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Abstract
Multi-layered, self-actuated devices have been the focus of recent studies due to their ability to
exhibit large displacements and achieve complex shapes. Such devices have been constructed using
active materials responsive to varying stimuli including electro-active and magneto-active materials
to perform useful functions and achieve a wider variety of target shapes compared to single-field
actuated unimorph/bimorph structures. However, fabrication of these devices for experimentation is
time-consuming and expensive, which warrants the use of simulations as a means of designing
high-performing structures. This work seeks to optimize structures employing materials response to
magnetic and electric fields for multiple objective functions selected based on the needs of soft
robotics applications such as grippers. A multi-objective optimization problem is constructed,
utilizing a model developed for any arbitrary number of segments, layers, and material types,
accommodating for large displacements and simultaneously applied fields. Three objective
functions are chosen: (1) target shape approximation, based on the errors between the coordinates of
the computed and desired shapes, (2) cost based on volume of magnetic material, and (3) work
performed on a tip-force. The arbitrary optimization problem is reduced to a specific case study
containing eight segments to alleviate the computational cost of an unwieldy number of parameters.
The parameters are narrowed to: (1) segment lengths, (2) magnetic material in each magneto-active
layer. The structure is pre-set to three material types: electro-active polymer, magneto-active
elastomer, and a passive substrate. The case study’s optimization problem is performed by a genetic
algorithm developed by MATLAB for multiple objective functions. The results of the optimization
on the case study are analyzed by studying the feasible designs on the Pareto front of the objective
functions. Different trade-offs between objective functions are identified, and various feasible
designs are found more suitable than others, based on the needs and priorities of an application.
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(Some figures may appear in colour only in the online journal)

Introduction
pneumatic actuators [8], and robotic tentacles with 3D mobility

[9]. There is a wide range of actuation mechanisms used in
Origami-inspired self-folding devices. For example, shape
Designs of foldable structures in engineering have drawn memory materials are commonly used due to their ability to
inspiration from origami, the Japanese art of folding paper, ‘remember’ an initial shape after deformation, which can be
which offers fold patterns that have been employed for centuries  induced by a change in temperature [10]. Other mechanisms
[1-3]. Some examples include deformable wheels [4, 5], include dynamics (i.e. slide-crank mechanisms) [S], pneumatics
locomotive worm devices [6], reconfigurable metamaterials [7], [11], and responsive polymers [12].

Self-folding structures

0964-1726,/20,/024001+14$33.00 1 © 2019 IOP Publishing Ltd  Printed in the UK


https://orcid.org/0000-0003-4265-8153
https://orcid.org/0000-0003-4265-8153
mailto:anil.erol.ctr@us.af.mil
https://doi.org/10.1088/1361-665X/ab4607
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-665X/ab4607&domain=pdf&date_stamp=2019-12-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-665X/ab4607&domain=pdf&date_stamp=2019-12-19

Smart Mater. Struct. 29 (2020) 024001

A Erol et al

W

(a) No field present

(b) Field On,
t=20

H

i

(c) Field On,
steady state

Figure 1. A magneto-active body is represented by a rectangle in (a), with its magnetization M indicated by the red arrows. An external field
H induces a torque 7 in the body, as shown in (b). The body’s Zeeman energy is minimized by aligning M with H as shown in (c).

(Source: [26]).

Recent advances in smart materials and their applications
have focused attention toward developing self-folding structures
[10, 13, 14]. Several types of origami-inspired self-folding
structures have been made in the past, including those utilizing
the Miura-ori [12] and Waterbomb [14] patterns, origami cranes
[10], barking dog [15] and an origami inspired forceps [16].

Compliant mechanisms

Some smart devices utilize materials that are relatively com-
pliant, i.e. they have a relatively small Young’s modulus,
such as that of rubbers and elastomers [17-19]. A compliant
material has both advantages and disadvantages in the context
of self-folding structures. Folding structures typically possess
stiff facets that experience little to no deformations, and thus
any compliance would be undesirable in those regions /parts.
Meanwhile, the creases of a foldable structure exhibit very
large deformations, and can only be achieved by a relatively
compliant material. Hence, folds are limited to finite curva-
tures, which has led to studying smooth folds in compliant
structures [20].

Compliant mechanisms have been combined with active
self-folding concepts for achieving a wide range of applica-
tions [10, 12, 21-23]. Some potential applications may seek a
complex deformed shape upon actuation, i.e. target shape,
that may not consist entirely of creases and flat surfaces, and
instead possess regions of both flat and curved surfaces. Thus,
materials like elastomers and polymers whose mechanical
properties can be finely tuned are ideal candidates for foldable
structures.

Magneto-active structures

Hard magnets have been used to actuate self-folding because
the magnetic torque is strong enough to generate large dis-
placements, especially in compliant mechanisms [13, 23-25].
Magnetic torque is possible due to the anisotropic magnetic
properties of hard magnets, which have a preferred magnetic
direction determined by their magnetization. The net mag-
netization M of a material generates a net torque 7 under an
external magnetic field H following:

=M x H. (1

The magnetic torque is shown schematically in figure 1,
where a magnetically susceptible body (red rectangle) is
subjected to an external magnetic field (wide blue arrows)
applied perpendicular to the direction of the body’s net
magnetization (red arrows). Consequently, an induced torque
tends to rotate a body with volume V to minimize the Zeeman
energy, Ezceman, DY aligning M with H.

Egeeon = — 1o | M - HdV. @)

Magneto-active elastomers (MAEs) are a suitable class of
magnetically actuated smart materials for self-folding struc-
tures due to their controllable magnetic properties and ease of
fabrication into desired shapes. In recent work, MAEs have
been fabricated using barium hexaferrite (BAM) particles
embedded inside an elastomeric substrate while prescribing
magnetic volume fraction and magnetic alignment direction
during curing to control magnetic properties [27, 28].

