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Arrays of artificial spin ices exhibit reconfigurable ferromagnetic resonance modes that can be leveraged and designed
for potential applications. However, analytical and numerical studies of the frequency response of artificial spin ices
have been restricted in scope due to the need of take into account nonlocal dipole fields in theoretical calculations or by
long computation times in micromagnetic simulations. Here, we introduce Ganice, a framework to compute magnon
dispersion relations of arbitrary artificial spin ice configurations. Ganice makes use of a tight-binding approach to
compute the magnon bands. It also provides the user control over the interaction terms included, e.g., external field,
shape anisotropy, exchange, and dipole, making Ganice useful for computing ferromagnetic resonances for a variety
of structures, such as multilayers and ensembles of weakly or non-interacting nanoparticles. Because it relies on a
semi-analytical model, Ganice is computationally inexpensive and efficient. This makes it an attractive tool for the
exploration of large parameter spaces. We expect Genice to help guide the development of novel artificial spin ices

geometries and specific micromagnetic simulations for full quantitative verification.

I. INTRODUCTION

Artificial spin ices (ASIs) are systems of structured nano-
magnets arranged in periodic patterns that are magneto-
statically coupled. ASIs were originally designed to mimic
the behavior of natural spin ice materials', in order to explore
the fundamental principles of frustrated magnetism. Frustra-
tion arises from competing magnetic interactions that cannot
all be simultaneously minimized?, leading to highly degen-
erate states. ASIs can be also considered as magnonic crys-
tals®>> exhibiting reconfigurable magnonic modes>~'2, nonlin-
ear scatteringl3, band structure!4’ 18 and hybrid modes!20,

The arrangement of magnetic elements in a square lattice,
known as square ice?!, has been a test bed for the investigation
of ASIs as magnonic crystals because its relative simplicity
allows for the understanding of the fundamental physical phe-
nomena. Analytically, square ices have proven promising for
reconfigurable magnonics because of the magnetization state-
dependent magnon modes predicted!®!7 as well as evidence
of topological modes??. However, the study of similar effects
in other geometries remains limited to date. Experimentally,
this is partly because of the large number of geometries to ex-
plore! and the technical challenges to investigate wavevector-
or spatially-resolved magnons in a nanopatterned structure,
e.g. by Brillouin light scattering”>. From a numerical point
of view, simulations using micromagnetic modeling?*—28 are
very time-consuming and often require large memory alloca-
tions to investigate long-wavelength magnons that are easily
excited by microwave antennas in experiments. This means

YCurrent and permanent address: Seagate Technology, 7801 Computer Ave.,
Bloomington, MN 55435

that geometries beyond square and Kagome arrangements and
with more complex unit cells, both in 2D! and 3D**-3! have
been more challenging to experimentally realize due to the
lack of an efficient predictive tool for magnetization dynam-
ics.

Here, we present a general artificial spin ice eigenvalue
solver we call Ganice. The formalism is based on a Holstein-
Primakoff transformation®”> to obtain an eigenvalue prob-
lem that can be solved numerically with little computational
cost!®. The main difference between Gaenice and other meth-
ods is its generalization to arbitrary nanomagnet orientations
and magnetization states with an automatic determination
of the first Brillouin zone (FBZ). In contrast to micromag-
netic simulations, Ganice uses a minimal discretization of the
nanomagnets which allows one to take into account a static
magnetization edge bending due to stray fields but at the same
time focus on magnetostatic spin waves. This allows Ganice
to resolve the magnon band structure within the 2D Bril-
louin zone, which would require significant computational re-
sources as computation time using state-of-the-art micromag-
netic solvers. As a drawback, Ganice assumes linear spin
waves due to the Holstein-Primakoff approximation. Nonlin-
ear effects, such as parametric pumping'? cannot be described
with Ganice. These would require both the finer discretiza-
tion of, and the full nonlinear model used in micromagnetic
simulations to resolve higher-order modes within the nanois-
lands that allow for mode mixing. In addition, the minimal
discretization precludes the study of magnon dispersion over
more complex magnetization textures, such as magnetic vor-
tices or multidomain states.

We expect that Genice can serve as a numerically effi-
cient and computationally accurate tool to predict magnonic
functionality for ASIs and to direct more detailed studies of
promising geometries using micromagnetic simulations and



experiments. In other words, we envision Ganice as a tool to
quickly explore the parameter space of distinct ASI geome-
tries and identify potentially interesting regimes that can be
then further explored with traditional computational and ex-
perimental methods3—37.

The remainder of the paper is organized as follows: In sec-
tion II, we describe the general formulation of the problem.
The energy terms considered and their implementation are de-
tailed in section III. In section IV, we demonstrate the func-
tionality of Ganice by computing simple Kittel modes and
ferromagnetic resonance (FMR) modes in a variety of linear
arrays of nanomagnets and the two fundamental ASI config-
urations: square ice and Kagome ice. Limitations of our ap-
proach are discussed in the concluding section V.

Il. GENERALIZED ANALYTICAL MODEL

We begin our description from the conservative Larmor
torque equation

om
—, = —YHom x Heg, (D

ot

where m is the normalized magnetization vector with jm| =1,
Y is the gyromagnetic ratio, and L is the vacuum permeabil-
ity. The effective field Heg contains physical terms and phe-
nomena relevant to the magnetic material and interfaces which
are described within the context of our eigenvalue solver in
section III. Note that we neglect damping here given that we
are interested in resonant, propagating modes.

For small-amplitude excitations, such as magnons, the Lar-
mor torque equation can be rewritten as a Hamiltonian set
of equations using a Holstein-Primakoff transformation of the
complex small amplitude a*?
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where m = m €&, + m€&, + m3€; is the magnetization vector
expressed in a coordinate system where €3 defines the equilib-
rium orientation of the magnetization vector and &; x &, = &s.
An illustration of this basis is shown in Fig. 1(a). The rotated
coordinate (&;,&,,€3) is uniquely obtained by use of a rotation
matrix, as elaborated upon in section IL.A. This means that if
6,, = 0 and ¢,, = 0, & is aligned on x-axis and &, is aligned
along y-axis.

From Eq. 2, we can relate the complex amplitudes to the
magnetization vector in the € basis as

2
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Using the transformation of Eq. 2, we can approximately
rewrite Eq. 1 as a Hamiltonian system for the complex ampli-

(a)

(b)
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FIG. 1. (a) The magnetization vector rotated by the polar and az-
imuthal angles (6, ¢,). The rotated frame (&;,&,,&3) is defined
relative to the equilibrium orientation of the magnetization vector m
(b) Nanomagnet orientation relative to the Cartesian coordinate sys-
tem. The unit vector D indicates the direction of the nanomagnet’s
long axis and is defined by the angles 6, and ¢;.

tude a as previously done in Ref.'®
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and the Hamiltonian is defined over a magnetic volume as
= ~poM, [ Hgr(m) -may. )

where Hegr(m) can be a function of the magnetization, and dV
is the volume element over which the integration is performed.

