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We construct a recursive second-quantized formula for Moore-Read Pfaffian states. We demon-
strate the utility of such second-quantized presentations by directly proving the existence of
frustration-free parent Hamiltonians, without appealing to polynomial clustering properties. Fur-
thermore, we show how this formalism is connected to the existence of a non-local order parameter for
Moore-Read states and give a proof that the latter exhibit off-diagonal long-range order (ODLRO)
in these quantities. We also develop a similar second-quantized presentation for the fermionic anti-
and PH-Pfaffian states, as well as f- and higher wave paired composite fermion states, and discuss

ODLRO in most cases.

I. INTRODUCTION

The past few decades have witnessed tremendous ef-
forts in the study of strongly correlated systems, includ-
ing unconventional superconductors' 3, quantum spin
liquids*7, as well as fractional quantum Hall(FQH)
systems® ', In FQH systems, the kinetic energies of
electrons are quenched as electrons occupy a certain Lan-
dau level, rendering Coulomb interactions as the major
term in the Hamiltonian. Closed form for the ground
state of the many-body Coulomb interaction is difficult to
obtain; thus, theorists resort to model Hamiltonians for
which the prototypical trial state of the closed-form wave
function is the ezact unique densest zero mode (zero-
energy ground state with the minimum total angular mo-
mentum). These model Hamiltonians include two-body
pseudopotential'? for Laughlin state'?, two-body parent
Hamiltonian* for unprojected Jain composite fermion
state!®!® three-body parent Hamiltonian'%'7 for Moore-
Read Pfaffian state'®, and general multi-body parent
Hamiltonians for Read-Rezayi states!®2!. Of all FQH
states, much attention has been paid to those with non-
Abelian anyonic excitation, a key necessary ingredient for
the topological quantum computation®?23. A typical ex-
ample is Moore-Read Pfaffian state, which is constructed
from correlators in conformal field theory?*.

In the study of model FQH states and their corre-
sponding parent Hamiltonian, it is common practice to
focus on the first-quantized wave functions, whose al-
gebraic clustering properties when two or more parti-
cles come together are traditionally utilized to construct
closely related first-quantized parent Hamiltonians. More
recently, a second-quantized approach has been devel-
oped to yield alternative, second-quantized presentations
of FQH models states, study their parent Hamiltonians,
and establish new such Hamiltonians'2%26, In particu-
lar, this approach has proven effective in constructing
parent Hamiltonians'? for unprojected Jain composite
fermion states, which are, in general, not fully char-

acterized by conventional clustering properties. It has
also been used to explain the existence of a frustration-
free parent Hamiltonian as a consequence of the ma-
trix product structure of the Laughlin state?”. Further-
more, it inspired a picture for particle fractionalization?®®
that largely recovers a symmetry between quasiholes and
quasiparticles, which is typically obscure in traditional
treatments. A strength of the second-quantized approach
is that it allows rigorous statements about the zero mode
space of some frustration-free solvable models where tra-
ditional methods are inadequate. This is particularly
so in the context of parton-like states (see Refs. 29-
38 and references therein), where Landau-level mixing
leads to wave functions that are no longer represented by
holomorphic polynomials, barring established techniques
from being used to prove uniqueness and /or completeness
of zero mode trial wave functions. Alternative meth-
ods to achieve such statements have recently been de-
veloped, emphasizing largely second-quantized methods
over first-quantized ones. In some cases, one can develop
the entire theory surrounding certain classes of trial wave
functions, their parent Hamiltonians, and their associ-
ated zero mode spaces using exclusively second-quantized
formalism that nowhere references the polynomials asso-
ciated to first-quantized wave functions. This has, in
particular, been done for Laughlin states?® as well as all
composite fermion states in the positive Jain sequence!.
Here, the construction of traditional polynomial trial
wave functions is replaced by certain recursion relations
in particle number that allow the second-quantized trial
states to be created from the vacuum via a correspond-
ing operator product. The prototypical version of such
products is Read’s presentation®® of the Laughlin state
as a “condensate” involving a non-local order parame-
ter (which was originally given in a mixed first/second-
quantized notation). Analogously, second-quantized con-
structions were recently discussed for composite fermion
states?S.

In this paper, we put forth similar developments that
yield a fully second-quantized construction of the Moore-



Read sequence, and a concurrent discussion of its par-
ent Hamiltonians. Our main result is a fully second-
quantized expression of Moore-Read states as an oper-
ator product acting on the vacuum. As is well-known,
the parent Hamiltonians of Moore-Read states involve
three-body terms'®'7.  While higher-body terms are
quite common in the literature of quantum Hall par-
ent Hamiltonians?®4°, the discussion is typically limited
to the lowest Landau level utilizing first quantization.
While we will not leave the lowest Landau level in this
paper, one byproduct of our approach will be the ex-
tension of second-quantized methods so far exclusively
applied to two-body interactions to solvable models in-
volving higher-body terms. We thus make manifest how
the “frustration-free property” of the Moore-Read state
and its parent Hamiltonian arises in second quantization.
We will further utilize these results to demonstrate the
existence of off-diagonal long-range order in Moore-Read
states. Finally, we will extend several of these results to
the anti-Pfaffian and PH-Pfaffian states.

This paper is organized as follows. In Sec. ITA,
we set up the problem. In Sec. IIB, we postulate a
second-quantized recursive formula (2.16a) for fermionic
(bosonic) v = 1/M Pfaffian state, whose zero mode prop-
erty is proven in Sects. ITC and IID. In Sec. ITE, we per-
form a root analysis of the recursively defined state. In
Sec. ITF, we obtain its second-quantized non-local or-
der parameter and prove the existence of off-diagonal
long-range order. In Sec. II G, we generalize to the Pfaf-
fian states with higher angular momentum pairing. In
Sec. I1I, we obtain the second-quantized recursive formu-
las (3.1) and (3.8) for fermionic anti- and PH-Pfaffian
states, based on the recursive formula for fermionic Pfaf-
fian state. We present discussion and outlook in Sec. IV.

II. SECOND-QUANTIZED MOORE-READ
PFAFFIAN STATE

A. Moore-Read Pfaffian state and its parent
Hamiltonian

In this section, we review some defining properties of
the Moore-Read state and its parent Hamiltonian, and
establish the second-quantized formulation of these prop-
erties.

The parent Hamiltonian for the v = 1/M fermionic
(bosonic) Moore-Read Pfaffian state'®, whose first-
quantized wave function is given by
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with even (odd) positive integer M for fermions (bosons)

respectively, consists of two-body and three-body projec-

tion operators®6,

H = g 4 gEbd), (2.2)

The two-body projection operator H*%) in second

quantization is of the following form?”,
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where the positive-semidefinite two-body fermionic
(bosonic) operator Tﬁzbd’m)Tbed’m) is the second-
quantized form of the Haldane V;, pseudo-potentiall?.
That is, it projects onto an antisymmetric (symmetric)
two-body state of relative angular momentum m# and
total angular momentum Jh in the lowest Landau level
(LLL). In disk geometry, it can be given a concrete form
via

2bd,m 1-J J J
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and similar expressions hold in other geometries?”. Here,
(7;71) = J!/(J — m)m! is the binomial coefficient, ¢; is a
fermionic (bosonic) operator that annihilates a particle
of angular momentum ¢/ in the LLL. Throughout this
paper, we are dealing with LLL orbitals on the disk, so
only those ¢; with nonnegative i are of concern to us.
We, therefore, let ¢; = 0 whenever we formally encounter
negative ¢ in the calculation. pm’%(k) is a polynomial
in k of degree m and parity (—1)™, whose expression is
given by
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with o Fy the hypergeometric function.

The zero mode, or ground space of H*% is spanned
by the v = 1/(M — 1) Laughlin state and its zero-
energy excitations, which physically represent the edge-
and quasihole-excitations of this state. The zero-mode
condition associated with HP can be cast as

Y™ |4here) = 0 (2.6)

for all J and m in Eq. (2.3). This zero-mode condition is
clearly invariant under the formation of new linearly in-

dependent linear combinations of the operators T§2bd’m),
and thus can be written as
2bd,
QL(] ™) |'(/)zer0> =0 (27)
in terms of simpler operators
2bd, i1 —ig)™
QE] m) = 7( ) CiyCiy - (28)
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Here, J and m run over the same values as before. The
simple monomial form of the last expression offers yet a
more condensed version of the two-body zero-mode con-
dition. Defining the operators

2bd, P P(i1,12)
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where P is any polynomial in two variables of the requi-
site symmetry, we may equivalently cast Eq. (2.7) as

bd,P
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where J runs over all nonnegative integers as before, and
‘P can be any polynomial of degree less than M — 1. To
see the equivalence with Eq. (2.7), write P in terms of
variables i1 + io and i1 — i, and note that i1 + 75 is a
constant in the definition of Eq. (2.9).

We will now similarly cast the zero-mode condi-
tion associated with HGPD — HGPD a5 given in the
literature®'46, is a three-body projection operator that
projects onto states of relative angular momentum 3M —
3. To make the claim even stronger, we also include
the three-body projection operator that projects onto
states of relative angular momentum 3M —2. The Moore-
Read state will be the unique zero mode of the resulting
Hamiltonian within its angular momentum sector with
or without the addition of the 3M — 2 term. Note, how-
ever, that the latter must be taken to vanish identically
if M = 2(fermionic case) or M = 1(bosonic case), since
the corresponding three-body states do not exist?'. The

(2.10)

second-quantized form for H 9 is thus given by
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Here, t runs over an index set that labels an orthonormal
basis of three-particle states with total angular momen-
tum J and relative angular momentum ¢ (all in units
of h). Any such state can be expressed via Eq. (2.12)
through an appropriately chosen polynomial Q; in three
variables, of the requisite symmetry for fermions/bosons.
(Q; will also depend on J and M, we will, however, leave
this understood.) Q; can be chosen to be of degree t (not
necessarily homogeneous).

The zero-mode condition associated to H®3PY then
reads, in complete analogy with the two-body case,

T o) = 0 (2.13)

forall J >0and t =3M — 3,3M — 2.

For general M, the polynomials Q; are rather complex,
even more so than their two-body counterparts (2.5).
Luckily, we will not need their precise form. For sim-
ilar reasons, though perhaps less well known, the zero-
mode condition (2.13) can be given an equivalent form
analogous to Eq. (2.10). To this end, we define generic
three-body destruction operators
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with @ a polynomial in three variables and of the desired
(anti-)symmetry. By definition, the zero modes we are in-
terested in satisfy both the two-body and the three-body
zero-mode conditions Eq. (2.10) and Eq. (2.13). In this
case, we may, however, replace the three-body zero-mode
condition (2.13) with the seemingly stronger condition

QSde7Q) |¢zero> =0

for all integers J > 0 and all three-variable polynomials
Q of degree less than or equal to 3M — 2. Clearly, en-
suring Eq. (2.15) is sufficient to ensure that Eq. (2.13)
is also satisfied. Below we will show that our second-
quantized expression for the Moore-Read state satisfies
both Egs. (2.10) and (2.15). It is thus, in particular,
a zero mode of the Hamiltonian Eq. (2.2). In turn, any
state that is a zero mode of this Hamiltonian, and has the
same angular momentum as the Moore-Read state, must
be equal to the Moore-Read state (2.1) itself (up to a
constant). This follows from known spectral properties of
this Hamiltonian?!46. We will thus be able to establish,
without referring to any explicit first-quantized polyno-
mial construction, that the second-quantized expression,
which will constitute the main result of this work below,
is the Moore-Read state.

