indicates the bulk odor intensity.
The standard deviation denotes the fluctuations of odor concentration in space. Due to
diffusion and mixing effect of turbulence, both values are expected to decrease along the
flow direction.

Figure 5. (a) Odor landscape computed by solving the advection–diffusion equation for a passive
scalar. The domain of the odor concentration field marked by the white dashed rectangle is used to cal-
culate the normalized odor concentration average value and its standard deviation and (b) streaklines
released at the odor source are calculated using a Lagrangian approach.

Turbulent flow and the wingbeat-induced flow significantly perturb the odor land-
scape. Odor plumes are distorted and mixed by turbulent eddies. To visualize the devel-
opment of odor plumes, streaklines were calculated and plotted to track the convective
transport of odorant particles released at the odor source, as shown in Figure 5b. Streak-
lines are particles that are continuously released at the upstream flow. Trajectories of these
particles were calculated using a Lagrangian approach. The velocities and locations of
these particles were interpolated and calculated using a fourth-order Runge–Kutta method.
Significant similarities between the odor landscape (Figure 5a) and streaklines (Figure 5b)
were observed since they both represent the odor plume structure. Differences are
present, however, due to the governing equations for each tracer. Calculating the odor
landscape requires solving both advection due to fluid velocity and diffusion due to odor
concentra-tion gradients. Streaklines, on the other hand, only depend on the velocity
field and are independent of diffusion. The fact that the two odor field markers shown in
Figure 5 are similar is indicative of the fact that the turbulent velocity transport is
dominant compared to molecular diffusion in this case.

3. Results and Discussion

In this section, we present numerical simulations that explore the structure of the odor
landscape, influenced by both pre-generated turbulence fields and wingbeat-induced flows.
These simulations employ the turbulence generator outlined in Section 2.4. Specifically,
we focus on investigating the impact of two key parameters: turbulence intensity
(Tu) and Schmidt number (Sc). In Section 3.1, we examine the effects of varying Tu
levels, ranging from 0 to 0.9, while keeping Sc constant at 10. Conversely, in Section
3.2, we explore the influence of Sc values that span from 0.5 to 100, conducting simulations
under
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two turbulence intensities: Tu =  0 and Tu =  0.3. To ensure the simulations reach a periodic
state, each is carried out over a duration of seven flapping cycles.

3.1. Effects of Turbulence Intensity

To elucidate the effects of turbulence on the odor landscape, Figure 6 presents side-
view visualizations of streaklines and odor concentration contours on the symmetry plane
at mid-downstroke for different turbulence intensities: Tu =  0, 0.3, and 0.9. The Schmidt
number in these scenarios is fixed at Sc =  10. The turbulence significantly disrupts the
odor plumes. In the absence of turbulence (Tu =  0), both the streaklines and the odor
landscape exhibit a well-organized pattern. Odor plumes are emitted from the source flow
in alignment with the incoming air stream and are subsequently deflected by the wingbeat-
induced flow. At Tu = 0.3, the turbulence introduces perturbations to the streaklines and the
odor landscape; however, these perturbations are relatively modest due to the low level of
turbulence compared to the incoming airflow velocity. At  Tu = 0.9, turbulence substantially
disrupts both the streaklines and the odor landscape, as shown in Figure 6(c1,c2). The
streaklines and odor plumes appear distorted and substantially mixed by turbulent eddies.
Notably, when Tu >  0, as seen in Figure 6(b1,c1), the streaklines become corrugated and
deviate from the symmetry plane, unlike the well-aligned streaklines in the Tu = 0 scenario
(Figure 6(a1)).