To describe the magnon band structure of an ensemble of
nanomagnets in an ASI, Eq. (4) can be generalized to an array
of complex amplitudes, as shown in Ref. 16. To account for
the magnetization bending at the edges of the nanomagnets>®,
we divide each nanomagnet into 3 macrospins. This is an im-
portant assumption in our model, making it valid for magnetic
elements with sizes of the order of hundreds of nanometers.
However, it was shown in an earlier use of the semi-analytical
method that this coarse discretization is sufficient to capture
the relevant magnetization dynamics. The method is partic-
ularly accurate in proximity to the I" point®, as also demon-
strated with Gznice recently?3. For wavevectors approach-
ing the edge of the FBZ, the computed eigenvalues could ex-
hibit inaccuracies by the 3-macrospin approximation in cases



where the magnetization edge bending is significant, i.e., re-
quires micromagnetic accuracy. Therefore, given N nanomag-
nets in the unit cell of the ASI, we define the complex ampli-
tude array a = [a; a3 ... asy] and the 2(3N) x 2(3N) Hamilto-
nian matrix S so that the generalized Hamiltonian becomes

= a a*]%[a*}’ Q)
The Hamiltonian matrix is further divided as

)

L) p(2)

D) p22)

where (1) = (222 and (12 = (#>))* by sym-
metry of the Hamiltonian equations. As further discussed be-
low, this system describes bosonic excitation (magnons) so
that the eigenvalue problem can be solved using Colpa’s grand
dynamical matrix that ensures complex conjugate eigenval-

uc 840 .

A. Coordinate system

Our framework relies on a Cartesian coordinate system
where the polar angle 6 = 0 and the azimuth angle ¢ =0
define the z-axis, as shown in Fig. 1(a). Once this coordinate
system is established, applying Eq. 1 requires a rotation to the
coordinate system defined by (&;,&,,€3), where the direction
of &3 is parallel to the equilibrium orientation of the magneti-
zation vector at any given point in space.

This implies that coordinate transformations must be per-
formed locally for both the magnetization vector and the ef-
fective field for an arbitrary array of magnetization vectors.
We define the local rotation matrix

cos@cosO singcosf —sin6O
—sin@ cos @ 0 | ®)
cos@sin® sin@sin® cosH

R(evq)) =

It is important to note that R~'(0,¢) = R (6, @).

An arbitrary orientation of nanomagnets is considered, de-
fined by a unit vector D. The direction of D is parameter-
ized by the polar and azimuth angles 8, and @, as shown in
Fig. 1(b). When 6; = 0 and ¢, = 0, the nanomagnet is aligned
along the z-axis, and its thickness is aligned along the x-axis.
In this case, the angles 6, and ¢, represent pitch and yaw,
respectively.

B. Eigenvalue problem

The magnon dispersion relation @ (k) is obtained from Eq. 6
by invoking Bloch’s theorem ¢—«e'® and Colpa’s grand dy-
namical matrix*

O o< Y, ®

where W is an eigenvector. By introducing the proportionality
factor y/(2V M), where V is a volume and M, is the satura-
tion magnetization, Eq. (9) becomes an equality. The volume
and saturation magnetization will be associated with a magne-
tization vector to allow for maximal flexibility of the model.
Therefore, we will use the convention Q = y/(2VM;) s to
obtain

Q(172) —(Q(l’l))*
o¥ = Q(l,l) 7(Q(1,2))*

¥, (10)

The eigenvalue problem of Eq. 10 can be solved numer-
ically by standard methods. This formulation has been im-
plemented for square ice!®?? and it has been referred to as
semi-analytical because the Hamiltonian matrix .7 is derived
analytically and only the eigenvalue problem is solved numer-
ically. Here, we derive the Hamiltonian matrices for arbitrary
ASI configurations, so that the matrix is built in an automated
way for any number of nanomagnets in a unit cell.

Ill. EFFECTIVE FIELD

The effective field is Ganice’s core, which gives rise to the
Hamiltonian matrix. In essence, the effective field is divided
into two groups of physical effects; local and non-local

Hefr = Hy + Hyy. an

In its current implementation, Genice includes a uniform
external magnetic field and anisotropy field as local contribu-
tions; and exchange interaction and dipole-dipole interaction
as non-local fields from a point of view that the macrospins of
the nanomagnets are coupled. In other words, these fields lead
to finite non-diagonal elements in the Hamiltonian block ma-
trices. The dipole-dipole contribution is fundamental to ASIs
and is detailed below. In the same manner, it is possible to
extend Ganice to include other field contributions, such as
magnetocrystalline anisotropy, Dzyaloshinskii-Moriya inter-
action for heavy metal / ferromagnetic bilayers, and RKKY
exchange for magnetic trilayers. While some of these terms
act on short lengthscales, their contributions to the Hamilto-
nian matrix could induce further richness to the eigenvalues.
For example, in Ref.?2, it was shown that the complex terms
introduced by the Dzyaloshinkii-Moriya interaction give rise
to non-trivial topological bands which point to the existence
of topologically protected edge modes as observed in atomic
spin ices*!.

In the following subsections, we express these field contri-
butions in the form given in Eq. 10. All fields are defined in
the Cartesian coordinate system and rotated to the local mag-
netization coordinates described in section IT A.

A. External Field

A uniform external field, Hy, leads to the energy

Eo = —V toM;(R(6n, o) - Ho)" - m. (12)



The only quadratic term in a in Eq. (12) is parallel to 5.
Therefore, we can express the frequency contribution due to
an external field as

Qo = yuolal* (R(6, Pm) - Ho)" - &3. (13)

Hence,
o' =0 (14a)
o'? = "0 ((R(8,,9,)-Ho) &)L (14b)

2

where I is the identity matrix.

B. Demagnetization Field

The demagnetization (demag) field is determined from the
shape of the magnetic element, which is an accurate approx-
imation for soft magnets, such as Permalloy. We consider a
demag tensor D that we approximate with diagonal demagne-
tizing factors D; < D, < D3 such that

DI 0 0
D=|0 D, 0]. (15)
0 0 Ds

This approximation is consistent with the notion of macrospin
elements, i.e., similar to the general ellipsoid42. For other
nanomagnets’ shapes, the demag factors are generally inho-
mogeneous, but effective homogeneous factors can be found
by fitting Kittel’s equation*>.