It may be instructive, however, to understand why ful-
fillment of the stronger equation (2.15) by the Moore-
Read state is not coincidental, but indeed a zero mode
satisfying both Eq. (2.10) (or any of its equivalents) and
Eq. (2.13) also satisfies Eq. (2.15). This may be done as
follows. One may convince oneself that any three-particle
state generated from the vacuum |0) via (Q?}bd’g)T |0},
with Q of degree L, lies in the subspace of relative an-
gular momentum less than or equal to L. (Conversely, if
a three-particle state of given total angular momentum
J has relative angular momentum L, it can be written
in this way by a polynomial of degree L.) Hence, for
L = 3M — 2 and at given J these three-particles states
span the subspace spanned by the states associated with
the Q; defined after Eq. (2.12) and (all) additional states
of relative angular momentum less than 3M —2. However,
it is well known that zero modes of H*® in Eq. (2.3)
are automatically annihilated by three-particle projec-
tion operators onto states with relative angular momen-
tum less than 3M — 3. It is for this reason that such
three-particle projection operators are usually excluded

(2.15)



from Eq. (2.2). Hence, in the presence of the two-body
constraint (2.10), the three-body constraint (2.15) be-
comes truly equivalent to that of (2.13).

B. Recursive formula for the fermionic (bosonic)
Pfaffian state

With its essential defining properties now in place, we
postulate the following second-quantized recursive for-
mula for the Moore-Read “Pfaffian” state, whose first-
quantized wave function is Eq. (2.1):

) 1 M1\ MNEM-1
Pf = 1) k!
Plvsa) =35 2 (M PIRG
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for even nonnegative particle number N, where the
particle-number-conserving operator S; is defined in
Eq. (2.17) below. The beginning of the recursion is de-
fined by |Pfy) = |0). As we comment below, the recur-
sion (2.16a) can be viewed as a purely second-quantized
version of a “mixed” first/second-quantized presentation
of the Pfaffian state that has already appeared in the
original work by Moore and Read!'®. While Eq. (2.16a)
can be derived directly from the Moore-Read wave func-
tion (2.1), we will emphasize here that one does not need
to make contact with this first-quantized wave function,
nor any other presentation given originally by Moore
and Read, in order to show directly that (2.16a) de-
fines the densest zero mode of a frustration-free parent
Hamiltonian. Our approach is thus intrinsically second-
quantized.

In addition, the recursion (2.16a) generalizes a similar
second-quantized recursion for the Laughlin state?® that,
in turn, can be seen to be a (purely) second-quantized
rendition of Read’s presentation® of the Laughlin state
as “Bose condensate” of certain (non-local) “order pa-
rameter” operators that are off-diagonal in particle num-
ber. An important distinction between Eq. (2.16a) for
the Moore-Read state and the earlier recursions for the
Laughlin state is that we are increasing particle number
by two, reflecting the paired nature of the state. How-
ever, the Moore-Read state with odd particle number can
also be accessed in this framework, simply via removal of
one particle from |Pfy) with even N. We will comment
in detail on particle removal further below. Wherever
desired, we will notationally condense Eq. (2.16a) to

IPfyyo) = Ry [Plx) (2.16b)

where Ry denotes the operator on the right hand side of
Eq. (2.16a).

To prove Eq. (2.16), we will utilize the strategy set up
in the preceding section. That is, we will establish the
state |Pfy) as defined in Eq. (2.16a) to be a zero mode

of the parent Hamiltonian (2.2), which uniquely defines
the state given that it has the proper total angular mo-
mentum. This serves the important additional goal of
exposing the inner workings that render complex (long-
ranged) second-quantized positive semi-definite Hamilto-
nians — like the one in question — frustration free. It is
also for this reason that we proceed without making any
essential use of the first-quantized wave function (2.1).
We will, however, comment on how Eq. (2.16a) could be
derived in the first-quantized manner in Appendix A.

To proceed, we make contact with operator formalism
first established in Ref. 25, 47, and 48, and then general-
ized to composite fermions in multiple Landau levels in
Ref. 26. The S operator?>26 in Eq. (2.16a), which orig-
inates from [];_; (2 — zj)M in the first quantization, is
defined as

Se=(-1) >

ni+na+--+ny=~
Se=0 for £<0,

€ni€ny " Cn, for £20,
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where e,,, in turn, is the particle-number-conserving op-
erator that, in first quantization, multiplies the wave
function with the elementary symmetric polynomial
2—n/2 Zl<i1<i2_”<in<N ZiyZiy %, Second-quantized
representations of these operators and other generators
of symmetric polynomials have been discussed in detail
in Ref. 48. We have
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This then allows for recursive generation of the
second-quantized Moore-Read state via Eq. (2.16) and
Eq. (2.17).

ey is related to power-sum symmetric polynomial op-
erator

—+oo
r+d)!

P, = ( T' ) el ger (2.19)
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for d > 0 by Newton-Girard relation?6:48,
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The action of P; on an N-particle state is that of multi-
plying its first-quantized wave function with the power-
sum symmetric polynomial Py = 2-42 YN d.

Py is a “zero mode generator” in the sense that when
acting on a zero mode |,er0), as defined by Egs. (2.10)

and (2.15), it gives a new zero mode. The reason is
that QSde’P)Pd |thzer0) = 0 since | Szbd’P),Pd] is of the



form QSQES’P/), with P’ a polynomial of degree no larger

than that of P. Thus, [Q(Jde’P),Pd] vanishes on zero
modes, by Eq. (2.10). For analogous reasons, we also

have Q53bd’Q)Pd|1/Jzero> = 0. By Newton-Girard for-
mula, every e, can be expressed in terms of all P; with
d =1,2,...n. Therefore, e, and S, are also zero mode
generators.

Another important property of Sy is that different S,
commute with each other. The commutative property
of Sy, can likewise be established by first establishing
the commutativity of the P; amongst themselves, and
then extending this property to the e, via Newton-Girard
relations.

A centerpiece of this work and the machinery to follow
is the description of the effect of the removal of a single
particle in state r from the state |Pfyy2) in terms of the
addition of a particle to the state |Pfy), plus operators
generating a “correlation hole” just big enough such that
the net effect is the local charge depletion described by
Cr
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This equation can actually be derived as a pure conse-
quence of Eq. (2.16a), that is, without resorting to the
first-quantized wave function of the Moore-Read state.
We show this in the supplemental material. The deriva-
tion is lengthy, however. To the less patient reader, we
thus offer an alternative proof of Eq. (2.21) (and by ex-
tension Eq. (2.16a)) that uses the first-quantized wave
function. This proof is given in Appendix A.

We shall now proceed to show that the recursion
Eq. (2.16a) defines the Moore-Read state at filling 1/M
by showing that it is a zero mode of the appropriate par-
ent Hamiltonian at the proper angular momentum. We
begin with the two-body terms.

(N +2)Q7" ) [Py o)

M—1 M—1 MN+M-1

2bd, P -
P (M) Y
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C. Proof that recursively defined Pfaffian state is a
zero mode of the two-body Hamiltonian (2.3)

We prove by the method of mathematical induction
that the state as recursively defined in Eq. (2.16a) is a

zero mode of all Qf,Zbd’P) with degree of P less than M —1,
thus a zero mode of the two-body Hamiltonian (2.3).

Proof. We begin the induction by proving the claimed
property directly for |Pfy) = |0), |Pfy) and |Pfs). By
using the recursive formula Eq. (2.16a), the second-
quantized form of |Pfy) is

1]\/1—1 M 1 M—1
Pf) == = Vrlkletel
P =g 3 >( Z )Z_ Mk el
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In the above calculation of |Pfa), we have used the fact
that S operator is the sum of products of e operators,
which have annihilation operators on the right, thus
Sn—1-1—rSi—f |0) vanishes unless M —1 —[]—r =0 and
I —k = 0. The second-quantized form of |Pfy) is given in
Eq. (B1).

|Pfy), |Pfy) and |Pfy) are annihilated by all QSde’P)
with degree of P less than M — 1, since |Pfp) is vacuum
and

Q(2bd,7>) IPh) =(—1)M=16, 01 Ail(_l)l <M — 1)
! B 1=0 ¢
x P, M —1-1)=0,

due to Eq. (B4). The proof that |Pfy) is annihilated by
all QFJZbd’P) is given in Appendix B.
Now we establish the induction step, assuming that
QPP Pty =0 (2.23)

holds for all J, with some N > 4. Then we have
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where we have used Eq. (2.16a) in the first step,
Ciy Ciy C:[c;rc = 57“,1'1 Ciy CZ + (_ 1)M_157‘,i2 Ciy CL + 6]6’1'2 Ciy CI +
(_1)M_16/€,i1 Ciy CI _6T7i1 67€7i2 +(_ 1)1\/16T,i2 5k7i1 +CIC£C¢2 Ciy
in the second step, and Eq. (2.21) in the last step so as to
re-assemble the first expression after the second step into
the first expression on the last line. We have also used
the identity QSzbdﬂ))SMN+M_1_Z_,,.SMN+1_]€ |PfN> =0
since Sy N+v—1—1—r and SpyrN4i— are zero mode gener-
ators, and |Pfy) is assumed to be a zero mode.
Now we need to simplify the last term

M-1
.. M -1

> P o (M)
0<i1,in<J 1=0
i1+io=J
X SMN+M-1-1—isSMN+i1—i; |PIN). (2.25)

Under change of variables, i1 — 1 =i} and ix + 1 = i},
the above term becomes

M-—1
YNEY G B DINEURR )
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i) Fig=J
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Now we shall use an important identity,
Se|Pfy) =0 for £ > MN. (2.27)
The reason for its validity is the following: the state

|Pfy) has N particles, while nonzero Sy is defined as
(1) > gt tmpg—t €1 €ny ** " €nyy, 0 Which ey, will
move the orbitals of n; particles for i =1,2,--- , M. For
¢ > MN, there must be an n; larger than the particle
number N, thus S, annihilates [Pfy) in this case.

As aresult of the above identity, the lower limit of both
) and 75 can be changed to 0, which does not affect the
summation. Therefore, the upper limit of both ¢} and
can be changed to J on account of i} +i5 = J. After the

J

(N +2)Q%"9) |Pry )

(

change of limits of summations, Eq. (2.25) can be finally
simplified to

2.

0<i),in<J
iy tis=J
X SMN+M-1-iySMN—i |Pfn)

[Mz_:l(—nl (Ml_ 1>P(i’1 + 1, il — l)]

=0
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which vanishes since the summation in the square bracket
is exactly 0 as a result of Eq. (B4), considering that the
degree of P is less than M — 1.