Electro-active structures

Electro-active polymers (EAPs) have also been deployed in
active self-folding structures due to their ability to generate
large displacements upon actuation [29-31]. Electrostrictive
EAPs yield relatively high strains as they contract in the
direction of the applied electric field and expand in the
transverse directions. The actuation of EAPs in self-folding
structures relies on at least one secondary layer of passive
material attached to the EAP, which will constrain the
deformation on one surface, inducing bending in the overall
composite structure.

Multi-field actuated structures. In this work, we seek to
combine magneto- and electro-active materials as possible
layers and /or segments of a multifunctional structure. The
combination of magneto- and electro-active materials in an
active self-folding structure has been studied recently, and has
several advantages [23, 31]. Two different actuation
mechanisms enable more possible deformed configurations,
e.g. multiple target shapes, as shown in figure 2. The example
in figure 2 shows a bimorph actutator, which consists of an
EAP and an MAE. The initial shape of the beam is straight, as
shown in figure 2(a). With magnetic actuation the beam bends
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Figure 2. Bimorph composed of an EAP and MAE layer. Magnetic
actuation yields bending towards the left, while electric actuation
yields bending towards the right. (Source: [26]).

in one direction (figure 2(b)), while with electric actuation the
beam bends in the opposite direction (figure 2(c)). When both
fields are present simultaneously, however, the beam deforms
into a more complex shape, highlighting the potential of
multi-field actuation.

The purpose of this study is to understand how the choice
of active material, configuration of that active material, device
compliance, and layer geometries of a multi-field actuated
device may influence its self-folding behavior. This goal is
achieved by developing a model of the device’s response, and
then exploring the performance space associated with design
variables within the model. The next section defines the
geometry and configurations for our self-folding compliant
beam structure. Next, the constraints of the design are
determined based on manufacturing considerations, and the
parameters are determined based on influence on self-folding
actuation. Objective functions are next defined followed by
implementation of a previously validated modeling approach
to predict the multi-field actuation of the structure. Results of
simulations across the design space are explored and analyzed
in terms of the objective functions, allowing us to assess the
efficacy of the objective functions and the relative signifi-
cance of our chosen parameters.

Multi-field bimorph design. Multi-field bimorph actuators
have been studied in active self-folding applications due to
their ability to generate complex shapes [31, 32].
Consequently, they will be utilized as model segments in
determining the structure for this study. In its most basic
form, the multi-field bimorph consists of two layers, an MAE
and EAP layer, as shown in figure 2. In this study, we will
examine a more complex version of this basic bimorph by
(1) dividing the MAE into separate, individual patches with
alternating orientations, and (2) adding a passive layer. The
segmentation of the MAE layer allows us to add a level of
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Figure 3. In (a), a schematic of a sample multi-field composite beam
with an arbitrary number of segments, each consisting of an arbitrary
number of layers, is shown. Each layer of each segment can have an
arbitrary material type, denoted by the color code. In (b), a
differential element of the composite beam at an arbitrary location
along its length is provided, with cut faces subject to normal stresses
and shear forces.

complexity to the deformed shape, and the ability to control
the amount of magnetic material by varying patch sizes. The
separation of the MAE layer into individual patches
introduces the concept of a segmented beam. The passive
layer is added to provide support to the segments lacking
MAESs, while also constraining the EAP layer to promote
bending in those segments.

Methodology

To perform a formal design optimization of a multi-field,
segmented self-folding structure, a modeling approach with
appropriate functions must be chosen. The chosen model
should be able to accommodate large displacements, electro-
and magneto-mechanical coupling, multi-layering, and seg-
mentation. This section covers a model that can address each
function and be used for an arbitrary optimization problem.

Model framework

An existing modeling technique previously derived and
validated by the authors is selected as a framework for pre-
dicting the deformed shape of the configurations allowing
computation of the objective functions [33]. The model is
based on a nonlinear, large displacement beam method for a
composite beam of an arbitrary number of segments Ny, each
composed of an arbitrary number of layers N, as shown in
figure 3(a). The indices i and j represent the segment and
layer locations, respectively. Thus, any segment-layer coor-
dinate along the length of the beam may contain a set of
material and geometric properties, Sj;.

Let the beam of length L be discretized into p nodes.
Consider a differential element between two points along the
beam, n — 1 and n + 1, such that the element contains three
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nodes. This type of three-node element is chosen for the
convenience it provides when describing each element cur-
vature by the curvature at node n, which falls at the center of
the element. The governing equations can be written with two
equilibrium equations for the differential element

N
Y Fj=0, 3
=1
N
S"M=0, @)

where F, ; is the force in the direction of the beam’s deformed
neutral axis at segment i and layer j. The forces can be
substituted with the integrals of the stresses over the surface
of each cut, such that the sum of forces and moments,
respectively, can be expressed as

NiL Nip,
Z[f Ot 1,5dA; + FN,):+1] - Z[f Unl,[jdA[f] =0, (5
j=1 Ajj j=1 Ajj

Nig Nig
Z[f Un+l,ijZdAij + 2V,1+1AX:| + ZI:f Unl,ijszij:|
Aj .

j=1 ) j=1 J

Nir,
+ > 27 (H) tyapwAx] = 0, (6)
=1

where o, ; are the stresses in the x direction at node n; A; is
the cross-sectional area; Ax is the length between two nodes;
Ta,ij(H) is a magnetic torque dependent on magnetic field
strength; w is the width in the y direction; V,,, | is a shear
force; Fy 1 is the normal force; and z is the distance in the
direction of the thickness, as defined in figure 3(b). The
indices i and j refer to segment and layer locations, respec-
tively. Each summation from j = 1 (layer 1) to j = Ny is
shown separately to emphasize that the number of layers N,
may be different for each node, n, n — 1 and n + 1.
The following constitutive equation is used for stress

onij = Yi(en + €5(E)), )

in which ¢, is the elastic strain at node n, defined by beam
kinematics

e = —K(z+72) ®)