Figure 6. Visualizations of the odor landscape under varying conditions of turbulence intensity (Tu) at
the mid-downstroke phase. Streaklines originating from the odor source and odor concentration
contours are displayed on the symmetry plane. Panels (a1,a2,a3) correspond to Tu = 0; (b1,b2,b3) to Tu =
0.3; and (c1,c2,c3) to Tu = 0.9. Mean normalized odor concentrations and standard deviations along the
x-direction are presented in panels (a3,b3,c3). The domain for these calculations is delineated in
Figure 5. Vertical dashed lines in panels (a3,b3,c3) mark the positions of the antennae and tail, with
x/c =  0 representing the wing root.
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Figure 6(a3,b3,c3) displays the mean values and standard deviations of odor concen-
tration for Tu =  0, 0.3, and 0.9 at mid-downstroke. For ease of comparison, the flow field
is segmented into three distinct regions: the upwind region (), the wing-induced flow
region (), and the downwind region (). The general trends in odor concentration along the
flow direction appear consistent across all values of Tu. Specifically, in the upwind
region ( 1 ), an increase in Tu results in noticeable fluctuations in the mean normalized odor
concentration, although the standard deviations remain relatively stable across varying
levels of Tu. Intriguingly, while there are discernible differences in the upwind region (),
the variations are almost negligible in both the wingbeat-induced flow region () and the
downwind region (). This could be attributed to the fact that the influence of turbulence is
relatively minor compared to the wingbeat-induced flow (also see Table 1). As previously
reported by Lei  and L i  [38], wingbeat-induced flows actively trap odor plumes over a
broad area towards the antennae, thereby diminishing the impact of turbulence-induced
perturbations on the odor plumes. Notably, all three cases exhibit a sudden drop in odor
concentration within the wing-induced flow region (). This corresponds to a large area of
low odor concentration observed in the odor landscapes in Figure 6(a2,b2,c2), situated
just anterior to the insect’s thorax. This phenomenon occurs because the flapping wings
draw in air with a low odor concentration from the surroundings. Our observations also
demonstrate that the antennae of insects are well positioned to receive odor stimuli while
avoiding significant air disturbance compared to other locations along the body.

Table 1. Comparison of flying speeds, mean wingtip velocities, advance ratios, and Reynolds numbers
for forward-flying insects known for their proficiency in odor source tracking for survival.

Insects

Fruit fly
(current)

Bumblebee [29]
Butterfly [39]

Hawkmoth [40]

Forward Flying
Speed
(U¥ )

1.01 m/s

2.5 m/s
1.14 m/s
2.0 m/s

Wing Tip
Velocity

(Utip)

3.2 m/s

8.75 m/s
2.79 m/s
4.88 m/s

Advance Ratio
(J =  U¥/Utip)

0.315

0.286
0.41
0.41

Reynolds
Number (Re)

180

2042
3455
7335

Since the wingbeat-induced flow exerts a much stronger influence than turbulence
fluctuations, the impact of varying turbulence intensities is nearly inconsequential in
both the wing-induced flow region () and the downwind region (). Our primary focus,
however, lies in understanding the odor sensitivity at the antennae, which serves as a
transitional zone between the upwind region () and the wing-induced flow region ().
Figure 7a illustrates the temporal evolution of normalized odor sensitivity (C*) at the
antennae across different turbulence intensities (Tu). Intriguingly, as Tu increases, a decrease
in the amplitude of C* fluctuations is observed. This is likely due to the turbulence-induced
dispersion and mixing of the odor plumes, which make the concentration of the odorant
more spatially uniform in the region directly upstream of the antennae. In the absence of
turbulent mixing, the odorant is organized into regions of high and low concentration, as
seen in Figure 6(a2). When the flow is drawn over the antennae by the wing beats, this
coherent structure is retained and manifests in the peaks and troughs in the time trace in
Figure 7a. When Tu is higher, the coherence is destroyed by turbulent mixing, and so
these fluctuations are no longer observed. It is worth noting, however, that other spatial
fluctuations in odor distribution manifest at higher Tu levels. Figure 7b–d depict the odor
concentration contours on the insect’s body and wings. Across all cases, these contours
remain remarkably similar with one notable exception—the antennae region. Here, the
contours display noticeable asymmetry (Figure 7c,d). A  video offering a close-up view that
showcases the asymmetrical feature of odor perception is available in the Supplementary
Materials. We posit that the asymmetry is due to the interaction between the wing-induced
flow and turbulent velocity field. While the turbulence enhances mixing and therefore
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creates a more spatially uniform odor plume upstream of the insect, providing a more
consistent temporal signal to the antennae, turbulent velocity fluctuations couple with the
wing-induced flow to create spatial variations in the distribution of the plume around the
antennae. Therefore, the antennae emerge as a unique locus on the insect’s body capable of
detecting subtle shifts in odor concentration attributable to turbulence fluctuations.

Figure 7. Time history of the normalized odor concentration C* for different turbulence intensities
(a), odor concentration contour on the fruit fly for Tu = 0 (b), 0.3 (c), and 0.9 (d). The Schmidt number for
these cases is Sc =  10. The grey shaded regions denote downstrokes. For the odor concentration
distribution on the fruit fly (b–d), the left wing shows the odor concentration on the upper surface of the
wing, the right wing shows the odor concentration on the lower surface.