After this lengthy simplification, we obtain (N +

2) ?bd’P) [Pinio) = 4QE,2bd’P) |Pfyi2). Therefore, if

|[Pfy) is a zero mode of all Q(szd,P) for some N > 4,

so will be |[Pfyi2). By mathematical induction, the
fermionic (bosonic) Pfaffian state, as recursively defined
in Eq. (2.16a), is thus a zero mode of the two-body Hamil-
tonian (2.3). [ ]

D. Proof that recursively defined Pfaffian state is a
zero mode of the three-body Hamiltonian (2.11)

Next, we prove by the method of mathematical induc-
tion that the fermionic (bosonic) Pfaffian state, as recur-
sively defined in Eq. (2.16a), is a zero mode of all ngbd’g)
with degree of Q less than 3M — 1, thus a zero mode of
the three-body Hamiltonian (2.11).

Proof. To begin the induction, we prove the claimed
property directly for |Pfy) = |0), |Pf2), |Pfs) and |Pfs).

It is easy to see that |Pfy) and |Pfy) are annihilated
by all QSde’Q), since in these cases the particle numbers
are less than three. We prove that |Pfy) and |Pfs) are
annihilated by all Qggbd’g) in Appendix C.

Now prove the induction step and assume that

Qggbd’g) |[Pfy) =0 for all J and some N > 6. (2.29)

Similar to Eq. (2.24), we obtain
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where we have used Eq. (2.16a) in the first step,
CiyCiy cilci = (57«,1’1 CizCin + (—I)M‘lé,.,iz Ci;Ciy +5r,i36i2 ci, +
(—1)M~Leley,cipei, twice and cle,ci, = ciyci el —
8rirCiy + (=1)M6, ;. c;, in the second step, and again
Eq. (2.21) in the third step in order to condense terms
into the first term on the last line. We have also used
the identity Qf]3bd’g SMN+M—1—Z—T‘SMN+Z—]C |PfN> =0
since SyyNym—1—i—r and Sy Nk are zero mode gener-
ators, and |Pfy) is assumed to be a zero mode.

Now we need to simplify the last term

= —1
Z Q kla kQa Z ( >
0<ky,k2,i<J ' =0
ki+koti=J
X SMN+M—1—1—k SMN+1—ks [PIN) - (2.31)
By using the commutator
M il
CZ, Sl Z ( > ( — k‘) Sl kCi—k, (232)
=1

this term can be rewritten as
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(2.33)

Under change of variables, ki +my+1 = ki, ka+me—1 =

Z Vr!k!CiC]LSMN+M—1—l—rSMN+l—k |Pfn)
k=0

MN+M-1

S VR
k=0

LS N M 11k SMN 1] [PEN)

-1
)SMN+M1lk15MN+lk2 [Pfn)

3bd Q)
SMN-',-M—l—l—rSMN-',-l—k |Pfn)

-1
( )SMN+M1lk15'MN+lk2 |Pfy) . (2.30)
[
kb and ¢ — mq — mgy = 4/, the above term will be
M
5 oo (1) (1)
mi mo
ml,m2:0
M—1
M—-1
1
x ) (~1) ( z ) >
1=0 ma -+, < J+my+1
mzflgklngerz*l
—m1—ma<i’'<J—m1—mo
k{+Ey+i'=J
x Q(ky —mq — 1,k —mao + 1,7 + mq +ma)
(&%
X SMNJerlfk{SMkaéﬁ |Pfn) . (2.34)
Similar to Eq. (2.27), we shall use a constraint
Seci |Pfy) =0 for £ > M(N —1). (2.35)

As a result of this constraint, the lower limit of k] can
be raised to 2M — 1, the lower limit of &} can be raised to
M, the upper limit of ¢’ can be lowered to J — (3M — 1)
on account of k{ + k4 + i = J. Also, observe that ¢’
should be nonnegative; therefore, the upper limit of both
ki and k% can be changed to J.

After these changes of limits of summations, Eq. (2.31)

can be finally simplified to
M
Z Z (_1)m1+m2 M M
mi mao

2M -1k <J my,m2=0

M<kL<T
0<i'<J—(BM—1)
ki +ky+i'=J
M-1
M—-1
X (1)l< >
l
1=0
X Q(k‘ll —mq —l,ki/z — M2 —i—l,i’—|—m1 +m2)




Cit
X SMN+M—-1-k, SMN—k§7 |Pfn) - (2.36)

As aresult of Eq. (B4), for the summations in the square
bracket not to vanish, there should exist at least one term
in Q in which the power of [, m; and ms should be greater
than or equal to M —1, M and M, respectively. However,
the degree of Q is less than 3M — 1. Therefore, the term
in the square bracket vanishes, rendering Eq. (2.31) zero.

After this lengthy simplification, we obtain (N +

Z)Qflgbd’g) |Pfni2) = GQSde’Q) |[Pfy12). Therefore, if

|Pfy) is a zero mode of all Q(Jsbd’g) for some N > 6,
so will be |Pfyy2). By mathematical induction, the
fermionic (bosonic) Pfaffian state, as recursively defined
in Eq. (2.16a), is thus a zero mode of the three-body
Hamiltonian (2.11). [ |

E. Root state and filling factor of the fermionic
(bosonic) Pfaffian state |Pfy)

The Moore-Read FQH state belongs to a large class of
trial wave functions that follow a “root state + squeez-
ing” paradigm. This holds true for all Jack polynomial
FQH trial states*®®3 and their fermionic counterparts, of
which Moore-Read states are examples, and has recently
been generalized to a considerable number of mixed Lan-
dau level FQH states.?6:>457 Consider those occupation
number eigenstates [{n;}) in the angular momentum LLL
eigenbasis that appear with non-zero coeflicient in an
N-particle state |[¢)). |[{n;}) is a Slater determinant for
fermions and a symmetrized monomial (permanent) for
bosons, but we will prefer the neutral term configuration
to refer to both cases. The case of interest will be where
|1} is a zero mode of the parent Hamiltonian. Then we
write

0) =)o T D (2.37)

{niH#|¥) o0t

Ciny [{ni})

where |¢) . is comprised of those configurations in
the expansion that cannot be obtained from any other
configuration, appearing with nonzero coefficient in |¢),
through so-called inward-squeezing processes®®. These
inward-squeezing processes are generated by the opera-
tions

c}cjci_mcj_wn (2.38)
where i < j and m > 0. Usually, |¢), .. is proportional
to a single configuration such that all the other config-
urations in the expansion in Eq. (2.37) can be obtained
from it via inward squeezing. However, by our definition,
[1) 00t Can also be a linear combination of such config-
urations, as it may happen that the zero mode |¢) is a
linear combination of simpler zero modes. We refer the
reader to the referenced literature?6-4749-57 for details.
The root states satisfy Pauli-like principles. In the
case of a single-component state in a single Landau level,

these are known as generalized Pauli principles25:49:59,

For example, there is no more than one particle in any
three consecutive orbitals in root state of v = 1/3 Laugh-
lin state, which corresponds to the familiar 100100100. . .
configuration. The same generalized Pauli principle does,
however, apply to other zero modes (not necessarily of the
highest density) of the state’s parent Hamiltonian. For
multi-component and/or multi-Landau-level states, our
definition of a root state will generally lead to more than
one configuration entering [¢), .., and especially, will
lead to root level entanglement. In this case, we speak of
“entangled” Pauli principles®®. The unprojected v = 2/5
Jain state may serve as an example of this, where this
entangled Pauli principle requires next-nearest neighbors
to be singlets of an SU(2)-algebra related to the Landau
level degrees of freedom, in addition to ruling out double
occupancies (with the same angular momentum but dif-
ferent Landau level indices)®. Effectively, this leads to
a situation where there can be no more than two parti-
cles in any five consecutive orbitals, in the root state. By
contrast, basis states inward-squeezed from root states
do not satisfy these Pauli-like principles.

As root states contain much information about the
universal properties of the underlying state, including
statistics®®, their uses are manifold. In an obvious way,
they encode the filling fractions of the underlying state,
commonly defined as the ratio of the particle number to
the highest angular momentum of any orbital occupied
in the state (in the thermodynamic limit!).

In this subsection, we will now prove that |Pfy) has
root state

Tt Toor T i
CoCm-1C2m M1 SN—2)MEN-1)M—1 0)

(2.39)
for even particle number N. This will re-affirm that it has
the correct highest occupied orbital (angular momentum
(N —1)M —1), rendering it the unique densest zero mode
of its parent Hamiltonian, thus, identical (up to normal-
ization) to the Moore-Read state at the respective filling
factor. This will also serve to close one loop-hole in the
reasoning so far. As for as shown above, it might be pos-
sible that the state |Pfy) as defined in Eq. (2.16a) van-
ishes, at least for some sufficiently high particle number
N. We can rule this out below, as we show in partic-
ular the state |Pfy) has non-zero overlap with the root
state (2.39).

Again, we prove this by mathematical induction. For
N = 2, the above statement is true, as seen from
Eq. (2.22). Now we assume

IPEN) o0t O C(TJC;r\d—1C£MC:T3A1—1 e CIN—Q)MCJ(rN—l)M—l 0)

(2.40)
for N > 2 and its coefficient C'_ ., in the expansion of
|[Pfn) in terms of occupation number basis states is non-
zZero.

We plug |Pfy),.., into Eq. (2.16) to obtain
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where we have used Eq. (B2) to move S to the right of
ct. We have also used the fact that both indices of S
operators, MN +M —1—1—1m; —Zf\ilpi and MN 41—
o — Zfil ¢; have to be 0, following the same logic used
in the derivation of Eq. (2.22).

The only solutions for
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X CN 1) M—1tan+py |0) (2.41)
in the above expression to be proportional to

Tt T T T

[PINt2) 00t X CoCRr—1ConrCa0r—1 - CNME(N+1)M-1 10)
are parameterized by a choice of j = 0,1,2,...,N/2,
where q1 = p1 = g2 = p2 = -+ = qzj = p2; = 0, and
Q2j41 = DP2j+1 = Q2j+2 = P2j4+2 = *+- = qN = pN = M,

and furthermore a choice of | = 0, M — 1. One checks
that all these solutions enter with the same sign, and
thus, |Pfyy2),..; Will be generated from |Pfy) .. via
Eq. (2.16). On the other hand, by acting with R 5 on any
|{n;}) that can be obtained from |Pfy) ., via inward
squeezing, similar considerations show that [Pfyy2) ..
cannot be generated, and the only configurations that can
be generated are obtainable from |Pfy2), ., via inward
squeezing. Together, these results show that |Pfy,2)

root,

(MN+M—1—1—ZJ,V

N
Y _ Y
z:1pz)'(MN+l E i qi)!

ol
(N=2)M+gqN-—1+pN—1

(

is the root state of |Pfyy2) not only in name, but ac-
cording to the definition given at the beginning of this
section.

In summary, the fermionic (bosonic) Pfaffian state
|[Pfn), as recursively defined in Eq. (2.16) for even parti-
cle number N, has a root state proportional to

Tr

COCM_lchch_l ... (2.42)

T T
-2y mC(Nv—1ym—110) 5

thus possessing the filling factor 1/M.

