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rrays of artificial spin ices exhibit reconfigurable ferromagnetic resonance modes that can be leveraged and
or potential applications. However, analytical and numerical studies of the frequency response of artificia
ave been restricted in scope due to the need of take into account nonlocal dipole fields in theoretical calcula
ong computation times in micromagnetic simulations. Here, we introduce Gænice, a framework to compu
ispersion relations of arbitrary artificial spin ice configurations. Gænice makes use of a tight-binding ap
ompute the magnon bands. It also provides the user control over the interaction terms included, e.g., exte
hape anisotropy, exchange, and dipole, making Gænice useful for computing ferromagnetic resonances fo
f structures, such as multilayers and ensembles of weakly or non-interacting nanoparticles. Because it r
emi-analytical model, Gænice is computationally inexpensive and efficient. This makes it an attractive to
xploration of large parameter spaces. We expect Gænice to help guide the development of novel artificia
eometries and specific micromagnetic simulations for full quantitative verification.

DUCTION

al spin ices (ASIs) are systems of structured nano-
arranged in periodic patterns that are magneto-
coupled. ASIs were originally designed to mimic
or of natural spin ice materials1, in order to explore
ental principles of frustrated magnetism. Frustra-
from competing magnetic interactions that cannot
ultaneously minimized2, leading to highly degen-
s. ASIs can be also considered as magnonic crys-
ibiting reconfigurable magnonic modes5–12, nonlin-
ing13, band structure14? –18, and hybrid modes19,20.
angement of magnetic elements in a square lattice,
square ice21, has been a test bed for the investigation
s magnonic crystals because its relative simplicity
the understanding of the fundamental physical phe-
nalytically, square ices have proven promising for
able magnonics because of the magnetization state-
magnon modes predicted16,17 as well as evidence
ical modes22. However, the study of similar effects
eometries remains limited to date. Experimentally,
ly because of the large number of geometries to ex-
the technical challenges to investigate wavevector-
y-resolved magnons in a nanopatterned structure,
rillouin light scattering23. From a numerical point
imulations using micromagnetic modeling24–28 are
consuming and often require large memory alloca-
vestigate long-wavelength magnons that are easily
microwave antennas in experiments. This means

d permanent address: Seagate Technology, 7801 Computer Ave.,
, MN 55435

that geometries beyond square and Kagome arrange
with more complex unit cells, both in 2D1 and 3D2

been more challenging to experimentally realize
lack of an efficient predictive tool for magnetizatio
ics.
Here, we present a general artificial spin ice

solver we call Gænice. The formalism is based on a
Primakoff transformation32 to obtain an eigenva
lem that can be solved numerically with little com
cost16. The main difference between Gænice and o
ods is its generalization to arbitrary nanomagnet o
and magnetization states with an automatic dete
of the first Brillouin zone (FBZ). In contrast to m
netic simulations, Gænice uses a minimal discretiza
nanomagnets which allows one to take into accou
magnetization edge bending due to stray fields but a
time focus on magnetostatic spin waves. This allow
to resolve the magnon band structure within the
louin zone, which would require significant comput
sources as computation time using state-of-the-art m
netic solvers. As a drawback, Gænice assumes l
waves due to the Holstein-Primakoff approximatio
ear effects, such as parametric pumping13 cannot be
with Gænice. These would require both the finer
tion of, and the full nonlinear model used in micr
simulations to resolve higher-order modes within t
lands that allow for mode mixing. In addition, th
discretization precludes the study of magnon dispe
more complex magnetization textures, such as mag
tices or multidomain states.
We expect that Gænice can serve as a numeri

cient and computationally accurate tool to predict
functionality for ASIs and to direct more detailed
promising geometries using micromagnetic simul
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ts. In other words, we envision Gænice as a tool to
plore the parameter space of distinct ASI geome-
dentify potentially interesting regimes that can be
er explored with traditional computational and ex-
l methods33–37.
ainder of the paper is organized as follows: In sec-
e describe the general formulation of the problem.
y terms considered and their implementation are de-
ection III. In section IV, we demonstrate the func-
f Gænice by computing simple Kittel modes and
etic resonance (FMR) modes in a variety of linear
nanomagnets and the two fundamental ASI config-
square ice and Kagome ice. Limitations of our ap-
discussed in the concluding section V.

RALIZED ANALYTICAL MODEL

in our description from the conservative Larmor
ation

∂m
∂ t

=−γµ0m×Heff, (1)

s the normalized magnetization vector with |m|= 1,
romagnetic ratio, and µ0 is the vacuum permeabil-
ffective field Heff contains physical terms and phe-
levant to the magnetic material and interfaces which
bed within the context of our eigenvalue solver in
. Note that we neglect damping here given that we
ted in resonant, propagating modes.
ll-amplitude excitations, such as magnons, the Lar-
e equation can be rewritten as a Hamiltonian set
ns using a Holstein-Primakoff transformation of the
mall amplitude a32

a=
m1+ im2√
2(1+m2

3)
, (2)

= m1ê1 +m2ê2 +m3ê3 is the magnetization vector
in a coordinate system where ê3 defines the equilib-
tation of the magnetization vector and ê1× ê2 = ê3.
tion of this basis is shown in Fig. 1(a). The rotated
(ê1, ê2, ê3) is uniquely obtained by use of a rotation
elaborated upon in section II.A. This means that if
d φm = 0, ê1 is aligned on x-axis and ê2 is aligned
is.
q. 2, we can relate the complex amplitudes to the
tion vector in the ê basis as
√

1−|a|2(a+a∗)≈
(
1− |a|2

2

)
(a+a∗) (3a)

i
√

1−|a|2(a−a∗)≈ i
(
1− |a|2

2

)
(a−a∗) (3b)

(1−2|a|2) (3c)

he transformation of Eq. 2, we can approximately
. 1 as a Hamiltonian system for the complex ampli-

ොx

ොy

ොz

ොe1

ොe2

ොe3𝑎

𝜃𝑚

𝜑𝑚

m

ොx

ොy

ොz
෡D
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(a)

(b)

