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We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) par-
ent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and
whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state
energy monotonicity theorems for systems with different particle numbers in multiple Landau levels,
demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes
of special Hamiltonians stabilizing parton-like states, specifically at filling factor ν = 2/3. The
emergent Entangled Pauli Principle (EPP), introduced in Phys. Rev. B 98, 161118(R) (2018)
and which defines the “DNA” of the quantum Hall fluid, is behind the exact determination of the
topological characteristics of the fluid, including charge and braiding statistics of excitations, and
effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the
highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We
conjecture that parton-like states generally span the subspace of many-body wave functions with the
two-body M -clustering property within any given number of Landau levels, that is, wave functions
with Mth-order coincidence plane zeroes and both holomorphic and anti-holomorphic dependence
on variables. General arguments are supplemented by rigorous considerations for the M = 3 case of
fermions in four Landau levels. For this case, we establish that the zero mode counting can be done
by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state
approach of Phys. Rev. X 1, 021015 (2011) to show that the elementary (localized) bulk excitations
are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall
states encodes all universal properties. Specifically, for parton-like states, we establish a link with
tensor network structures of finite bond dimension that emerge via root level entanglement.

I. INTRODUCTION

Realistic many-body problems, in which interactions
play an important role can rarely be exactly solved. Over
the decades, a rather fruitful modus operandi for analyz-
ing certain many-body systems has been to construct
physically motivated variational wave functions. This
particular approach has been extremely insightful and
witnessed monumental successes in several arenas includ-
ing the BCS theory of superconductivity1 and Laughlin’s
description of the simplest odd-denominator Fractional
Quantum Hall (FQH) states2. The investigation of nu-
merous variational wave functions and associated “parent
Hamiltonians” (i.e., Hamiltonians whose ground states
are the posited variational wave functions) has attracted
renewed attention. This has, perhaps, been most acute
for the rich plethora of FQH states. Certain FQH states
have, for some time by now, been suspected of featur-
ing non-Abelian exchange statistics3,4. Complementing
variational techniques, many other celebrated theoreti-
cal frameworks have been advanced to investigate these
systems. These notably include effective field theories5,6,
Jain’s composite fermion picture7, general parton con-
structions8–11, and the study of spectral properties of
pseudopotentials12–15 that allows for a systematic expan-
sion of general rotationally symmetric interactions. Pseu-
dopotentials and parton states and, in particular, their
connection are a central focus of our study.

In the current work, we will demonstrate that an ex-
tensive set of systems with only two-body interactions
have ground states that represent arbitrary quantum Hall
(QH) fluids. The kinetic energy will be quenched in
low-lying Landau level (LL) states. The resulting as-
sociated Hamiltonians will be positive semi-definite op-
erators whose densest (i.e, minimum total angular mo-
mentum consistent with the largest filling fraction) zero-
energy modes realize particular Abelian or non-Abelian
QH vacua. We will investigate the universal short-range
components of these two-body interacting Hamiltonians
in the presence of low-lying LLs mixing. By fixing the
subspace determined by a chosen number of LLs, we will
outline a general scheme to obtain such positive semi-
definite, and frustration-free, parent Hamiltonians and
investigate their many-body (zero-energy) ground states.
By altering the number of LLs and pseudopotentials, we
will determine FQH states at various filling fractions as
ground states of those parent Hamiltonians.
The recent renewed interest in parton-like FQH

states8–11,16 is, in part, driven by the advent of new
platforms for the physics of the QH effect, specifically
graphene and related structures. Notably, in multi-layer
graphene a degeneracy or near degeneracy of multiple
LLs10,17–19 invites a study through guiding principles
based on mixed-LL wave functions. On the other hand,
contrary to the multiple-LL arena, powerful tools to
identify the universality class of (especially non-Abelian)
FQH trial wave functions have traditionally favored holo-
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morphic, lowest Landau level (LLL), guiding principles.
The seminal insights by Moore and Read3 on confor-
mal block-type holomorphic wave functions and their di-
rect association to an edge effective theory allow for an
unambiguous transition between microscopic wave func-
tions and universal physics. It is, a priori, not clear
how to achieve such a conversion between microscopic
and universal properties, in similarly general terms, for
non-holomorphic, multiple-LL wave functions. Our re-
cent work14,15, however, suggests that such a tool is now
emerging, specifically for a large class of states falling
into a paradigm which we called the “Entangled Pauli
Principle” (EPP). In this work, we will elaborate why
this, in particular, includes all parton-like states.

Our approach rests on three pillars. First, we estab-
lish one-dimensional reductions for the states in question
as well as their quasihole/edge excitations. This relies
on the generalization of concepts involving “dominance”
or “root patterns”, first discussed for holomorphic LLL
wave functions20–25, to the non-holomorphic case. The
crucial enrichment resulting from this generalization is
that root states also become locally entangled, as op-
posed to their holomorphic counterparts. These root
states can be understood as the “DNA” of the underly-
ing QH states14. This understanding arguably becomes
complete only if one allows for the possibility of entangle-
ment, as some of us recently demonstrated for (Abelian)
Jain composite fermion states15.

The second pillar involves the machinery used to derive
the aforementioned EPPs not as properties of trial wave
functions, but as necessary criteria satisfied by “root
states” of zero-modes of an associated parent Hamilto-
nian. This step depends crucially on the correct gener-
alization of the concept of “dominance” from the holo-
morphic wave function context to that of mixed-LL wave
functions. It is central to establishing the full zero-mode
space of the given Hamiltonian, thus replacing the for-
malism based on symmetric polynomials characteristic
of the LLL context. This formalism is generally not ap-
plicable to non-holomorphic wave functions. Through
matching of mode counting with an appropriate confor-
mal field theory (CFT), the correct edge theory can, in
principle, be identified beyond doubt, within the setting
of microscopic wave functions and their parent Hamilto-
nians. We have demonstrated this procedure for a vari-
ety of pseudopotential and other frustration-free Hamil-
tonians in Refs [14], and [15], leading to a variety of
non-holomorphic wave functions of interest. As we ar-
gued, the identification of universal physics rests on as
solid grounds as it does for any holomorphic, LLL, wave
function. The detailed structure of the EPP, however,
depends on the parent Hamiltonians themselves. These
details of the EPP are necessary to establish the connec-
tion between the microscopic ground state and the corre-
sponding edge excitations. To streamline the flow of the
logic, we have concentrated on a particular Hamiltonian
(Trugman-Kivelson Hamiltonian13, projected onto four
LLs) to further establish the broad applicability of these

techniques. This Hamiltonian is a particular type of pos-
itive semi-definite projected density-density interaction,
which enforces a certain analytic clustering condition in
its zero modes. This is analogous to similar interactions
for simpler parton states,10,14 the ν = 2/5 Jain state26–28,
and indeed the Laughlin state itself.12,13 The formalism
is, however, not limited to density-density interactions.
Indeed, as the example of general members of the Jain
sequence shows,15 more intricate action on Landau level
indices is both needed and tractable within our formal-
ism in order to stabilize states characterized by different
types of non-holomorphic clustering conditions.

The third pillar concerns the bulk properties of the
system more directly. It consists of a method to work
out the statistics of the quasiparticles directly from the
DNA as defined by the EPP. While the EPP efficiently
encodes field theoretic concepts such as fusion rules29,30,
our method is different in that it is not built on the as-
sumptions of an effective theory that adheres to the ax-
ioms of local quantum field theory31,32. In particular, no
explicit contact with modular tensor categories is made.
Instead, the formalism proceeds based on the knowledge
that a complete set of quasihole excitations is encoded
in patterns satisfying the EPP, and on an Ansatz of how
localized quasihole excitations can be expressed through
coherent states formed from a basis that is in one-to-one
correspondence with these patterns. Consequences of lo-
cality and S-duality on the torus are naturally enforced
within this Ansatz, without reliance on suppositions re-
garding underlying field-theoretic frameworks. This for-
malism, too, has been first worked out in the context of
holomorphic LLL wave functions21,33–36. As we will see,
through the notion of an EPP, the formalism generalizes
effortlessly to the context of mixed-LL wave functions,
where one has to consider the entire root state with its
entanglement as opposed to simple root patterns previ-
ously used in the LLL case. It is here where the approach
unfolds its full utility, as alternative methods to ascertain
the statistics and underlying topological quantum field
theory are far less abundant and general. The present
formalism offers a general, consistent and highly con-
straining approach to determine field theoretic makeup
from microscopic principles.

Interestingly, our approach provides a microscopic
many-body account for long-sought excitations exhibit-
ing non-trivial anyonic exchange statistics. Non-Abelian
anyons are essential for viable topological quantum com-
puting platforms37. Ising anyons have been earlier identi-
fied as excitations of the Moore-Read3 (MR) Pfaffian and
Jain-221 vacua14. However, Ising anyons cannot realize
universal topological gates. By contrast, the non-Abelian
Fibonacci anyons obey integer SU(2)3 (or, equivalently,
SO(3)3) fusion algebra38 allowing for universal quantum
computation39,40. In this paper, we will pay particular
attention to the subspace of four LLs. We will compute
the Berry (more precisely, the Wilczek-Zee41,42) phase
and braiding matrix associated with the braiding of zero-
mode excitations33,34, and show that the four LLs ground
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state precisely features Fibonacci anyons. Prior to our
work, it was known that excitations of FQH Hamiltoni-
ans with k-body (k > 2) interactions exhibit Fibonacci
anyons. This is the case of the k = 4 Read-Rezayi (RR)
state43,44 which can be obtained from correlation func-
tions of certain CFTs. Important differences exist be-
tween our results and the prominent candidate RR state.
Our Hamiltonian only contains (k = 2) two-body inter-
actions projected onto four LLs as opposed to a (k = 4)
four-body interacting Hamiltonian with an RR ground
state in the LLL. Related to this, our ground state has or-
der M > 1 zeros on a two-body (as opposed to a k-body)
coincidence plane. Finally, our state appears at a filling
fraction of ν = 2/3, whereas the RR state corresponds
to ν = 3/5. Several earlier investigations depicted puta-
tive ν = 2/3 Abelian and non-Abelian phases in terms
of a bilayer FQH system featuring a 1/3 Laughlin state
in each layer45–49. In these works, different phases were
found when varying interlayer and intralayer interactions
of the Hamiltonian. In particular, in Refs. [45] and [46]
a stable phase with Fibonacci anyon quasiparticles has
been obtained in the thin torus limit. Contrary to these
previous studies, our Hamiltonian has no free parame-
ters. Moreover, our exact calculations are not, in any
way, restricted to the thin torus limit.

In addition, we establish a profound connection be-
tween the theory of (anti-)symmetric multivariate poly-
nomials in holomorphic and anti-holomorphic variables,
displaying special clustering properties, and the zero-
modes of certain QH Hamitonians. In first quantiza-
tion, a state that is a product of M Slater determinants,
formed out of single-particle orbitals, is a parton-like
state. Correspondingly, a closed-shell parton state is a
parton-like state with Slater determinants that have the
lowest possible total angular momentum (in the case of
Landau orbitals), rendering them unique. A closed-shell
constraint provides the necessary and sufficient condi-
tion for the existence of unique densest parton-like states,
which can be classified according to the order of their ze-
ros in the vicinity of coincidence planes. The algebraic
order of these zeros relates to the two-bodyM -clustering
exponents for arbitrary particle pairs in the wave func-
tion. As will be discussed and proved for some cases,
parton-like states span the subspace of many-particle
wave functions with the two-body M -clustering prop-
erty. Furthermore, we will demonstrate that both the
closed-shell condition and the fixed two-body clustering
exponent, lead to a unique expression for the densest
ground state of the corresponding frustration-free (two-
body) QH parent Hamiltonian.