F. Off-diagonal long-range order operator of
Pfaffian state in second quantization

In this subsection, we establish the connection between
the foregoing results and existence of off-diagonal long-
range order (ODLRO) in a non-local order parameter
for the Moore-Read state. Such a connection is natu-
ral, as the second-quantized recursion (2.16) we use to
define the Moore-Read state in this paper is a general-
ization of a similar recursion for the Laughlin state that,
in its original form?’, emerged as the interpretation of
the Laughlin state as a condensate of a non-local order
parameter. This is quite manifest also in Eq. (2.16), and
can be further emphasized by its trivial formal “integra-



tion” via

IPfy) = (R)N/20) (2.43)

for N even, where

R= Y RnPy, (2.44)

Neven

and Py is the projection onto N-particle subspace of the
Fock space. In this form, one may see this equation to be
equivalent to Eq. (5.8) by Moore and Read!®, with the
important difference that the latter is presented in mixed
first /second-quantized notations.

Fully second-quantized forms similar to ours have been
given before for the Laughlin state®, concurrent with
second-quantized expressions for the associated non-local
order parameter*®. Both have been successfully gener-
alized to composite fermion states?®, which became in-
strumental in constructing parent Hamiltonians for these
states'4. To complete our second-quantized picture for
the Moore-Read state, it is thus prudent to construct
the non-local order parameter directly and demonstrate
its display of ODLRO. Similar to previously studied ex-
amples, the key ingredient is the action of an electron de-
struction operator on the incompressible ground state, as
facilitated in the present case by Eq. (2.21). While Refs.
26 and 48 demonstrated the ODLRO in the orbital basis,
a formulation in real space is equally possible. We will
aim for the demonstration of real-space ODLRO here,
and to this end, utilize some notation developed in Ref.
28.

We thus introduce the field operator annihilating a par-
ticle (we again treat fermion and boson on equal footing)
at z = x + iy, projected onto the lowest Landau level,
via its mode expansion A(z) = 3 5 #,(2)c;, where the
single-particle wave function on the disk is

2
ERE

with the normalization factor N, = v2727r!. By in-
troducing pseudo-fermionic (bosonic) operators®® ¢, :=
¢,/N,. and & := N,c]. for compactness, Eq. (2.21) can be
recast in the form

e—l2?/a M1
- 47 Z(i <

=0

bp(z) = N712" (2.45)

A(z) [Pfy2)

Ny 2o
k>0 V2rtk
X [SmN+M—1—t—rSunti—k + (—1)M 1

X SMN+M-1-1—kSMN+i—r] |PEN) -

(2.46)
This may be simplified by introducing the
second-quantized N-body quasihole operator
Un(z) = Z;\;O(—Z)N_d?%%l, which creates a

Laughlin-quasihole at z. Its M th power is given
by [7]]\‘,/[(2) = (- 1)MNZT>OZT2 “Sun_r (see sup-
plementary notes of Ref. 28). Note that Read’s order
parameter for the 1/M-Laughlin state is precisely

10

Af (z)ﬁf\‘[” (2), albeit with the role of fermions and bosons
reversed compared to the present case. Using the
commutativity of the S-operators among themselves,
and the fact that

'm |[PIn) =0 form > MN, (2.47)
we now obtain
A(2) |Pfny2) = Furn(2) [PEN) (2.48)
where
( l)MN —|z|2/4a M1 M—1
a1ty S ()
2y IMN+M—1 [

Mllz

k>0

SMN WOM(2).  (2.49)

In line with Read’s original reasoning for the Laughlin
state,? we can argue that

(Pin| Fhy n (2)A(2)AT () Farn () [PE)
= (Pina| p(2)p(2") [PEx2)
—(p)?, (2.50)

where we use the Landau-level projected fields A(z) to
define local densities p(z) = Af(2)A(2), such that N =
J d*z p(z) is the Landau-level projected particle number
operator. We also assumed the exponential decay of cor-
relations as |z — 2’| = oo, such that the expression ap-
proaches the square of the particle density (p) of the ho-
mogeneous fluid, which is determined by the filling factor
v.

We thus infer the existence of ODLRO of the v = 1/M
Moore-Read Pfaffian state in the non-local operator given
by

O(z) = AT (2)Fum,n(2).

It is worth noting that, in spite of deliberately writ-
ing (2.51) in a form similar to the Laughlin-state order

parameter Af(2)U M (2), there are important differences.
The most crucial difference lies in the fact that Eq. (2.51)
changes particle number by 2, as a change by 1 is also
“hidden” in the field operator Fas n(z). The fact that
the order parameter changes the particle number by 2 is,
of course, a direct signature of the paired nature of the
Moore-Read state. We emphasize once more that the
presentation of the Moore-Read state in the form (2.43)
is by itself not sufficient to demonstrate ODLRO. For
this, we crucially needed Eq. (2.21).

Given the above, following again  Read’s
construction®®, we could alternatively use Eq. (2.43)
(together with Eq. (2.21)) to construct a condensate
of a well-defined phase conjugate to particle number,
for which the order parameter (2.51) itself assumes
an expectation value. The only difference with the
Laughlin-state case would be that such a condensate
would have well-defined particle number parity, i.e., it
would be a coherent superposition of states (2.43) with
even N only. We leave the (simple) details to the reader.

(2.51)



G. Higher angular momentum paired Pfaffian
states

We generalize the results of Section II to Pfaffian state
of the form

1
i)

\II’I(}~Pf{ } [T G-z (252

1<i<j<N

where odd m < M. Pf{ =

posite fermions beyond p-wave pairing, where in partic-
ular the case m = 3 has recently been studied?3.

For this state, the recursion relation Eq. (2.16) gener-
alizes straightforwardly via the modification Ry — R},
where

— )m} signifies paired com-

_ M—m MN+M-—-m
Z ( ) Z \/r!k;!cch

= r,k=0

X SMN+M—-m—1—rSMN+i—k
(2.53a)

such that

[PIR2) = RY [PIY) (2.53b)
where we also introduced a ket |Pfy;) associated with the
wave function (2.52).

For the state (2.52), we do no know an appropriate par-
ent Hamiltonian at this point, so the proof of Eq. (2.53)
necessarily proceeds by making contact with the first-
quantized form given in Eq. (2.52). This is done in Ap-
pendix A, where we also specify pertinent normalization
conventions. Equally importantly, one can generalize the

effect of particle removal, Eq. (2.21), as follows

o1 Mo M — o\ MNEM=m
¢ [Py o) = =5 (— 1)l< I ) Z \/ECL
=0 k=0

X [SMN+M—77L—l—T‘SMN+l—k + (_I)Nlim

X SMN+M-m-1-kSMN+i—r] [PIN) .
(2.54)

A derivation of Eq. (2.54) from the first-quantized
Eq. (2.52) is again given in Appendix A, or, from the
second-quantized Eq. (2.53), in the Supplemental Mate-
rial. The benefit of Eq. (2.54) is, among other things,
a straightforward generalization of the derivation of
ODLRO given in the preceding section to the case of
Eq. (2.52). This leads to ODLRO in the following non-
local operator,

O(z) = AT(z)]-"M,mVN(z), (2.55)
where
_1)MN —|z[*/4 M=m M —
Fnt,m,n(2) ) e Tl (_1)1( m>
[ A/ IMN+M—m = )
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C
ZM—m— ZZ k“SMN RUM(2). (2.56)
k>0

We leave other possible uses of Eq. (2.54), such as
in the construction of possible parent Hamiltonians for
Eq. (2.52), to future work.

IIT. RECURSIVE FORMULA FOR FERMIONIC
v=1/2 ANTI- AND PH-PFAFFIAN STATES

At Landau level filling factor v = 1/2, several inequiv-
alent topological phases featuring Majorana fermions are
possible. Among possible competitors, the anti-Pfaffian
state has been proposed as the particle-hole conjugate
of v = 1/2 Pfaffian state®®5%. Generally, a particle-
hole conjugate of a state can be obtained by replace-
ment ¢ — hl, ¢ — h, and |0), — [[;™ bmax () hl |0),,, where
Imax(IN) is the highest occupied orbltal in the v = 1/2
Pfaffian state, Imax(N) = 2N — 3 for N even. As long as
we restrict ourselves to the Fock space associated with
the orbitals 0,...,Inax(IV), these relations merely facil-
itate a re-interpretation of the Pfaffian state. A new
state is obtained when the “holes” created by the op-
erators h' are again re-interpreted as the particles (i.e.,
once more replaced by c¢f’s). We leave this understood.
On the half-infinite lattice, however, the replacement

10), = 1,7 bmax(N) hJr |0),, does change the vacuum. It re-
places the partlcle vacuum” for orbitals with angular mo-
menta | > [max(N) with the “hole vacuum”, i.e., a v =1
integer quantum Hall state. The result is that once the
hi-operators are re-interpreted as particles, we obtain the
(N —2)-particle anti-Pfaffian state |aPfy_2) from the N-
particle v = 1/2 Pfaffian state |Pfy), where |aPfy_2) has
the same highest occupied orbital I (N) = 2N — 3, and
has an edge with vacuum. The following example illus-
trates this: The four—particle Pfaffian state on the disk

is (chelehel — vaciebehel + vi0el ehelel) |0),. After re-
placement ¢ — ht, ¢ — h, and |0), — H?:o hl [0},
we obtain two-particle anti-Pfaffian state on the disk
(hihd — V2 hInk + 10 RSRL) |0), . We note that [ma(N)
agrees with the number of flux quanta on the sphere the
respective state would require to represent a rotationally
invariant state.

Using the above, by particle-hole conjugating the
second-quantized recursive formula Eq. (2.16a) from
(N + 2)-particle fermionic v = 1/2 Pfaffian state to
(N + 4)-particle state with M = 2, we can arrive at
the second-quantized recursive formula for the fermionic
v = 1/2 anti-Pfafian (aPf) state,

IN+5
2
|aPfnyo) = N1 Z Vrlklhyhy Ronts—r Rona—k
k=0

X h;N+2h£N+3h£N+4h£N+5 laPfy) , (3.1)

for even nonnegative N. The beginning of recursion is
|aPfy) = |0),,, the vacuum for holes. Four hole creation



operators appear in the recursive formula, since each time
we increase the particle number by two, the “edge” be-
tween vacuum and v = 1 phase in the vacuum replace-
ment [0), — Hémzag(N) h;r |0),, shifts by four orbitals. The
R operator in the above recursive formula for the anti-
Pfaffian state is obtained from S operator in Eq. (2.17)
with M = 2 by particle-hole conjugation. Explicitly,

Ry=(=1)" Y farfn, for £>0,

ny +7l2 =/

Ry=0 for /<0O.

(3.2)

Here, f, is the particle-hole conjugate of e,, in Eq. (2.18),

o0
1
fo== Y Vbt lhaVie + Thyg -
" =0
X /1y + 1y, 41h] b Al for n >0,

fO =1,

fn =0 forn <O0. (3.3)

Note that different R, still commute with each other. For
¢ > 0, S increases the total angular momentum of an
electronic state by ¢, whereas its particle-hole conjugate
R, decreases the total angular momentum, as measured
by occupied hf-states, by the same amount.