FIG. 1. (a) The magnetization vector rotated by the po
imuthal angles (θm,ϕm). The rotated frame (ê1, ê2, ê3)
relative to the equilibrium orientation of the magnetizatio
(b) Nanomagnet orientation relative to the Cartesian coo
tem. The unit vector D̂ indicates the direction of the na
long axis and is defined by the angles θd and ϕd .

tude a as previously done in Ref.16

∂a
∂ t

=−i
∂

∂a∗
aH a†

and the Hamiltonian is defined over a magnetic vol

H =−µ0Ms

∫
Heff(m) ·mdV ,

whereHeff(m) can be a function of the magnetizatio
is the volume element over which the integration is p
To describe the magnon band structure of an en

nanomagnets in an ASI, Eq. (4) can be generalized
of complex amplitudes, as shown in Ref. 16. To a
the magnetization bending at the edges of the nanom
we divide each nanomagnet into 3 macrospins. Thi
portant assumption in our model, making it valid fo
elements with sizes of the order of hundreds of na
However, it was shown in an earlier use of the semi
method that this coarse discretization is sufficient
the relevant magnetization dynamics. The method
ularly accurate in proximity to the Γ point39, as al
strated with Gænice recently23. For wavevectors
ing the edge of the FBZ, the computed eigenvalues
hibit inaccuracies by the 3-macrospin approximatio



Journal Pre-proof

3

where the
quires mic
nets in the
tude array
nian matri

The Ha

where H
metry of t
low, this
that the eig
dynamica
ues40.

A. Coord

Our fra
where the
define the
system is
coordinate
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magnetization edge bending is significant, i.e., re-
romagnetic accuracy. Therefore, given N nanomag-
unit cell of the ASI, we define the complex ampli-
a= [a1 a2 ... a3N ] and the 2(3N)×2(3N) Hamilto-
x H so that the generalized Hamiltonian becomes

∂
∂ t

a=−i
∂

∂a∗
[
a a∗

]
H

[
a
a∗

]
, (6)

miltonian matrix is further divided as

H =

[
H (1,1) H (1,2)

H (2,1) H (2,2)

]
, (7)

(1,1) = (H (2,2))∗ and H (1,2) = (H (2,1))∗ by sym-
he Hamiltonian equations. As further discussed be-
system describes bosonic excitation (magnons) so
envalue problem can be solved using Colpa’s grand
l matrix that ensures complex conjugate eigenval-

inate system

mework relies on a Cartesian coordinate system
polar angle θ = 0 and the azimuth angle ϕ = 0
z-axis, as shown in Fig. 1(a). Once this coordinate
established, applying Eq. 1 requires a rotation to the
system defined by (ê1, ê2, ê3), where the direction
rallel to the equilibrium orientation of the magneti-
tor at any given point in space.
plies that coordinate transformations must be per-
cally for both the magnetization vector and the ef-
ld for an arbitrary array of magnetization vectors.
the local rotation matrix

θ ,ϕ) =



cosϕ cosθ sinϕ cosθ −sinθ
−sinϕ cosϕ 0

cosϕ sinθ sinϕ sinθ cosθ


 . (8)

tant to note that R−1(θ ,ϕ) = RT (θ ,ϕ).
trary orientation of nanomagnets is considered, de-
unit vector D̂. The direction of D̂ is parameter-

e polar and azimuth angles θd and ϕd as shown in
When θd = 0 and ϕd = 0, the nanomagnet is aligned
z-axis, and its thickness is aligned along the x-axis.
se, the angles θd and ϕd represent pitch and yaw,
ly.

value problem

gnon dispersion relation ω(k) is obtained from Eq. 6
g Bloch’s theorem a→ aeiω and Colpa’s grand dy-
atrix40

ωΨ ∝
[
H (1,2) −(H (1,1))∗

H (1,1) −(H (1,2))∗

]
Ψ, (9)

where Ψ is an eigenvector. By introducing the prop
factor γ/(2VMs), where V is a volume and Ms is
tion magnetization, Eq. (9) becomes an equality. T
and saturation magnetization will be associated with
tization vector to allow for maximal flexibility of
Therefore, we will use the convention Ω = γ/(2V
obtain

ωΨ =

[
Ω(1,2) −(Ω(1,1))∗

Ω(1,1) −(Ω(1,2))∗

]
Ψ,

The eigenvalue problem of Eq. 10 can be solv
ically by standard methods. This formulation has
plemented for square ice16,22 and it has been refe
semi-analytical because the Hamiltonian matrix H
analytically and only the eigenvalue problem is solv
ically. Here, we derive the Hamiltonian matrices fo
ASI configurations, so that the matrix is built in an
way for any number of nanomagnets in a unit cell.

III. EFFECTIVE FIELD

The effective field is Gænice’s core, which gives
Hamiltonian matrix. In essence, the effective field
into two groups of physical effects; local and non-l

Heff =Hl+Hnl.

In its current implementation, Gænice includes
external magnetic field and anisotropy field as loca
tions; and exchange interaction and dipole-dipole
as non-local fields from a point of view that the mac
the nanomagnets are coupled. In other words, these
to finite non-diagonal elements in the Hamiltonian
trices. The dipole-dipole contribution is fundament
and is detailed below. In the same manner, it is p
extend Gænice to include other field contribution
magnetocrystalline anisotropy, Dzyaloshinskii-Mo
action for heavy metal / ferromagnetic bilayers, a
exchange for magnetic trilayers. While some of th
act on short lengthscales, their contributions to the
nian matrix could induce further richness to the ei
For example, in Ref.22, it was shown that the com
introduced by the Dzyaloshinkii-Moriya interactio
to non-trivial topological bands which point to the
of topologically protected edge modes as observed
spin ices41.
In the following subsections, we express these fi

butions in the form given in Eq. 10. All fields are
the Cartesian coordinate system and rotated to the
netization coordinates described in section II A.