The remainder of this Introduction highlights the orga-
nization and original contributions of the current paper.
In Section II, we will sketch the formalism that we em-
ploy to obtain the frustration-free QH two-body parent
Hamiltonian in the subspace of NL LLs. In Section III,
we discuss the determination of its ground states and, in
particular, the densest ground state. Here, the concept
of EPP14 will be made vivid for the case of four LLs. For

the general class of k-body, positive semi-definite, parent
Hamiltonians with multiple-LLs (and arbitrary internal
degrees of freedom) we show that the ground state en-
ergy increases monotonically with the number of parti-
cles. Moreover, we introduce a pseudospin algebra, in
terms of pseudofermion operators, that will turn out to
be decisive to establish the EPPs. In Section IV, we
prove an S-duality for our class of multiple-LL Hamil-
tonians in toroidal geometry, and show how this duality
together with the EPP imply braiding statistics without
leaving the microscopic setting. In general, for multiple-
LL systems one requires a non-trivial generalization of
the framework of Ref. [33] that utilizes the entanglement
of root states, i.e., the EPP, since knowledge of the root
pattern alone cannot establish the braiding statistics. In-
terestingly, for the case of four LLs, we will show that
the excitations posses Fibonacci anyon statistics. In Sec-
tion V, we discuss more general propositions on parton
states and relate the two-body M -clustering exponent to
necessary and sufficient conditions for parton states to
be the unique ground states of projected frustration-free
QH Hamiltonians, providing general considerations and a
simple application of our conjecture. Finally, we close the
paper with Section VI paying special attention to the case
M = 3 in four LLs. We provide a simple algebraic recipe
to determine the root pattern and state of an arbitrary
parton-like state. Root states, or DNAs, are obtained as
the solutions to entanglement rules, the EPPs, and en-
code universal features of the QH fluid. We will show that
the underlying entanglement has a simple tensor network
structure rendering the root states (fermionic) matrix-
product states. The inverse problem, that is, given a
root pattern, establishing the parton-like states compati-
ble with such a pattern, is also addressed algorithmically.
This step is crucial to argue for the (over)completeness
of parton-like states in spanning the zero-mode subspace.
We conclude by rigorously showing completeness in the
case M = 3 and NL = 4.

II. FRUSTRATION-FREE QH HAMILTONIANS

In this section, we present a general formalism for es-
tablishing the second-quantized frustration-free Hamil-
tonians of interacting electrons confined to two spatial
dimensions in the presence of an applied (perpendicular
to the plane) magnetic field. As long known50, under
the influence of such a magnetic field, electrons occupy
LL orbitals. Strong interactions among electrons may,
however, effectively lead to the occupation of multiple
LLs that Jain denominated as Λ-levels51. We focus on
two-body interactions with rotational and translational
symmetry although the general formalism extends to k-
body interactions with k > 2. It is therefore convenient
to employ the relative angular momentum eigenstates in
order to construct a basis.
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A. Building a two-fermion basis

Consider electrons of mass me and charge e < 0 mov-
ing on the infinite xy-plane in the presence of an exter-
nal perpendicular magnetic field B = ∇ × A = −Bẑ,
(B > 0). Let us start with a brief review of LL physics
and establish the notation used in this paper. Denoting
the ith particle’s location in the plane by the complex
number(s) zi = xi + iyi (z̄i = xi − iyi), the kinetic energy
of N electrons is given by,

HK =

N∑

i=1

π2
i

2me
=

N∑

i=1

(n̂i +
1

2
) ~ωc, (1)

where πi = −i~∇i − e
cA(xi, yi) is the kinematic momen-

tum, ~ the reduced Planck’s constant, and c the speed of

light. Ladder operators ai and a
†
i given by,

ai =
i`

~
√
2
(πxi

+ iπyi
) , a†i =

−i`
~
√
2
(πxi

− iπyi
), (2)

where ` =
√

~c
|e|B is the magnetic length, define the (LL

index) number operator n̂i = a†i ai, and ωc = |e|B
mec

the
cyclotron frequency. One can also define a new set of
dynamical variables,

bi =
1

`
√
2
z̄i − a†i , b

†
i =

1

`
√
2
zi − ai, (3)

which are known as the cyclotron-orbit-center or guiding
center operators. The ladder operators (ai, bi) with the
algebra

[bi, b
†
j ] = δij = [ai, a

†
j ] , [ai, bj] = [ai, b

†
j ] = 0, (4)

provide a complete description of LL physics, where sin-
gle particle basis states are given by

|ni, si〉 =
1√
ni! si!

a†ni

i b†sii |0, 0〉 , (5)

and the integers ni and si are the eigenvalues of the num-

ber operators n̂i and n̂
b
i = b†i bi, respectively. The vacuum

state |0, 0〉 is obtained by solving ai |0, 0〉 = 0 = bi |0, 0〉,
with ni = 0 corresponding to the LLL. With the aid of
the above operators, the total angular momentum oper-
ator of N particles can be written as

Ĵ =

N∑

i=1

Ĵi, with Ĵi = ~(n̂b
i − n̂i), (6)

and, therefore, the single particle basis states satisfy

Ĵi |ni, si〉 = ~(si − ni) |ni, si〉 = ~ji |ni, si〉 = Ji |ni, si〉 .(7)
For two particles, raising and lowering operators in the
center of mass coordinate frame are given by52

ac =
1√
2
(a1 + a2) , ar =

1√
2
(a1 − a2),

bc =
1√
2
(b1 + b2) , br =

1√
2
(b1 − b2), (8)

where subindex c stands for center of mass and r for rela-
tive. Here, n̂c+ n̂r = n̂1+ n̂2, with n̂c,r = a†c,rac,r (whose

eigenvalues are nc,r), and n̂
b
c,r = b†c,rbc,r (whose eigenval-

ues are 2j −m and m, respectively). Note that j can be
an integer or half-integer as 2j = nc + nr is always an
integer. The relative and total angular momentum oper-
ators in the two-particle system are, respectively, given
by

L̂r = ~ (n̂b
r − n̂r) , Ĵ = ~ (Ĵ1 + Ĵ2). (9)

These center of mass frame operators enable the con-
struction of a two-fermion basis. A normalized fermionic
two-particle state of a definite relative angular momen-
tum Lr = ~(m − nr) and total angular momentum
J = ~ (2j − nc − nr) can be written as

|nc, nr, 2j −m,m〉 = a†nc
c a†nr

r b†2j−m
c b†mr

√

nc!nr!(2j −m)!m!
|0, 0〉 . (10)

While the basis states in Eq. (10) are suitable to describe
a system with rotational symmetry, the LL indices of the
individual particles, ni, are not fixed. Our aim, how-
ever, is to define a two-fermion basis confined in the sub-
space of NL lowest lying LLs, i.e., 0 ≤ ni ≤ NL − 1, for
i = 1, 2. To systematically generate the fermionic basis
with a well-defined LL index for individual particles, we
introduce the following fermionic basis states labeled by
{n1, n2, j,m}

|I〉F = Gn1,n2

± |0, 0, 2j −m,m〉
=
∑

nc,nr

Cncnr |nc, nr, 2j −m,m〉 , (11)

where

Gn1,n2

± =
1

√

n1!n2! 2(1 + δn1,n2
)
(a†n1

1 a†n2

2 ± a†n2

1 a†n1

2 ),

Cncnr
= 〈nc, nr, 2j −m,m |I〉F

=

nr∑

s=0

nc∑

l=0

√
nc!nr!

√

2n1+n2+1(1 + δn1,n2
)

× (−1)nr−s
√

(l + s)! (n1 + n2 − l − s)!

(nc − l)! l! (nr − s)! s!

×
[

δl+s,n1
δnc+nr−l−s,n2

± δl+s,n2
δnc+nr−l−s,n1

]

.

The +(−) sign is used whenever m ∈ odd(even).
In a disk geometry, within the symmetric gauge

A(xi, yi) = B
2 (yix̂ − xiŷ), as further elaborated on in

Appendix A, we obtain

|I〉F =
1

2
√

1 + δn1,n2

j
∑

k=−j

ηk(j,m) |α1, α2〉 . (12)

Here, we employed the following 2 × 2 determinant
Dα1α2

(1, 2) = 〈z1, z̄1; z2, z̄2|α1, α2〉 ≡ 〈1, 2|α1, α2〉, and
αi = (ni, si),

Dα1α2
(1, 2) =

∣
∣
∣
∣

φn1,j−k(1) φn1,j−k(2)
φn2,j+k(1) φn2,j+k(2)

∣
∣
∣
∣
, (13)
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where φni,si(i) = 〈zi, z̄i|ni, si〉 ≡ φαi
, for i = 1, 2, with

s1 = j − k and s2 = j + k. In coordinate representation

φn,s(z, z̄) =
(−1)n

√
n! e−

zz̄
4`2

√
2π`2

√
2s−ns!

(z

`

)s−n

Ls−n
n

( zz̄

2`2

)

, (14)

where Ls−n
n (x) is the associated Laguerre polynomial.

The functional form of the coefficients ηk(j,m) con-
tains information about the geometry of the system24.
For the disk geometry, it is given by

ηk(j,m) = (−1)m+j−k

√

(j − k)! (j + k)!

22j−1(2j −m)!m!

×
j−k
∑

q=0

(−1)q
(
2j −m

q

)(
m

j − k − q

)

. (15)

For a given j, each state |I〉F will be specified by the
reduced set {n1, n2,m}. By imposing 0 ≤ ni ≤ NL −
1, the basis states of Eq. (12) span a two-fermion basis
projected onto the subspace of the lowest NL LLs.

We can express the two-fermion basis in a second quan-
tization representation. This is especially advantageous
when discussing the QH parent Hamiltonian projected
onto the subspace of NL LLs, and its ground states.
Equation (13) suggests a natural map

1√
2
Dα1α2

→ c†n1,j−n1−kc
†
n2,j−n2+k|0〉. (16)

Here, |0〉 is the Fock space vacuum and c†n,l (cn,l) are

fermionic creation (annihilation) operators, creating (an-
nihilating) an electron with LL index n and angular mo-
mentum ~l. Thus, one may transition from the fermionic
states of Eq. (12) to a second quantized representation
by a replacement of the type24

|I〉F → Tn1,n2 +
j;m , (17)

where

Tn1,n2 +
j;m =

1
√

2(1 + δn1,n2
)

×
j+n1∑

k=−j−n2

η
k+

n2−n1
2

(j +
n2 + n1

2
,m) c†n1,j−kc

†
n2,j+k.

(18)

It can be checked that the two-fermion operators Tn1,n2 +
j;m

satisfy

〈0|Tn1,n2 −
j;m Tn1,n2 +

j;m |0〉 = 1, (19)

where Tn1,n2 −
j;m = (Tn1,n2 +

j;m )†.
So far, we examined a system on a plane of an un-

bounded spatial extent. For finite size systems, the num-
ber of angular momentum orbitals in each LL is restricted
by the number L of available distinct single particle an-
gular momentum modes. As an example, in Fig. 1 we
depict the LL orbitals (solid bars) and project only up

to four LLs (black solid bars). The horizontal axis rep-
resents the angular momentum of the LL orbitals and
the vertical axis provides the LL index. Notice that the
highest LL will always have L orbitals.

FIG. 1. Projection onto the lowest NL = 4 LLs (black solid
bars) with L = 6. Each solid bar represents a LL orbital
φni,si with horizontal and vertical axis representing angular
momentum Ji (in units of ~) and LL index ni, respectively.

For NL LLs, each single particle angular momentum
mode may, at most, correspond to NL orthogonal or-
bitals. Consequently, in Eq. (18), j must be restricted to
the interval [−NL+1,L−NL]. Assuming integer orbital
numbers j ± k, it can be checked that j may assume the
2L− 1 consecutive values24

j = −NL + 1,−NL + 3/2,−NL + 2, · · · ,L−NL. (20)

Here, −min(̃,L − 1 − ̃) − n1−n2

2 ≤ k ≤ min(̃,L − 1 −
̃) + n1−n2

2 , where ̃ = j + n1+n2

2 . (A word of caution:
Whenever j refers to angular momentum it must be an
integer).