The interaction between odor plumes, turbulence fluctuations, and wingbeat-induced
flow is a complex yet crucial aspect of insect olfaction. Our results indicate that turbulence
significantly distorts and mixes odor plumes in the upwind region (), echoing findings
from previous studies that have examined the role of environmental turbulence in chemical
plume dispersion [7,11]. These perturbed plumes are then actively drawn toward the
antennae by strong wingbeat-induced flows. Consequently, the antennae can sense these
spatial fluctuations, thereby providing the insect with vital olfactory cues for navigation. In
contrast, the influence of turbulence intensity appears to be nearly inconsequential in the
wing-induced flow region () and downwind region (). This observation is consistent
with studies suggesting that strong local flows, such as those generated by wing
flapping, can overshadow environmental turbulence effects [29]. Flapping-wing insects
typically exhibit advance ratios ranging between 0.3 and 0.5, as shown in Table 1. This
implies that their mean wing-tip velocity is at least twice their average flight speed.
Given these kinematics, wingbeat-induced flow significantly impacts both the flow
field and odor distribution around the insect’s body, including its olfactory receptors—the
antennae. In a natural flight setting (assuming the turbulence intensity is smaller than their
flying speed), our simulations suggest that, compared to background turbulence, wingbeat-
induced flow disturbances are more likely to play a pivotal role in insect olfactory
perception. While our study provides the insights, further biological investigations are
essential to validate and expand upon these findings. Future work could also examine
how these fluid dynamic interactions translate into behavioral responses in real-world
scenarios, contributing to a more comprehensive understanding of insect navigation and
sensory biology.
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3.2. Effects of Schmidt Number

The Schmidt number is a critical factor influencing the development of odor plumes.
In this part of our study, we investigate its effects over a range from 0.5 to 100. Initially,
to isolate the role of the Schmidt number, we examine the odor concentration field under
conditions of zero turbulence intensity (Tu =  0). Following this, we extend our analysis
to include a moderate level of turbulence (Tu =  0.3) to assess how turbulence fluctuations
interact with variations in the Schmidt number.

Figure 8 illustrates the odor concentration contours on the symmetry plane, as well as
the corresponding mean and standard deviation of odor concentrations at mid-downstroke
for Schmidt numbers Sc = 0.5, 10, and 100, in a turbulence-free environment (Tu = 0). Given
that the Schmidt number does not affect the flow field, the streaklines for all these scenarios
at Tu =  0 align with those depicted in Figure 6(a1). For the low Schmidt number scenario
(Figure 8(a1), Sc =  0.5), the rapid dispersion of odorant molecules predominates, leading
to a swift dilution of odor plumes into the surrounding air. As  evident from Figure 8(a2),
the mean normalized odor concentration in the upwind region declines along the flow
direction, while the standard deviation remains notably compact. Conversely, at a high
Schmidt number (Sc =  100), advection becomes the dominant mechanism driving odor
transport. Figure 8(c2) shows a slower reduction in the standard deviation of normalized
odor concentration (C*) in the upwind region when compared to the scenario with Sc =  10.
Despite these variations in Schmidt number, the profiles of odor concentration in the
wingbeat-induced flow region 2 and downwind region 3 remain strikingly similar across
all cases. This similarity underscores the overpowering influence of the wingbeat-induced
flow, which appears to mitigate the variances introduced by differing Schmidt numbers.

Figure 8. Odor concentration contour on the symmetry plane, mean normalized odor concentration
and the standard deviation along the x-direction for Sc =  0.5 (a1,a2), Sc =  10 (b1,b2), Sc =  100 (c1,c2) at
mid-downstroke. For the average odor concentration and the standard deviation, the calculation
domain is shown in Figure 5. The turbulence intensity for these cases is Tu =  0. The vertical dashed
lines in (a2,b2,c2) denote the locations of antennae and tail. x/c =  0 is the wing root.

Figure 9a presents the odor concentration experienced at the antennae for scenarios
with no turbulence (Tu =  0). A  pattern of periodic fluctuations in odor concentration is
apparent, stemming from the periodic perturbations introduced by wing-induced flow.
Notably, for Sc = 0.5, the odor sensitivity is substantially lower compared to other Sc values,
attributable to its greater diffusivity. As  the Schmidt number increases, the rate of odor
dissipation diminishes, leading to advection becoming the primary driver of odor transport.
Consequently, the extent of odor sensitivity fluctuations (induced by wingbeat-generated
flows) escalates. This is analogous to the situation analyzed in Section 3.1, except that,
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in this case, enhanced uniformity in the odor plume upstream of the insect is due to
increased scalar diffusion, instead of turbulent mixing. For a high Schmidt number, the
distribution of the odorant retains its original spatial distribution far downstream of the
odor source, resulting in significant temporal fluctuations in the signal detected by the
antennae. This pattern suggests that insects could potentially distinguish between different
odorant volatiles within a mixed emission from the same odor source, simply by comparing
fluctuations in odor concentration. Again, this hypothesis may need more experimental
evidence to be proven.