A. External Field

A uniform external field, H0, leads to the energy

E0 =−Vµ0Ms(R(θm,ϕm) ·H0)
T ·m.
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ly quadratic term in a in Eq. (12) is parallel to ê3.
, we can express the frequency contribution due to
l field as

Ω0 = γµ0|a|2(R(θm,ϕm) ·H0)
T · ê3. (13)

Ω(1,1)
0 = 0 (14a)

Ω(1,2)
0 =

γµ0

2
[
(R(θm,ϕm) ·H0)

T · ê3
]
I, (14b)

the identity matrix.

gnetization Field

agnetization (demag) field is determined from the
he magnetic element, which is an accurate approx-
r soft magnets, such as Permalloy. We consider a
sor D that we approximate with diagonal demagne-
ors D1 < D2 < D3 such that

D=



D1 0 0
0 D2 0
0 0 D3


 . (15)

ximation is consistent with the notion of macrospin
i.e., similar to the general ellipsoid42. For other
ets’ shapes, the demag factors are generally inho-
s, but effective homogeneous factors can be found
Kittel’s equation43.
finition follows from the nanomagnet’s orienta-
e Cartesian coordinate system whereby the easy
along the z-axis and the hard axis along the x-
demagnetizing factors can be found in a variety
nalytical expressions are available for oblate nano-
and for rectangular prisms44, and numerical val-
e demag factors can be obtained numerically for
haped nanoislands by fitting their FMR43, providing
ement with experiment23. Gænice currently sup-
analytical expressions for a rectangular prism44 as
late nanomagnets given by

D1 =
t
√
1− e2(K−E)

le2
, (16a)

D2 =
t
(
E− (1− e2)K

)

le2
√
1− e2

, (16b)

D3 =
1− tE

l
√
1− e2

, (16c)

nd E are the complete elliptic integrals of the first
d kind and e=

√
1− (w/l)2. In the limit of a circu-

agnet, one must consider D1 = D2 = 0 and D3 = 1
numerical singularity in Eqs. (16a) and (16b) when
.
pe anisotropy energy is expressed as

Ean =Vµ0M2
sm ·D ·mT , (17)

We rotate the demagnetization tensor using Eq. (
unit vector D̂ to align it with the magnetization d
the Cartesian reference frame

C = R(θm−θd ,ϕm−ϕd) ·D ·R−1(θm−θd ,ϕm−

resulting in the nanomagnet-dependent Hamiltonia

Han =VM2
sm ·C ·mT .

We note that this matrix is a 3× 3 block that
for each nanomagnet. Expressing Eq. (19) as a f
the complex amplitudes a, ultimately results in th
Hamiltonian block matrices

Ω(1,1)
an =

γµ0Ms

2

[
C(1,1)−C(2,2)+ i(C(1,2)+C(

Ω(1,2)
an =

γµ0Ms

2

[
C(1,1)−C(2,2)−2C(3,3)

]
I,

where the factorsC(i, j) are the elements of the matr

C. Exchange

We include exchange interaction as a minimal
edge bending in the magnetization of tightly pac
magnets16,38. The nanomagnet is split into three re
we use an effective exchange energy to parameter
change interaction. The nanomagnet splitting is
Fig. 2 for the cases where the edge modes are (a) la
smaller than the stadium’s semi-circular edges. It i
that the edge modes are symmetric in volume. W
Appendix A for details. Here, we report the final f
block matrices used in the eigenvalue problem.
We consider that the nanomagnet is split i

macrospin with volume Vb and two edge macro
identical volumes Ve, satisfying that the total volu
nanoisland is V = Vb + 2Ve. The volumes are un
termined by the parameter ∆l defined as the length
geometric center of the nanomagnet to the center o
volume. The default value ∆l=(2l−w)/4 is define
edge volume is exactly contained at the semi-circula
stadium-shaped nanomagnets. However, this para
be tuned.
The exchange energy is therefore defined as a pa

teraction between a bulk macrospin b and an edge
e+ (upper) and e− (lower)

E(b,e)
ex =−J

2
mT

b ·R(θme −θmb ,ϕme −ϕmb) ·me

where the exchange factor J is given by

J =
2

∆l2

(
Ve+

Vb
2

)
.

Recognizing that the exchange interaction only
neighboring macrospins within a nanomagnet, we
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(a) (b)

𝑉𝑒

∆𝑙

𝑉𝑒

𝑉𝑏

∆𝑙

𝑉𝑒

𝑉𝑒

𝑉𝑏

metric splitting of stadium-shaped nanomagnets, where
between a large edge volume (a) and a small edge volume
to the semi-circular edges. The bulk and edge volumes,
espectively, are uniquely determined by the parameter ∆l.

ange energy blocks per nanomagnet N

−J
2




0 E(b,e+)
1 /Ve 0

E(e+,b)
1 /Vb 0 E(b,e−)

1 /Vb
0 E(e−,b)

1 /Ve 0


 , (23a)

−J
2




−ΣE+ E(b,e+)
2 /Ve 0

E(e+,b)
2 /Vb −ΣE+−ΣE− E(b,e−)

2 /Vb
0 E(e−,b)

2 /Vb −ΣE−


 ,(23b)

define ΣEe = Eb,e
3 /Ve+Ee,b

3 /Vb, and

b,e
1 = R(1,1)−R(2,2)+ i(R(1,2)+R(2,1)), (24a)
b,e
2 = R(1,1)+R(2,2)− i(R(1,2)−R(2,1)), (24b)
b,e
3 = R(3,3), (24c)

j) represent the matrix elements of the rotation dif-
atrix R(θme −θmb ,ϕme −ϕmb).
ese blocks, the frequency contribution due to ex-
written with the block-diagonal matrices as

Ω(1,1)
ex =

γ
2Ms



E1
ex,1

. . .
E1
ex,N


 (25a)

Ω(1,2)
ex =

γ
2Ms



E2
ex,1

. . .
E2
ex,N


 (25b)

e �eld

ole field is essential to compute the spin-wave band
or ASIs. We distinguish two contributions to the
d: a static contribution originating from the equilib-
netization, and a dynamic contribution originating
ong-range dynamics of macrospins. An analogous

way to phrase this, is that we consider a perturbation
namical matrix where the zeroth order term is the s
field from the magnetization and the first-order co
the dipole-dipole contribution.