The variable K is the curvature, and Z is the distance to
the neutral axis. Meanwhile, gfj (E) is the electrostrictive strain
as a function of an applied electric field E, determined from a
microstructure-based electrostriction model for a nonlinear
EAPs [34]. The model is based on averaging the strain-energy
density of a semicrystalline microstructure, consisting of
amorphous regions that behave like a hyperelastic material,
and crystalline regions that behave like dipoles interacting
with each other. The generalized form of the strain energy
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where &, and O,, are microstructural parameters describing
spatial orientations of crystalline regions, A, and ( are elastic
constants for the 8-chain hypelastic model W, [35], £ is a
probability density function, p, and p, are the unit vectors of
two neighboring dipole moments separated by a vector whose
unit vector is 7, v. is the volume fraction of the crystalline
regions, A\ is the macroscopic stretch, A is a constant of
integration, R, is the saturation polarization, and € is the
permittivity of the amorphous phase. The constitutive relation
between the strain-energy density W and the Cauchy stress
tensor T is given by

T = ga—WB +ql,
J OB

where ¢ is a Lagrange multiplier to enforce an incompressi-
bility constraint, I is the identity tensor, and B = FTF, in
which F is the deformation gradient tensor. The interactions
between the dipoles changes as a function of the external field
via the alignments of p, and p,, which shifts the equilibrium
between the stresses generated from each phase. Finding the
strain ¢ at which equilibrium is satisfied for each field
strength is how the electromechanical coupling &j(E) is
determined.

The magnetic torque at each location, 7, ;;, is determined
by the amount of magnetic material is present in the volume
of magneto-active layer at each location i, j. The torque is a
function of the relative angle of the point n, such that

Tuij = VaMy 4 x H,

(10)

an

where M, ; is the magnetization of the material at n,
VA = Axt;w is the volume of the magnetic layer in the
differential element, and H is the externally applied magn-
etic field.

If a force Fy;, is applied at one end of the beam, then the
shear term V will be non-zero. Since the model is assuming
large displacements, V cannot be assumed constant at each
node. While this does not strictly satisfy equilibrium for each
element, the difference between V,_; and V,,; can be
assumed to reach 0 as Ax — 0. Thus, if Ax < L, then the
equilibrium can be approximated by (5) and (6).

The value of V at any node is a function of the defor-
mation, as it will change based on the orientation of the
element. For instance, if the beam is fixed on one end and Fy,
is applied on the other end, which is free, then upon actuation,
the beam will experience large deformations, and the shear
force will change at each location depending on the orienta-
tion of the element. The orientations of the elements are
dependent on the curvatures of the element and all those prior
to it (starting from the fixed end, since it is more convenient to
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Figure 4. A tip force is applied to one end of the beam. The beam is
cut at a location to show the angle of the location and the normal and
shear forces acting at the cut surface.

apply the boundary condition this way). Similar arguments
apply for the normal force, Fy. The normal and shear forces
can be defined by

FN,n = Ftip,x sin 6, + Ftip,y cos 0, (12)

13)

where 6, is the angle of the element relative to the x-coor-
dinate (counter-clockwise is positive). The angle and the
shear and normal forces are illustrated in figure 4.

The governing equations are written for every possible
three-node element across the beam, such that a system of
equations can be written

CmnKn = f;, s

where K, are the unknown curvatures at each node, C,, =
Coun(tij, €5, Yj, L, w) is a stiffness matrix, f, = f, (K, H, Fy,)
are the forcing terms. After solving for the curvatures, the cur-
vatures can be transformed into coordinates in the deformed
configuration, x,, by a rotation matrix R,,, in the relation
X, = R,,,K,,. Details of the model can be found in [32].

Due to the nonlinearity of the problem, the model is
solved by an iterative technique that utilizes the previous
solution to determine the next solution at every step. At each
iteration, the deformed shape solutions for given parameter
sets S are calculated in MATLAB via the vpasolve numerical
solver, and solutions of previous field increments are used as
an initial guess for the next increment’s solution. Between
each iteration, the field strengths are incrementally increased
to allow the solver to find the next solution. Thus, different
sequences of electric or magnetic actuation can be simulated
by changing the field strengths at each iteration in the order of
our choosing. The order in which the fields are applied in
multi-field actuation is significant because it is a path-
dependent problem. A structure with the same configuration
may yield different deformed shapes if the order of actuation
is reversed. Multi-field actuation in experiments is typically
conducted with the magnetic field applied first and held

Vo= Ftip,x Ccos en + Ftip,y sin 9}1,

(14)

0 0.002 0.004 0.006 0.014

Figure 5. Target shape drawn as a line through the structure’s neutral
axis. Segments are identified between points along the shape’s path.
(Source: [26]).

constant, while the electric field is increased afterwards (to
avoid prolonged electric actuation that may result in dielectric
breakdown). As such, in the simulation the magnetic field is
ramped first until it reaches its maximum, then while holding
the magnetic field constant, the electric field is ramped until it
also reaches its maximum value.

Objective functions

When considering the performance of a self-folding structure,
a key metric is its ability to match the actuated shape it is
designed to achieve. The target shape is defined in terms of a
set of four panels and three folds, as shown in figure 5. To
examine how closely the structure can reach ideal folded
shape within the chosen design space, the fold angles are
used. For example, all fold angles in the target shape, as
defined in figure 5, are set to 60°.

The shape error objective function is computed in terms
of the difference between the target shape’s coordinates and
the calculated coordinates under multi-field actuation at dis-
crete points along the beam. Shape matching was originally
proposed for rigid link mechanisms, and later applied to
compliant mechanisms [36, 37]. Thus, it is an adequate
measure of the self-folding structure’s actuation capabilities.

N

(xmodel,i - xtarget,i)2
fshape = 2 :

= (15)

i=1

The target shapes coordinates are defined as X(arger,i» and
the simulated coordinates are Xpoqe; fori = 1, 2,...,N, where
N is the number of discrete points along the beam’s neutral
axis (note the simulation methods yields the deformation
along the beams’ neutral axis). The differences between the
locations of corresponding points on the simulated and target
shape are divided by L? (L is the total length of the beam) to
normalize the error.