The parent Hamiltonian for N-particle anti-Pfaffian
state is the particle-hole conjugate of the three-body par-
ent Hamiltonian for v = 1/2 Pfaffian state in Eq. (2.11)
with M = 2,

Hypry = > US yUsn (3.4)
J
with
V6(J—3)! . SN .
UJ,N = Z l(,i'_'),'(ll - 12)(11 - 13)
i1+i2+i3:Je[3,6N]32 4 11:12:13!
x (iz —i3)h} AL hY . (3.5)
Note that, however, the above Hamiltonian has

N-particle anti-Pfaffian state as the unique incom-
pressible zero mode only if orbital indices in the
above sum are restricted by the additional constraint
0 < iy,192,i3 < 2N + 1, or if the edge with (h-)vacuum is
instead replaced with an edge with a v = 1 state. This is
the reason why the edge of the anti-Pfaffian with vacuum
is more complicated than that of the original Moore-Read
state,59:60

We remark that although the case M = 2 is of greatest
interest, one may generalize the above straightforwardly
to obtain recursions for the particle-hole conjugates of
v = 1/M Moore-Read states, although these would then
not live at the same filling factor in the thermodynamic
limit, but instead would have filling factor 1 — 1/M.

Note moreover that by straightforwardly taking the
particle-hole conjugate of Eq. (2.51), we may define non-
local order parameters for these particle-hole conjugates
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of Moore-Read states, as arguments leading to Eq. (2.50)
will, mutatis mutandis, hold. In particular, by particle-
hole conjugation of Eq. (2.21), one obtains a similar equa-
tion for particle addition into the particle-hole conjugate
of Moore-Read states.

While so far, we have mostly focused on states at even
particle number IV, we can easily obtain the incompress-
ible Moore-Read state at odd particle number N via

[PIN) = Clop(nt1) [PEN1) - (3.6)
Note that for general M, lnx(N) = M(N —1) — 1
for N even, Imax(N) = M(N — 1) for N odd. (See
Eq. (2.42)) For odd N, the particle-hole conjugate of
|Pfn) has lmax(N) +1 — N = MN — M — N + 1 parti-
cles within the orbitals 0,1,2,...,lmax(N), which is also
even. (Note that we are dealing with fermionic states
in this section, so M is even) It is thus more natural to
define the v = 1/2 anti-Pfaffian (M = 2) for odd N in
analogy with Eq. (3.6) via

|aPEN) = iy (N43) [APEN11) (3.7)
since (N + 1)-particle v = 1/2 anti-Pfaffian state is ob-
tained from the (N + 3)-particle v = 1/2 Pfaffian state
by particle-hole conjugation.

Lastly, the PH-Pfaffian phase recently attracted much
interest,5!1763 which is the universality class of a particle-
hole symmetric state at v = 1/2. Inspired by the latter
and with the help of the above developments, we may eas-
ily construct a particle-hole symmetric state defined by
straightforward modification and amalgamation of the re-
cursions for the v = 1/2 Pfaffian and anti-Pfaffian states,

2N+3
IPHy42) = > Vrlkl(cle] Sanys—rSan—i + crck
r,k=0

X R2N+37rR2N7lcC;NC;N-t,-lC;N-&-QC;N-&-S)
x |PHy) | (3.8)

for even nonnegative N. The beginning of recursion is
given by |PHp) = |0), the vacuum for electrons. The
state |PHy) so constructed is manifestly particle-hole
symmetric on the orbital lattices given by the orbitals
with indices 0, ...,2N +3. In particular, |PHy2) would
thus suitably fit onto a sphere with the correct number
of flux quanta 2(N +2) — 1. In the above, the R operator
is still defined as in Eq. (3.2), but with all h-operators
in f, replaced by c-operators, as they must be creating
the same particles as those in the S-operator part of the
recursion.

We defer further analysis of the state defined
in Eq. (3.8) and its relation to the first-quantized
particle-hole symmetric Pfaffian state defined in the
literature®2:64-66 or possibly a gapless particle-hole sym-
metric state at half-filling®!, to future work.



IV. DISCUSSION AND OUTLOOK

In this paper, we developed a second-quantized pre-
sentation for the Moore-Read state at filling factor v =
1/M. In practice, this presentation is realized as a recur-
sive definition of Moore-Read states in second quantiza-
tion. Such recursions are of interest in connection with
the recent body of literature about the construction of
frustration-free parent Hamiltonians for FQH states in
second quantization, which can, in principle, lead to new
Hamiltonians that are difficult to construct following the
established first-quantized principles. The prime exam-
ple for such a development is given by the recently con-
structed Hamiltonians for the (positive) Jain sequence!?.
Two types of presentations for fractional quantum Hall
trial wave functions can be distinguished that are both far
removed from traditional first-quantized constructions
and lend themselves to the scheme for the discussion of
parent Hamiltonians that is the subject of this paper.
One is the MPS-presentation of fractional quantum Hall
trial wave functions, which also exists for Moore-Read
states, but not, to our knowledge, for composite fermion
states or the anti-Pfaffian state. The other consists in
recursion relations that are closely related to an under-
standing of the state in question as a condensate of a
non-local order parameter. The latter kind of presen-
tation is what we utilized and further developed in this
work for the Moore-Read states. A closely related mixed
first /second-quantized presentation of this kind has been
known for some time'®. While we give a fully second-
quantized version of this presentation, this, by itself, was
not sufficient for the second-quantized discussion of par-
ent Hamiltonians we have given in this work. Instead,
a key ingredient developed in this paper is the second-
quantized description of particle removal from this state
in the form of Eq. (2.21). On the one hand, this allows
us to develop a fully second-quantized understanding of
the parent Hamiltonian of Moore-Read states. As the
example of the composite fermion states shows, such an
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understanding furnishes a promising foundation on which
to base the construction of new parent Hamiltonians that
are not based on simple clustering properties manifest in
first quantization. Moreover, Eq. (2.21) also makes pos-
sible our derivation of off-diagonal long-range order in
these states, in terms of non-local order parameters. We
have also shown how both the second-quantized presenta-
tion as well as the definition of the non-local order param-
eter extend to particle-hole conjugates of Moore-Read
states. Some of our findings are complementary to similar
developments utilizing MPS presentation of Moore-Read
states®”. We are hopeful that these findings will con-
tinue to facilitate developments of trial fractional quan-
tum Hall states and accompanying parent Hamiltoni-
ans that are not conveniently available in the traditional
first-quantized approach. Moreover, the distinction be-
tween various similar non-Abelian phases at half-filling
has inspired several proposals in the past, guiding both
physical®® " and numerical experiment3!:62:64-66,71-74
We hope that the formulas we developed here for non-
local order parameters can provide additional tools to
distinguish the underlying states at least in numerical
experiments.

Note added: While preparing this manuscript, we be-
came aware of a work in parallel by A. Bochniak and G.
Ortiz,”™ which contains a second-quantized presentation
of the Moore-Read states equivalent to ours, but other-
wise focuses on different aspects of the physics of these
states.
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Appendix A: The derivation of Egs. (2.16a) and (2.21) in first quantization

We can write Moore-Read’s (unnormalized) first-quantized Pfaffian wave function as

1

Zi —

\IJN:/\/NPf(

Z >
7/ 1<i<i<N

(Zi - Zj)Mv

(A1)
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with even (odd) M for fermions (bosons) and even particle number N, and an as yet arbitrary normalization constant
Ny. We will fix the normalization convention below.

Moore-Read’s original Pfaffian state has also been generalized to an f-wave paired state of first-quantized wave
function33

1
Pf [} I G-z (A2)
53 v J ’
(=i ZJ) 1<i<j<N
which inspires us to consider a generalized Pfaffian state
m m 1
v J 1<i<j<N

with an odd positive integer m as the pairing parameter, which must obey 1 < m < M and on which the normalization
N7 may depend.
In all of the above, Pf is the Pfaffian of an antisymmetric matrix with element 1/(z; — 2;)™,

! 1 L
Pf{(zz- —zj)’"} 25 (Y 21 kl;[l ' (Ad)

(20'2k—1 T Rogp)m

The permutation o can be viewed as encoding a way of pairing indices into pairs (oox—1,02). There is then, however,
much overcounting, as both the order within pairs and between pairs does not matter. This is compensated by a
factor WN/W As the order of pairs plays no role, we can, in particular, still generate all pairings if we fix oy = N.
We write such o as ¢ € Sy_1. Thus, adjusting the combinatorial overcounting factor,

1 1 2 1
Pf|:(Zi—Zj>m:| :21\172(1\,_2)! Z (71) kl;[l m

2 oc€ESN_1
bl
(N =1)! 1
=5 An- , A5
sy o= )
where Ay _1 denotes the antisymmetrization in just z1,--- ,2y_1. Thus,
i
1

¥ =Ny H (Zi_zj)MANAHﬁa (AG)

1<i<j<N k1 \F2k—1 T 22k

where we have absorbed all combinatorial factors into a new normalization constant N5

For even M, the Laughlin-Jastrow factor is totally symmetric, we can pull it into the antisymmetrization. For
odd M, the Laughlin-Jastrow factor is totally antisymmetric, and we can change the anti-symmetrization into a
symmetrization after pulling the Laughlin-Jastrow factor inside. We thus define SJ(VM) to be the (anti)symmetrization
operator in z1,--- , zy for (even) odd M. Changing from N to N + 2:

N+2
(M) MT 1
m _ m .
U2 = Niio Sy H (2i = 2) H (> ~ on)™
1<i<j<N+2 k=1 \O2h—1 T <2k
1 (M) M— M M
= Ny Syi v = ava2)™ ™™ T Gavge —20™ [T Geven — 20)
1<i<N 1<i<N

1

:] vz

(M) M
xSy I Gi—2)
1<i<j<N k

(A7)

1 (22k—1 — 22)™

In the above, it does not hurt to insert an additional (anti)symmetrization operator S](VA{)l in front of the last line
as shown, because the products in the first line are already symmetric in the variables z; for ¢ = 1... N, whereas the
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second line depends on only these variables; we were thus able to write S](Vj\i)l = S](\%_lS N )1, and permute the S](vﬂf)l
to the position shown. This gives
m NN+2 M—m M M \m
N2 = TR SYD (2n41 — 2n42) I Gewvez—20™ [ (evir —2)M 0%, (A8)
I<iKN 1IN
Now we need to expand ] (zn42 — 2)™. To do so, we first expand
1<iKN
N
H (ZN"FQ*ZZ) :ZZ?V—FQ(*]')N?IC Z Zi1Zig RN g
1<i<N k=0 1<y <ig - <in -k <N
N N—k
=> (DN TF2 T ey, (A9)
where we have identified > ZiyRig " Zin_, @S 277" eN . Then we have
1<i1<io-<inN—rp SN
MN MN—k
H (zng2 — 2)M = Z zf\[“ 272 Syn_gk, (A10)
1<iKN k=0
where S is related to e by Eq. (2.17). ] (zn+1 — 2)™ is expanded in the same way. (2x41 — 2n+2)M ™™ can be