This definition follows from the nanomagnet’s orienta-
tion in the Cartesian coordinate system whereby the easy
axis lies along the z-axis and the hard axis along the x-
axis. The demagnetizing factors can be found in a variety
of ways. Analytical expressions are available for oblate nano-
magnets*? and for rectangular prisms**, and numerical val-
ues for the demag factors can be obtained numerically for
stadium-shaped nanoislands by fitting their FMR*3, providing
good agreement with experiment®®. Genice currently sup-
ports the analytical expressions for a rectangular prism** as
well as oblate nanomagnets given by

tvV1—e2(K—E)

D, = iz (16a)
t(E—(1-e)K)
D, = L %) 16b
? le2\/1 — €2 (165)
1—tE
Dy = ——— | 16¢
3 Vi (16¢)

where K and E are the complete elliptic integrals of the first
and second kind and e = /1 — (w/[)2. In the limit of a circu-
lar nanomagnet, one must consider Dy = Dy =0 and D3 =1

to avoid a numerical singularity in Egs. (16a) and (16b) when
o — 04245

The shape anisotropy energy is expressed as

Ew=VMm-D-m’, (17)

We rotate the demagnetization tensor using Eq. (8) and the
unit vector D to align it with the magnetization direction in
the Cartesian reference frame

C=R(0y—64,0n—¢1)-D-R (0, — 04,00 —94), (18)

resulting in the nanomagnet-dependent Hamiltonian matrix
Hn=VM>m-C-m”, (19)

We note that this matrix is a 3 X 3 block that is defined
for each nanomagnet. Expressing Eq. (19) as a function of
the complex amplitudes a, ultimately results in the diagonal
Hamiltonian block matrices

(1,1) YHoM;

ol = P2 ) D 4i(c1?) +c2) | @ow
M
Ql? = T [clh — c2) _acla]y, (20b)

where the factors C(#/) are the elements of the matrix C.

C. Exchange

We include exchange interaction as a minimal model for
edge bending in the magnetization of tightly packed nano-
magnets'%38. The nanomagnet is split into three regions, and
we use an effective exchange energy to parameterize the ex-
change interaction. The nanomagnet splitting is shown in
Fig. 2 for the cases where the edge modes are (a) larger or (b)
smaller than the stadium’s semi-circular edges. It is assumed
that the edge modes are symmetric in volume. We refer to
Appendix A for details. Here, we report the final form of the
block matrices used in the eigenvalue problem.

We consider that the nanomagnet is split in a bulk
macrospin with volume V,, and two edge macrospins with
identical volumes V,, satisfying that the total volume of the
nanoisland is V =V, +2V,. The volumes are uniquely de-
termined by the parameter Al defined as the length from the
geometric center of the nanomagnet to the center of the edge
volume. The default value Al = (2] —w) /4 is defined when the
edge volume is exactly contained at the semi-circular edges of
stadium-shaped nanomagnets. However, this parameter can
be tuned.

The exchange energy is therefore defined as a pair-wise in-
teraction between a bulk macrospin b and an edge macrospin
e+ (upper) and e— (lower)

J o7

Ee()l?e) == _Emb 'R(eme - emba (ng - (Pm;,) ‘Mg, (21)

where the exchange factor J is given by

2 v,
= — . 22

Recognizing that the exchange interaction only occurs for
neighboring macrospins within a nanomagnet, we define the
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FIG. 2. Symmetric splitting of stadium-shaped nanomagnets, where
we discern between a large edge volume (a) and a small edge volume
(b), relative to the semi-circular edges. The bulk and edge volumes,
Vp, and V,, respectively, are uniquely determined by the parameter Al.

3 x 3 exchange energy blocks per nanomagnet N
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where R("/) represent the matrix elements of the rotation dif-

ference matrix R(6,,, — 0

my,s Pm, —
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With these blocks, the frequency contribution due to ex-
change is written with the block-diagonal matrices as

ay _ v
Q(’X - ZM?
ol? = T
2M;
D. Dipole field

Eelx 1
. (25a)
L E(ix,N_
ng 1 1
(25b)
E?x N

The dipole field is essential to compute the spin-wave band

structure for ASIs.

We distinguish two contributions to the

dipole field: a static contribution originating from the equilib-
rium magnetization, and a dynamic contribution originating
from the long-range dynamics of macrospins. An analogous

way to phrase this, is that we consider a perturbation to the dy-
namical matrix where the zeroth order term is the static stray
field from the magnetization and the first-order correction is
the dipole-dipole contribution.

1. Static contribution

To compute the static contribution of the dipole, we con-
sider the stray field from each nanomagnet in the ASI on a
macrospin i. As an approximation, we implemented the ana-
lytical expressions of the stray field from a rectangular prism
derived by R. Engel-Herbert and T. Hesjedal*®. The result-
ing field due to nanomagnet n is HAE.;)M‘,‘ » and is computed as
a function of the center position of the nanomagnet n and the
position of the macrospin i. The analytical expressions de-
rived in Ref.*® are written in Appendix B. Essentially, this
computation provides a local field source for macrospin i so
that it contributes to the Hamiltonian matrix as an external
magnetic field. To consider the stray field from the whole pe-
riodic structure, we introduce the translation vectors a; and
ap, as well as the coefficients 7; and 7, so that any unit cell
is uniquely identified by a translation of Tja;+ Ta;. In this
context, T; = T, = 0 represents the unit cell.

A subtle difference between a truly external field and the
stray field is that we need to scale the latter to the fractional
volume of the macrospin it is acting upon. In other words, we
impose that the total energy on the target nanomagnet due to
nanomagnet n is conserved

Z V Hma) n M
V b
where i here refers to the three macrospins in a given nano-

magnet, two edge volumes and one bulk volume.
As a consequence, the contribution to the matrix becomes

E = uoM (26)

Qi = o, (27a)
A I 3
(12) Vi g\ e
Q‘ ) = <, R(enn(pm) ¥ -€3 17
stray 1:21: Lz v ( stray, n) :|
(27b)

The maximum value of 7; and 7, is capped so that the long-
range dipole contributions converge with sufficient numeri-
cal accuracy. Genice permits to specify either the maximum
value for 7; and 7, or to expand the lattice until numerical
accuracy is achieved.

2. Dynamic contribution

The dipole field of macrospin j acting on macrospin i is
calculated using the following expression.

ViM; 3ri.j(ri,j'mj)_ m;
4m i I

Hgy;j = (28)

i I3

where, r; ; is the distance between the two macrospins i and j.