In terms of design, the cost of a self-folding structure is
another important measure when evaluating the feasibility of
the design. Two of our structural parameters, the length ratio
and magnetization of the MAEs, directly influence how much
magnetic material is present in the structure, and the magnetic
material, BAM, is by far the most expensive material at
approximately $8000 per kg for nanoparticles (Sigma
Aldrich). The magnetic cost of a design is defined as in
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across all MAE patches, Vyag, a volume percentage, v, and
the cost per volume, c.

f(‘:ost = CVVMAE. (16)

The total volume of the MAEs is dependent on the length
parameter

7)

where Iyag = leven 18 the length of the MAE patch, and fyag
is the thickness of the MAE patch. The volume is multiplied
by 4 so that it represents the total volume of all four MAE
patches.

In addition, a third objective function is considered for
the design optimization problem: the work performed by the
structure on a force applied at the tip. This objective function
is a significant addition to the optimization because (i) it is a
metric of performance that can be directly applied to a grip-
per-like application [38, 39], and (ii) it has not been pre-
viously included in an optimization for a multi-field actuated
device.

The force on the tip of the composite beam is assumed
arbitrarily applied (see figure 6) such that the structure may
pull the force to perform work.

The objective function for work is defined as

s
fwork :j(; FtiP ~dr.

where Fy, is the applied tip force, dr is the incremental dis-
placement of the tip, and s is the path traveled by the tip. If the
composite is performing work on the tip force, then the dot
product of F;, and dr must be negative, since the composite
should pull the force in the opposite direction of F, Fur-
thermore, the form of (18) is negative for actuation perfor-
mance, and the more negative it is, the more work is done on
the tip. This objective function is written in this form so that it
can be minimized along with the other two objective
functions.

VMAE = 4WIMAEIMAE-

(18)

Formal optimization setup

The results of the parameter study helped determine that each
parameter influences the deformed shapes significantly.
However, while the best designs contained a wide range of
magnetizations and length ratios, the Young’s modulus was
consistently low. Consequently, the Young’s modulus will be
kept constant for the formal optimization. Additionally, a gap
between the MAE patches was another common feature
among the best designs, which means the optimization
algorithm would benefit from a gap constraint.

where the variables are
S = {NS3 ML? Mj’ tlj’ €ij9 Yl]5 L: w, H? E}’

Two constraints are added to ensure that segment length
fractions, /;, remain positive (/; > 0) and sum to unity
Oo§ L= 1.

For the optimization, a genetic algorithm developed by
MATLAB, called gamultiobj, is chosen. This algorithm is a
variant of the multiobjective genetic algorithm NSGA-II, and
it well suited for problems with a relatively small number of
variables. A basic flowchart of the genetic algorithm is pro-
vided in figure 7. Details on the base algorithm can be found
in the original publication [40]. The genetic algorithm options
are held at default except for the population size set to 100.

Case study

As a case study, consider a beam composed of a layer of EAP
and a layer of passive material stretching along the entire
length of the beam, with four MAE patches that are placed as
shown in figure 8. Due to the MAE placements, and their
magnetization orientations, the beam is divided into eight
segments. The four-MAE-patch configuration allows the EAP
layers in the two-layer segments to generate bending that can
cooperate with the MAESs in folding the structure forming the
so-called ‘accordion’ bending configuration (a double
humped ‘M’ shape).

The direction of the force, Fy,, is assumed constant, and

always in the x-direction. Thus, f, . can be simplified to

Foork = FiipOrs (20)

where 0, is the tip-displacement in the x-direction.

Chosen parameters

In this subsection, the system parameters are explored such
that the optimization problem can be narrowed by utilizing
only a few key parameters, which will save computational
costs.

Prior to any reductions to the parameters, consider the
complete set of model parameters that describe the geometry,
materials, and external stimuli, which are:

S = {M] tl], El:j» Yl]’ L7 w, H’ E}' (21)
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Figure 7. A basic flowchart of the genetic algorithm, starting from
the initial population, and ending with the optimum population,
which yields the Pareto front.

The parameters with subscripts are associated with layer
Jj at ith segment: M are the magnetizations; #; are the layer
thicknesses; ¢; are the electrostrictive strains; and Yj; are the
Young’s moduli. The parameters L and w are the length and
width of the structure, respectively. The magnetic and electric
fields are H and E, respectively.

In the generalized form, the structure must contain geo-
metric and material information for every segment and layer,
such that there are Ny segments with lengths /;, yielding a total
device length L = Zf\’; \li Total length L is kept constant,
allowing focus on the relative lengths, /;. All potential geo-
metric and material parameters are listed in table 1.

Since EAPs are difficult to manufacture, and their prop-
erties are difficult to fine-tune, the EAP layers’ properties will

be held constant for all segments present, resulting in ¢; = ¢
when j = 1 and ¢; = 0 otherwise.

We assume the width transverse to all layers and seg-
ments is constant, w, and all applied fields, E and H, are held
constant globally (i.e. no spatial variation in either field).

The subset of parameters for the case study are reduced to:

S = (M, My, Mg, Ms, I, >, I3, I, Is, ls, 17, I3, Yp}.

where Yp is the Young’s modulus of the passive layer for all
segments (i.e. Y, = Yp for all i), M; are the magnetizations of
each MAE patch (i representing segment number), and /; are
the segment lengths. The layer indices, j, are dropped for the
case study due to the predefined layer locations of each mat-
erial (i.e. the passive layer is always at j = 1, EAPs at j = 2,
and MAEs at j = 3).

These parameters are chosen due to their potentially large
influences on the actuation of the structure, and consequently
the objective functions.

For instance, one of the purposes of this study is to
determine how compliance can affect the deformation and
folding of a smart structure, making the Young’s modulus
of the materials an important variable. The Young’s mod-
ulus of at least one of the materials is thus considered, and
since varying the Young’s modulus of an active material
may result in nonlinear influences on its actuation proper-
ties, the passive layer’s Young’s modulus is selected as a
parameter.

Another method of varying the bending stiffness along
the length of the structure is by changing the lengths of the
segments, which have different stiffnesses depending on the
number of layers.