B. Projected two-body Hamiltonians

We next outline a simple general recipe for writing
down QH parent Hamiltonians in terms of fermionic op-
erators. The positive semi-definite property of these
Hamiltonians will, importantly, give rise to a systematic
way of generating ground states (zero-energy modes) for
NL LLs. To this end, we utilize the two-fermion basis
derived above and project a two-body QH Hamiltonian
onto NL LLs. By expressing the projected Hamiltonian
in a second quantized form, we show that the projected
Hamiltonian is a “frustration-free Hamiltonian”.
Consider a (repulsive) short range interaction potential

Hint =
∑

i<j

V (ri − rj), (21)

that enjoys rotational and translational symmetry. The
pair interaction V (ri − rj) = V (rij) can, generally, be
represented as an infinite sum52

V (ri − rj) =

∞∑

α=0

Vα Lα(−`2∇2
ij) δ

2(ri − rj), (22)
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where Lα(x) is the αth Laguerre polynomial53. The ex-
pansion coefficients Vα can be determined from the spe-
cific form of the interaction, viz.,

Vα = 4π`2
∫

d2k

(2π)2
Ṽ (k)Lα(`

2k2) e−`2k2

, (23)

where Ṽ (k) is the Fourier transform of the potential (see
Appendix B for a derivation). For the LLL, α can be
identified with the relative angular momentum of the
pair, and as such, Vα would represent the energy penalty
for having a pair in such a state. This approach, known as
the pseudopotential expansion, was first pioneered in the
context of FQH physics and LLL by Haldane12. Gener-
ically,13 Eq. (22) may be considered as an expansion of
the interaction potential in powers of its range (magnetic
length) `. This can be seen by noting that, for a ground
state of Hint with filling fraction ν, a relevant correlation
length is50 ∼ `/

√
ν, proportional to the Wigner-Seitz ra-

dius. Thus, for a short range two-body interaction, it is
typically sufficient to keep the first few pseudopotentials.
As shown below, the interaction potential Hint, when

projected onto NL LLs, is a positive semi-definite and
frustration-free operator. These universal properties may
be made explicit by keeping α = 0, 1,

V (ri − rj) = (V0 + V1 + V1`
2 ∇2

ij) δ
2(ri − rj). (24)

Due to the antisymmetry of the fermionic wave function,
the first two terms on the righthand side of Eq. (24) have
vanishing expectation values. Therefore, we analyze only
V (ri − rj) ≡ V1`

2∇2
ijδ

2(ri − rj), as our interaction po-
tential. We will refer to this potential as the Trugman-
Kivelson (TK)13 Hamiltonian

Hint = V1`
2
∑

i<j

∇2
ijδ

2(ri − rj), (25)

whose ground states satisfy the M = 3-clustering prop-
erty in the coordinate representation. For ground states
satisfying the M >3-clustering property we should ei-
ther consider higher-order terms in the pseudopoten-
tial expansion (see Appendix B), assuring its posi-
tive semi-definite character, or engineer special pos-
itive semi-definite Hamiltonians with gradient-density
expansions15.
The spectral decomposition of the Hamiltonian in the

projected two-fermion basis reads

Ĥint ≡ PNL
Hint PNL

=
∑

j

∑

ξ

Eξ |ξ〉〈ξ|. (26)

Here, PNL
represents the projection operator onto the

NL LLs and |ξ〉 =
∑

I Λ
ξ
I |I〉F are the eigenvectors of

the interaction in the two-fermion basis |I〉F with expan-

sion coefficients Λξ
I . The index I runs over the entire

two-fermion basis in the subspace of NL LLs. The posi-
tive semi-definite property of the Hamiltonian is evident
when Eξ ≥ 0, as will be demonstrated for the case of four

LLs. Putting all of the pieces together, the TK Hamilto-
nian may be expressed as a sum over angular momentum
terms24,

Ĥint =
∑

j

Ĥj , (27)

where Ĥj =
∑

ξ EξT ξ+
j T ξ−

j is a positive semi-definite
operator with

T ξ+
j =

∑

I

Λξ
I T

n1,n2 +
j,mI

, T ξ−
j = (T ξ+

j )†. (28)

Note that for the Hamiltonian in Eq. (27), in general,

[Ĥj , Ĥj′ ] 6= 0 for j 6= j′. Nevertheless, there can be a
common zero-energy state. In the subspace of NL LLs,
Eξ ≥ 0, and a zero-energy state may appear if and only if

Ĥj |Ψ0〉 = 0 for all j. Whenever such a zero-energy state
exists (and as we will explain such states do indeed exist),
the projected Hamiltonian is, by definition, a frustration-
free Hamiltonian.

Obtaining the projected Hamiltonian for NL = 1, 2
and 3 LLs was previously explored14,24,28. This led to
the discovery of non-trivial structures for ν = 2/5 and
ν = 1/2 FQH ground states and their excitations. In the
current paper, we will chiefly focus on NL = 4 LLs.

C. QH Hamiltonian in the subspace of four LLs

The two-fermion basis, spanning the positive eigen-
value subspace of the TK Hamiltonian, for NL = 4 LLs
includes up to 40 vectors |I〉F (see Appendix C for their
construction). This cutoff value, 40, includes all those ba-
sis vectors having non-vanishing matrix elements of the
TK Hamiltonian. Diagonalizing the interaction matrix
leads to only 12 nonzero eigenvalues,

Eξ ∈ V1
4π

{325

16
,
323 + 47

√
17

32
,
69

8
,
31 + 3

√
33

8
, (29)

323− 47
√
17

32
,
75 + 7

√
57

32
,
31− 3

√
33

8
,
13 +

√
89

16
,

13 +
√
129

32
,
75− 7

√
57

32
,
13−

√
89

16
,
13−

√
129

32
, 0, · · · , 0

}

.

We note that Eξ ≥ 0. Thus, the positive semi-definite
Hamiltonian projected onto NL = 4 LLs is given by

Ĥint =
∑

j

12∑

ξ=1

EξT ξ+
j T ξ−

j , (30)

where in the operators T ξ+
j each individual operator

Tn1,n2 +
j,m is specified by a set of numbers {n1, n2,m} as

given in Table VIII of Appendix C. The expansion coef-

ficients Λξ
I are also given in Appendix C.
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III. GROUND STATES OF QH HAMILTONIANS

By its nature, any positive semi-definite Hamiltonian
can only have non-negative eigenvalues. Thus, any non-
trivial zero-energy eigenstate of Eq. (27), if it exists, will
be a ground state which satisfies

Ĥj |Ψ0〉 = 0 ∀j ⇐⇒ T ξ−
j |Ψ0〉 = 0 ∀ξ, j. (31)

These zero-energy states collectively exhaust the ground
state manifold. As we will explain, one may indeed pre-
cisely find all existing zero-energy states for given number
of particles N at filling fractions ν = (N−1)/(L−1). The
filling fraction of the ground state, on the other hand,
determines the electron density ρ = (B/φ0)ν, where
φ0 = hc/|e| is the electron’s magnetic flux quantum.
Therefore, exploring the ground states of the Hamilto-
nian family considered here leads to candidate incom-
pressible states with different Landau level filling factors.
Assuming that we have determined a set of zero-energy
ground states from Eq. (31), an important question is
whether adding or removing electrons may increase the
ground state energy. The answer to this question estab-
lishes the relationship between the electron density and
the ground state energy of the FQH state, which we will
explore in the next subsection.

A. Monotonicity of the ground state energy

The kinetic energy in our particle number conserving
system is quenched; the system is dominated by interpar-
ticle interactions. An interesting question for a general
system with k-body interactions is what is the relation
between the ground state energies of N and N−n (n > 0)
particles when the total number of available states is
fixed. As demonstrated in Ref. [54], for general k-body in-
teraction positive semi-definite Hamiltonian, the energy
of the ground state is monotonically increasing in the
number of particles. Reference [54] focused on flavorless
and spinless electrons (thus, spinless electrons confined
only to the LLL). In what follows, we generalize this ear-
lier result to a broader setting in which the electrons may
have several internal degrees of freedom (such as the LL
index, spin and angular momentum).
Consider a general k-body Hamiltonian,

Hk =
∑

[n]

V[n] c
†
n1
c†n2

· · · c†nk
cnk+1

cnk+2
· · · cn2k

, (32)

where nl = (n1l , n
2
l , · · · ), l = 1, 2, · · · , 2k, represents a set

of labels such as the band (or LL) index, spin, angular
momentum, etc., and [n] = {n1, · · · ,n2k}. Note that the
Hamiltonian Hk conserves the number of particles,

[Hk, N̂ ] = 0. (33)

Here, N̂ =
∑

nq
c†nq

cnq
. We next consider an N ′-particle

density matrix ρN ′ and further define

ρN ′−1 =
1

N ′

∑

nq

cnq
ρN ′c†nq

, (34)

such that N̂ρN ′ = ρN ′N̂ = N ′ρN ′ . This implies that
Tr[ρN ′ ] = Tr[ρN ′−1] = 1. We next establish the following
identity

Tr[ρN ′−1Hk] =
N ′ − k

N ′
Tr[ρN ′Hk]. (35)

To show this, we first compute

Tr[ρN ′Hk] =
1

N ′
Tr[ρN ′N̂Hk], (36)

and use the operator identity

N̂Hk = kHk +
∑

nq

c†nq
Hkcnq

, (37)

to obtain

Tr[ρN ′Hk] =
k

N ′
Tr[ρN ′Hk] +

1

N ′
Tr[Hk

∑

nq

cnq
ρN ′c†nq

]

=
k

N ′
Tr[ρN ′Hk] + Tr[ρN ′−1Hk]. (38)

This indeed establishes the identity in Eq. (35).
Now, if N ′ < N (setting N ′ = N − n) then, by induc-

tion,

Tr[ρN−nHk] = [N, n, k] Tr[ρNHk], (39)

where

[N, n, k] =
(N − n + 1− k)(N − n + 2− k) · · · (N − k)

(N − n + 1)(N − n + 2) · · ·N .

If ρN is chosen such that the ground state energy
E0(N) = Tr[ρNHk], then by the Ritz variational
principle55, we get

Tr[ρN−nHk] ≥ E0(N − n). (40)

Equivalently,

E0(N − n) ≤ [N, n, k] E0(N). (41)

If the Hamiltonian is a positive semi-definite operator
then E0(N) ≥ 0 for any N and

E0(N − n) ≤ [N, n, k] E0(N) ≤ E0(N).

For the particular case of n = 1, we find that

E0(N − 1) ≤ N − k

N
E0(N) ≤ E0(N). (42)

This inequality proves the monotonicity of the ground
state energy. Equation (42) allows for the inclusion of
general LLs and angular momentum (ni = (n, j)) indices.
Thus, if a zero-energy ground state exists for a given
density then, for all lower electron densities, the ground
state energy must strictly vanish.
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The above demonstration of monotonicity may be gen-
eralized to a linear combination of k-body interactions54

H =

kmax∑

k=kmin

Hk, (43)

with kmax − kmin ≥ 0. From Eq. (39),

Tr[ρN−nH] = [N, n, kmin]Tr[ρNH] + δE. (44)

Here,

δE =

kmax∑

k=kmin

([N, n, k]− [N, n, kmin]) Tr[ρNHk]. (45)

Similar to the above, if E0(N) = Tr[ρNH] then the Ritz
variational principle mandates that

E0(N − n) ≤ [N, n, kmin]E0(N) + δE. (46)

Note that in (45) the term in parenthesis is negative semi-
definite since [N, n, kmin] ≥ [N, n, kmin + δk] ≥ 0 when
0 ≤ δk ≤ kmax − kmin. Then, whenever δE ≤ 0

E0(N − n) ≤ [N, n, kmin]E0(N) ≤ E0(N), (47)

which is in particular guaranteed if all Hk’s are positive
semi-definite.