We adopt a tight-binding-like approach for periodic struc-
tures whereby the dipole field is computed within and between
unit cells. Therefore, the long-range terms collapse into a sin-
gle Hamiltonian matrix. Identifying each macrospin’s spatial
position within a nanomagnet is critical. Hence, we adopt the
convention that the bulk macrospin is located at the nanomag-
net’s geometric center, denoted by X,,. The edge macrospins
can be computed by

X, =X, = AID. (29)

In general, the distance between macrospins i and j is given
by

T,T
rf'l 2)

ij :Xi_Xj_

(‘L'1a] +’C232). 30)

Therefore, the total nonlocal dipole field acting on a
macrospin i can be written as

ASI U.C. 3r(T‘ fz)(r(?l,rz) .m('n,rz))
— t 2 J
Hd,ij = Z ZVM?/[ (t1.72) 15
Tl o |rij |
. L} an
|r(71372)|3 ’
tj

Because the distances in Eq. (30) are computed in the nat-
ural Cartesian coordinates, we need to rotate into the basis of
each macrospin to compute the products as a function of cou-
pled complex amplitudes. For this we define two distances in
the rotated reference frame

(32a)
(32b)

pij = R(6;,0;) 1y,
0;j = R(6;—06;,0;—¢) -1y

Therefore, the net field on macrospin i, expressed in the
basis of i, is

ASI U.C.
_ L Z ZVMJ{O‘U prl] m;)
Tl T i
R(6;—6;,¢; — ¢;) -m;
5 ] (33)

ij

The last step to collapse the sums into a single Hamiltonian
matrix is to incorporate a tight-binding approach. We invoke
Bloch’s theorem but we make the assumption that the phase
between the complex amplitudes is solely given by the trans-
lation vectors between unit cells. This implies that the phase
between macrospins within a nanomagnet and the phase be-
tween edge and bulk macrospins in different nanomagnets are
neglected. This is the main approximation in our model and
ensures that the resulting band structure is periodic within the
FBZ. If macrospin-to-macrospin phases were to be included,
then length scales smaller than the FBZ would be resolved,
which is outside the model’s scope. Therefore, we apply
Bloch’s theorem as

(r1,m) _ D

m; =mje” = mje*i(fualﬂzaz)-k (34)

and compute the dipole energy,

AV = poM, m] HY),. (35)

Rewriting the energy as a function of the complex ampli-
tudes a and rescaling to units of frequency, we obtain the
block Hamiltonian matrices

(1,1) ASI <I>-0 Q12 0
Q" = Ze 0 0 0O (36a)
an | 0 0n 0
(12) ASI (T1y S 0
Q7 = Y S0 Tn Sn|, (36b)
w2 | 0 S T3
where,
Qij = Ir |5[05191+l(061P2+062P1) o ps)
Tij
1
R R (RO RED), (37a)
ij
Sij = B |5[0¢1P1+ i(a1p2 — 0op1) + 2p2)
Tij
1 .
R REY iR RN 37b)
ij
Ty = ——foaps] - —R® (37c)
’ Le7iE i[> ’

and we have used a slightly shorthand notation where p; ; =
(P1,p2,P3), 04 j = (a1, 02,03), RU) represent the compo-
nents of the 3 x 3 matrix R(0; — 6;,¢; — ¢;), and the sums
over the ASI modify the phase &®. The sum in Egs. (36) are
capped by the criterion in 7 and 7, specified by the user or
determined by the static dipole field computation.

IV. VALIDATION

Genice is implemented in MATLAB and it can be ob-
tained from http://doi.org/10.17605/OSE.IO/YUNHD as well
as a script that reproduces the results presented below.

A. Local fields

The validity of the implementation of local fields can be
verified my means of the Kittel equation. For the purposes of
the model presented here, it is imperative to verify the field
magnitude and angle dependent ferromagnetic resonance as
well as its independence from the coordinate system.

We first model a circular thin-film which can be considered
as a single macrospin due to the fact that only the hard axis
contributes to the demag tensor, i.e., D3 =1 and D; = D, =0.
We use a saturation magnetization of M; = 800 kA/m. Kittel’s
equation as a function of the magnetic field amplitude H is
thus:

H
® = YoM, (Ms—1>, (38)
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FIG. 3. Comparison of numerical computation of ferromagnetic resonance (FMR) and Kittel’s equation to validate the geometry and imple-
mentation of the rotation matrix. (a) Field-dependent FMR of a perpendicularly magnetized easy-plane ferromagnet. The blue circles represent
calculations for a magnet in the x —y plane and magnetized along the z direction. The calculations agree with Kittel’s equation (38). The gold
asterisks are obtained when the magnet and the magnetization are oriented along 6 = 33 deg and ¢ = 233 deg. The field is perpendicular
to this orientation, and we recover the same field-dependent frequency. (b) Angle dependence FMR of an in-plane magnetic saturated at
H = 1,000 kA/m. Both numerical computations (blue circles) and Kittel’s equation (39) agree. (c) Validation of the shape anisotropy field
implementation. Field-dependent FMR for magnets of different sizes (colored symbols) and the corresponding Kittel’s equation (41).

valid for H > M,. To model this scenario, we use an applied
field oriented along the z-axis with magnitude in the range
800 kA/m < H < 1,200 kA/m. The magnetization is parallel
to the applied field so that 6,, = 0 and ¢,, = 0. The magnetic
film must be rotated so that the hard axis is also oriented along
the z-axis. In other words, 8; = /2 and ¢, = 0. The numeri-
cal results are shown in Fig. 3(a) by blue circles. The solution
of the Kittel equation is shown at the top by a solid black line.
The agreement is within numerical error (< 4 x 10719).

Validation of the rotation matrix is achieved by computing
the same field dependence when the magnetization, external
field, and nanomagnet are rotated by arbitrary polar and az-
imuth angles. For example, selecting a rotation 6 = 33 deg
and @ = 233 deg, we recover the correct solution within nu-
merical error (< 9 x 10713), shown in Fig. 3(a) by gold aster-
isks.

We now set the external field magnitude to H =
1,000 kA/m and vary its angle, 6y. The frequency as a func-
tion of angle is obtained from the Kittel equation expressed
as

© = Yho\/ Hi (H; + My cos? (6)), (39)

where H; is the internal magnetic field magnitude obtained by
solving the magnetostatic equations

(H; + M;) cos 6; Hcos(6), (40a)
H;sin(6;) = Hsin(6)). (40b)

The magnetization vector is oriented along the internal
magnetic field angle for a saturating field, 6,, = 6; and ¢, = 0.
We define 6y = 0 as the out-of-plane component so that 6; =
7/2 and @; = O for all cases. The results shown in Fig. 3(b)
further validate the implementation of the external and demag
fields.