Beyond the stiffness of the structure, magnetization was
considered as the third parameter, since the magnetization of
an MAE is controllable during fabrication by adjusting the
volume content of magnetic material of known magnetization
response [41, 42]. Magnetization also influences both the
actuation capability (see equation (1)), and the cost of the
structure.

Parameter study

A preliminary parametric study was performed prior to the
optimization to understand the viability and usefulness of the
chosen objective functions and a few key parameters [26].
The parameter study focused on two objective functions,
fShalDe and f, ., and considered the effects of three parameters,
the magnitude of the magnetization of the MAE patches, M,
the Young’s modulus of the passive layer, Y, and the ratio of
the lengths of segments with the MAE patches to those
without MAE patches, T = l,4q/leven. The reason for redu-
cing the length parameters from all /; to a ratio of the lengths
of the odd segments to even segments is because all eight /;
was unwieldy for the parametric study and creating a length
ratio for varying the lengths produces a single parameter that
affects all segment lengths. The segment lengths were thus
divided into two categories: odd and even numbered
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Table 1. All possible geometric quantities and material properties for all layers in each segment for the chosen four MAE patch

bimorph configuration.

Geometric quantities

Material properties

Layer thickness

Segment length Layer j =1 Layer j=2 Layer j=3 Layer j=1 Layer j=2 Layerj=3
Segment i = 1 L tEAP tp — T, Yeap Yp —
Segment i=2 12 fEAP tp IMAE F, YEAp Yp M, YMAE
Segment i=3 l3 EAP tp — T, Yeap Yp —
Segment i=4 Iy EAP tp IMAE T, Yeap Yp M, Ymar
Segmenti =5 15 fEAP tp — F, YEAp Yp —
Segment i=6 16 EAP tp IMAE T, Yeap Yp M, Ymar
Segment i = 7 kL fEAP tp — T, Yeap Yp —
Segmenti =38 18 fEAP tp IMAE F, YEAp Yp M, YMAE

Fixed Fiip

end ] 1
=

J=4

Figure 8. Schematic of a simple bimorph composed of eight
segments with j layers, fixed on the left end. An external magnetic
field H is applied upward. Layer 1 is an EAP (green); layer 2 is a
passive material (blue); even numbered segments contain a layer 3,
which is an MAE (magnetization directions signaled by yellow
arrows). Dimensions are not to scale. (Source:[26]).

segments. A length ratio T was defined as Y = lyqq/levens
where [; are the fraction of each segment length with respect
to the total length of the structure.

The tip force was F' = 0, since f,,, Was not included in
the study. The set of parameters for the parametric study can be
shown as,

S*: {M, T’ Y;ZZYP}’ (22)

where Yp is the Young’s modulus of the passive layer for all
segments (i.e. Yo, = Yp for all i), T is the length ratio of each
segment with respect to each other. To generate symmetric tor-
ques, M;; are held constant as well, hence M;; = M for all even
segments (i = 2, 4, 6, 8), at j = 3, and M;; = O for all others.

The same large displacement composite beam model
discussed in the Methodology section was used to simulate
the structures for the combinatorial set of parameters listed
below, yielding 125 cases.

M= {0.1, 0.2, 0.3, 045, 0.6} T, (23)
Yp={0.1, 0.5, 1, 5, 10} Ygap, (24)
T=1{0, 1/3, 1, 3, 7}. (25)

The magnetization M was varied from 0.1 Tesla to 0.6
Tesla; the increments of the Young’s Modulus of the passive
layer, Yp, were chosen relative to the Young’s modulus of the
EAP, Yap; and the ratio of the lengths of two-layer to three-layer
segments were varied from 0, which means the entire beam is
covered with MAESs, to 7, which means the MAE patches were
very short. A visual representation of the length ratios, Y, are
shown in figure 9.

 ——
———————
—_——————
———
—_———

Figure 9. Chosen length parameter is visualized on a sample
configuration. Red layers are MAEs, blue layers are passive, and
green layers are EAPs. The yellow arrows on the MAE patches
indicate direction of magnetization. From +; to 75, segments
containing MAEs increase in length, while the remaining segments
reduce in length. (Source: [26]).

Table 2. Material and layer properties for MAE, EAP, and the
passive layer. (Source: [26]).

Parameter MAE EAP  Passive layer

520 30 62
200 Yp (varied)

t(pm)
Y (MPa) 35

The remaining material properties and structure dimen-
sions are borrowed from literature [26], and listed in table 2.
The width was w = 1cm, and the length is L =3 cm.
The maximum fields used were Hp.x = 30kAm~' and
Emax = 50MV m~L The fields were incremented at
AH = Hy,y /15, followed by AE = E . /15, totaling 30
steps to reach the final deformed shape.

Quantitative comparisons were made to determine how
much the objective functions varied based on parametric
changes. The simulations were assessed in a performance
space to view the tradeoffs between the objectives, as shown
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Figure 10. The performance space is shown. Each dot represents a simulation of a different combination of M, Yp, and . The length ratio, ~,
is indicated by color. The colored arrows on the bottom left indicate the best of the feasible designs. (Source: [26]).

in figure 8, where each point represents a feasible design. The
points are also color coded to distinguish their length ratio.
The best designs are expected to be in the lower left corner of
figure 10.

Samples of the deformed shapes of the best designs,
plotted with a custom graphics code in MATLAB that
schematically represents the number of layers, segments,
and material properties, are shown in figure 10. Each layer’s
color intensity signifies a specific property. The MAEs
become more red as their magnetization M increases; the
passive layer becomes more blue as Y, increases; and the
EAP is a static green to indicate constant electrostrictive
properties. Recall that the MAEs are oriented in the direc-
tions shown in figure 8, with an external field upward. The
layer thicknesses are not shown to scale, and thus any
overlapping on the images does not imply physical contact
between MAE patches from different segments. In reality,
the thicknesses are small enough to allow very large
curvatures.