B. Determining the densest zero-energy mode:
Entangled Pauli Principle (EPP)

Here, we explicitly determine the ground state of the
projected Hamiltonian in Eq. (27) for an N -particle sys-
tem. Intuitively, the densest ground state of this type of
Hamiltonians corresponds to an incompressible QH liq-
uid. The monotonicity that we established in the pre-
vious subsection indeed indicates that if we find a zero-
energy ground state with filling fraction ν, then for all the

FIG. 2. All ground states of positive semi-definite Hamiltoni-
ans of the form of Eq. (32), with densities ν less or equal to
the maximal density νmax are zero-energy states. For densities
exceeding that threshold value, ν > νmax, the ground states
have positive energies.

smaller filling fractions (with fixed L) the ground states
will also be zero-energy eigenstates, i.e., E0 = 0. (This
is schematically illustrated in Fig. 2.)
Since the spatial extent of LL orbitals is directly as-

sociated with the magnitude of its angular momentum,
when there are several zero-energy states with the same
bulk filling fraction ν, we will define the one with small-
est total angular momentum J to be the densest state.
When alluding to “the ground state”, we will mainly refer
to the densest zero-energy ground state.
The ground state |Ψ0〉 can be written as a linear super-

position of Slater determinants in the occupation number
representation basis,

|Ψ0〉 =
∑

n

Cn|n〉, (48)

with coefficients Cn ∈ C. Each basis state |n〉 (a single
Slater determinant),

|n〉 = c†n1,j1
c†n2,j2

· · · c†nN ,jN
|0〉, j1 ≤ j2 ≤ · · · ≤ jN ,

is associated with a total angular momentum partition56

(due to the rotational symmetry of the projected Hamil-
tonian) {λ} = λj1λj1+1 · · ·λji · · ·λjN . Here, 0 ≤ λji ≤
NL represents the multiplicity of occupied orbitals with
fixed angular momentum ~ji, where jmin = −NL + 1 is
the lowest possible value, and jmax = L−NL the largest
possible one. A “multiplicity” λji > 1 implies that elec-
trons occupy orbitals with the same angular momentum
~ji and different LL index n. An equivalent alternative
notation for the occupation number configuration is af-
forded by {j1, · · · , jN}. For instance, the N = 3 Slater
determinant

c†n,j1c
†
n′,j1

c†n′′,j1+2|0〉 = |2n,n′01n′′〉 = −|2n′,n01n′′〉.(49)

has an associated angular momentum partition {λ} =
201 ≡ {j1, j1, j1 + 2}.
Any basis state element |n〉 in the expansion above

can be classified as being one of two (mutually exclusive)
types: (i) an expandable |n′〉 or a (ii) non-expandable
state (which with some abuse of notation we will denote
by |n〉)24. By fiat, expandable states can be obtained
by an “inward squeezing” of other basis states appear-
ing in the zero mode under consideration, Eq. (48), with
non-zero coefficient. If this is not the case, we refer to
the basis state as “non-expandable”. Here, by “inward
squeezing”, we refer to an inward pair hoping process in
the occupation number basis, i.e.,

|n′〉 ∝ c†n1,j1
c†n2,j2

cn3,j3cn4,j4 |n〉, (50)

where j3 < j1 ≤ j2 < j4. For instance, in Fig. 3,
the state |022,3021,320,3〉 (expandable state in yellow (or
light shade)) is obtained from an inward squeezing of
|13021,3030,2,3〉 (the state in blue (darker shade)). We
point out that the total angular momentum of |n〉 given
by J = ~

∑jN
l=j1

l λl does not change under the inward
squeezing process.
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FIG. 3. Example of an inward squeezing process for a state
consisting of six electrons (J = −2~), confined to the four low-
est LLs. The electron configuration prior to (after) squeezing
is represented by blue (yellow) color.

The projection of Eq. (48) onto its non-expandable
states is often termed the “root” or “dominant” state.
We can schematically write the ground state in Eq. (48)
as

|Ψ0〉 = |Ψroot〉+ |Squeezed States〉. (51)

Here, |Ψroot〉 represents the root state while all
expandable Slater determinants are encapsulated in
|Squeezed States〉. For the LLL, the root state is typi-
cally a single Slater determinant 20,24,57 obeying a gen-
eralized Pauli exclusion principle20. For example, in the
occupation number basis, such a principle may state that
q consecutive states can be occupied by at most p parti-
cles. This can gives rise to a QH state at ν = p/q. By
contrast, when multiple LLs are present, in account of
the degeneracy of the fixed angular momentum orbitals,
0 ≤ λj ≤ NL, a given root pattern may correspond to
various non-expandable Slater determinants. As a re-
sult, the root state is a linear superposition of all such
non-expandable Slater determinant states,

|Ψroot〉 =
∑

nroot

Cnroot
|nroot〉, (52)

where Slater determinants |nroot〉 have a common occupa-
tion number configuration {λ}root. This reveals an essen-
tial entangled structure associated with the root state,
which replaces the generalized Pauli exclusion principles
with an EPP as the underlying organizing principle14,15.
The EPP encodes the entanglement structure that de-
termines the densest possible root state (associated with
the incompressible zero mode state), and various quasi-
hole type and/or edge excitations, which can be thought
of as inserting domain walls of various types into the
densest root state (see below). Generically, |Ψroot〉 con-
tains central information such as density of the QH state,
quasiparticle charge and exchange statistics33,34, and, in
the thin cylinder (Tao-Thouless58) limit, it constitutes
the exact ground state58–65. For these reasons, |Ψroot〉
expresses the “DNA” of the QH state14.

1. Entangled Pauli Principle and pseudospin classification

We next study the two-particle ground states for NL =
4 LLs and show that their root states can be understood
via its pseudospin structure, i.e., they carry representa-
tions of a certain su(2) pseudospin algebra. For pseu-
dospin classification purposes, it is more convenient to
work in the pseudofermion basis. (The polynomial part
of the corresponding pseudofermion orbital basis states
is z̄ni

i z
ji+ni

i , in contrast to the orthogonal LL orbitals of
Section IIA.) The many-body basis elements are defined
as

|n) = |{λ}) ≡ c̃∗n1,j1 c̃
∗
n2,j2 · · · c̃

∗
nN ,jN |0〉, (53)

where c̃∗ni,ji
(c̃ni,ji) are the pseudofermion creation

(annihilation) operators15 satisfying {c̃∗n1,j1
, c̃n2,j2

} =
δn1,n2

δj1,j2 . Then, the relevant su(2) pseudospin alge-
bra is defined as S± =

∑

j≥0 S
±
j and Sz =

∑

j≥0 S
z
j ,

where

S+
j = 3c̃∗1,j c̃0,j + 2c̃∗2,j c̃1,j + c̃∗3,j c̃2,j ,

S−
j = 3c̃∗2,j c̃3,j + 2c̃∗1,j c̃2,j + c̃∗0,j c̃1,j , (54)

Sz
j =

3

2
c̃∗3,j c̃3,j +

1

2
c̃∗2,j c̃2,j −

1

2
c̃∗1,j c̃1,j −

3

2
c̃∗0,j c̃0,j .

We note that the pseudospin algebra is local in angular
momentum space, i.e., for each j the generators satisfy
the su(2) algebra. Here, the pseudospin Casimir operator

is defined as usual, Ŝ2 = S+S− + (Sz)2 − Sz, with the
eigenvalue of S(S + 1). In Section V, we will expand on
the utility of this algebra to locally detect certain degen-
eracies associated with elementary excitations, emerging
from the domain wall structure in the EPP description
of the zero mode spectrum.
The pseudospin language is particularly useful to un-

derstand the EPP structure. To see this, we study the
root states with the following {λ} patterns: 2, 11, 101,
and 1001. We start our discussion with a two-particle
root state with multiplicity 2, i.e., two particles with the
same angular momentum,

|Ψ0〉=
∑

n,n′

Cn,n′ |2n,n′). (55)

There are 6 coefficients to satisfy the linear constraints
defined by Eq. (31). For a single angular momentum
j, due to the fermionic antisymmetry, only 5 out of 12
constraints, are linearly independent. This leads to 5
linear equations for the coefficients which can be uniquely
solved.
Therefore, the unique ground state becomes

|Ψ0〉 =|23,0) + 3|21,2), (56)

where both particles occupy orbitals with angular mo-
mentum index j = 0 (which we suppressed in (56)). One
can check that this state is annihilated by both S+ and
S− operators in the pseudospin algebra, and it carries
the S = 0 representation. We note that the eigenvalues
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of Sz are determined by the total LL index of the states
as n + n′ − 3. Multiplicity 2 in the root pattern thus
forms a singlet and is generalized entangled with respect
to the u(N = 2) algebra (single Slater determinants are
unentangled with respect to the same algebra)66,67.

Consider next the 11 pattern in the root state. The
corresponding ground state,

|Ψ0〉=
∑

n,n′

Cn,n′ |1n1n′), (57)

has 16 parameters up to a normalization factor to satisfy
12 constraints. We thus get 4 different solutions, which
can be expressed as

|Ψ̃(1)
0 〉 =|1012) + |1210)− 2|1111),

|Ψ̃(2)
0 〉 =|1013)− 2|1112) + |1211),

|Ψ̃(3)
0 〉 =|1310)− 2|1211) + |1112),

|Ψ̃(4)
0 〉 =|1113) + |1311)− 2|1212), (58)

In terms of the su(2) pseudospin algebra, |Ψ̃(1)
0 〉, |Ψ̃(2)

0 〉+
|Ψ̃(3)

0 〉 and |Ψ̃(4)
0 〉 carry a spin triplet representation, while

|Ψ̃(2)
0 〉 − |Ψ̃(3)

0 〉 is a spin singlet. Hence, 11 is the root
pattern realizing pseudospins S = 0 and 1.
Now, let us consider the 101 root pattern. The corre-

sponding ground state,

|Ψ0〉=
∑

n,n′

Cn,n′ |1n01n′) + C ′
n,n′ |02n,n′0), (59)

has 16 coefficients Cn,n′ associated with the root state
and 6 coefficients C ′

n,n′ associated with inward-squeezed
states to satisfy 12 linear constraints and a normaliza-
tion condition. We thus expect to obtain 10 possible
solutions. One of those solutions, however, has already
been discussed in Eq. (56), where all the Cn,n′ are zero
(i.e., only the squeezed state contributes). As a result,
we obtain 9 independent solutions in the pseudofermion
basis, with root states

|Ψ(1)
root〉 = |11010)− |10011),

|Ψ(2)
root〉 = |12010)− |11011),

|Ψ(3)
root〉 = |11011)− |10012),

|Ψ(4)
root〉 = |12011)− |11012),

|Ψ(5)
root〉 = |13010)− |12011),

|Ψ(6)
root〉 = |11012)− |10013),

|Ψ(7)
root〉 = |13011)− |12012),

|Ψ(8)
root〉 = |12012)− |11013),

|Ψ(9)
root〉 = |13012)− |12013). (60)

In this case, |Ψ(.)
root〉 is no longer the same as |Ψ0〉 as we

have excluded inward squeezed terms C ′
n,n′ . These root

states can be linearly combined to form pseudospins S =
0, 1, and 2 representations in the following way,

S = 0, Sz = 0 : |Ψ(6)
root〉+ |Ψ(5)

root〉 − 2|Ψ(4)
root〉,

S = 1, Sz = 1 : |Ψ(7)
root〉 − |Ψ(8)

root〉,
S = 1, Sz = 0 : |Ψ(5)

root〉 − |Ψ(6)
root〉,

S = 1, Sz = −1 : |Ψ(2)
root〉 − |Ψ(3)

root〉,
S = 2, Sz = 2 : |Ψ(9)

root〉,
S = 2, Sz = 1 : |Ψ(8)

root〉+ |Ψ(7)
root〉,

S = 2, Sz = 0 : |Ψ(6)
root〉+ |Ψ(5)

root〉+ 4|Ψ(4)
root〉,

S = 2, Sz = −1 : |Ψ(2)
root〉+ |Ψ(3)

root〉,
S = 2, Sz = −2 : |Ψ(1)

root〉. (61)

Finally, we consider the pattern 1001 in the root state.
The corresponding two-particle ground state,

|Ψ0〉=
∑

n,n′

Cn,n′ |1n001n′) + C̃n,n′ |01n1n′0), (62)

has 16 parameters Cn,n′ associated with the root state

and 16 parameters C̃n,n′ associated with inward-squeezed
states to satisfy 12 linear constraints and a normaliza-
tion condition. We thus expect to find 20 possible solu-
tions. Four of those solutions, however, we have already
discussed in Eq. (58), where all the Cn,n′ are zero in
Eq. (62). Excluding those 4 solutions, we get 16 indepen-
dent solutions each of which consists of an unentangled
root state (with a single Slater determinant) of the form
|1n001n′). From these 2-particle considerations, we may
now infer/anticipate the following EPP, to be generalized
to N -particle root states further below:

1. 2 is the highest multiplicity in the allowed ground
state root pattern. It can only occur as a pseu-
dospin singlet with S = 0.

2. 110 pattern can appear in the root state in pseu-
dospins S = 0, 1 representations.

3. 101 pattern can appear in the root state in pseu-
dospins S = 0, 1, 2 representations.

4. 1001 pattern can appear in the root state as an
unentangled state.

Root states (DNA) consistent with the above EPP
rules admit a matrix product state (MPS) representation
that highlights its patterns of entanglement. We discuss
this next.

2. MPS construction of DNA from the Entangled Pauli
Principle

We have so far established constraints for the ground
state wave function of two particles, formulated as two-
particle EPPs for the root states. It remains to show
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particle state associated with a “2” discussed above.
Longer units of entangled . . . 11011 . . . are now formed

analogously, as shown in the figure. An important spe-
cial situation are domain walls at root level of the form
. . . 200200 11011 . . . and . . . 110110 1 011011 . . . , i.e., do-
main walls representing shifts between the densest pos-
sible patterns, 200 and/or 110. These domain walls will
play an important role in Sec. IV, in that they repre-
sent elementary (charge 1/3, see Sec. IV) excitations. As
seen in the figure (bottom row), there is a single dangling
bond associated to any such domain wall. The associated
elementary excitations thus carry a pseudospin-1/2.