Finally, we vary the size of the magnetic element so that all
three demagnetizing factors are computed. We consider three

different oblate spheres: “Large” (10,000 nm x 1,000 nm x
5 nm), “Medium” (1,000 nm x 100 nm x 5 nm), and “Small”
(100 nm x 10 nm x 5 nm). The field is once again consid-
ered to be oriented along the z-axis and its magnitude is var-
ied between 800 kA/m < H < 1,200 kA/m. The frequency
dependence as a function of field is given by Kittel’s equation

o= M £+D1—D3 £+D2—D3 . 4D
YHo i i

The results shown in Fig. 3(c) validate the demagnetization
field and its nanomagnet-dependent implementation because
all three nanomagnets are concurrently simulated. This also
shows that Genice can be used as a tool to quickly compute
FMR for an ensemble of uncoupled nanomagnets.

B. Nonlocal field: exchange

The dynamic contribution of the exchange energy intro-
duces the splitting of the resonant frequencies within a sin-
gle nanomagnet. As a test case, we set a stadium-shaped
nanomagnet with dimensions / = 280 nm, w = 100 nm, and
t = 10 nm. The nanomagnet is oriented along the x axis,
0, = 7l'/2 and (07] =0.

We first explore the effect of the magnetization’s relative
angles. For this, we set the magnetization parallel to the nano-
magnet orientation, and we vary the azimuth angle of the mag-
netization at one extremum, ¢;. The computed frequencies
are shown in Fig. 4, where different colors and dashed curves
were used for each branch for clarity. One frequency branch
exhibits a sinusoidal variation, consistent with one magneti-
zation being rotated and modifying the exchange energy. The
maximum occurs at 45 deg, implying that the maximum ex-
change contribution occurs when the adjacent magnetization
vectors dynamically couple in both x and y. Indeed, when
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FIG. 4. Frequencies computed by adding the exchange Hamiltonian.
(a) A single macrospin is azimuthally rotated, resulting in a size-
able variation of the frequency in one band. The minima occur at
¢ = 0 deg and ¢; = 90 deg, consistent with a dynamic coupling
mediated only by the magnetization’s z component. (b) Frequency
variation as a function of A/, showing divergence as either the bulk
or edge volumes tend to zero. The frequencies in the vicinity of the
default value Al = (21 —w)/4 (the transition between the white and
gray areas) are approximately constant. Each band is displayed in
different colors for clarity.
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FIG. 5. Frequency dependence on the nanomagnet’s size. The aspect
ratio is maintained in the calculations so that the length is a represen-
tative metric. The solid lines are frequencies obtained from computa-
tions on a single nanomagnet. The circles are obtained from a single
computation including five non-interacting nanomagnets. Each band
is displayed in different colors for clarity.

@1 = 0 deg or 90 deg, the z components of the magnetization
vectors are coupled, leading to identical energy contributions
to the eigenmodes. Note that this is different than the static
exchange energy computed in Eq. (A2).

We now explore the influence of the bulk and edge volume
ratios. From Eq. (23), the exchange energy diverges as ei-
ther the bulk or edge volume tends to zero. This is expected
because of the underlying assumption that the nanomagnet is

separated in three macrospins. In other words, such a diver-
gence has no physical origin. The frequencies computed as a
function of Al when all the magnetization vectors are aligned
with the nanomagnet are shown in Fig. 4(b). Clearly, the fre-
quencies diverge when the bulk and edge volumes tend to zero
towards the left and right extrema of the figure, respectively.
The frequencies are relatively constant close to the default dis-
tance Al = (2l —w)/4 = 110 nm.

As the size of the nanomagnet increases, the effect of
the exchange interaction in the frequencies must necessar-
ily decrease insofar as the nanomagnet is split into three
macrospins. We compute this test scenario by locking Al to its
default value and varying the nanomagnet’s size. We maintain
the aspect ratio of the nanomagnet so that the length is repre-
sentative of the nanomagnet’s volume. The results are shown
by solid and dashed curves in Fig. 5, where the x axis is shown
in natural logarithmic scale and the colors represent different
branches for clarity. As expected, the frequency splitting di-
minishes as the nanomagnet’s size increases.

A final test for the exchange interaction, is to verify that
its implementation is independent of the number of nanomag-
nets. For this, we specify five nanomagnets with lengths 100,
200, 300, 400, and 1000 nm and dimensions consistent with
the aspect ratio of the test case considered in this section. The
resulting eigenvalue problem requires solving for a matrix of
dimension 30 x 30. The frequencies are shown by circles in
Fig. 5, color-coded according to the branches of the single-
nanomagnet calculations. We note that the frequencies are not
automatically sorted for each nanomagnet: only the computa-
tion of the eigenvectors can return such type of sorting which
is not currently computed in our implementation, as discussed
in the conclusions. In this case, the frequencies were manually
sorted. The results are in agreement with the calculations done
for each nanomagnets, validating that the exchange interac-
tion is nonlocal but intrinsic to each nanomagnet, i.e, there is
no coupling between nanomagnets.

C. Nonlocal field: dipole

We now investigate the interaction between two identical
nanomagnets of dimensions / = 280 nm, w = 100 nm, and
t = 10 nm, as used in the previous section. We focus here on
collective excitation, so that |k| = 0 and the phase contribu-
tions in Eqgs. (36) simplify to 1.

The first test ensures that the nonlocal dipole field’s strength
depends on the distance between the nanomagnets. For this,
we consider a varying distance d along the y axis ranging from
100 nm to 1,000 nm. The computed frequencies considering
only nonlocal dipole fields are shown in Fig. 6(a). The rela-
tive magnetization orientation between the two nanomagnets
is parallel for the solid black curves and antiparallel for the
dashed red curves. In both cases, the modes are degenerate at
long distances. This is a clear indication that nonlocal dipole
field does not affect the internal modes of non-interacting (or
weakly interacting) nanomagnets. Modes are visibly split un-
der a distance of ~ 400 nm. Red and blue-shifts are observed
for the parallel and antiparallel cases, respectively, in agree-



ment with the static dipole energy for each. Including ex-
change energy, shown in Fig. 6(b), naturally leads to larger
split bands because of the additional energy. As expected in
all cases, the modes converge towards degenerate values at
large distances indicating a negligible interaction mediated by
the nonlocal dipole field. It is important to note that in both
panels (a) and (b) there are six possible bands. The choice of
identical nanomagnets leads to degeneracies in the system so
that only two bands and three bands are distinct in panels (a)
and (b), respectively.