Figure 9. Time history of the normalized odor concentration C* for different Schmidt numbers (a);
odor concentration contour on the fruit fly for Sc = 0.5 (b), 10 (c), and 100 (d). The turbulence intensity
for these cases is Tu =  0. The grey shaded regions denote downstrokes. For the odor concentration
distribution on the fruit fly (b–d), the left wing shows the odor concentration on the upper surface of
the wing, and the right wing shows the odor concentration on the lower surface.

Turning to Figure 9b–d, these depict the odor concentration contours on the insect’s
body surface. The contours parallel the observed trends in both the odor landscape and
odor detectability. For smaller Schmidt numbers, as illustrated in Figure 9b, the extensive
odor diffusivity renders the odor landscape nearly homogeneous, resulting in smoothly
varying odor concentration contours. Conversely, at higher Schmidt numbers, such as in
Figure 9d, the contours display fluctuations, and the overall odor concentration on the
insect’s surface is markedly elevated. A  close-up video highlighting the instantaneous odor
concentration contours is available in the Supplementary Materials.

Figure 10 provides a visualization of the odor concentration contours on the symmetry
plane, along with the corresponding mean values and standard deviations of odor concen-
tration for Sc =  0.5, 10, and 100 during mid-downstroke, with turbulence set at Tu =  0.3.
The associated streaklines for these scenarios can be referenced in Figure 6(a2). In the
case of Sc =  0.5, the dominance of odor diffusion in shaping the odor landscape means
that turbulence fluctuations have a negligible impact, echoing observations in the Tu =  0
scenario as depicted in Figure 8(a1,a2). Conversely, for Sc = 10 and 100, visible distortions in
the structure of the odor plumes are apparent (as shown in Figure 10(b1,c1)), along with
noticeable fluctuations in the mean normalized odor concentration in the upwind region
(Figure 10(b2,c2)). Despite these variations in the upwind region, the similarities are far
more pronounced in the wingbeat-induced flow region  and the downwind region . Here,
the strong wingbeat-induced flow actively channels the odor plumes, rendering the
turbulence-induced differences less significant.
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Figure 10. Odor concentration contour on the symmetry plane, mean normalized odor concentration
and the standard deviation along the x-direction for Sc = 0.5 (a1,a2), Sc = 10 (b1,b2) and Sc = 100 (c1,c2) at
mid-downstroke. For the average odor concentration and the standard deviation, the calculation
domain is shown in Figure 5. The turbulence intensity for these cases is Tu =  0.3.

To delve deeper into how turbulence fluctuations influence odor concentration at the
antennae, we illustrated the temporal progression of normalized odor concentration (C*)
for various Schmidt numbers at Tu =  0.3, as shown in Figure 11. In contrast to the Tu =  0
scenarios depicted in Figure 9, striking disparities in odor concentration are evident at
higher Schmidt numbers (Sc = 10 and 100). Due to the turbulence-induced perturbations in
the structure of the odor plumes, the odor concentration fails to stabilize into a repeating
pattern, unlike what is observed in the Tu =  0 cases because the turbulent fluctuations in
the flow and the original spatial distribution of the odor source are on comparable scales.
We note that the magnitude of the fluctuations in the Sc =  10 case are significantly
less in the situation with Tu =  0.3 compared to Tu =  0, because the turbulent mixing
serves to diffuse the odorant. Molecular diffusion alone is strong enough in the cases
with lower Schmidt number that the turbulence has little effect in this regard.
Additionally, a greater number of more minor fluctuations in odor sensitivity are
discernible in the cases with higher Schmidt number due to the enhanced turbulent
advection. Figure 11b–d present the odor concentration contours on the insect’s surface.
The most salient difference when compared to the Tu =  0 cases is the loss of symmetry in
the odor concentration contours across the insect’s body. A  video in the Supplementary
Materials provides a detailed view highlighting the asymmetrical nature of odor
perception at Tu =  0.3.

The Schmidt number serves as a critical variable, altering odorant diffusivity and
thereby affecting odor sensitivity. Pronounced fluctuations in odor concentration become
evident at higher Schmidt numbers, suggesting that insects might capitalize on this phe-
nomenon to distinguish between various odorant volatiles emanating from different odor
sources. While turbulence fluctuations generally diminish the amplitude of concentration
fluctuations, they can enhance their frequency depending on the frequency of the turbulent
fluctuations themselves, especially at higher Schmidt numbers.