Configurations within length ratio 1 were relatively low
cost due to a low volume of MAEs, but they performed
approximately in the middle of the total group of simulations.
By contrast, length ratio 5 performed poorly across all para-
meter sweeps, and was the most costly due to the high volume
of MAEs. Length ratios 2, 3, and 4 were more diagonally
distributed on the f,.. versus f . map.

The three best performing configurations for each length
ratio, as indicated by arrows in figure 10, were identified.
Conversely, the worst designs are entirely of length ratio 5
(top right schematic in figure 10), showing little change as
other parameters are varied. This may be a result of the high
stiffness of the MAEs; when the MAEs are continuous across
the length of the beam, no region of the structure exhibits
relatively high bending, as in the case of the other length
ratios. Thus, any attempt at achieving folding or even

moderate displacements may require spacing between the
MAEs, which agrees with findings reported in the litera-
ture [31].

The effectiveness of the shape function’s ability to
gauge how well a design approximates the target shape was
also studied by visually comparing the deformed shapes of
designs along with their f . metrics. For example, the
deformed shapes of the best designs in terms of shape are
displayed in figure 11. The target shape is also displayed as
an overlay on each simulated shape. It is evident from
figure 11 that as the objective function f .. decreases
among the best designs, the simulated shape better matches
the target shape. In addition, the objective function also
decreases as folding becomes more prominent at the creases
between the MAE patches. This is further support for uti-
lizing the objective function in seeking target shapes with
sharp folds. However, this finding also implies that the
length ratios 2, 3, and 4 are likely ideal starting locations for
a formal optimization problem, and could potentially save
significant time in searching for the best possible active
self-folding design.

Formal optimization problem results and discussions

The results of the parametric study informed choice of parameters
such that the optimization problem would yield even better
designs. Namely, the Young’s modulus of the passive layer is
removed as a parameter, and kept constant at Yp = 0.1Ygap,
since the lowest Yp produced the best designs in the parametric
study. Furthermore, the magnetizations and segment lengths are
not assumed equal for each MAE patch or segment, respectively.
As a result, the set of parameters for the optimization problem is

S = {My, My, Ms, Me, I, b, I3, I, Is, ls, b7, Ig}. (26)
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finape = 247 fonape = 0.61  fopape = 0.34

Figure 11. Deformed shapes of the three best designs with overlays
of the target shape (red lines). From left to right: L2-M5-Y1, L3-M4-
Y1, L4-M3-Y1. (Source: [26]).

(1)

20

3

Figure 12. The Pareto front for the three objective functions is shown
in a 3D plot, as obtained from the genetic algorithm. Each point
represents an optimal individual based on the objective functions.

10

fsh.'i[m

The same constants from the parameter study are used for
the optimization (see table 2). Additionally, a tip force is present
in the optimization problem to calculate f ., . The magnitude of
the force is manually chosen to be 10 mN, and the magnetic field
is increased to 70kA m~", which allows the structure to fold
beyond the target shape at the configuration with the highest
BHF content.

Since a genetic algorithm is employed for optimization, an
initial search population must be selected. MATLAB’s genetic
algorithm, gamultiobj, can generate a default initial population,
but a few preliminary optimization iterations utilizing the default
initial population did not yield a diverse set of optimal designs.
To address this issue, the initial population is modified by (1)
adding the best designs from the parametric study, which can aid
the algorithm in finding more optimal spaces, and (2) designs
with more extreme segment lengths, particularly those with
T > 7, are introduced, which helps promote diversity in the
initial population. The custom designs selected for the initial
population do not add to the total population size, which is 100.
Consequently, the remaining individuals in the initial population
are generated by the default algorithm.

The optimization is performed with the genetic algorithm
and allowed to converge toward a Pareto front for minimizing
the three objective functions, shown in figure 12. The axes
represent the three objective functions, and each circle in the
Pareto front represents an optimal individual whose perfor-
mances in terms of the objective functions cannot be
improved by changing their parameters. The path of the
Pareto front is 3-dimensional and contains individuals with a
range of performances in terms of the objective functions. For
example, there are individuals with high shape error, low cost

10

Table 3. Objective function evaluations and magnetizations for the
highlighted in designs in figure 12.

DI D2 D3 D4
Fonape 16 51 012 071
Lot $) 16 71 173 254

~foo (1074 012 084 149 181
M, (T) 0093 0.19 036 045
M, (T) 0037 020 029 057
M (T) 015 031 024 045
M; (T) 0068 0.19 031 032

and low work on one end, and those with low shape error,
high cost, and high work on the other end. Individuals at
around the mid-point of the Pareto front have a more balanced
performance in terms of the three objectives.

Samples of the deformed shapes of feasible designs on
the Pareto front are provided in figure 12. Design 1 has the
highest shape error (16), lowest cost ($1.6), and least work
done (0.12). Design 2 has moderate shape error (5.1), cost
($7.1), and work (0.84). Design 3 has the least shape error
(0.12), and high cost ($25.4), and work (1.49). Design 4 has
the low shape error (0.71), highest cost ($25.4), and the best
work (1.81). A summary of these results are listed in table 3.

The design with the highest shape error (or least
matching shape), Design 1, has very short MaE patches, while
those with the best matching shapes near the other end of the
Pareto front, such as Designs 3 and 4, have the largest MAE
patches. In between designs 1 and 4, there is a gradual change
in MAE patch size. Interestingly, the lengths of the segments
containing MAEs (i.e. even numbered segments) are rela-
tively even within each Pareto individual. Since there was no
constraint on the relative lengths (as there were in the para-
metric study), these results imply that symmetry may promote
shape matching.

Similar to the MAE patch lengths, the magnetizations of
MAE patches also gradually change along the Pareto front.
Design 1’s MAE patches have the least magnetization among
all designs, while Design 4’s patches have the highest mag-
netizations. The values of the magnetizations for each patch
on all four selected designs are listed in table 3.

Another notable trend is that the magnetization of the
patch on the fourth segment, M,, is lowest among the patches
in Design 1, but highest in Design 4. In fact, M, in Design 4 is
greater than M, in Design 1 by more than a factor of 15, the
largest factor across any two magnetizations. Thus, this
means that the system is highly sensitive to M, (combined
with a steady change in MAE patch lengths), perhaps more
than any other parameter that was used in the optimization.
Similarly, the system is also sensitive to M,, which changes
by almost a factor of 5 between Design 1 and Design 4.