1. Static contribution

To compute the static contribution of the dipole
sider the stray field from each nanomagnet in the
macrospin i. As an approximation, we implemente
lytical expressions of the stray field from a rectang
derived by R. Engel-Herbert and T. Hesjedal46. T
ing field due to nanomagnet n is H(i)

stray,N and is co
a function of the center position of the nanomagne
position of the macrospin i. The analytical expre
rived in Ref.46 are written in Appendix B. Essen
computation provides a local field source for macr
that it contributes to the Hamiltonian matrix as a
magnetic field. To consider the stray field from the
riodic structure, we introduce the translation vecto
a2, as well as the coefficients τ1 and τ2 so that an
is uniquely identified by a translation of τ1a1+ τ2a
context, τ1 = τ2 = 0 represents the unit cell.

A subtle difference between a truly external fie
stray field is that we need to scale the latter to the
volume of the macrospin it is acting upon. In other
impose that the total energy on the target nanomag
nanomagnet n is conserved

E = µ0Ms
∑3
i=1ViH

(i)
stray,n ·mi

V
,

where i here refers to the three macrospins in a gi
magnet, two edge volumes and one bulk volume.
As a consequence, the contribution to the matrix

Ω(1,1)
stray = 0,

Ω(1,2)
stray =

γµ0

2

ASI

∑
τ1,τ2

[
3

∑
i=1

Vi
V

(
R(θm,ϕm) ·H(i)

stray,n

)

The maximum value of τ1 and τ2 is capped so tha
range dipole contributions converge with sufficien
cal accuracy. Gænice permits to specify either the
value for τ1 and τ2 or to expand the lattice until
accuracy is achieved.

2. Dynamic contribution

The dipole field of macrospin j acting on mac
calculated using the following expression.

Hd,i j =
VjMs, j

4π

[
3ri, j(ri, j ·m j)

|ri, j|5
− m j

|ri, j|3
]

where, ri, j is the distance between the two macrosp
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pt a tight-binding-like approach for periodic struc-
eby the dipole field is computed within and between
Therefore, the long-range terms collapse into a sin-
tonian matrix. Identifying each macrospin’s spatial
ithin a nanomagnet is critical. Hence, we adopt the
n that the bulk macrospin is located at the nanomag-
etric center, denoted by Xb. The edge macrospins
puted by

Xe± = Xb±∆lD̂. (29)

ral, the distance between macrospins i and j is given

r(τ1,τ2)i j = Xi−X j− (τ1a1+ τ2a2). (30)

re, the total nonlocal dipole field acting on a
i can be written as

1
4π

ASI

∑
τ1,τ2

U.C.

∑
j
VjMs, j

[3r(τ1,τ2)i j (r(τ1,τ2)i j ·m(τ1,τ2)
j )

|r(τ1,τ2)i j |5
m j

|r(τ1,τ2)i j |3
]
, (31)

e the distances in Eq. (30) are computed in the nat-
sian coordinates, we need to rotate into the basis of
ospin to compute the products as a function of cou-
lex amplitudes. For this we define two distances in
reference frame

ρi j = R(θ j,φ j) · rij, (32a)
αi j = R(θ j−θi,φ j−φi) · rij. (32b)

re, the net field on macrospin i, expressed in the
is

H(i)
d,i j =

1
4π

ASI

∑
τ1,τ2

U.C.

∑
j
VjMs, j

[αi j(ρi j ·mj)

r5i j

−R(θ j−θi,φ j−φi) ·mj

r3i j

]
(33)

t step to collapse the sums into a single Hamiltonian
o incorporate a tight-binding approach. We invoke
eorem but we make the assumption that the phase
he complex amplitudes is solely given by the trans-
tors between unit cells. This implies that the phase
acrospins within a nanomagnet and the phase be-
e and bulk macrospins in different nanomagnets are
This is the main approximation in our model and

at the resulting band structure is periodic within the
acrospin-to-macrospin phases were to be included,
h scales smaller than the FBZ would be resolved,
outside the model’s scope. Therefore, we apply
eorem as

m(τ1,τ2)
j =m jeΦ =m je−i(τ1a1+τ2a2)·k (34)

and compute the dipole energy,

H (i) = µ0Ms,imT
i ·H

(i)
d,i j.

Rewriting the energy as a function of the comp
tudes a and rescaling to units of frequency, we
block Hamiltonian matrices

Ω(1,1)
d =

ASI

∑
τ1,τ2

eΦ




0 Q12 0
Q21 0 Q23
0 Q32 0




Ω(1,2)
d =

ASI

∑
τ1,τ2

eΦ



T11 S12 0
S21 T22 S23
0 S32 T33


 ,

where,

Qi j =
3

|ri j|5
[α1ρ1+ i(α1ρ2+α2ρ1)−α2ρ2

− 1
|ri j|3

[R(1,1)−R(2,2)+ i(R(1,2)+R(2

Si j =
3

|ri j|5
[α1ρ1+ i(α1ρ2−α2ρ1)+α2ρ2

− 1
|ri j|3

[R(1,1)+R(2,2)− i(R(1,2)−R(2

Ti j = − 3
|ri j|5

[α3ρ3]−
2

|ri j|5
R(3,3),

and we have used a slightly shorthand notation wh
(ρ1,ρ2,ρ3), αi, j = (α1,α2,α3), R(i, j) represent th
nents of the 3× 3 matrix R(θ j − θi,φ j − φi), and
over the ASI modify the phase Φ. The sum in Eq
capped by the criterion in τ1 and τ2 specified by t
determined by the static dipole field computation.

IV. VALIDATION

Gænice is implemented in MATLAB and it c
tained from http://doi.org/10.17605/OSF.IO/YUNH
as a script that reproduces the results presented belo

A. Local �elds

The validity of the implementation of local fie
verified my means of the Kittel equation. For the p
the model presented here, it is imperative to verif
magnitude and angle dependent ferromagnetic res
well as its independence from the coordinate system
We first model a circular thin-film which can be c

as a single macrospin due to the fact that only the
contributes to the demag tensor, i.e., D3 = 1 and D1
We use a saturation magnetization ofMs = 800 kA/
equation as a function of the magnetic field ampl
thus:

ω = γµ0Ms

(
H
Ms

−1
)
,
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mparison of numerical computation of ferromagnetic resonance (FMR) and Kittel’s equation to validate the geometry
f the rotation matrix. (a) Field-dependent FMR of a perpendicularly magnetized easy-plane ferromagnet. The blue circl
s for a magnet in the x− y plane and magnetized along the z direction. The calculations agree with Kittel’s equation (38
e obtained when the magnet and the magnetization are oriented along θ = 33 deg and ϕ = 233 deg. The field is pe
ntation, and we recover the same field-dependent frequency. (b) Angle dependence FMR of an in-plane magnetic
kA/m. Both numerical computations (blue circles) and Kittel’s equation (39) agree. (c) Validation of the shape anis
tion. Field-dependent FMR for magnets of different sizes (colored symbols) and the corresponding Kittel’s equation (4

>Ms. To model this scenario, we use an applied
ted along the z-axis with magnitude in the range
< H < 1,200 kA/m. The magnetization is parallel
lied field so that θm = 0 and ϕm = 0. The magnetic
be rotated so that the hard axis is also oriented along
In other words, θd = π/2 and ϕd = 0. The numeri-
are shown in Fig. 3(a) by blue circles. The solution
el equation is shown at the top by a solid black line.
ment is within numerical error (< 4×10−15).
on of the rotation matrix is achieved by computing
field dependence when the magnetization, external
nanomagnet are rotated by arbitrary polar and az-
les. For example, selecting a rotation θ = 33 deg
33 deg, we recover the correct solution within nu-
ror (< 9×10−15), shown in Fig. 3(a) by gold aster-

w set the external field magnitude to H =
/m and vary its angle, θ0. The frequency as a func-
gle is obtained from the Kittel equation expressed

ω = γµ0

√
Hi (Hi+Ms cos2 (θ0)), (39)

s the internal magnetic field magnitude obtained by
e magnetostatic equations

(Hi+Ms)cosθi = H cos(θ0), (40a)
Hi sin(θi) = H sin(θ0). (40b)

gnetization vector is oriented along the internal
eld angle for a saturating field, θm = θi and ϕm = 0.
θ0 = 0 as the out-of-plane component so that θd =
d = 0 for all cases. The results shown in Fig. 3(b)
idate the implementation of the external and demag

we vary the size of the magnetic element so that all
agnetizing factors are computed. We consider three

different oblate spheres: “Large” (10,000 nm× 1,
5 nm), “Medium” (1,000 nm×100 nm×5 nm), an
(100 nm× 10 nm× 5 nm). The field is once aga
ered to be oriented along the z-axis and its magnit
ied between 800 kA/m < H < 1,200 kA/m. The
dependence as a function of field is given by Kittel’

ω = γµ0Ms

√(
H
Ms

+D1−D3

)(
H
Ms

+D2−D3

The results shown in Fig. 3(c) validate the demag
field and its nanomagnet-dependent implementatio
all three nanomagnets are concurrently simulated.
shows that Gænice can be used as a tool to quickl
FMR for an ensemble of uncoupled nanomagnets.

B. Nonlocal �eld: exchange

The dynamic contribution of the exchange ene
duces the splitting of the resonant frequencies wi
gle nanomagnet. As a test case, we set a stadiu
nanomagnet with dimensions l = 280 nm, w = 10
t = 10 nm. The nanomagnet is oriented along t
θd = π/2 and ϕd = 0.
We first explore the effect of the magnetization

angles. For this, we set the magnetization parallel to
magnet orientation, and we vary the azimuth angle o
netization at one extremum, ϕ1. The computed f
are shown in Fig. 4, where different colors and dash
were used for each branch for clarity. One frequen
exhibits a sinusoidal variation, consistent with one
zation being rotated and modifying the exchange en
maximum occurs at 45 deg, implying that the max
change contribution occurs when the adjacent mag
vectors dynamically couple in both x and y. Ind
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quencies computed by adding the exchange Hamiltonian.
e macrospin is azimuthally rotated, resulting in a size-
on of the frequency in one band. The minima occur at
and ϕ1 = 90 deg, consistent with a dynamic coupling

nly by the magnetization’s z component. (b) Frequency
a function of ∆l, showing divergence as either the bulk
umes tend to zero. The frequencies in the vicinity of the
e ∆l = (2l−w)/4 (the transition between the white and
are approximately constant. Each band is displayed in
lors for clarity.
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quency dependence on the nanomagnet’s size. The aspect
ntained in the calculations so that the length is a represen-
c. The solid lines are frequencies obtained from computa-
ingle nanomagnet. The circles are obtained from a single
n including five non-interacting nanomagnets. Each band
in different colors for clarity.

g or 90 deg, the z components of the magnetization
e coupled, leading to identical energy contributions
enmodes. Note that this is different than the static
energy computed in Eq. (A2).
explore the influence of the bulk and edge volume
om Eq. (23), the exchange energy diverges as ei-
lk or edge volume tends to zero. This is expected
f the underlying assumption that the nanomagnet is

separated in three macrospins. In other words, suc
gence has no physical origin. The frequencies com
function of ∆l when all the magnetization vectors a
with the nanomagnet are shown in Fig. 4(b). Clear
quencies diverge when the bulk and edge volumes te
towards the left and right extrema of the figure, re
The frequencies are relatively constant close to the d
tance ∆l = (2l−w)/4= 110 nm.
As the size of the nanomagnet increases, the

the exchange interaction in the frequencies must
ily decrease insofar as the nanomagnet is split
macrospins. We compute this test scenario by lockin
default value and varying the nanomagnet’s size. W
the aspect ratio of the nanomagnet so that the lengt
sentative of the nanomagnet’s volume. The results
by solid and dashed curves in Fig. 5, where the x axi
in natural logarithmic scale and the colors represen
branches for clarity. As expected, the frequency sp
minishes as the nanomagnet’s size increases.
A final test for the exchange interaction, is to

its implementation is independent of the number of
nets. For this, we specify five nanomagnets with le
200, 300, 400, and 1000 nm and dimensions cons
the aspect ratio of the test case considered in this se
resulting eigenvalue problem requires solving for a
dimension 30× 30. The frequencies are shown by
Fig. 5, color-coded according to the branches of t
nanomagnet calculations. We note that the frequenc
automatically sorted for each nanomagnet: only the
tion of the eigenvectors can return such type of sor
is not currently computed in our implementation, as
in the conclusions. In this case, the frequencies were
sorted. The results are in agreement with the calcula
for each nanomagnets, validating that the exchang
tion is nonlocal but intrinsic to each nanomagnet, i
no coupling between nanomagnets.