We next explore the frequency dependence on the relative
orientation between the two nanomagnets. For this, we con-
sider a nanomagnet located at the global origin of the Carte-
sian coordinate and a second nanomagnet located at a distance
of d = 300 nm in the y direction with a varying unit vector D.
We consider both polar and azimuth rotations parametrized by
the angles 6, and ¢, respectively, as shown Fig. 7. Note that
these angles are measured relative to the orientation of the
fixed nanomagnet.

The computed frequencies are shown in Fig. 8. The fre-
quency variation as a function of the polar angle 6; is shown
in (a). In these computations, we disabled the exchange in-
teraction to focus on the symmetry of the static dipole field.
There is a modest change in the frequency that is maximal
at ) = 180 deg. The symmetry is also consistent with the
fact that 90 deg and 270 deg are degenerate. The frequency

Nonlocal dipole

g —Parallel
i e ks Antiparallel

100 1000

Nonlocal dipole + exchange
70 e, (b)

100 1000
d (nm)

FIG. 6. Frequencies as a function of distance between two identical
nanomagnets interacting via (a) nonlocal dipole field and (b) both
nonlocal dipole field and exchange interaction within each nanomag-
net. The magnets are parallel to one another, and we distinguish the
relative magnetization being parallel (solid black curves) and anti-
parallel (dashed red curves). In all cases, the nonlocal dipole field
becomes negligible at large distances and the bands become degen-
erate, as expected for non-interacting identical nanomagnets.

variation as a function of the azimuth angle ¢; is shown in
(b). There are again clear symmetries consistent with the rota-
tion of the nanomagnet despite the increased number of modes
originating from the non-collinear magnetization orientations.
Notably, at 90 deg and 270 deg, the rotated nanomagnet is
perpendicular to the fixed nanomagnet and the spacing is just
110 nm. Strong variations are observed close to these condi-
tions. As expected, the computed frequencies are periodic for
both 0; and ¢;.

This concludes the verification of the static dipole field,
which follows the qualitative expectations of decay with dis-
tance and symmetries due to different types of relative pair-
wise rotations.

D. Band structure
1. Nanomagnet chain

A one-dimensional chain of nanomagnets is modeled by a
single nanomagnet with dimensions / =280 nm, w = 100 nm,
and ¢t = 10 nm subject to a translation vector a; oriented at
an azimuth ¢, and lattice constant |d| = 300 nm. Magnons
with wave vectors k oriented at an azimuth ¢y are computed,
as shown schematically in Fig. 9.

The magnon dispersion is computed for cases where we set
the wavevector parallel to the x-axis and rotating the trans-

AW

FIG. 7. Geometrical variations between two interacting nanomag-
nets. The nanomagnet with director D is located at a distance
d =300 nm along the y direction. The director’s orientation is varied
by the polar and azimuth angles 6 and ¢y, respectively.

— (a) (b)
Tes2 6.52
> 65 6.5
o
15
g 6.48 6.48
8
& 6.46 6.46

6.44 6.44

0 90 180 270 360 0 90 180 270 360
01 (deg) #1 (deg)

FIG. 8. Computed frequencies for a pair of interacting nanomagnets
when one of the nanomagnets is rotated about (a) the polar angle 6;
and (b) the azimuth ¢;. The angles are shown in the schematic Fig. 7.



lation vector. In other words, a; = da; = d|cos (¢,)% +
sin (¢,)#]. The resulting dispersion relations as a function of
k=2m/d(k-4,) within the first Brillouin zone for selected
azimuths are shown in Fig. 10(a). Three bands are observed
because a single nanomagnet split into three macrospins com-
poses the unit cell of the chain. Because of the coupling to
other nanomagnets, no degeneracies are present in this sys-
tem. The band structures show a pronounced periodic behav-
ior in the FBZ that is symmetric relative to ¢, = 90 deg, stem-
ming from the product k-a;. This symmetry validates the
implementation of the sums performed in Egs. (36). It is also
shown in the mid panel of Fig. 10(a) that the band structure
perpendicular to the chain orientation at ¢, = 90 deg, is flat.
This is because the phase in Eqgs. (36) is exactly zero when the
translation vector and wavevector are perpendicular. In other
words, the fact that we recover flat (non-dispersive) bands in
this case, validates the correct implementation of the phase in
Egs. (36) throughout Ganice.

It is also possible to consider another case of @, # ¢r. We
set the translation vector along the x axis, i.e., a; = dx and we
vary @, such that k= |k|[cos (¢ )£+ sin (¢, )F]. The dispersion
relations for k = |k| up to the FBZ are shown in Fig. 10(b). As
for Fig. 10(a), the expected symmetries are respected, e.g. the
band structure perpendicular to the chain orientation is flat;
see @ =90 and 270 deg, for the same reasons outlined above.
Note that here we extend the rotation of ¢ to a full cycle to
also validate that the phase implementation is correct, i.e., that
it is symmetric under a 180 deg rotation.

2. Multiple interacting chains

We now calculate the band structure of interacting nano-
magnet chains. Each nanomagnet is oriented at ¢, = 0 with
respect to the x-axis and the array is generated from the sin-
gle nanomagnet unit cell due to translation vectors a; and a
with a lattice constant of d = 300 nm. A visualization of this
configuration is produced by Ganice to ensure the correct ge-
ometry definition, shown in Fig. 11(a). The magnon band
structure is computed by an automatic determination of the

FIG. 9. A chain of nanomagnets is modeled by a single nanomagnet
(green) upon which the nonlocal dipole field from an infinite chain of
nanomagnets (blue) acts. The chain can be defined along an arbitrary
in-plane direction by setting the translation vector a; oriented at an
azimuth ¢;. The magnon dispersion can be computed for arbitrary
in-plane wavevectors k given the azimuth .
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FIG. 10. Dispersion relation for a 1D nanomagnet chain upon (a)
setting the wavevector along X and rotating a; and (b) setting a; along
the £ direction and rotating the wavevector. The bands exhibit the
most changes when the wavevector and translation vector are parallel
and are flat when these are orthogonal. This is in agreement with our
tight-binding definition of the phase in Eqs. (36).

FBZ and its subsequent Delaunay triangulation to produce an
array of wavevectors k = k, £+ k,§. This feature allows to op-
timally map the FBZ and produce band surfaces, as shown in
Fig. 11(b).

As for the 1D nanomagnet chain, the FBZ also shows three
bands because the unit cell consists of a single nanomagnet.
By examining the band structure depicted in Fig. 11(b), the
frequencies calculated along kX exhibit pronounced varia-
tions while it is predominantly flat along k,y. This is con-
sistent with our tight-binding approach whereby the dynamic
dipole coupling depends on the gap distance between nano-
magnets.