Another trend in the Pareto space is that Mg remains the
lowest in almost every design. It is likely that Mg is lowest in
most designs since it is located on the 8th segment, which is
the free end of the beam. Regions near the free end of the
beam may not require as much torque, which can be useful
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information when designing a magnetically-actuated canti-
lever device.

The only exception to this rule is found in Design 3.
Unlike the other selected designs, Design 3 has an Mg that is
not the weakest of its MAE patches. In fact, the magnetiza-
tions of the MAE patches in Design 3 are relatively uniform.
The smallest magnetization (Mg = 0.24 T) in Design 3 is
only 66% of the largest magnetization (M, = 0.367T).
Compared to the designs (25% for Design 1, 61% for Design
2, and 57% for Design 3), this is the closest relative mag-
netizations between the weakest and strongest MAE patches
in a design. There is also better symmetry in Design 3 than in
any other design. The outer MAE patches (M, and Mg) have
the highest magnetizations while the inner MAE patches (M,
and M) have the lowest. Conversely, Designs 1 and 2 are
asymmetric with Mg being greater than the next strongest
MAE patch in each design, and without a balance on the other
end of the beam (i.e. M, or M,). Similarly, Design 4 is skewed
toward the fixed end of the beam. Thus, the results imply that
symmetry and relatively uniform magnetizations are best for
matching the chosen target shape. This is not a coincidence,
since the chosen target shape is also symmetric about the
midpoint. However, it is also important to point out that the
magnetizations and lengths of Design 3 are not exactly uni-
form or symmetric, which would be expected for the chosen
target shape. This is likely due to (i) a bias with the initial
population, which led to a convergence toward a non-sym-
metric or uniform design in terms of magnetizations, and (ii) a
relatively low population size of 100. It may also be due to
the boundary conditions (fixed end, and free end with applied
load) combined with numerical approximation errors.

Nonetheless, despite the optimization results not being
exactly symmetric as expected for some of the designs, the
methodologies presented in this work have yielded quick
results that perform significantly better than any design found
via the parameter study. For instance, the lowest shape error
acquired from the parameter study was 0.34, which is nearly
three times greater than the lowest shape error from the
optimization (0.12, Design 3). Similarly, the lowest cost from
the parameter study, $3.5 (L3-M4-Y1), is more than twice as
much as the lowest cost of a Pareto design from the optim-
ization, $1.6 (Design 1). Thus, the optimization method
improved upon the parameter study in terms of the objective
functions, and it took about 40 h to run on a 100-core cluster,
which is a feasible computational speed for results several
times better than any results that could be obtained from trial
and error, or a parametric study.

Based on this analysis, if an application requires ideal
shape matching, then the best design should have relatively
high, uniform, and symmetric magnetizations and long MAE
patches throughout the length of the device as in Design 3. If
an application prioritizes costs, then shortening the lengths of
the MAE patches and reducing their magnetizations, while
maintaining patch placement symmetry, as in Design 1, is
ideal. For maximizing work, the magnetizations should be
increased near the limits, with M, the highest among the
MAE patches, as in Design 4. If an application requires more
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L/3

Figure 13. The second target shape resembles a ramping function.
The shape has three regions of equal length, L/3. The tip force is
applied in the vertical direction as shown.

complex priorities, then one can select another design based
on the trade-offs in the Pareto front that meet their needs.

Formal optimization problem for a second target shape

To test the robustness of the optimization methods presented
in this work, a second target shape is considered. The shape is
presented in figure 13, and resembles a ramping function.
This shape is chosen because it is not achievable with a
simple unimorph and it also includes ideal folds. Furthermore,
unlike the M-shape (figure 5) used for the target shape in the
first optimization problem, the ramping target shape only
contains three straight regions. The ramping region of the new
target shape is at a 45° angle to the horizon, and the tip force
is applied in the vertical direction, as shown in figure 13.

Due to the change in the direction of the tip force, Fp,
the objective function associated with work, f, ., can be
written as

fwork = _FlipaZ' (27)

Since the sign of f, ., is negative again, it can be
appropriately substituted for into the optimization problem,
which aims to minimize all objective functions.

While a parameter study was used to provide the initial
population of the first optimization problem (M-shaped tar-
get) with high-performing designs, the initial population of
the second optimization problem (ramping-shaped target) is
not supplied with such designs. Instead, a default, randomly
generated population is used for generation 0. A lack of
quality designs in the initial population will likely limit the
performance of the optimization for the second target shape,
but it will help understand how well the optimization can
perform for a second shape, even without a parameter study.

The parameters are the same as in the first target shape
optimization, shown in (26). The results of the genetic algo-
rithm are shown in figure 14. The three selected designs in
figure 14 with annotated deformed shapes represent the
designs with the best shape, work, and cost, i.e. the designs
with the best values of the individual objective functions.
Design 1 is best in cost ($1.3) but worst in shape (97) and
work (0.11 ©Nm); design 2 is best in work (—1.0 uNm) but
suffers in shape (32) and cost ($19); and design 3 is best in
shape (0.38) but not ideal in work (—0.18 pNm) or cost
($25). While designs 1 and 2 appear to perform well in their
areas of strength (cost and work, respectively), design 3
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Figure 14. The Pareto front for the three objective functions for the
ramping target shape is shown in a 3D plot, as obtained from the
genetic algorithm. Each point represents an optimal individual based
on the objective functions.
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Figure 15. The Pareto front is shown in a 3D plot, as obtained from
the genetic algorithm with the ramping-shape objective function. For
this Pareto front, the initial population included a manually selected
design that performed well in matching the ramping shape. Each
point represents an optimal individual based on the objective
functions.

performs poorly both quantitively and qualitatively. For
instance, its shape error, which is 0.38, is much higher than
the best design for the M-shape, which had a shape error of
0.12. Furthermore, the deformed shape of design 3 does not
resemble the chosen ramping target shape. This is likely due
to a lack of ‘good’ designs in the initial population, which are
harder to obtain with a relatively small population size of 100.