1<i<N
expanded via binomial expansion.
With these expansions, we obtain

N+1'% M—m m
Ntz = \/ N2 ( ) ) > 2T Sy A et Sy M om-trSun -k TR, (Al1)

k,r

where we finally fix the arbitrary normalization constants via

m !
N+2 M—m 2MN+M m N +2
-1 2 2my\ ——=1. A12
(D SV (A12)
Eq. (All) is equivalent to
M—-—m

M—-—m 2%
m N+2 \/78(M) N+1
( > Z V2 N /ar 2k k]

X 5MN+M—m—l—rSMN+l—k‘I’N- (A13)

gm
N+2 — /7 lz;

Since we rigorously derived the above to yield the manifestly (anti-)symmetric wave function (A3), we may optionally
act on it with the (anti-)symmetrizer s N +2, giving
1 e M-—m 24 2k
m o _ VN 1280 _ANt2 Ny M) AN
N+2 7 N 12 ; (-1 ( >ZW SN”\/W IO

X SMN+M-m—t—rSMN+i-kYN. (A14)

Upon second quantization by using Eq. (1.13) of Ref. 76, with Eq. (2.45) in mind, the above formula leads to

1 M—m l M—m MN+M—-—m — ;
IPEN12) = 55 > (-1 ; > Vrlklelel Suniarmo1—rSun ik PR (A15)
=0 r,k=0

of which Eq. (2.16a) is a special case with m = 1.
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Now we derive the expression for general Pfaffian state with one particle removed by using Eq. (1.12) of Ref. 76
(Gaussians are included in the integration measure):

Cr\I’N+2 =V N /d ZN+2W\I’7]G+2. (Alﬁ)

We now see why we went through the effort to not only derive Eq. (A14), which could have been arrived at more
directly, but instead took the pains to also derive Eq. (A13). This equation has the much needed advantage to expose
the dependence on zyyo by having this variable appear outside of the symmetrization. Via the change of variable
Il - M —m — 1 we rewrite Eq. (A13) as

T M—-m ZN 42 (M) ZJI% 1
o 1k + S —_—
For = 5 lz; (M) S v S s S
X (SN M —mt—rSMN+i—k + (DM Sy N M m— kSN -] TR (A17)
Then, Eq. (A16) leads to
) 1 M M — o\ MNEM—m
¢ [PI o) = N Z (—1)l< I ) Z \/HCL
=0 k=0
X (Svn+M—m—i—rSvn+i—k + (=1)M ™ SN ar—m—1—kSvn4i—r) |PER) 5 (A18)

of which Eq. (2.21) is a special case with m = 1.

Appendix B: The annihilation of |Pfy) by all Q?**")

By using the recursive formula Eq. (2.16a), the second-quantized form of |Pfy) is

L) :é i (—1)=h 1(’”"”1_[( ><M> Af (_l)zIHQﬁ(Mli— 1)

P1,P2,91,92=0 di l1,lo=0 i=1

X \/(3M —1- ZQ —q1 — q2)!(2M + ZQ — D1 7p2)!(M —-1- l1 +p1 + ql>!(l1 +p2 + QQ)!

1 T T i
X C3M —1—1s—q1—2 C2M+1o—p1 —p2 CM —1— 11 +p1+41 Sl +patao |O> ’ (Bl)
where we have used the commutator
M
(r+ k)
Sl, 7 = Z ( > T' CI+kSl—k (BQ)

k=1

(2bd,P)

to move S to the right of ¢f. We act with Q} on |Pfy) to obtain

Q?bdﬂ)) |Pf4>

S G [ 4 [ [ D

P1,P2,91,92=0 12=0

5J7M+P1 +p2t+qi1t+g2—1

M-1 M1
X Z(—l)h( )P(M—l—ll-i-l?l+Q1,l1+p2+Q2)
11=0 ll

X \/(3M —-1- lg —q1 — qg)'(QM + lg —P1 7p2)!CgM—l—lz—ql—qQC£M+lz—p1—p2 |O>

55 (O S ()

P1,41,92=0 l1,l2=0

M

M

X [ E (—1)F2 (p2>P(11 +p2+q2,2M + 1y —p1 — pz)] 07,11 +la4+2M —p1+qs
p2=0
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X\/(3M_1_12_Q1_qz)!(M_l_l1+p1+q1) C3M 1-l2—q1—q2 ]IL\/I 1-li+p1+q1 |O>

M M—1
+ 1 Z (—1)p2tarta: (M) (M> (M> Z (_1)11+lz (M - 1) (M — 1)
4 P2,q1,92=0 p2 n 2 l11,l2=0 b L2
s 1,l2=

5J’*ll+lz+3M*P2+Q1*1

M
M
x [ Y (=nm PRM +1ly —p1 —po, M =1 =11 +p1 +q1)
b1

p1=0

X \/(SM —1=lb—a = @) +p2+ ) C;M717l27q1fqzcg1+p2+qz 10)

M M—1
1 3 M\ (M (M T M-1\/M-1
+ - -1 P1+P2+Q1( > ( > < > -1 l1+lz< > < >
4 P171027Q1=0( : D b2 il ll,l2:0( ) 1 ly

M
M
X l > (—ne ( >77(3M —1—lo—q —q2.li +p2+G2) | 0s0—ls+3M+pa—q1 -1

q2=0 %

X /@M +1ly —pr —p2)!{(M —1 =11 +p1 + ql)!C£M+12—p1—pQCL—l—ll+p1+q1 0)
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p1+p2+qQ (M> (M) (M> Z (_1)l1+l2 <M - 1) (M - 1)
pi/\r2/\@2/ T~ L ly
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1
112
M
x| D (=
q1=0

X /@M + 1o = p1r = p2)i(l + 12+ @2) Aar 1,y —pyCpn 00
M

a2 e GG E e ()

P1,P2,491,92=0 11=0

M-1 M1
X [ Z (1) ( Iy )77(3]\/[ —1—lo—q —q,2M + 13 —p1 — p2)1 07,5M—p1—pa—g1—q2—1
12=0

X \/(M —l=bi+p+ Ch)!(ll +p2+ qQ)l C;r\4—1—ll+p1+41cjl+l’2+q2 |O>

=0, (B3)
where the summation in each of (3) square brackets is zero by using a combinatorial identity””
Z(fl)i (n) i =0 for any integer p € [0,n — 1], (B4)
i
i=0

considering that the degree of P is less than M — 1.

Appendix C: The annihilation of [Pf;) and [Pf;) by all Q*%<)

The second-quantized form of |Pfy) has been given in Eq. (B1), and the second-quantized form of |Pfg) is

1 N ] M 6 6 /MN\ (M
- i=1 b 1\ im1 (Pitai)
|P1¢6>—48 E 1 ||< > E (—1)zi=rtpird .I|<pi><%'>
l1,l2,l3= 0 P10 ,P6,q1, " ,q6=0 i=1

X /(BM —1—13—q3 — g1 — 5 — ¢6)!(4M +Is —ps —ps —ps — pe)!(3BM — 1 — Iy — q1 — g2 + p3 + q3)!

X /(@M 41y —p1r —pa+pa+q)'(M — 1=l +p1+qu+ps5 +q5)(ln +p2 + g2 + s + g6)!

X CT CT CT CT CT
5M—1-l3—q3—qa—q5—qe 4M~+l3—p3—pa—ps—pe 3M—1—la—q1—q2+p3+g3 2M+l>—p1—p2+pat+qs M—1-l1+p1+q1+p5+3qs

0) - (C1)

T
X Cll +p2+q92+ps+qe

We act Q (36d.Q) o |Pfy) to obtain

Q5" Phi)
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S o ) [ (o

q2= 15=0

ng (e () (2

X Q(2M +1ly —p1 —po, M =1 =11 +p1 +q1, 11 +p2 + ¢2)

x 6J’l2+3M+q1+q271\/(3M —1-l—q—g) C;M—l—lz—fh—% |0)
M M-1

3 E e Eer )

p1,p2=0 15=0 2

[32 S (e () (21

q1,92=0 ;=0

XQOBM—-1-la—q—q@M—-1-L+p+aq,li+p2+q)

x 5J,—l2+4]VI+p1+p2_2\/(2M - Pr— p2) CL]VI-HQ —P1—P2 |0>

2 5 e () B (")

P1,91=0 ! 11=0 1

[ e (M e () ()

x QEBM —1—1lo—q —q2,2M + 1l —p1 —p2,l1 +p2 + q2)

><5J,ll+5M—p1—q1—1\/( —1-lL+4+p+aq) C}L\/[ Ll tprtan |0)
M M-1

() Een ()

p2,q2=0 1,=0

S S (M e ()

XQBM—1—1ly—q1 —q2,2M +1lo—p1 —po, M =111 +p1 + q¢1)

X 0,1, 4+6M—po—go—2V (l1 + D2 + q2)! C}L1+p2+q2 |0)

- ()

where the term in each of (g) square brackets is zero. Take the first square bracket as an example: on account of
B4), for the summations inside the first square bracket not to vanish, there should exist at least one term in Q
in which the power of I1, p; and ps should be greater than or equal to M — 1, M and M, respectively. However, the
degree of Q is less than 3M — 1. Therefore, the term in the first square bracket vanishes. Likewise, summations in all
other square brackets are zero.

Along the same line of logic, it is easy to verify Q (3bd,Q) |Pf6> =0

(
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Supplemental Material for “From frustration-free parent Hamiltonians to off-diagonal
long-range order: Moore-Read and related states in second quantization"

In this supplemental material, our aim is to prove by mathematical induction the formula

1 M M — o MNEM—m
- (— 1)l< ; ) Z \/ECL(SMN+M7m717TSMN+l7k

k=0

¢ |Ping2) =
=0

+ (=DM SN vtk SNt1—r) [PEN) (S1)

with even/odd positive integer M for fermionic/bosonic case and odd positive integer m obeying 1 < m < M, where
|Pfy) and |Pfyyo) are states of N and N + 2 particles with even N, related by the recursive formula

MN+M-m

— M —m
|PfN+2 Z ( ) Z \% rlk! C:[CLSMN+M7mflerMN+lfk |PfN> . (82)

l
r,k=0

In first quantization, the states so defined correspond to the generalized Pfaffian wave function

pf [(z_lzj)] I G — 0™, (S3)

k<l

with the standard Moore-Read state corresponding to the special case m = 1. It is important, however, that we will
not use this first quantized expression in the following. This completes the reasoning of the main text that all known
properties of the parent Hamiltonian of the Moore-Read state can be inferred in second quantization.