3. The densest N-particle ground state

We now formally elevate the EPP to apply to general
N -particle zero modes and their root states, as already
assumed in the preceding subsection. Let us begin by
showing that in an N -particle root state, when NL = 4,
a single angular momentum orbital can have a maximum
multiplicity of 2 (here, we follow the method utilized in
[14]). To see this, we proceed by assuming multiplicity
p for orbitals with angular momentum ~j. The corre-
sponding root state can then be written as

|Ψroot〉 =
∑

n1,n2,...,np

Cj
n1n2...np

c†n1,j
c†n2,j

. . . c†np,j
|np〉+ |rest〉,

(64)

where |np〉 is a Slater determinant with N − p particles,
and |rest〉 includes other Slater determinants in the root

state such that 〈rest|c†n1,j
c†n2,j

. . . c†np,j
|np〉 = 0. Gener-

ically, there are
(
4
p

)
coefficients Cj

n1n2...np
, which deter-

mine the pseudospin structure at angular momentum ~j.

Now, contracting Eq. (31) with |n2〉 = c†n3,j
. . . c†np,j

|np〉
and complex conjugating, we obtain

〈Ψ0|T ξ+
j |n2〉 =

40∑

I=1

Λξ
I

∑

k

η
k+

n2−n1
2

(j +
n2 + n1

2
,mI)

× 〈Ψ0|c†n1,j−kc
†
n2,j+k|n2〉 = 0. (65)

By definition, since the root state consists of the non-
expandable states, only k = 0 terms can be nonzero in
the last line. This gives,

40∑

I=1

Λξ
I ηn2−n1

2

(j +
n2 + n1

2
,mI)C

j
n1n2...np

= 0, (66)

where for each set of particles (n3, . . . , np) we get 5 con-
straints. It is clear that the number of constraints for
p = 3 and 4 is larger than the number of coefficients,
which leads to Cj

n1n2...np
= 0. For p = 2, however, we

get 6 coefficients and 5 constraints, which uniquely deter-
mine the coefficients up to an overall factor. As a result,
multiplicity 2 in the root state represents the same singlet
state identified above for N = 2, irrespective of j.

One can follow steps similar to those that led to
Eq. (65) to obtain constraints associated to the ap-
pearance of Slater determinants of the form |n〉 =

c†n1,j−k′c
†
n2,j+k′ |n2〉 in the root state. Here, for all ni, k

′ ≥
0 and −k′ ≤ k̃ ≤ k′, we assume that c†

ni,j+k̃
c
ni,j+k̃

|n2〉 =
0. The expansion coefficients Cj,k′

n1,n2
of such determinants

are found to be subject to the same general constraints
already observed for two particles, e.g., the pattern 11
can appear only in the pseudospin 0 and 1 representa-
tions (or any linear combination thereof). As a result,
in an N -particle root state, the local EPP and thus the
spin structure of two-particle clusters, 2, 11, 101, 1001,
etc., are analogous to the two-particle root states.

It is straightforward to check that 21 and 201 are not
allowed in the root pattern, as they would give rise to an
over-constrained system of linear constraints. In these
cases, each electron in 2 would have to be further en-
tangled with the 1 at the right. For a 111 pattern,
the two leftmost 1’s would have to be in the subspace
of pseudospin 0 or 1 representation, and similarly the
two rightmost 1’s. An additional constraint would apply
to the two outermost 1’s. Overall, we will get an over-
constrained system. We can thus conclude that the con-
figuration 111 is also not allowed in the ground state root
pattern. In contrast, as expected from our 2-particle con-
siderations above, we find no constraint for the pattern
1001. We thus anticipate that this pattern can generally
appear at root level, where the sites corresponding to 1’s
are subject to no other constraints than already men-
tioned (involving nearest- or next-nearest neighbor occu-
pied sites next to the 1001 pattern). Analogous state-
ments apply for patterns 2002, 2001, 1002, or patterns
with more than two 0’s separating adjacent sites. We
may indeed anticipate that all states satisfying the con-
straints listed here may appear as root states in some
zero mode. That this is so, however, will follow from
explicit construction in Sec. VIA 2. Indeed, the results
of this section will then lead to a proof that no further
zero modes can exist, and that a complete set of zero
modes has been found, thus allowing rigorous zero-mode
counting in terms of possible root states14.

As an immediate corollary to the above results, no root
state can be “denser” than that corresponding to a patter
with repeated unit cell 200. This pattern corresponds to
a filling factor of 2/3, and thus, no zero modes can exist
at higher filling factor. We thus get an upper bound
ν = 2/3 for our ground state. Note that orbitals with
negative angular momentum are somewhat special, as
their existence depends on LL index. As as result, we
will show in Appendix D that the densest possible root
pattern is subject to a left boundary condition of the form
1002002002... . Formally, a root state with bulk pattern
...110110110... is also possible (all constraints can be
satisfied, and there is a corresponding zero mode, see Sec.
VIA 2). This pattern also realizes a state with filling
factor 2/3 in the thermodynamic limit. However, this
pattern and the corresponding zero mode have a slightly
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particular, this leads to the identification of τ → 1 + τ
for the modular T -transformation, and τ → − 1

τ for the
modular S-transformation. If we insist that the period
L1 is always along the x-axis, we may, somewhat loosely
speaking, associate to the modular S-transformation the
active “rotation” depicted in Fig. 5.
Note that, for most values of the parameter τ , the for-

mal replacement τ → −1/τ does not constitute a true
symmetry of the Hamiltonian, essentially since the unit
cell is not in general invariant under the change shown
in Fig. 5, and generates the same lattice only modulo
a non-trivial rotation. Rather, therefore, the formal re-
placement τ → −1/τ is associated to two different de-
scriptions of the same physics. We will now explore the
consequences of this duality first at the level of single
particle, LL physics on the torus.
At the single particle level, a chief manifestation of S-

duality is the existence of two mutually dual choices of
basis that we will denote by ψn,j and ψ̄n,j , respectively.
Here, n is a LL index, and j will index the eigenvalue
of ψn,j and ψ̄n,j under magnetic translations along the
L1-direction (for ψ̄n,j) and the L2-direction (for ψn,j),
respectively. As we will show below, these two basis sets
are mutually related by discrete Fourier transform in j.
This is quite natural, since in the presence of a magnetic
field B, operators corresponding to x and y coordinates
behave as position/momentum conjugate pair upon LL
projection. To elaborate this point, we start with the ba-
sis ψ̄n,j , as with our convention, the magnetic translation
in the L1-direction is simpler (L∆-independent)

ψ̄n,j =
∑

s

φ̄n,j+sNφ
. (68)

The number of flux quanta, Nφ =
BLxLy

φ0
, can be iden-

tified with the integer L = N/ν, for N electrons on the
torus with filling fraction ν, and φ̄n,j is the nth LL wave
function on the cylinder with linear momentum j. By
construction, φ̄n,j will satisfy proper magnetic periodic
boundary conditions in the L1-direction, and as we will
see, the sum in Eq. (68) will properly periodize it in the
L2-direction. To construct φ̄n,j , we assume a particu-
lar gauge Aτ = By(x̂ − τ1

τ2
ŷ) which is perpendicular to

τ1x̂ + τ2ŷ
74. φ̄n,j can be readily solved for in terms of

Hermite polynomials, as the single particle Hamiltonian
H can be expressed in terms of â†â, where,

âφ̄0,j =
1√
2

(

∂x + i∂y +
τ

τ2
y

)

φ̄0,j = 0,

â†φ̄n,j = − 1√
2

(

∂x − i∂y −
τ̄

τ2
y

)

φ̄n,j = φ̄n+1,j , (69)

with τ̄ = τ1−iτ2. In the above equations, we have set the
magnetic length scale to one, i.e., ` = 1 (2πL = LxLy).
Also, we do not require basis states to be normalized,
just that their normalization is independent of j. We
now introduce the magnetic translation operator under
the gauge Aτ ,

t(l) = e
−l.∇−ily

(

x−
τ1
τ2

y
)

, (70)

where l = lxx̂+ ly ŷ. Periodic magnetic boundary condi-
tions read

t(L1)ψ = ψ,

t(L2)ψ = ψ . (71)

The evaluation of these conditions is somewhat easier in
“skewed” coordinates Lx(x∆+ τy∆) = x+ iy , where the
magnetic translation operator reads

t(l) = e−l.∇−ilyLxx∆ , (72)

The orbital φ̄n,j is fully determined by the requirement
that it has x-momentum quantum number j and satisfies
Eq. (69). The solution, in skewed coordinates reads

φ̄n,j = Hn

(√
−i2πτL

(

y∆ − j

L

))

e−i2πjx∆+iπτL(y∆− j
L )

2

.

(73)
Having well-defined x-momentum 2πj/Lx, φ̄n,j already
satisfies the first of the boundary conditions. The small-
est nonzero translations in the L1-direction and L2-
direction that are consistent with Eqs. (71) are given
by t1 = t(L1/L) and t2 = t(L2/L), respectively. One
easily checks that t2φ̄n,j = φ̄n,j+1, immediately implying
t2ψ̄n,j = ψ̄n,j+1, where, at the same time, ψ̄n,j+L = ψ̄n,j .
Since t(L2) = (t2)

L, the second of Eqs. (71) follows for
ψ̄n,j . We summarize the algebraic properties of t1, t2 and
their action on the ψ̄n,j basis as follows

[t1, H] = [t2, H] = 0, t1t2 = ω̄t2t1, ω̄ = ω−1 = ei
2π
L ,

t1ψ̄n,j = ω̄jψ̄n,j , t2ψ̄n,j = ψ̄n,j+1 (74)

In particular t1 and t2 satisfy a Weyl algebra75, which, as
we will see, essentially fixes the change of basis between
the ψ̄n,j basis and its dual counterpart, ψn,j .
Before we elaborate further, we wish to construct the

ψn,j basis via continuous deformation of the magnetic
lattice. One advantage of the skewed coordinates is that
Eq. (73) and the ψ̄n,j derived via Eq. (68) fully retain
their meaning if L1, L2 are arbitrary and in particular L1

is not necessarily aligned with the x-axis. That is, these
equations will define a complete set of LL-orbitals for a
torus described by any magnetic lattice in the complex
plane, for some gauge. If we now continuously deform L1

into the initial L2 and L2 into minus the initial L1, as
described in the beginning of this section, the resulting
orbitals will again be a valid basis for the original torus.
This is, however, a different set of orbitals, as τ goes to
−1/τ during the transformation, and the skewed coor-
dinates now refer to (L2,−L1) as opposed to (L1,L2).
Restoring the original skewed coordinates thus amounts
to the replacements x∆ → y∆, y∆ → −x∆ in Eq. (73),
on top of the replacement τ → −1/τ . The corresponding
replacements in Eq. (68) will then define the ψn,j in some
gauge, not equal to the original gauge.
We proceed by finally showing that after gauge fixing,

the ψn,j so defined are related to the ψ̄n,j via discrete
Fourier transform. From their characterization in the
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preceding paragraph, it is straightforward to see that, t1
and t2 act as follows on the ψn,j :

t2ψn,j = ωjψn,j , t1ψn,j = ψn,j+1 . (75)

This actually involved a re-labeling j → L − j, so as to

have t1, and not t†1, increase the j-index. With the help
of Eqs. (74) one immediately shows that the right-hand
side of

ψn,j =
1√
L

∑

j′

ω̄jj′ ψ̄n,j′ (76)

satisfies Eq. (75). Noting further that the quantum num-
bers n and j uniquely specify an orbital, by completeness
the ψn,j must be linear combinations of the ψ̄n,j with
fixed n. Therefore, the first of Eqs. (75) already requires
Eq. (76) to be true up to a phase that possibly depends
on n and j. Requiring also the second of Eqs. (75) ren-
ders this phase j-independent, and we may set it equal
to 1 by convention. Indeed, in Appendix E we show in
detail that the right-hand side of Eq. (76) evaluates to

ψn,j = e−i2πLx∆y∆

∑

s

φn,j+sL,

φn,j = Hn

(√

i2π
L

τ

(

x∆ − j

L

))

ei2πjy∆−iπ L
τ (x∆− j

L )
2

.