The above findings extend beyond the role of turbulence intensity, shedding light on
the crucial impact of the Schmidt number (Sc) on olfactory perception. In our simulation,
we explored a relatively broad range of Schmidt numbers (0.5–100) to delineate how
odor distribution patterns are affected by flow disturbances. At  lower Schmidt numbers
(e.g., Sc =  0.5), turbulence intensity exerts minimal influence on the odor landscape
because the molecular diffusion essentially overshadows the mixing effect of turbulence.
Conversely, at higher Schmidt numbers (Sc =  100), our simulations reveal marked
alterations in the odor distribution field. Given that the Schmidt numbers in air are
relatively low, while



Biomimetics 2023, 8, 593 15 of 17

in aquatic environments they can surge to several hundred, the transport phenomena of
odorants at differing Schmidt numbers suggest that terrestrial and aquatic animals may
rely on distinct olfactory search mechanisms to navigate their respective environments.
However, it is interesting to note that their observed odor tracking behaviors often appear
remarkably similar [2].

Figure 11. Time history of the normalized odor concentration C* for different Schmidt numbers (a);
odor concentration contour on the fruit fly for Sc = 0.5 (b), 10 (c), and 100 (d). The turbulence intensity for
these cases is Tu =  0.3. The grey shaded regions denote downstrokes. For the odor concentration
distribution on the fruit fly (b–d), the left wing shows the odor concentration on the upper surface of
the wing, and the right wing shows the odor concentration on the lower surface.

Another insight gleaned from our simulations pertains to the variations in mass diffu-
sivity (D) for different odors within the same fluid medium. For example, an odor that is
particularly attractive to certain insects may have a mass diffusivity (D) value around a
specific parameter. In contrast, another odor, which appeals to a different set of animals,
may exhibit a considerably different D  value. These disparate D  values contribute to
varying Schmidt numbers—leading to unique odorant transport phenomena within the
fluid medium. Consequently, the odor-tracking behaviors exhibited by different species
may be partially attributable to these divergent transport mechanisms. While this hy-
pothesis offers a compelling avenue for exploration, empirical validation is essential to
corroborate these theoretical insights. We suggest that experiments could be performed
to help further elucidate the effects of mass diffusivity and turbulence intensity, in which
the mass diffusivity of an odorant is varied, e.g., by dispersing the odorant in liquid micro-
or nano-droplets vs. directly into the air. The turbulence intensity can be varied by using
grid generators with different spacings. PIV measurements would add significant value to
such experiments, by providing experimental evidence to support our conclusions about
the role of wing-induced flow in olfactory sensing and its effect dominating over free
stream turbulence.

4. Conclusions

In this study, we employed a three-way coupled immersed-boundary-method-based
CFD solver to examine the olfactory experience of a fruit fly engaged in an upwind surging
odor-tracking flight. The Navier–Stokes equations are strongly coupled with equations
of motion to simulate the passive flapping wings, along with the surrounding airflow.
Concurrently, advection–diffusion equations are solved at each time step to derive the
evolving odor concentration field.
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Our research offers a comprehensive computational lens into the intricate relationship
between turbulence intensity and Schmidt number in shaping the olfactory landscape
for flapping-wing insects. Our simulations reveal that turbulence fluctuations have a
pronounced impact on the fragmentation and dispersion of odor plumes in the upwind
region. These fragmented plumes are subsequently channeled by the potent wingbeat-
induced flow towards the insect’s antennae, which are sensitive to these odor concentration
fluctuations. Our findings also highlight the critical role that the Schmidt number (Sc)
plays in the transport and diffusion dynamics of odorants. At  lower Sc values, diffusion is
the dominant mechanism, leading to a rapid dispersion of the odor plume. In contrast,
higher Sc values result in advection-dominated transport, thereby preserving the structural
integrity of the plume. This divergence in transport phenomena across different Sc ranges
suggests that distinct olfactory search strategies may be required for animals in aerial versus
aquatic environments. Additionally, our study implies that the specific mass diffusivities of
different odors result in unique Schmidt numbers, offering a potential explanation for the
observed variability in odor-tracking behaviors across animal species. Overall, our findings
pave the way for future empirical studies that aim to better understand how complex fluid
dynamics interact with biological olfactory systems across various media—whether air or
water. They also hold promise for the development of odor-guided robotic systems that
emulate biological olfaction mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomimetics8080593/s1, See submitted supplementary video online.
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