Let us study the beginning of mathematical induction. We have |Pfy) = |0), and

M—m

M—-—m
1 M—m
|Pfy) == Z (1)l< l ) Z VL ehel Sar—m_1-S1_1 |0)

1=0 r,k=0

\}

M—m
:% (—1)1<Ml_m>\/(M—m—l)!l!cjwmlcj 10) . (S4)
=0

In the calculation of |Pf;), we have used the fact that the S operator is the sum of products of e operators, which
have annihilation operators on the right, thus Sy;—n,—i—-S;— |0) gives zero unless M —m —l—r=0and [ — k= 0.
From |Pfy) and |Pfs), we have an identity

NS M =) N ]
Cr ‘PfQ = 7 Z < I m) Z mcL(SM—m—l—TSl—k + (*1)M mSjw_m_l_kSl_r) |Pf0> (85)

k=0

manifestly satisfied for all r, as seen from acting ¢, on |Pfy).
Now we assume

\/’r»']M—m M—m MN—-M-m
¢ |PEN) = 7 Z (—1)l< ) Z Ve (SN —m—t—r SMN—-201 51—k
1=0

l P (S6)
+ (=D)M T SN M—m—1—kSMN—2041—r) [PEN_2)
is valid for even N > 2, we then have
- o\ MNAM=m
cr [Pny2) = Z ( ; ) > Gk Sl Shnar—m—1—Sun+1-k [PEN)
ey k=0
9 \/* M—m _m MN-+M-—m ;
“Niza 2O < ! > >, VHq
= k=0
X (SMN+M7mflerMN+lfk + (=DM SNy M —m—1— kSN t1—r) [PEN) (S7a)
1 M—m M — m MN+M-—m
ts 2 (—1)z< z ) S ViRl Saninmo s Sun ik PiN) . (STH)

1=0 3,k=0
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Using the commutator

[ei Sil = (1) <Ak4) i i‘k) SikCik (S8)

k=1

(and, as usual, the convention ¢;_; = 0 for k > i), Eq. (S7b) can be written as

M-—m MN+M—-m M
% 3 (1)Z(Ml m) S R S (cryme (M> (M>
— - ~ q q2
=0 7,k=0 q1,92=0 (89)

r!
X 75 S Pf
(= qn = go)l O MN+M—m—t—i=a SMN+i—k—sCr—a1 - —g |PIN) -

By using the induction assumption Eq. (S6), Eq. (S9) can be further cast as

Mzm )\ Mo , _ o\ MNEM—m MN_M-—m
#4—22 Z(_l)l(Mz ) > (= (Ml, ) > Z Vilkiplr!

1=0 '=0 §,k=0

M\ (M (510)
X Z Q1+q2<q )<q )c;r,cLSMN+M_m_l_j_q1SMN_H_k_qQC;r,
1 2
q1,92=0

M7
X (SMN-M-m—t—r+qi+a2SMN—2M+1—p + (= 1) """ SN M—m—t/—pSMN—2M+1—r+q1+¢:) |PEN—2) .

Now we split Eq. (S10) into the ¢ = go = M part

1/2 M—m M m M—-—m M m MN+M—-—m MN—-—M-—m
l - U - :
vir s (M) e (M) X s v
1=0 '=0 j,k=0
: (S11)

X C;[CLSMN—m—l—jSMN—M+l—ka
X (SvN+M-m—tr—rSuN—2041—p + (=DM ™Sy N pr—m—t—pSmntr—r) [PEN_2) .
and the rest that we denote as
1jg M= M—m Mo [(MoiMo1 M1 M M M-1
N GO DICCO P30 3 3D 3D 3 >
1=0 ¢2=0  1=0 g2=M q1=M ¢2=0

=0

MN+M—m MN—M-—m M /M (S12)
X Z Z ViKplr!(— QI+QQ (q ) (q )c}cLSMNJrMmquISMNHkqQC;(,
1 2
J,k=0
X (SMN—M—m—l’—r—l-ql—i-qz Saun—onm+r—p + ()M TSN Mt —pSMN—2M 1 —rtqr+gs) [PEN—2) -
Now in Eq. (S11), we move c;f) to the left of Sarn—m—i—jSMN—M+i—k using the commutator
M
IS, cl] = Z(_m( ) ) LS (S13)

q=1

and regard everything other than the ¢ = M term as G3 and Gj:
Eq. (S11)

12 & M —m\ M= M — g\ MNEM—m MN M —m
N2 Z (_1)l< l > Z (_1)l< I ) Z Z j!k!(p+2M)!r!c}chL+2M

1=0 1'=0 4,k=0

X SMN—M—m—l—jSMN—2M+l—k(SMN+M—m—l/—rSMN—2M+l’—p + (*1)M7mSJVIN—M—m—l’—pSMN+l’—r) [Pfn—_2).
(S14)
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plus
M—m M—m MN+M—-—m MN—M-—m
1/2 M—-—m (M —m -
Gr=i Y () ( ) (M) XY Vi
N +2 — l = l
= 7,k=0
= T i i (815)
Z CiCuSMN—m—1—jCptgSMN—M+l—k—q
X (SMN+M7m7l’7rSMN72M+l/7p + (=DM SN Mt —p SN —r) [PEN—2)
plus
1 M 2M7’ITL M—m M—m , M—m MN+M—-—m MN—M-—m :
Gs ;:% > (1)l< z > > (1)1( » ) > > Viklp+ M+ )l
1=0 =0 k=0 p=0
- (816)
X Z c; CkaJrMJrqSMN m—l—j—q O MN—2M+I—k

X (SMN+M—m—l’—rSMN—2M+l/—p + (=DM SN Mt —pSaNr—r) PN _2) .

In Eq. (S14), we have every right to extend the p-sum to negative values, since for such negative p values,
both MN — 2M +1' —p and MN — M — m — I’ — p are larger than M (N — 2), therefore Sy n_2m+1—p and
SMN—M—m—i'—p annihilate the (N — 2)-particle state |Pfy_2). The reason is the following: S; is expressed as
(=1) 3 na b tmng—i €1 €y * - €nyy, in Which e, will move the orbitals of n particles. For i > M (N —2), there must
be an n larger than N — 2, thus S; annihilates |Pfy_2) in this case. We thus let the p-sum start at —2M, and then
let p — p — 2M. This gives

Eq. (S14)

1/2 M—m M—m M—m M—m MN+M-—m
S (T (1) e S

=0 I'=0 Jk.p=0
X (SMN+M—m—t—rSMN 1 —p + ()M TSN Mt pShn v —r) [PEN—2)
M—m M—-m MN+M-m
333 2 ( l ) > =i, S ViRp el
=0 =0 Gikp=0
X (SN —pSMN+M—m—t—r + (=DM T Sy N f Mt —p SMN1 1) SMN—M—m—1—jSMN—20+1—k [PEN_2) |

(S17)

where we have used the commutability of S operators and the commutability of c w1th cT

Finally, we move cl ck in Eq. (S17) to the right of (S N+ M —m—1—rSMN+17—p+(— 1)M " SMNAM—m—t'—pSMN+V—r),
use the variation of Eq (513)

M
(r+q)!
ciS = Siel + 3 (~ q+1( ) LD S (S18)
q=1 ’
and regard everything other than the ¢ = 0 term as G4, G5, Gg, and Gr:
Eq. (S17)
M—m M—m MN+M-—m
1/2 (M —m v (M —m - t
-5 > (-1 ( l ) > (-1 < ; > 'Z JlkIptrt el
1=0 '=0 4,k,p=0
X (SMN+M—m—1—rSMN+1—p + (_1)M_mSIVIN+M7m7l’7pSMN+l’7T)C;CL
X SMN-M-m—-1—jSMN—2m+1—k |PInN_2) (519)
plus

sy 2 (M) S ()R v ()

G k=0 q
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X chebel o (SN +1—p—gSun-rr—mer—r + (=DM " S\N M-t —p—g SM N —r)
X SMN-M-m—i—jSMN—2m+1—k |PInN_2), (S20)
plus
M—m M—m MNAM—m "
1/2 M—m M —m . o
@ ::NLH > (—1)1( ! ) > ( » ) Yo Vilk + )i Z(_1)q+1< )
=0 1'=0 0 — q
jskp q
x ¢ T(SMNH' CLJFQSMNJVM*’”*V*T*Q + (_1)M_mSMNJermfl’fpclt+qSMN+l’7r7q)
X SMN-M-m—i—jSMN—2m+1—k |[PIN_2), (s21)
plus
M—=m M-—m MN+M—m M
1/2 M—m M —m ‘ o
G = N:—Q Z (l)l( l > Z (*l)l < ; ) Z G +q)!k!p!r!2(1)q+1< )
=0 1'=0 0 — q
jsk,p a
x chel s o (Snntv—p—gSun4m—m—tr—r + (=)™ Sy N M-t —p— g SN —r )L
X SMN-M-m—i—jSMN—2m+1—k |[PInN_2), (522)
plus

M—m M—-—m

Gr = Z\/}fz Z (1)l(M ; m> Z (-1 <Ml/m

) MN+M—-—m
=0 1'=0

G M
Z WZ(I)Q+1< )

4,k,p=0 q

X C;:r;(SMN+l’pr;+qSMN+Mfmfl’frfq + (_1>M_mSMN+M7’n’L7l’7pc;+qSMN+l’7T7q)CE
X SMN-M-m-1—jSMN—20m+i—k |[PfN_2) . (S23)

Now Eq. (S19) can be written as

1/2 M—m M — o\ MNEM-m
N +2 Z (-1)f ( Il ) E p'r! CL(SMNJFM—m—l'—rSMNH'—p + (=DM S N Mt pSMN 1)
’=0 p=0

M—m MN—-M-—m

M —
x Z ( m> > Viktelel Syn—n—m-i—jSnn—anrsi-k [Py _2) (S24)

7,k=0

1/2 M-m CIM — o\ MNEM—m
TNt2 > (-1 ( v ) o VP (SNt m—m—t—rSuntr—p + (=DM T SMN Mt —p SN 1)
'=0 p=0

From Eq. (519) to Eq. (S24), we have changed the summation range of both j and k by using the property that S; = 0
for negative i. Eq. (S24) leads to Eq. (525) by using the recursive formula from |Pfy_s) to |[Pfy).
Combining all the above terms, we obtain

- MN+M—m
cr [Pfni2) = Z ( > Z \/ECL

k=0

X (SMN+1\/I—m—l—rSMN+l—k + (=DM " SN M—m—t—kSMN+1—r) [PEN)
7
+) G (S26)
i=1
It is easiest to compare these G; terms after commuting all cf-operators to the left. This will produce terms with
one, two, three, and four g-sums:
1/2 M—m (M —m M—m o (M —m MN+M—-m MN—-M-m [M—-1M—-1 M-1 M M M-1
= I GO DI G I S S PSP IES D) SRS 95

1=0 1'=0 7,k=0 q1=0 q2=0  q1=0q2=M ¢ =M q2=0
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<53 v arame (O G0 () ()

q3=0q4=0
x clelel S i S
i kCp+tazs+qa P MN+M—m—l—j—q1—qs P MN+l—k—qg2—qs

X (SMN-M-m—t/—rtq1+a0 SN —20+1—p + (=DM ™ SN M-t —pSMN—2M 41 —rtqr o) [PEN—2),  (S27)

1/2 M—m M—m

s o o (M) e (M

=0 1'=0

Gy =

Z Z Z Z VK (p + @1 + q2)!r!