(77)

Notice that this is obtained from Eq. (68) via the re-
placements τ → −1/τ , x∆ → y∆, y∆ → −x∆, j → −j,
up to the initial factor exp(−i2πLx∆y∆), which fixes the
gauge. Thus, the discrete Fourier transform realizes S-
duality at the single-particle level.
In the following, we will usually specialize to tori with

L∆ = 0. In this case, x∆ = x
Lx

and y∆ = y
Ly

, and

the S-duality relation as well as additional symmetries
can be simply stated in terms of the original complex z
coordinate, as shown in Table I. We now extend these
symmetries/dualities to interacting many-body systems.
For magnetic translations, we define many-body opera-

tors T1 =
∏N

i=1(t1)i and T2 =
∏N

i=1(t2)i, where (t1,2)i
acts on the ith particle. While both of these translation
operators commutes with Ĥint, they inherit non-trivial
commutation relations from the single-particle operators

via T1T2 = ω̄
N
L T2T1. From this, it follows that a ground

state with filling fraction ν = p
q must have ground state

degeneracy that is a multiple of q. Likewise, one estab-
lishes straightforwardly that Ĥint has the inversion sym-
metry introduced in Table I. Moreover, for L∆ = 0 there
are anti-unitary operators that implement the combina-
tion of a mirror symmetry (in x or y) with time-reversal
symmetry, see Table I. For simplicity, we will just refer
to these symmetries as “mirror symmetries”.
Finally, we wish to evaluate the action of S-duality on

the interacting Hamiltonian. In most situations, we start
with an interaction V (r1−r2) defined in the infinite disk

x-translation t1 t1ψn,j = ψn,j+1 t1ψ̄n,j = ω̄jψ̄n,j

y-translation t2 t2ψn,j = ωjψn,j t2ψ̄n,j = ψ̄n,j+1

Inversion Ī Īψn,j = ψn,−j Īψ̄n,j = ψ̄n,−j

x-mirror Ix Ixψn,j = ψn,−j Ixψ̄n,j = ψ̄n,j

y-mirror Iy Iyψn,j = ψn,j Iyψ̄n,j = ψ̄n,−j

S-duality ψ̄n,j(z) = eixyψn,j(−z)κ→κ̄

TABLE I. Action of symmetry operations and S-duality on
single-particle wave functions on a torus without skewness
(L∆ = 0). In the presence of finite skewness, similar rela-
tions in particular for S-duality can be defined in skewed co-
ordinates (x∆, y∆). For vanishing skewness, the replacement
τ → −1/τ and its associated dual descriptions of the torus
reduces to an exchange of inverse radii κ = 2π

Ly
, κ̄ = 2π

Lx
. The

“mirror symmetries” Ix and Iy both involve a time-reversal
transformation that we mostly leave understood, and so are
anti-unitary operators. Inversion Ī = IxIy = IyIx.

that we lift to the torus by periodizing, i.e., defining the
following matrix elements on the torus:

V̂
Lx,Ly

n,j =
1

2

∫

d2r1d
2r2 (78)

(
ψ∗
n1,j1(r1)ψ

∗
n2,j2(r2)V

t(r1 − r2)ψn3,j3(r2)ψn4,j4(r1)
)
,

where

V t(r1 − r2) =
∑

`1,2=0,±1,...

V (r1 − r2 + `1L1 + `2L2),

where j ≡ (j1, j2, j3, j4), n ≡ (n1, n2, n3, n4) are multi-
indices. This then defines the following second-quantized
two-body interaction on the torus:

Ĥint =
∑

{n,j}

V̂
Lx,Ly

n,j c†n1,j1
c†n2,j2

cn3,j3cn4,j4 . (79)

Here, the sum is taken over all possible pairs (ni, ji) with
i = 1, · · · , 4 and j1 + j2=j3 + j4, the latter being the
consequence of translational invariance.
Next, we Fourier transform the fermionic operators,

c†ni,ji
=

1√
L

L−1∑

l=0

ω̄jil c̃†ni,l
, (80)

which, according to Eq. (76), is the same as passing to
the basis dual to that of the original creation operators
via S-duality. This leads to the dual Hamiltonian

ĤD
int =

1

L2

∑

l

∑

{n,j}

(
ω̄j1l1+j2l2ωj3l3+j4l4

V̂
Lx,Ly

n,j c̃†n1,l1
c̃†n2,l2

c̃n3,l3 c̃n4,l4

)
. (81)

For the above, one straightforwardly obtains the matrix
elements in the dual basis, which are obtained from the
original matrix elements via Fourier transform:
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1

L2

∑

j

(
ωj1l1+j2l2 ω̄j3l3+j4l4 V̂

Lx,Ly

n,j

)
≡ ˆ̃V

Lx,Ly

n,l . (82)

By the single-particle analysis at the beginning of this
section, these Fourier transformed, dual matrix elements
ˆ̃V
Lx,Ly

n,l are obtained from the original ones V̂
Lx,Ly

n,j via
the formal replacement, or analytic continuation, effect-
ing L1 → L2, L2 → −L1. Again, this is so since this re-
placement leads to a description of the same magnetic lat-
tice in terms of an alternate basis, effecting precisely the
same change of basis as the Fourier transform Eq. (80).
(Note that being a density-density interaction, V (r1−r2)
is gauge invariant). Moreover, if the original interaction
V (r1 − r2) in the infinite plane is rotationally invariant,
it is equally legitimate to associate the dual matrix ele-

ments ˆ̃V
Lx,Ly

n,l to the actively rotated lattice of Fig. 5. It

then follows that, assuming now L1 to be real, ˆ̃V
Lx,Ly

n,l is

obtained from V̂
Lx,Ly

n,j via a formal replacement/analytic

continuation effecting L1 → |L2|, τ → −1/τ . This is pre-
cisely the S-duality that all interactions considered in the
work will exhibit. In particular, the TK-Hamiltonian13

manifestly does so by rotational invariance in the infinite
plane.

B. Quasiholes and domain walls in toroidal
geometry, coherent state construction

Braiding statistics in two spatial dimensions are de-
fined as the result of adiabatic transport when two quasi-
particles (quasiholes) are exchanging positions. In a
topological phase, one expects that the result of such
adiabatic transport only depends on the topology of the
exchange path, modulo a trivial Aharonov-Bohm (AB)
phase. The non-AB part of the adiabatic transport then
defines a representation of the braid group. In situations
where the quasiparticle (quasiholes) positions and other
locally observable quantum numbers do not completely
specify the state of the system, one expects this repre-
sentation to be non-Abelian.
It might seem at first glance hopeless to attempt to

describe an intrinsically (2+1)-dimensional phenomenon
such as braiding in a language constructed from one-
dimensional patterns. For starters, we should establish a
faithful representation of quasiholes in root pattern de-
scriptions. According to our earlier results, it must be
possible in principle, though. Indeed, we have estab-
lished that there exists a one-to-one correspondence be-
tween 1D patterns consistent with an EPP, and a com-
plete set of zero modes of the parent Hamiltonian of a
4 LLs-projected Hamiltonian. Therefore, if we limit our
discussion to the braiding of quasiholes (as opposed to
quasiparticles) injected into the incompressible ground
state, any state describing such localized quasiholes is
guaranteed to have an expansion in a basis labeled by

patterns that correspond to the EPP. Since the states in
this basis carry momentum quantum numbers, such an
expansion will be non-trivial – or a coherent state. This is
so because localized quasiholes break translational invari-
ance in any directions and therefore cannot carry well-
defined momentum quantum numbers. As is by now well-
known33,34, the correspondence between the 2D space
the braiding takes place in, and the “one-dimensional”
coherent states is through a phase-space picture: The
coherent states describe wave packets of fractionalized
domain walls centered about certain points in the two-
dimensional phase space of a one-dimensional quantum
system. Indeed, even single-particle physics in a LL can
be viewed in similar terms, as a LL has an innate one-
dimensional structure. As mentioned before, it is a mani-
festation of the fact that the x- and y- position operators
satisfy canonical commutation relations after LL projec-
tion. While thus the quasihole locations will be encoded
in this manner in the coherent state, other quantum num-
bers are represented by patterns more straightforwardly.
Minimum charge domain walls can be created in various
ways between the “200200 . . . ” and “110110 . . . ” patterns
of our ground state, respectively. By a Su-Schrieffer-type
counting argument, these domain walls will have a charge
of 1/3, and so do the associated quasiholes. To further
illustrate this point, we consider two wave functions with
root patterns of equal length

200200200200200200200200200200200200200
200 11011 00200200 11011 00200200 11011 00200

While the first pattern has 26 particles, the second has
24 particles with six domain walls (indicated by a larger
spacing), and same number of single-particle orbitals.
Arbitrariness in the exact position of the domain walls
will be discussed in Section IVC1. Hence these six do-
main walls have a total charge equal to 2. As all domain
walls are related by translation and/or mirror symmetry,
each of them must have a 1/3 quasihole charge. The 1/3
quasihole charge can also be derived from domain walls
between a 110110 . . . and a 101101 . . . ground state pat-
tern, which we see as follows:

200200200200200200200
110110110110110110110

110 1 0110 1 0110110 1 0110

Both the “200” and “110” patterns in the first two lines
have 14 particles and represent the densest (ground state)
patterns. The last pattern has three domain walls of
“110 1 011” type. By the same counting argument, each
carries a 1/3 charge. Any pattern consistent with our
EPP can be decomposed in an arrangement of (possibly
fused) charge 1/3 domain walls of the types discussed.
At the heart of the formalism is the existence of a ba-

sis of quasihole states, within each sector of given charge
and/or angular momentum, that is associated to patterns
satisfying the EPP. Such patterns were discussed in the
preceding paragraph. So far, we have elaborated in detail
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usually follow the convention h1x < h2x < . . . . This is
assumed in Eq. (83), because the domain walls ai are gen-
erally ordered in the same manner. For the same reason,
however, the right-hand side of Eq. (84a) assumes that
h1y < h2y < . . . . Strictly speaking, in general these two
ways of ordering quasiholes need not be the same, but
differ by an (implicit) permutation σ. Thus, as long as
we stick with the former convention, Eq. (84a) must thus
be replaced with

|ψα(h)〉 =
∑

a

nh∏

i=1

φ̄αi (hσ(i), ai)|a, α〉. (85)

In essence, σ labels different configurations of quasiholes,
as shown in Figs. 7 and 8 for two and three quasiholes,
respectively. It is not possible to traverse from one con-
figuration to another without violating one of the two
conditions that render both Eqs. (83) and (84) valid,
or by crossing the boundaries of the unit cell of our lat-
tice defining the torus in the extended zone-scheme infi-
nite plane. The latter process, however, also changes the
topological sector (see below).

FIG. 9. In each configuration σ, corresponding to quasihole
ordering, quasiholes can be faithfully represented as domain
walls. In the 4 LLs projected ground state of the Ĥint of
Eq. (30), there are 3 types (up to translation symmetry) of
domain walls, namely 200 110, 110 200 and 110 1 011. A
sequence of these domain walls, α, is topologically distinct
from another sequence α′. Each α defines a topological sector
within each configuration σ. For 2 and 3 quasiholes config-
urations, we have 9 and 12 topological sectors, respectively.
(see Tables III and IV)

Consider now a quasihole configuration labeled by σ,
such that both the “original” coherent state expression
(83) and its dual (84) are valid. Then, as the quasihole
locations h identify a d-dimensional subspace in the nh-
quasihole zero-mode space, where d is the (nh-dependent)
number of topological sectors (see Fig. 9). By assump-
tion, both the original and the dual coherent states con-
stitute orthonormal bases for this subspace. We thus
have the general relation

|ψα(h)〉 =
∑

α′

uσαα′(h)|ψα′(h)〉. (86)

FIG. 10. Braiding, an exchange operation of two consecutive
quasiholes, can be thought of in terms of the overlap matrix

between |Ψσ〉 and |Ψσ′

〉. |Ψσ〉 is a column matrix of |ψσ
α〉s

for all topological sectors αs. Configurations σ and σ′ are
identical except h1x < h2x in σ gets changed to h1x > h2x .

where uσ(h) is a unitary matrix that depends smoothly
on hole positions within each component of configu-
rations space characterized by a well-defined σ. In-
deed, the h-dependence of these matrix-valued transi-
tions functions can be determined33 from adiabatic trans-
port (holonomy) as follows: uσ(h) = u(h)ξσ, with u(h) =

exp[iβ
nh∑

i=1

hixhiy ]. From now on, we will refer to ξσ as the

transition matrix.