C. Nonlocal �eld: dipole

We now investigate the interaction between two
nanomagnets of dimensions l = 280 nm, w = 10
t = 10 nm, as used in the previous section. We foc
collective excitation, so that |k| = 0 and the phase
tions in Eqs. (36) simplify to 1.
The first test ensures that the nonlocal dipole field

depends on the distance between the nanomagnets
we consider a varying distance d along the y axis ran
100 nm to 1,000 nm. The computed frequencies c
only nonlocal dipole fields are shown in Fig. 6(a).
tive magnetization orientation between the two nan
is parallel for the solid black curves and antiparal
dashed red curves. In both cases, the modes are deg
long distances. This is a clear indication that nonlo
field does not affect the internal modes of non-inte
weakly interacting) nanomagnets. Modes are visibl
der a distance of ≈ 400 nm. Red and blue-shifts are
for the parallel and antiparallel cases, respectively
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the static dipole energy for each. Including ex-
ergy, shown in Fig. 6(b), naturally leads to larger
s because of the additional energy. As expected in
the modes converge towards degenerate values at
nces indicating a negligible interaction mediated by
al dipole field. It is important to note that in both
and (b) there are six possible bands. The choice of
anomagnets leads to degeneracies in the system so
wo bands and three bands are distinct in panels (a)
spectively.
t explore the frequency dependence on the relative
between the two nanomagnets. For this, we con-

nomagnet located at the global origin of the Carte-
inate and a second nanomagnet located at a distance
nm in the y direction with a varying unit vector D̂1.
er both polar and azimuth rotations parametrized by
θ1 and ϕ1, respectively, as shown Fig. 7. Note that
les are measured relative to the orientation of the
magnet.
puted frequencies are shown in Fig. 8. The fre-

riation as a function of the polar angle θ1 is shown
these computations, we disabled the exchange in-
o focus on the symmetry of the static dipole field.
modest change in the frequency that is maximal

80 deg. The symmetry is also consistent with the
0 deg and 270 deg are degenerate. The frequency
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quencies as a function of distance between two identical
ts interacting via (a) nonlocal dipole field and (b) both
pole field and exchange interaction within each nanomag-
agnets are parallel to one another, and we distinguish the
gnetization being parallel (solid black curves) and anti-
shed red curves). In all cases, the nonlocal dipole field
gligible at large distances and the bands become degen-
pected for non-interacting identical nanomagnets.

variation as a function of the azimuth angle ϕ1 is
(b). There are again clear symmetries consistent wit
tion of the nanomagnet despite the increased numbe
originating from the non-collinear magnetization or
Notably, at 90 deg and 270 deg, the rotated nano
perpendicular to the fixed nanomagnet and the spac
110 nm. Strong variations are observed close to th
tions. As expected, the computed frequencies are p
both θ1 and ϕ1.
This concludes the verification of the static di

which follows the qualitative expectations of decay
tance and symmetries due to different types of rel
wise rotations.

D. Band structure

1. Nanomagnet chain

A one-dimensional chain of nanomagnets is mo
single nanomagnet with dimensions l = 280 nm, w
and t = 10 nm subject to a translation vector a1 o
an azimuth ϕa and lattice constant |d| = 300 nm.
with wave vectors k oriented at an azimuth ϕk are
as shown schematically in Fig. 9.
The magnon dispersion is computed for cases wh

the wavevector parallel to the x-axis and rotating
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FIG. 7. Geometrical variations between two interacting
nets. The nanomagnet with director D̂1 is located at
d = 300 nm along the ŷ direction. The director’s orientati
by the polar and azimuth angles θ1 and ϕ1, respectively.
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FIG. 8. Computed frequencies for a pair of interacting na
when one of the nanomagnets is rotated about (a) the po
and (b) the azimuth ϕ1. The angles are shown in the schem
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tor. In other words, a1 = dâ1 = d[cos(ϕa)x̂ +
The resulting dispersion relations as a function of

(k · â1) within the first Brillouin zone for selected
are shown in Fig. 10(a). Three bands are observed
single nanomagnet split into three macrospins com-
unit cell of the chain. Because of the coupling to
magnets, no degeneracies are present in this sys-
band structures show a pronounced periodic behav-
BZ that is symmetric relative to ϕa = 90 deg, stem-
the product k · a1. This symmetry validates the

tation of the sums performed in Eqs. (36). It is also
the mid panel of Fig. 10(a) that the band structure
ular to the chain orientation at ϕa = 90 deg, is flat.
ause the phase in Eqs. (36) is exactly zero when the
vector and wavevector are perpendicular. In other
fact that we recover flat (non-dispersive) bands in

validates the correct implementation of the phase in
throughout Gænice.
o possible to consider another case of ϕa ̸= ϕk. We
slation vector along the x axis, i.e., a1 = dx̂ and we
ch that k= |k|[cos(ϕk)x̂+sin(ϕk)ŷ]. The dispersion
or k= |k| up to the FBZ are shown in Fig. 10(b). As
(a), the expected symmetries are respected, e.g. the
ture perpendicular to the chain orientation is flat;
0 and 270 deg, for the same reasons outlined above.
here we extend the rotation of ϕk to a full cycle to
te that the phase implementation is correct, i.e., that
etric under a 180 deg rotation.

le interacting chains

calculate the band structure of interacting nano-
ains. Each nanomagnet is oriented at φd = 0 with
the x-axis and the array is generated from the sin-
agnet unit cell due to translation vectors a1 and a2
ice constant of d = 300 nm. A visualization of this
ion is produced by Gænice to ensure the correct ge-
finition, shown in Fig. 11(a). The magnon band
s computed by an automatic determination of the
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ොz

෡D

𝒂1

𝒌

𝜑𝑎

𝜑𝑘

hain of nanomagnets is modeled by a single nanomagnet
n which the nonlocal dipole field from an infinite chain of
ts (blue) acts. The chain can be defined along an arbitrary
rection by setting the translation vector a1 oriented at an
. The magnon dispersion can be computed for arbitrary
vevectors k given the azimuth ϕk.