>MN+M mMN—-M-mM-1 M
7,k=0 q1=0 q2=0

M\ (M
X (_1>Q1+q2 (lh) (QQ)CTCJ{C L+Q1+qzSMN*m*l*j*Q2SMN*M+lfk*Q1

X (SNt M-m—tr—r SN 2041 —p + (=DM ™Sy N ar—m—v—pSvnr—r) [PEN_2) (528)

6 =L MZm(—l)l<Mz_m) ey (M;m> Y mMNEZJW mle VIR -+ ADN(-)! (24)

1=0 '=0 §,k=0
x chel el S S
CkCprq+r MPMN—m—l—j—q°MN—-2M+Il—k

X (SMNAM—mtr—rSN—2m41—p + ()M TSN Mt —pSun - —r) [PEN_2) s (529)

M M—m m M—m , —m MN+M-—m M
6 =SS co(M M) e (M) v areue (Y ) e,

=0 1'=0 jkp=0 gq—=1
X SMN-M-m—1—jSMN—2M+1—p

X (SMN41—k—gSMN M-t —r + (= D)M ™ Sy N M —m—t— kg SvNt1—r) [PEN_2) (S30)

(where we have made change of variables k <> p in G4)

M—-—m MN+M-—-m M

1\M M—m _m , —m
6= S (M) S e (M TS TS S v e

=0 1’=0 3.k,p=0 q1=1¢q2=0

M\ (M
x (q1> (q2>c;CLCL+Q1+Q2SMNMmljSMN2M+lp

X (SMN+1—k—go SMN+M—m—t—r—gr + (=) ™ SN Mt/ —k—go SMN 41/ —r—q, ) [PEN—2) (S31)

(where we have made change of variables k <> p in Gf5)

M—m M—m MN+M—-m M M M
D C G D SETH S B DD 9 90 SV Eani ereaming

I'=0 J.k,p=0  q1=1g2=0q3=0

M\ (MN\ (M
x (—1)ntetas (q1> <q2) <q3>C;{+q1CL+q2+q3CLSMN—kI—m—l—jShIN—2M+l—k

X (SMN11—p—a1—a5 SMN 4 M—m—t—r—gs + (=DM " SyN Mt pgy g5 SMN 1 —r—g,) [PEN2),  (S32)
and

1/9 M—-—m M—m M—-—m (M —m MN+M-m M M M M
Gl = DI GFRD DI U R D 3 39 391

I'=0

4 q 3

M M M M
G a1 T @)+ g T gl (— )0 s (q ( ) ) )
1
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T T
X €l o s Chtas s CoSMN - M1~ SMN—2M 41—k
X (SMN+l’—p—q2—q4SMN+M—m—l’—T—q1—q3 + (_1)M_mSMN+M—m—l’—p—q2—Q4SMN-‘:-l’—T—ql—qa) ‘PfN—2> :
(S33)
We can now apply change of variables to all G;. Take G7 as an example, we may let j — j—q1 —¢q2 and k — k—q3—qu-.
We may restore the beginnings of these sums to j =0 and k = 0 as we did from Eq. (S14) to Eq. (S17). This gives

M—m M—-—m MN+M—m+q1+q2 MN+M—m+q3+qs MN+M—m

GF*% > (1>Z(Mlm> > (1" (Ml,m) > D D

=0 I'=0 7=0 k=0 p=0

Yy iW (—1ymtetasta (M) (M) (M> <M>

q1 q2 q3 g4

X CiCpCLSMN—M—m—I—j+qi+qs SMN—2M+1—k-+qs-+qs
M—
X (SMN—H/—p—qz—q4SMN+M—m—l/—7"—q1—qs + (_1) mSMN+M—m—l’—p—q2—q4SMN+l’—7"—q1—qa) ‘PfN—2> .
(S34)

We may restore the upper boundaries of both j and k to MN + M — m since Sy N—M—m—i—jtq+g. = 0 for

j>MN+ M —m and Sy N—2M+i—k+qgs+q = 0 for k> MN + M —m.
After change of variables, we obtain new forms for all G;:

1/2 M—m M—m M—m M—m MN+M-—m
G-y S (M) e (M)
1=0 1'=0 j,k,p=0

039350 95 wE v f b b I (9 [(9T0

X SMN+M-m—i—j—q1—qi O MN-+i—k—g2—gs
M7
X (SMN-M-m—t—r+q1+a SMN—2M+1'—ptgs+as T (= 1) " SMN-M-m—1'—ptgs+9a SMN—2M+1' —r+q1+42) [IPEIN—-2) ;

(S35)
M—m M—m MN+M—m
1/2 M—m (M —m -
G-y S (M) e (M) Vi
1=0 =0 Jrk,p=0
M-1 M
M\ (M
X Z Z(l)qlJqu( >( >SMN—m—l—j—qQSMN—M-‘rl—k—IIl
— q1 qz
q1=0 g2=0
X (SMN4M-m—t—rSMN-2M 41 —prgitap + (=DM TSN M—m—t—ptgta Sunir—r) [PIn_2),  (S36)
M—m M—m MN+M—-m
(_1)M/2 M—m (M —m -
Gy = L 3 (1 l 3 (1) ) 3 Vilklptrt efef el
1=0 1’=0 J,k,p=0
M-1
M
X Z(—l)q( )SMlequMN2M+lk
q=0 q
X (SMN+M—m—tr—rSMN—M+1—ptrq + (=DM Syt —prgSunr—r) |PEN—2) , (S37)
M—m M—m MN+M—m
(-1H)M /2 M—-—m (M —m -
Go=tgrg > GO ) () X itk el
1=0 I'=0 J,k,p=0

M (M
X Z(*l) ¢ SMN-M-m—1—jSMN—2M+1—p+q
qg=1
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X (SN -k gSMN M-t —r + (1) TSy N At kg Sunr—r) [PIv-2) (S38)
M—m - MN+M—m
7(71)M/2 M m M m - ot
G =g 2V Z 2, Ve
0 = J:k,p=0
M\ (M
% Z Z ‘11+q2( )( )SMN_M—m—z_jSMN—2M+l—p+q1+q2
q1=1g2=0 ©
X (SMN+1—k—ga SMN+M—m—tr—r—q; + (=) T SMN 4 Motk gz SMN 41 —r—q) [PEN—2) , (539)
M _ MN+M—m
M—m M—-m -
Gy m (M) R (M) S v
=0 =0 Jsk,p=0
M M M
M\ (M (M
Z Z Z ‘11+‘12+q3( > ( > ( >SJV1N—M—m—l—j+q1 SMN—2M+1—k+gs+gs
T =0 ¢a=0 Q1 q2 a3
(SMN+M m—1l—r— quMN+l’ —p—qi—qs T (_1)M7mSMN+M7mfl/*P*q1*q:sSMN+l’*T‘*q2) |PfN*2> ’ (840)
and
_ M—m M—m MN+M—-m
o= Z ( ) Z (—1)! ( ) ) Z j!k!p!r!c}clcj,
1'=0 7,k,p=0

N =0
L Eer ()6

X SMN—M-m—i—j+q1+q2 O MN—2M+l—k+qs+qa

X (SMN+V—p—go—aa SMN+M-m—t—r—g1 g5 + (=)™ " SMN 4 M-m—t—p—go—a SMN+'—r—q1—q5) \Pfoz% :
S41

Now we apply change of variables ¢; = M — ¢; for t = 1,2,3,4 to G1:

(M —m
Y (7
=0 1'=0

o;
(BB 5B )5 Femas (49 ()

G=lg=1 ¢ g3=0q4=0

MN+M-—m
EEDY )

Z v/ jlk!plr! cTcJr cT

G =
J,k,p=0

X SMN—M-—m—i—j+q1+q1s O MN—2M+l—k+qa+gs

X (SMN+M-m—t'—r—q1—qsSMN+1—p—ga—gs + (=)™ " SN M-m—t—p—gs—aa SMN+1'—r—qu—q») [PEN_2) ,
($42)

We also relabel g3 — q4, g3 — g2 and g4 — ¢3 in G7:

— M—m M—-—m M—m MN+M—m
G = - Z ( )Z(—l)l( , ) S ViR
=0 4,k,p=0

N =0
e ()6

X SMN-M-m—l—j+qi+q1SMN—2M+1—k+qo+as

X (SMN+M7mfl’frﬂhfqz SMN+l’fP*q4fq3 + (_1)M_mSMNJermfl’fpf@rqsSMNJrl’foqlfqz) ‘Pfo2%~ )
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Combining G; and G7, we obtain a new expression

B 1/2 M—m

) l M—m M—m p M—m MN+M—-m g R
=N > U > (=1 I > Vilklpricieic)

=0 =0 J.k,p=0
M M M
M\ (M\ (M
X Z Z Z (_1>Q2+‘I3+Q4( ) ( ) ( )
a2=1q3=0 q4=0 42/ \ 43/ \ Q4

X SMN—M-m—1—j+q S MN—2M+1—k+q2+qs

(SMN+M-m—t/—r—ga SMN+V—p—gs—qs + (= 1) " SMN 4 M-t —p—qs—qa SMN+1'—r—g,) [PIN_2)

We then relabel g4 — ¢1 in G, add up G} and Gg to obtain GY:

g 12 IS M\ IS (M= MR KIptrichel f
G ;:m > (-1 z > (-1 » > Vilkiplricle
=0 1'=0 4, k,p=0

M\ (M
Z ¢I2+¢I3< >( >SMN_M_m_l_jSMN—2M+Z—7€+(12+Q3

. q3

(SMN+M et —r— g SMN+1—p—ag5 + (= 1) T S N M i —p—qs SMN 41 —r— g5 ) |PEN—2)

1/2 M—m l M—m M—m p M—m MN+M—-—m ‘ot
T N+2 Z(_1)< I ) Z(_l) ( I > Z \/Wcjckc;

1=0 '=0 §,k,p=0

gL M\ (M
X Z Z(l)q1+q3< > ( >SJVIN—M—7n—l—j+q1SMN—2M+l—k+q3
q1=0g3=0

q1 q3

(SMN+M—m—t =+ SMN+1—p—g1—g5 T (=) TSNt M-t —p—qr—qs SN+ —r) [PEN_2)

Using this method, we add up G/, G5 and G5 to obtain GY":

71M 2M—m M—m M—m (M —m MN+M—m :
e S ) S () S s
1=0 /=0 .k p=0
X Z ( )SMN—M—m—l—jSMN—2M+l—p+q2
q2=0

X (SMN+1—k—go SMN M —m—t—r + (=) T SN 4 Mt/ —k—ga SMN 41 —r) [PEN—2)
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S (MM S o (MM TS e
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q2=0
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Finally, we obtain
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=1
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=y X OV ) X (T, ) X itk
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0
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M—-—m MN+M-—m

1/2 M—m (M —m
S () () S
0
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1/2 M—-—m M—m M—-—m LM —m MN+M—m TT
N+22(_1)l( l )Z<—1y< ; ) S R

= 1'=0 4,k,p=0

X SMN-M-m—-1—jSMN—2M+1—k
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0, (S47)

where in the last step, we have applied change of variables k > p, commutability of S operators, and CLC;Q =
(—1)M_mc;f)c£.
From Eq. (526), we obtain

\/,,T! M—m M—m MN+M-—-m
¢ |Pfnyo) = > Z (—1)l< ) > Z VE el (SMN M —m—1—rSMN -k
=0 k=0
+ ()M SN M —m— 1 kSN 1) |PEN) (548)

thus completing our second-quantized derivation.
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