C. Braiding in coherent state language

The goal is now to work out the result of adiabatic
transport along an exchange path such as shown in
Fig. 10, using the coherent state description. To un-
derstand how non-trivial braiding comes about in this
language, we first observe that we introduced not one
but two well distinct methods of defining what a topo-
logical sector is. One is to say that a quasihole state
lie in the topological sector α if its Ly → 0 limit un-
der adiabatic evolution consists of a sequence of patterns
identified with α. The alternative definition is analogous,
except utilizing the opposite limit Lx → 0. The relation
between these two notions of a topological sector is non-
trivial. Hence, we generally expect the transitions func-
tions to have off-diagonal matrix elements. The assump-
tion that justifies the term “topological sector” is the
following: We assume that no local operator has matrix
elements between |a, α〉 and |a′, α′〉 as long as the same
is already true in the associated thin torus limit, i.e., for
the states |a, α) and |a′, α′). For the latter to be true, it
is clearly sufficient that α 6= α′ and all domain walls are
well-separated. In particular, under the same conditions
that the coherent state expression Eq. (83) holds, i.e.,
that all quasiholes are well separated in x, no local oper-
ator has matrix elements between |ψα(h)〉 and |ψα′(h′)〉.
This includes the local density operator. It is for this rea-
son that localized quasiholes can be formed from |a, α〉
with a fixed α. Moreover, adiabatic transport where lo-
cal quasiholes are dragged along some path, where the
dragging can be thought of as being facilitated via slowly
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changing local potentials, does not lead to changes in the
topological sector, as long as the coherent state |ψα(h)〉
remains well defined. Analogous statements hold for the
dual coherent states, |ψα(h)〉. Luckily, the above does
not rule out transitions into a different topological sec-
tor along the exchange path shown in Fig. 10. This is
so, because along such a path, the conditions for the va-
lidity of either coherent state certainly becomes violated
somewhere. In particular, the condition the both quasi-
holes are well separated in x becomes violated. Related
to that, the configuration label σ, where well-defined, as-
sumes multiple values during the path. On the other
hand, everywhere along the exchange path, at least one
of the two coherent state expressions holds. We may thus
evaluate the result of the adiabatic exchange in Fig. 10
using the following strategy. Close to the initial/final po-
sitions, we use the coherent state (83) to work out the
result of adiabatic transport. At appropriate locations of
well-defined σ, we change between the original and the
dual coherent state descriptions by means of Eq. (86),
and so in between those locations, we describe the adia-
batic transport using the dual coherent state description.
It follows from the above discussion that locally, i.e., in
the coherent state description appropriate to the respec-
tive segment of the path, no transitions between topo-
logical sectors happen, and all the information about the
braid matrix χ that describes the result of the adiabatic
exchange is contained in the transition matrices ξσ, eval-
uated in the two configurations where a change of basis
is performed. Details are given in Ref. [33]. The result
is, with a trivial Aharonov-Bohm phase dropped,

|Ψfinal〉 = ξσ0 (ξσ1)
† |Ψinitial〉 ⇒ χ = ξσ0 (ξσ1)

†
. (87)

Here, |Ψ〉 denotes a column vector, respectively for the
initial/final state, with the coefficients of the different
ψα(h) with different α as columns. One can proceed anal-
ogously for more than two quasiholes, where one neigh-
boring pair is exchanges with the other quasiholes staying
fixed.
Via Eq. (87), that task of calculating braiding has been

reduced to the evaluation of the transition matrices ξσ.
In the following, we will show that these matrices are
sufficiently constrained by various symmetry and locality
considerations. To this end, we find it educational to
discuss some concrete examples of how translation and
mirror symmetry as well as certain processes involving
“global paths” act on root patterns (see Figs. 11-13).

1. Inversion symmetry

In Table I, we defined inversion symmetry with respect
to a rather arbitrary center. In combination with mag-
netic translations, we can, of course, fix any point on the
torus to be the center of our inversion symmetry (note
that on the torus, inversion always fixes two points). This
can be used to constrain or fix a number of parameters
we so far introduced explicitly or implicitly. Consider the

domain wall positions ai, which we think of as the “or-
bital positions” of our domain walls. Our different types
of domain walls have different symmetry character when
it comes to inversion. If we regard a symmetric domain
wall of the type . . . 110110 1 011011 . . . , symmetry dic-
tates that its domain wall position should coincide with
the orbital index of the central 1 in this pattern. This can
be made rigorous as follows. One consequence of its sym-
metry is that it is possible to have a single domain wall
of this type on the torus, with no other domain walls
present, if we appropriately choose the number of flux
quanta. We may then write a single quasihole coher-
ent state of the form Eq. (83) for the topological sector
associated to the pattern . . . 110110 1 011011 . . . . Now
choose an inversion center that preserves this topological
sector. We may then demand that applying this inversion
to the coherent state produces, up to a phase, the coher-
ent state in the same topological sector with the hole sent
from position h to 2hI − h, with hI the inversion center.
From the completeness of our coherent states, the opera-
tion of inversion as described will produce a zero mode in
the same topological sector with a quasihole localized at
2hI − h. One may show that to be consistent with these
observations, the domain wall position a1 entering the
(nh = 1) coherent state Eq. (83) must indeed coincide
with the orbital index of the unpaired 1 in the pattern as-
sociated to |a1, α〉. For details, we again refer the reader
to Ref. [33].

The situation is rather different for the other
type of domain wall. Consider the pattern
200200 11011 00200200. It is easy to see that due
to lack of inversion symmetry, on the torus such domain
wall must always come in pairs. There is then no
argument that the “correct” way to choose the domain
wall positions a1 and a2 in the pattern is for them to
be chosen integers. Here, “correct” again means that
the coherent state expression (83) succeeds at localizing
the two quasiholes precisely at the complex coordinates
given by the parameters h1, h2. Clearly, the first domain
wall is localized somewhere between the terminal zero of
the first 200-string and the leading 1 of the 110-string.
However, there is no immediately obvious way to make
this more precise. However, we must plug in some real
numbers a1 into the coherent state Ansatz Eq. (83).
Hence we must make a choice. The only way to avoid
bias is to introduce a parameter s and say that the
domain wall position is of the form integer−s for the first
domain wall. Inversion symmetry arguments of the flavor
discussed for single, inversion-symmetric domain wall
then still imply that the second domain-wall position
must be of the form integer+s, as shown in the following

schematic: 200200
1−s s

11011
s 1−s

00200200,

where represents domain walls. This shows, in par-
ticular, that the parameter s cannot be absorbed into a
coordinate shift (which would in any case also adversely
affect conventions for the 110 1 011-type domain walls).
We will subsequently constrain s, and our solution for
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FIG. 11. Translation moves each particle by one unit in linear momentum space, |a〉 → |a+ 1〉. If the last orbital L = 25 is
occupied, it gets moved to L + 1, outside our modular coordinates. We have to move this last particle from L + 1 → 1 by
commuting through other particles. For a system with two quasiholes the total number of particles are always even, thus we
get an extra sign θT (α) in fermionic systems. Moreover, resulting pattern belongs to a different topological sector α′ = T (α).
θT (α), T (α)s are tabulated for all αs in the table for two and three quasiholes, respectively.

(c, α̃) α patterns a1 a2
∑

j jnj T (α) θT (α) F (α) θF (α) I(α) θI(α)

(−1,1) 1 0200200 11011011 0020020020 8− s 15 + s 209 2 1 5 1 3 −1
(0,1) 2 00200200 11011011 002002002 9− s 16 + s 225 3 1 6 1 2 −1
(1,1) 3 200200200 11011011 00200200 10− s 17 + s 191 1 1 4 −1 1 −1
(−1,2) 4 1011011 00200200200 1101101 7 + s 19− s 208 5 −1 2 −1 6 1
(0,2) 5 11011011 00200200200 110110 8 + s 20− s 199 6 1 3 1 5 −1
(1,2) 6 011011011 00200200200 11011 9 + s 21− s 215 4 −1 1 1 4 1
(−1,3) 7 10110110 1 0110110 1 01101101 9 17 208 8 −1 8 1 9 1
(0,3) 8 110110110 1 0110110 1 0110110 10 18 199 9 1 9 −1 8 −1
(1,3) 9 0110110110 1 0110110 1 011011 11 19 215 7 −1 7 1 7 1

TABLE III. Topological table for 2 quasiholes (even fermion number): Sectors α with hix ∼ κai. Position of domain walls are
chosen while maintaining the inversion symmetry. Moreover, ai +3 can be identified with ai due to the torus degeneracy of the
wave function. Domain wall 200200 110110 is related to 011011 002002 by inversion symmetry. Domain wall 110 1 0110 maps
to itself under inversion. For bosonic case, θT = θF = θI = 1 for all α. In [34], the topological sector α is denoted by (c, α̃).

(c, α̃) α patterns a1 a2 a3
∑

j jnj T (α) θT (α) F (α) θF (α) I(α) θI(α)

(−1,1) 1 0200 110110110 1 011011011 0020020 5− s 14 23 + s 296 2 1 8 1 3 1
(0,1) 2 00200 110110110 1 011011011 002002 6− s 15 24 + s 315 3 1 9 1 2 1
(1,1) 3 200200 110110110 1 011011011 00200 7− s 16 25 + s 275 1 1 7 1 1 1
(−1,2) 4 10110 1 011011 00200200200 1101101 6 12 + s 24− s 296 5 1 2 1 9 1
(0,2) 5 110110 1 011011 00200200200 110110 7 13 + s 25− s 285 6 1 3 1 8 1
(1,2) 6 0110110 1 011011 00200200200 11011 8 14 + s 26− s 304 4 1 1 1 7 1
(−1,3) 7 1011 00200200200 110110 1 01101101 4 + s 16− s 22 296 8 1 5 1 6 1
(0,3) 8 11011 00200200200 110110 1 0110110 5 + s 17− s 23 285 9 1 6 1 5 1
(1,3) 9 011011 00200200200 110110 1 011011 6 + s 18− s 24 304 7 1 4 1 4 1
(−1,4) 10 10110 1 0110110 1 0110110 1 01101101 6 14 22 296 11 1 11 1 12 1
(0,4) 11 110110 1 0110110 1 0110110 1 0110110 7 15 23 285 12 1 12 1 11 1
(1,4) 12 0110110 1 0110110 1 0110110 1 011011 8 16 24 304 10 1 10 1 10 1

TABLE IV. Topological table for 3 quasiholes (odd fermion number): Sectors α with hix ∼ κai. Position of domain walls are
chosen while maintaining the inversion symmetry. Moreover, ai +3 can be identified with ai due to the torus degeneracy of the
wave function. Domain wall 200200 110110 is related to 011011 002002 by inversion symmetry. Domain wall 110 1 0110 maps
to itself under inversion. For the bosonic case, θT = θF = θI = 1 for all α. In [34], the topological sector α is denoted by (c, α̃).
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the braid matrix will crucially depend on it.
Similar arguments can be made about the parameters

δαi . In the case of a 200200 11011 00200200-type topologi-
cal sector, one can similarly show that δα1 = −δα2 mod 2π.
Anticipating that mirror symmetries, which we will dis-
cuss in more detail below, lead to similar constraints,
we note that analogous requirements with respect to Ix-
symmetry imply δα1 = δα2 mod 2π. Together, these two
constraints fix all δαi -parameters to be 0 or π modulo 2π.
Since a shift of any δαi by 2π only changes coherent state
by overall phases, we can simply take δαi = 0, π for all
i and α. Furthermore, all δαi referring to domain walls
related by mirror/inversion symmetry must be the same,
and similarly, using translational symmetry, all δαi refer-
ring to domain walls related by translational symmetry
must be the same. It follows that there are only two in-
dependent δαi , one for 200200 110110-type domain walls
(and their mirror images), and one for 110110 1 011011-
type domain walls. Lastly, for reasons related to the fact
that the 110110 1 011011-type domain walls can exist as
single domain walls on the torus, combining the above
symmetries with duality turns out to fix the δαi for such
domain walls completely (mod 2π). In the following sub-
section, we will show the associated δαi to be 0.

2. Translation symmetry

The Hamiltonian commutes with magnetic transla-
tions. Thus, under adiabatic evolution in the thin torus
limit, the action of magnetic translations on the basis
|a, α〉 is the same as that on the “bare”, thin torus states
|a, α). This is straightforward to work out. Analogous
statements hold for the dual basis, giving:

Tx |a, α〉 = θT (α) |a+ 1, T (α)〉 , (88a)

Ty |a, α〉 = e−iκκ̄
∑

j jnj |a, α〉
⇒ Ty |a, α〉 = f(α)eiβκκ̄

∑

i ai |a, α〉 , (88b)

Ty|a, α〉 = θT (α)|a+ 1, T (α)〉, (88c)

Tx|a, α〉 = eiκκ̄
∑

j jnj |a, α〉
⇒ Tx|a, α〉 = f∗(α)e−iβκκ̄

∑

i ai |a, α〉. (88d)

Here, T (α) and θT (α) are tabulated in Tables III-IV
for two and three quasiholes, respectively. In Eqs.
(88b),(88d), we have used β = 1/3 to recast the phase
factor appearing in terms of domain-wall positions. The
factor

e−iκκ̄(
∑

j jnj+β
∑

i ai) = f(α) (89)

does not depend on the positions ai themselves, but only
on the topological sector. Keep in mind that within a
fixed topological sector, each domain wall has a stride of
3, i.e., the value ai is fixed modulo 3. Related, the choice
β = 1/3 is crucial in rendering Eq. (89) dependent on the
topological sector only.