(a)

(b)

FIG. 10. Dispersion relation for a 1D nanomagnet cha
setting the wavevector along x̂ and rotating a1 and (b) setti
the x̂ direction and rotating the wavevector. The bands
most changes when the wavevector and translation vector
and are flat when these are orthogonal. This is in agreeme
tight-binding definition of the phase in Eqs. (36).

FBZ and its subsequent Delaunay triangulation to p
array of wavevectors k= kxx̂+kyŷ. This feature all
timally map the FBZ and produce band surfaces, a
Fig. 11(b).

As for the 1D nanomagnet chain, the FBZ also sh
bands because the unit cell consists of a single na
By examining the band structure depicted in Fig.
frequencies calculated along kxx̂ exhibit pronoun
tions while it is predominantly flat along kyŷ. Th
sistent with our tight-binding approach whereby th
dipole coupling depends on the gap distance betw
magnets.

The irreducible path in the FBZ can be also dire
puted in Gænice. We observe that the band structur
ent when the path is taken towards the X and X ′ po
is because the array is asymmetric, such that the d
is different along x̂ and ŷ directions.
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(a)

(b)

(c)

) Gænice representation of the 2D array of nanomagnet
icting the translation vectors. (b) Resulting band structure
FBZ is shown under the band structure. The FBZ is di-
uted by Gænice from the translation vectors and the high-
oints are also identified. The band structure is obtained
ing a Delaunay triangulation over the FBZ and evaluating
g wavevectors. The color scale represents the frequency
so shown in the vertical axis. (b) Irreducible path in the
iting the asymmetry of this geometry as well as the peri-
ieved by the tight-binding method.

e ice

use Gænice to compute the magnon band structure
ASI, where four nanomagnets are placed around

each at an angle of 90 degrees to one another and
t from the vertex. We maintain the previously used
et dimensions l = 280 nm, w = 100 nm, and t =
now set a center-to-center distance of d = 430 nm.
icity, we investigate the band structure for states
magnetization is in a homogeneous (onion) state.
ing in the magnetization state leads to S andC states
own to modify the band structure16.
stigate both the vortex (type-I) and remanent (type-
ration. The vortex state has four nanomagnets in
ell and is defined by the translation vectors a1 =
= x̂+ ŷ. The remanent state has two nanomagnets
t cell and is defined by a1 = x̂ and a2 = ŷ. These
ions are shown in Fig 12(a) and (b), respectively.
nd structures in the FBZ are shown in Fig. 12(c)

and 12(d), for the vortex and remanent states, re
By dividing the nanomagnet into three macrospin
tex state has twelve bands. The band structure exh
dispersion, which may be expected by the fact tha
fields are largely compensated in a type-I configur
band separation is clearly seen in the irreducible p
in Fig. 12(e), exhibiting a band-gap of about ≈ 5 G
In the remanent state, there are six bands. In thi

bands are very close together, with a visible dip at th
It is also evident that the band structure is skewed,
consequence of the likewise skewed static dipole fi
configuration.
The results in this section are in agreement w

ous calculations16 demonstrating the reconfigurabi
magnon band structure for square ices. Howeve
proved dipole field implementation in Gænice
more subtleties in the band structure as well as as
that could in principle indicate directional magnon
tion, as recently surmised in a combined experim
micromagnetic study13. We also emphasize that we
explored here the onion state, but it is well-know
magnetization tilts at the edges of the nanomagn
stray fields. This adds an additional degree of fr
tuning the band structure.

4. Kagome ice

We now explore the band structure for Kagome
Kagome unit cell comprises three nanomagnets w
constant d = 800 nm which we define as twice
of the circle in which the hexagonal structure is e
Considering the center of the triad of nanomagn
origin, we define the translation vectors a1 = x̂
(1/2)x̂+(1/

√
3+1/4)ŷ.

We consider two cases: a “regular” Kagome
the nanomagnets have identical dimensions l = 28
100 nm, and t = 10 nm; and a shape anisotropy
Kagome ice inspired by the work by T. Dion et a
we use three different widths w = 100 nm, w = 18
w = 60 nm for the nanomagnets in the unit cell. T
tries are shown in Fig. 13(a) and Fig. 13(b). In both
array is in a degenerate ground state where the uni
has a 2-in/1-out vertex.
In the “regular” Kagome ice we find a modest b

ture with all nine bands contributing to the band
shown in Fig. 13(c). However, the shape anisotropy
Kagome ice exhibits only four bands, as shown in
with other five softened to exactly zero. In the con
framework, a zero-frequency band entails a real, e
solution, but the softening of frequencies also ind
the static magnetization state can be unstable. Suc
bility is beyond the scope of Gænice and would req
cromagnetic investigation. The bands in the irreduc
in Figs. 13(e) and (f) further confirm that the band
tively flat in all cases. An important distinction is
anisotropy modified Kagome ice exhibits band-gap
consistent with the different FMR for each nanom
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(c) (e)

(d) (f)

ænice representation of the square ice geometry for the (a) vortex and (b) remanent states. The respective band structu
wn in (c) and (d) while the irreducible path in the FBZ are shown in (e) and (f).

(c) (e)

(d) (f)

ænice representation of the Kagome ice geometry for (a) identical nanomagnets and (b) shape anisotropy modified na
tive band structure for each case in shown in (c) and (d) while the irreducible path in the FBZ exhibiting are shown in (e

emagnetization factors. While this is certainly not
h investigation of the frequency response of shape
modified Kagome ices, it showcases the function-
ænice to compute the band structure of relatively
eometries with ease.