The irreducible path in the FBZ can be also directly com-
puted in Ganice. We observe that the band structure is differ-
ent when the path is taken towards the X and X’ points. This
is because the array is asymmetric, such that the dipole field
is different along £ and y directions.
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FIG. 11. (a) Genice representation of the 2D array of nanomagnet
chains, depicting the translation vectors. (b) Resulting band structure
where the FBZ is shown under the band structure. The FBZ is di-
rectly computed by Genice from the translation vectors and the high-
symmetry points are also identified. The band structure is obtained
by performing a Delaunay triangulation over the FBZ and evaluating
the resulting wavevectors. The color scale represents the frequency
and it is also shown in the vertical axis. (b) Irreducible path in the
FBZ exhibiting the asymmetry of this geometry as well as the peri-
odicity achieved by the tight-binding method.

3. Square ice

We now use Ganice to compute the magnon band structure
for square ASI, where four nanomagnets are placed around
a vertex, each at an angle of 90 degrees to one another and
equidistant from the vertex. We maintain the previously used
nanomagnet dimensions / = 280 nm, w = 100 nm, and ¢ =
10 nm but now set a center-to-center distance of d = 430 nm.
For simplicity, we investigate the band structure for states
where the magnetization is in a homogeneous (onion) state.
Edge bending in the magnetization state leads to S and C states
that are known to modify the band structure'.

We investigate both the vortex (type-I) and remanent (type-
II) configuration. The vortex state has four nanomagnets in
the unit cell and is defined by the translation vectors a; =
2% and a, = £+ . The remanent state has two nanomagnets
in the unit cell and is defined by a; = £ and a, = §. These
configurations are shown in Fig 12(a) and (b), respectively.

The band structures in the FBZ are shown in Fig. 12(c)
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and 12(d), for the vortex and remanent states, respectively.
By dividing the nanomagnet into three macrospins, the vor-
tex state has twelve bands. The band structure exhibits little
dispersion, which may be expected by the fact that the stray
fields are largely compensated in a type-I configuration. The
band separation is clearly seen in the irreducible path shown
in Fig. 12(e), exhibiting a band-gap of about ~ 5 GHz.

In the remanent state, there are six bands. In this case, the
bands are very close together, with a visible dip at the I" point.
It is also evident that the band structure is skewed, which is a
consequence of the likewise skewed static dipole field in this
configuration.

The results in this section are in agreement with previ-
ous calculations'® demonstrating the reconfigurability of the
magnon band structure for square ices. However, the im-
proved dipole field implementation in Ganice showcases
more subtleties in the band structure as well as asymmetries
that could in principle indicate directional magnon propaga-
tion, as recently surmised in a combined experimental and
micromagnetic study'®. We also emphasize that we have only
explored here the onion state, but it is well-known that the
magnetization tilts at the edges of the nanomagnets due to
stray fields. This adds an additional degree of freedom for
tuning the band structure.

4. Kagome ice

We now explore the band structure for Kagome ASI. The
Kagome unit cell comprises three nanomagnets with lattice
constant d = 800 nm which we define as twice the radius
of the circle in which the hexagonal structure is embedded.
Considering the center of the triad of nanomagnets as the
origin, we define the translation vectors a; = £ and ap =
(1/2)+ (1/3/3+1/4)3.

We consider two cases: a “regular” Kagome ice where
the nanomagnets have identical dimensions / = 280 nm, w =
100 nm, and 7 = 10 nm; and a shape anisotropy modified
Kagome ice inspired by the work by T. Dion et al.”, where
we use three different widths w = 100 nm, w = 180 nm, and
w = 60 nm for the nanomagnets in the unit cell. The geome-
tries are shown in Fig. 13(a) and Fig. 13(b). In both cases, the
array is in a degenerate ground state where the unit cell triad
has a 2-in/1-out vertex.

In the “regular” Kagome ice we find a modest band struc-
ture with all nine bands contributing to the band structure,
shown in Fig. 13(c). However, the shape anisotropy modified
Kagome ice exhibits only four bands, as shown in Fig. 13(d)
with other five softened to exactly zero. In the context of our
framework, a zero-frequency band entails a real, evanescent
solution, but the softening of frequencies also indicates that
the static magnetization state can be unstable. Such an insta-
bility is beyond the scope of Ga@nice and would require a mi-
cromagnetic investigation. The bands in the irreducible paths
in Figs. 13(e) and (f) further confirm that the bands are rela-
tively flat in all cases. An important distinction is the shape
anisotropy modified Kagome ice exhibits band-gaps which is
consistent with the different FMR for each nanomagnet, i.e.,
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FIG. 12. Genice representation of the square ice geometry for the (a) vortex and (b) remanent states. The respective band structure for each
case in shown in (c) and (d) while the irreducible path in the FBZ are shown in (e) and (f).
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FIG. 13. Genice representation of the Kagome ice geometry for (a) identical nanomagnets and (b) shape anisotropy modified nanomagnets.
The respective band structure for each case in shown in (c) and (d) while the irreducible path in the FBZ exhibiting are shown in (e) and (f).

different demagnetization factors. While this is certainly not V. CONCLUSIONS
an in-depth investigation of the frequency response of shape

anisotropy modified Kagome ices, it showcases the function-

ality of Genice to compute the band structure of relatively We have presented Genice, a computational tool to com-
complex geometries with ease. pute the dispersion relation of arbitrary artificial spin ice ge-

ometries. The theoretical framework of Ganice relies on



the excitation of small-amplitude perturbations and produces
the dispersion relation by computing both static and dynamic
dipole contributions to the Hamiltonian matrices. Our frame-
work also relies on a tight-binding approach to ensure the peri-
odicity of solutions within the FBZ, which composes the main
simplification of the model. For this approximation, only cou-
pling between like macrospins at different unit cell locations
is considered, precluding short-range interactions.

Genice can be also used for FMR computations of rela-
tively complicated geometries. For example, Genice has been
recently applied for square ASIs based on trilayers and exhib-
ited remarkable agreement with experiments and micromag-
netic simulations of field-dependent FMR?3. Because both the
exchange and dipole interactions can be toggled, G@nice can
be easily be used to study the FMR of ensembles of interact-
ing or non-interacting nanoparticles and extended to 3D struc-
tures. To obtain such good agreements with experiments, it is
fundamental to adjust the equilibrium magnetization state as
well as the demag factors. While accurate demag factors are
obtained by micromagnetic calculations solving the bound-
ary conditions, it is possible to estimate diagonal demag fac-
tors by fitting Kittel equation to micromagnetic simulations*>.
This would take into account the particularities of the nano-
magnets’ shape in an approximate manner while maintaining
accuracy in the FMR computation.