To test the effects of the initial population, another
genetic algorithm is carried out with one design that is
manually selected and added to the initial population. The
design is chosen based on its relatively well matching
deformed shape to the ramping target shape, with an error of
0.2. The results of the second genetic algorithm for the
ramping target shape are presented in figure 15, which shows
a Pareto front including selected designs performing best in
the three objective functions.
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Table 4. Objective function evaluations and magnetizations for the
highlighted designs in figure 12.

DI D2 D3 D4
Fonape 95 13 004 43
Lot ® 12 64 11 20
oo (10°H =11 18 28 10
M, (T) 009 034 046 049
M, (T) 007 0.2 018 028
Mg (T) 004 024 028 044
M (T) 001 005 002 020

Figure 15 contains four selected designs with their
deformed shapes annotated. Design 1 performs best in cost;
design 3 performs best in shape; and design 4 performs best in
work. Designs 1 and 4 are very close to their counterparts
from figure 14, which was obtained without a custom initial
population. Meanwhile, Design 3 shows significant
improvement over the best shape achieved in figure 14. In
fact, the best design in terms of shape from figure 15 has a
shape error of 0.04, which is an order of magnitude better
than the best shape design from figure 14, which was 0.38.
The parameters and performances of the four designs are
presented in table 4.

Since we are seeking to find more negative work values,
Design 1’s positive work means there is no work being per-
formed in the preferred direction. Thus, Design 1 would not
be a practical choice for an application requiring at least some
level of shape matching and work (it does not perform any
work on the tip force). As an alternative to Design 1, Design 2
is also annotated in figure 15, which is the cheapest design
that performs work on the tip force and comes close to
matching the ramping target shape.

Conclusions

The purpose of this study was to set up a multi-objective
design optimization problem for a multi-field actuated device
employing magneto- and electro-active materials. An existing
model accommodating large displacements and magneto- and
electromechanical coupling was used,and extended for the
application of a tip-force on one end of the beam. The design
optimization problem was written for a multi-field actuated
device consisting of several parameters, including number of
segments and layers; thicknesses, lengths, and all material
properties. Three objective functions were chosen: (1) shape
error, i.e. the error between calculated and target shapes, (2)
cost, and (3) work performed on the tip load.

To assist the formal optimization, a case study consisting of
eight segments was considered, reducing the number of para-
meters and possible combinations of materials at each layer and
segment. Furthermore, a preliminary parameter study was per-
formed on the eight-segmented bimorph structure design to
predict how a set of parameters affect the self-folding of the
structure. Only the shape and cost objective functions were
considered. The parameters chosen for the study were the



Smart Mater. Struct. 29 (2020) 024001

A Erol et al

magnetization of the MAEs, the Young’s modulus of the pas-
sive layer, and the length ratio of the segments. The results of
the parameter study found that each parameter influenced shape
approximation by almost an order of magnitude. Furthermore,
the parameter combination that yielded the lowest shape error
performed significantly better in both matching the target shape
and achieving self-folding, which implies that the chosen shape
objective function was adequate in assessing the degree of
folding.

The results of this parameter study were used in deter-
mining the constraints and initial search population for the
optimization algorithm. For example, relatively long MAE
patches were used as a good starting point, since long MAE
patches performed best among all length ratios in terms of
folding. Configurations with MAE patches covering the entire
length of the structure were omitted from the design space,
since they could not produce fold-like patterns, while very
small MAE patches were also eliminated since they did not
generate enough torque. The parameter study also highlighted
the significance of the Young’s modulus of the passive layer,
and suggested that self-folding requires very low Young’s
modulus of the passive layer with respect to the EAP layer.
Thus, the Young’s modulus was preset to the lowest value
from the parametric study.

The multi-objective optimization yielded a Pareto front
with a range of optimal individuals to select from based on
the priority of the design. The Pareto front showed optimal
designs in terms of cost, shape, and work. Nearly all designs
were relatively symmetric in length segments, and contained a
range of magnetizations. However, it was found that some
MAE locations, such as My, may play a more significant role
in actuation than others, especially in terms of shape
approximation. Furthermore, the results yielded much better
designs in terms of the chosen objective functions than any
design obtained from the parameter study. It can be concluded
from the results that the optimization method is an improve-
ment over trial and error or parametric studies, and performs
well in terms of computational speed.

The optimization problem is also tested for robustness by
trying another target shape, which resembles a ramping shape.
The genetic algorithm is run twice, once with a default
(random) initial population, and one with a custom initial
population containing a design performing well in matching
the shape. The results of the second optimization problem
show that adding a well-performing individual to the initial
population can significantly improve the best shape-matching
design on the Pareto front, by up to an order of magnitude in
shape error. Furthermore, given a well-chosen initial popu-
lation, the optimization method proves to work well in opti-
mizing for the chosen objective functions, outperforming
even the well-chosen designs.

Future improvements on the optimization can be made
through adjustments to the settings. For example, different
custom initial populations can yield different Pareto fronts,
which can potentially contain more optimal individuals.
Particularly, the diversity of the initial population plays a
significant role, which can be studied further. In addition, the
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number of elites was not modified, which could also influence
which traits are passed down in the genetic algorithm.

Additionally, several variables were not considered in
this study, such as the width and length of the structure,
Young’s moduli of the MAE and EAP, and the electro-
strictive properties of the EAP. Both the electric and magnetic
fields were kept constant for the simulations, and we chose a
specific order of actuation (magnetic field first, and then
electric field). Varying any of these parameters may alter
influence the self-folding behavior of the structure, which
means that the scope of this study is limited to structures with
similar configurations and constants. As a result, a more
thorough investigation utilizing a larger parameter space may
generate more optimal Pareto fronts. However, our results
show this methodology may be useful for the multi-objective
optimization of arbitrary multi-field-active, compliant, self-
folding structures.
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