V. CONCLUSIONS

We have presented Gænice, a computational too
pute the dispersion relation of arbitrary artificial sp
ometries. The theoretical framework of Gænice
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tion of small-amplitude perturbations and produces
sion relation by computing both static and dynamic
tributions to the Hamiltonian matrices. Our frame-
relies on a tight-binding approach to ensure the peri-
solutions within the FBZ, which composes the main
tion of the model. For this approximation, only cou-
een like macrospins at different unit cell locations
red, precluding short-range interactions.
can be also used for FMR computations of rela-
plicated geometries. For example, Gænice has been
pplied for square ASIs based on trilayers and exhib-
kable agreement with experiments and micromag-
lations of field-dependent FMR23. Because both the
and dipole interactions can be toggled, Gænice can
e used to study the FMR of ensembles of interact-
-interacting nanoparticles and extended to 3D struc-
btain such good agreements with experiments, it is
tal to adjust the equilibrium magnetization state as
e demag factors. While accurate demag factors are
y micromagnetic calculations solving the bound-
ions, it is possible to estimate diagonal demag fac-
ing Kittel equation to micromagnetic simulations43.
d take into account the particularities of the nano-
shape in an approximate manner while maintaining
n the FMR computation.
re three main limitations to Gænice in its current
rst, the computations are accurate for nanoparti-
nanomagnets because of the assumption of three
s. Larger nanomagnets possess higher degrees of
hat will reduce the relative energy contributions.
, Gænice is likely to overestimate the frequency split
omagnets are brought very close together. In addi-
lex static magnetization textures such as multido-
s and vortices cannot be captured by this minimal
ion. A possible solution to these issues is to further
anomagnets into more macrospins, with the caveat
mber of macrospins should be kept to a minimum
in a computational advantage over micromagnetic
s. Another way to solve this issue is to compute
of the system to actively modify the magnetiza-

e bending due to stray fields, as recently shown in
deed, any investigation of magnon modes in ASIs
ully take into account the magnetization edge bend-
nction of the static magnetization state and include
nding in Gænice to obtain a better agreement with
netic simulations. Such an effect was shown previ-
ef.16 a simpler semi-analytical approach.
, the wavevectors are not currently computed. Be-
solve a linearized system, similar eigenvalues are
give rise to numerical errors in the computation of
rs. This limitation will be resolved in future work.
3D band structure is not currently supported. How-
asic framework is written and a generalization in 3D
ose a simple expansion of the dipole phases in the
ing approximation, a method that is well-known in
physics.
marize, Gænice is intended to be a computationally
xploratory tool aimed at identifying potentially in-

teresting dynamics that can arise in a large paramete
its current stage, Gænice should not be used as a qua
exact predictive tool, but as a guide to search and i
triguing regions of parameter space. Detailed micr
simulations may then be performed to optimize us
computational resources.
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Appendix A: Derivation of exchange energy

To compute the exchange energy, we use a sim
one-dimensional spin chain model to estimate t
along the chain and relate it to the nanomagnet’s re
their volume. Consider a chain of length l where th
zation vector is linearly rotated, so that

m= cos(k0x)x̂+ sin(k0x)ŷ.

It can be shown that the exchange energy is given
AVk20+E0, where A is the exchange constant in uni
V is the volume of the quasi-1D chain, and E0 is a c
integration.
We consider now a nanomagnet of length l, wid

thickness d, split in three unequal pieces with bou
l1 and l2 so that their volumes are V1 = wtl1, V2
l1) = wt∆l1,2 and V3 = wt(l3− l2) = wt∆l2,3. This
schematically shown in Fig. 14. The total exchange

Eex = J1 (m1 ·m2)+ J2 (m2 ·m3) ,

where the magnetization vectors are taken in the
center of each piece, and the constants J1 and J2
acting as a metric for the total exchange energy
chain.. This leads to m1 ·m2 = cos(k0∆l1,2) and
cos(k0∆l2,3). Expanding the cosine to first order in
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oy model for a quasi-1D spin chain splitted into unequal
timate the exchange energy.

ractional ratio between edge and volume modes. The
onsidered at the edge of the gray area in the limiting case
w)/4.

ng to the continuum solution, we obtain

J1+ J2)+

(
J1

∆l21,2
2

+ J2
∆l22,3
2

)
k20 = E0+AVk20,

(A3)

hat the exchange constant is uniform in the nano-
e can set J1 =C1,2A and J2 =C2,3A. From geome-
be shown that

C1,2 =
2

∆l21,2

(
V1+

V2
2

)
, (A4a)

C2,3 =
2

∆l22,3

(
V3+

V2
2

)
. (A4b)

In the case of stadium-shaped nanomagnets, on
sider a symmetric splitting so that V1 = V3 = Ve an
leading to the expression shown in Eq. (22).
The edge volume Ve and the bulk volume Vb ca

puted as a function of ∆l. We have two cases.
a. Case l/4< ∆l < (2l−w)/4

This corresponds to the situation where an edge
cupies more than the half-circle in the stadium’s e
expense of the bulk mode. The edge and bulk volum

Ve =
1
2

[
wtl−w2t

(
1− π

4

)
−Vb

]
,

Vb = (4∆l− l)wt.

b. Case (2l−w)/4≤ ∆l < l/2

This corresponds to the situation where an edg
confined to the half-circle in the stadium’s edge. C
the cone angle

θ = 2arccos
(
1− 2l−4∆l

w

)
,

the edge and bulk volumes are

Ve =
θ − sin(θ)

8
w2t,

Vb = wtl−w2t
(
1− π

4

)
−2Ve.

The edge and bulk volumes as a function of ∆l
in Fig. 15. The limiting case ∆l = (2l−w)/4 is con
be the default.

Appendix B: Computation of static stray �eld

In Ref.46, the authors considered a rectangular p
its geometric center at the origin of the Cartesian
frame and sides 2xb > 2yb > 2zb. The resulting e
for the stray field are:
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tray fields computed with Eqs. (B1). We show the computed field under several rotations within Gænice and in the
g macrospins. The rotation angles are displayed for each figure.

x(x,y,z) =
Ms

4π

2

∑
k,l,m=1

(−1)k+l+mln
{
z+(−1)mzb+

√
L(k, l,m)

}
,

y(x,y,z) = −Ms

4π

2

∑
k,l,m=1

(−1)k+l+m

[
y+(−1)lyb

][
x+(−1)kxb

]

|y+(−1)lyb||x+(−1)kxb|
× arctan

{ |x+(−1)kxb| [z+(−1)mzb]
|y+(−1)lyb|L(k, l,m)

}

Hz(x,y,z) =
Ms

4π

2

∑
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√
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}
,

[
x+(−1)kxb

]2
+
[
y+(−1)lyb

]2
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2

(B2)
at the assumed orientation of the rectangular prism
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e rotate the expressions of Eq. (B1) such that the
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e show the calculated stray field from rectangular
th different director vectors. In all cases, it is seen
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