There are three main limitations to Ganice in its current
form. First, the computations are accurate for nanoparti-
cles and nanomagnets because of the assumption of three
macrospins. Larger nanomagnets possess higher degrees of
freedom that will reduce the relative energy contributions.
Therefore, Genice is likely to overestimate the frequency split
when nanomagnets are brought very close together. In addi-
tion, complex static magnetization textures such as multido-
main states and vortices cannot be captured by this minimal
discretization. A possible solution to these issues is to further
split the nanomagnets into more macrospins, with the caveat
that the number of macrospins should be kept to a minimum
to maintain a computational advantage over micromagnetic
simulations. Another way to solve this issue is to compute
the energy of the system to actively modify the magnetiza-
tion’s edge bending due to stray fields, as recently shown in
Ref.*’. Indeed, any investigation of magnon modes in ASIs
must carefully take into account the magnetization edge bend-
ing as a function of the static magnetization state and include
such a bending in Gznice to obtain a better agreement with
micromagnetic simulations. Such an effect was shown previ-
ously in Ref.'® a simpler semi-analytical approach.

Second, the wavevectors are not currently computed. Be-
cause we solve a linearized system, similar eigenvalues are
known to give rise to numerical errors in the computation of
eigenvectors. This limitation will be resolved in future work.

Third, a 3D band structure is not currently supported. How-
ever, the basic framework is written and a generalization in 3D
will compose a simple expansion of the dipole phases in the
tight-binding approximation, a method that is well-known in
solid-state physics.

To summarize, Ganice is intended to be a computationally
efficient exploratory tool aimed at identifying potentially in-
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teresting dynamics that can arise in a large parameter space. In
its current stage, Genice should not be used as a quantitatively
exact predictive tool, but as a guide to search and identify in-
triguing regions of parameter space. Detailed micromagnetic
simulations may then be performed to optimize use of finite
computational resources.
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Appendix A: Derivation of exchange energy

To compute the exchange energy, we use a simple quasi-
one-dimensional spin chain model to estimate the energy
along the chain and relate it to the nanomagnet’s regions and
their volume. Consider a chain of length / where the magneti-
zation vector is linearly rotated, so that

m = cos (kox)X + sin (kox)§. (A1)

It can be shown that the exchange energy is given by Eex =
AVk% + Ey, where A is the exchange constant in units of pJ/m,
V is the volume of the quasi-1D chain, and Ej is a constant of
integration.

We consider now a nanomagnet of length /, width w, and
thickness d, split in three unequal pieces with boundaries at
[; and I so that their volumes are V| = wtlj, Vo = wt(l, —
1) = wtAl; 5 and V3 = wr (I3 — ) = wrAlp 3. This scenario is
schematically shown in Fig. 14. The total exchange energy is

Eex =J1(my -my) +J5 (my -m3), (A2)
where the magnetization vectors are taken in the geometric
center of each piece, and the constants J; and J, are factors
acting as a metric for the total exchange energy in the 1D
chain.. This leads to m; - my = cos (kgAlj 2) and m; - m3 =
cos (koAly3). Expanding the cosine to first order in Eq. (A2)
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FIG. 14. Toy model for a quasi-1D spin chain splitted into unequal
pieces to estimate the exchange energy.
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FIG. 15. Fractional ratio between edge and volume modes. The
default is considered at the edge of the gray area in the limiting case
Al = (21 —w)/4.

and equating to the continuum solution, we obtain

AIIZZ Al%?) 2 2
Eex = (N1 +0) + h—=+h—= |k = Eo+AVK,

(A3)

Given that the exchange constant is uniform in the nano-
magnet, we can set J; = Cj A and J, = C; 3A. From geome-
try, it can be shown that

2 %)
Clp = —— | Vi+= A4
12 AL, < 1+ > ), (Ada)
2 \%
Coys = —— | Va+—|. Adb
23 Al%,:; < 3+ ) ) ( )
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In the case of stadium-shaped nanomagnets, one can con-
sider a symmetric splitting so that Vi = V3 =V, and V, =V,
leading to the expression shown in Eq. (22).

The edge volume V, and the bulk volume V), can be com-
puted as a function of Al. We have two cases.

a. Casel/4<Al<(2l—w)/4

This corresponds to the situation where an edge mode oc-
cupies more than the half-circle in the stadium’s edge at the
expense of the bulk mode. The edge and bulk volumes are

1 T
Ve E [wtl—wzt (l—z)—Vb},
Vy = (4A1—)wr.

(ASa)
(A5b)

b. Case 2l—w)/4<Al<1/2

This corresponds to the situation where an edge mode is
confined to the half-circle in the stadium’s edge. Computing
the cone angle

21 —4Al
6 = 2arccos <1 — >, (A6)
w
the edge and bulk volumes are
6 —sin (6
v, = %()w%, (A7a)
Vy = wil—wht (1 - %) —2v,. (A7b)

The edge and bulk volumes as a function of Al are shown
in Fig. 15. The limiting case Al = (2] —w) /4 is considered to
be the default.

Appendix B: Computation of static stray field

In Ref.*®, the authors considered a rectangular prisms with
its geometric center at the origin of the Cartesian reference
frame and sides 2x;, > 2y, > 2z;,. The resulting expressions
for the stray field are:
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FIG. 16. Stray fields computed with Eqs. (B1). We show the computed field under several rotations within Ganice and in the position of
neighboring macrospins. The rotation angles are displayed for each figure.

2
Hy(x,y,2) = T—ﬂ Y 0t et (<1 + Lk Em) ) (Bla)
k,,m=1
LMy & e D (D) [+ (1) ) b+ (= 1) [z + (= 1)"2)
lora) =~ & O S o (< 1)) carean | i} B9
2
(o) = 30 Y (DM ok (<14 VIR ), (Blo)

k,l,m=1

where

2 2
Lk ) = [x+ (=D [y+ (=1)'3) 24 (1))
(B2)
We note that the assumed orientation of the rectangular prism
in Ref.* is different than that assumed in Genice. For this
reason, we rotate the expressions of Eq. (B1) such that the
easy axis of the rectangular prism aligns with the z axis. In
Fig. 16 we show the calculated stray field from rectangular
prisms with different director vectors. In all cases, it is seen
by inspection that the stray field is computed correctly.
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Highlights

e Semi-analytical model for artificial spin ices

e Resolves the magnon band structure within the first Brillouin zone
e Applicable to three-dimensional geometries

e Computationally efficient
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