The above equations crucially differ from those in
Ref. [34] by a fermionic sign θT (α). The application
of Tx on |a, α〉 moves every particle to one site to the
right (a → a + 1). In this operation if a particle
on the rightmost orbital crosses the boundary used in
our fermionic ordering conventions (which may be taken
to be increasing in orbital index), it reappears as the
leftmost particle, thanks to periodic boundary condi-
tions, thus θT (α) = (−1)(#of fermionic permutations). Here
(#of fermionic permutations) is the number of permu-
tations needed to reorder fermion operators in the root
state according to increasing orbital index.
As an example, consider Table III for two quasiholes.

In the α = 1 case, we get no particle moving from left to
right, hence, θT (1) = 1. For α = 2, two particles simulta-
neously cross the boundary, hence, θT (2) = 1. For α = 4,
one particle crosses the boundary, hence, θT (4) = −1. In
the three quasihole case, due to odd total particle num-
ber, the number of permutations is always even, hence,
θT (α) = 1 for all αs and there is no difference with the
case studied in Ref. [34].
Using Eqs. (88) in Eqs. (83), (84) we obtain the effect

of the translation operators on coherent states:

Tx |ψα(h)〉 = θT (α)e
−iβ

∑

i(κhiy+δαi ) |ψT (α)(h+ κ)〉 ,
(90a)

Ty |ψα(h)〉 = f(α) |ψα(h+ iκ̄)〉 , (90b)

Ty|ψα(h)〉 = θT (α)e
iβ

∑

i(κ̄hix−δαi )|ψT (α)(h+ iκ̄)〉,
(90c)

Tx|ψα(h)〉 = f∗(α)|ψα(h+ κ)〉. (90d)

One sees that this has the expected effect, namely, up to
phase, to shift the position variables by κ and κ̄, respec-
tively, for Tx and Ty. While the first and third of these
equations follow straightforwardly from the definition of
the coherent states, the remaining two crucially depend
on Eq. (89) and thus the fact that β = 1/3. β can thus be
uniquely determined From the requirement that Tx and
Ty act consistently in on the two mutually dual versions
of the coherent states33.
Now we are in a position to apply these operations

directly in the S-duality relation (86), in order to obtain
a first crucial set of constraints on the transition matrices:

|ψα(h)〉 = u(h)
∑

α′

ξσαα′ |ψα′(h)〉

⇒ Tx |ψα(h)〉 = θT (α)e
−iβ

∑

i(κhiy+δαi ) |ψT (α)(h+ κ)〉
= u(h+ κ)e−iβ

∑

i κhiy θT (α)e
−iβ

∑

i δ
α
i

×
∑

α′

ξσT (α)α′ |ψα′(h+ κ)〉

= u(h)
∑

α′

ξσαα′f∗(α′)|ψα′(h+ κ)〉

⇒ θT (α)e
−iβ

∑

i δ
α
i ξσT (α)α′ = ξσαα′f∗(α′), (91a)
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where we have used Eq. (86) (first line) on the right hand
side of Eq. (90a) (second line), and compared this to the
effect of applying Tx to the first line and evaluating the
right hand side via Eq. (90d). The last line is obtained
by comparing coefficients in the two lines preceding it.
It is advantageous to cast this as a matrix equation.

Let us define the following matrices using the Kronecker
delta δαα′ ,

e−iβδT
αα′ = δαα′e−iβ

∑

i δ
α
i , (91b)

BTαα′ = θT (α)δT (α)α′ , fαα′ = δαα′f(α). (91c)

With this we can condense Eq. (91a) into matrix form,

e−iβδTBT ξ
σf = ξσ. (92)

Similarly, while the above was obtained from the ac-
tion of Tx along with S-duality, we can get analogous
equations by using Ty instead:

f(α)ξσαα′′ = ξσαα′e−iβ
∑

i δ
α
i θT (α

′)δT (α′)α′′ (93a)

⇒ fξσ = ξσe−iβδTBT . (93b)

The effect of these equations is the following. Follow-
ing [33], one may group the topological sectors in Ta-
bles III-IV into “supersectors” of three sectors each, re-
lated by local lattice translations (Tx or Ty in the mutu-
ally dual cases, respectively). Using the above equations
utilizing translational symmetry, all matrix elements of
ξσ between any two given supersectors are linearly re-
lated. Thus, the number of independent variables in
the ξσ-matrix, for nh = 2 quasiholes, is reduced from
27 to 9. These equations also further constrain the δαi -
parameters. To see this, let us focus again on nh = 2
quasiholes for the moment. Iterating Eq. (92) three
times, we obtain

ξσ = (e−iβδTBT )
3ξσ(f)3 . (94)

One easily finds that f3 is the identity, while
(e−iβδTBT )

3 = (e−iβδT )3. This equation thus reduces
to

ξσ = e−3iβδT ξσ . (95)

e−3iβδT is a diagonal matrix, and any of its entries that
is not equal to 1 would, by the above equation, force an
entire row of ξσ to vanish. This cannot happen, since ξσ

is unitary. Hence, e−3iβδT is the identity. Since 3β = 1,
this gives

∑

i

δαi = 0 mod 2π. (96)

For two domain walls, this is just the familiar fact that δαi
for two mutually inverted domain walls are either both
0 or both π, also already concluded from mirror and in-
version symmetry. However, when the above argument is
repeated for a single or for three domain walls, one finds
that δαi = 0 for the 110110 1 011011-type domain walls.

3. Global path (F ) operation

So far, we have one separate transition matrix ξσ for
every configuration σ. To eliminate enough parameters
in order to evaluate the braid matrix Eq. (87), it will
be necessary to establish relations between the transi-
tion matrices for different configurations. As we hinted
when introducing the different configurations σ, it is not
possible to move quasiholes from one configuration σ to
another configuration σ′ while keeping both our expres-
sions for |ψα(h)〉 and |ψα(h)〉 well defined, unless we move
across the boundary of our unit cell defining the torus in
the magnetic “extended zone scheme”. Now we wish to
make use of this feature. To do so, we define two opera-
tions that cross boundaries in the extended zone scheme.
Let Fx be the operation of analytically continuing77 the
expressions for |ψα(h)〉 and |ψα(h)〉 in hnh

, i.e., the “righ-
most” particle coordinate, into the region hnhx

> Lx. In
the case of |ψα(h)〉, one thereby transitions into a dif-

ferent topological sector F (α), but not so for |ψα(h)〉.
The analytically continued state |ψα(h)〉 now describes
a zero mode in the topological sector F (α) with quasi-
holes at positions h′, which is the same as h, except the
rightmost position hn has become the leftmost position
at hn − Lx > 0. This also changes the configuration σ
associated with h to σ′ = Fx(σ) associated to h′. By the
usual completeness argument, the analytically continued
state |ψα(h)〉 must be equal up to a phase to the coherent
state |ψF (α)(h

′)〉. Indeed, it may be checked directly that
this is so. The analytically continued state, however, by
means of the duality relations Eq. (86), is still related
to the dual coherent states via the transition matrix el-
ements ξσαα′ , whereas the state |ψF (α)(h

′)〉 is, by means
of the same equation, connected to the dual states via

the matrix elements ξ
Fx(σ)
F (α)α′ . In this way, we establish a

matrix relation between ξσ and ξFx(σ). In a completely
analogous manner, we define an operation Fy that takes
the topmost particle and moves it over the boundary in
the extended zone scheme, affecting now the sector of the
dual coherent state |ψα(h)〉 via the function F (α), and
sending the configuration σ to Fy(σ). In this way, we

obtain a matrix relation between ξσ and ξFy(σ).

For two quasiholes, there are only two configurations
σ (Fig. 8), and the above will suffice to express the tran-
sition matrices for one in terms of that of the other, a
crucial step in evaluating the braid matrix from Eq. (87).
For three particles, all configurations σ can still be related
to each other via the actions of the Fx and Fy moves and
the mirror symmetries to be discussed in the following
subsection. These actions are summarized in Table II.

Beyond relating transition matrices for different σ, the
Fx/y-moves also lead to additional constraints on any one
ξσ. To see this, we will focus in σ0 = id, i.e., where
particles are ascending in hx as well as hy. For σ = id,
one easily verifies the relation,

Fx(Fy(id)) = id. (97)
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FIG. 12. Global path operation Fx moves rightmost domain walls to the further right by three lattice sites at a time. Application
of Fx twice more moves the domain wall across the right boundary (in the modular space), which in turn, changes topological
sector α(= 4) to F (α). To determine F (α)(= 2), we next apply T 3

x twice. Notice that T 3
x does not change the topological

sector. In this example, 11 00200-type domain wall finally gets moved to the left. The resulting state can also be constructed
by moving one particle for each arrow. In this case, the leftmost particle has to cross the boundary to go to rightmost position.
This process introduces a fermionic sign factor θF (α) as well as a change in topological sector, α→ F (α).

which constraints ξid, and, via the aforementioned rela-
tions, all other ξσ.
At the level of the basis |a, α〉, the Fx operation can be

given an interpretation that manifests continuity under
periodic boundary conditions. Let a = (a1, . . . , anh

) be a
set of domain wall positions in the topological sector α.
Suppose anh

+ 3 ≤ L. In this case, Fx |a, α〉 = |a′, α〉 is
simply the state in the same topological sector where the
“last” domain wall has hopped to the right by 3 units,
such that a′ = (a1, . . . , anh

+ 3). On the other hand, if
anh

+ 3 > L, we move into a different topological sector.
In this case, a′ = (anh

+ 3− L, a1, . . . anh
− 1), and

Fx |a, α〉 = θF (α) |a′, F (α)〉 . (98)

Here, θF (α) is a fermionic factor as a result of restor-
ing the order of fermionic orbitals after hopping78. It is
given in Tables III and IV. This operation now allows
us to continuously evolve the coherent state |ψα(h)〉 as
the x-coordinate of the rightmost particle changes from
hnhx

< Lx to hnhx
> Lx: In the coherent state expres-

sion Eq. (83), we usually assume that all quasihole co-
ordinates are well away from the boundaries of our ex-
tended zone scheme unit cell. In this manner, we need
not worry about the limits of the sums over domains wall
positions, due to exponential localization. This changes
when, hnhx

≈ Lx. In this case, many basis states |a′, α〉
may enter the coherent state with appreciable weight
such that a′ = (a1, . . . , anh

+ 3q), where q, and anh
≤ L,

but anh
+ 3q > L. Then, since a = (a1, . . . , anh

) is still
a proper set of domain wall positions in the topological
sector α, we can make the identification

|a′, α〉 ≡ F q
x |a, α〉 . (99)

Here, F q
x is the operation that applies the action defined

for Fx to the last domain wall in a q-times (even after
this domain wall possibly becomes the “first” during this
process, thus strictly, F q

x 6= (Fx)
q). With this, the co-

herent state |ψα(h)〉 evolves smoothly as hnhx
≈ Lx and

even as hnhx
� Lx (where � signifies multiple mag-

netic lengths). In the latter case, the identification (99)
straightforwardly leads to the following identification of
coherent states:

|ψα(h)〉 ≡Fx θF (α)e
iβL(κhiy+δαi ) |ψF (α)(h

′)〉 , (100a)

where h′ is obtained from h = (h1, . . . , hnh
) via h′ =

(hnh
−Lx, h1, . . . , hnh−1) (we tacitly assume hnh

−Lx <
h1).
On the other hand, |ψα(h)〉 already evolves smoothly

as hiy is increased beyond Ly. It is straightforward to
verify that

|ψα(h)〉 = ei2πβai(α) |ψα(h
′′)〉 , (100b)

where i is the index of the quasihole with largest hiy ,
h′′ = (h1, . . . , hi − iLy, . . . , hnh

), and we have defined
ai(α) the domain wall position of the ith particle in the



25

topological sector α, which is well-defined modulo 3. The
above two equations then also hold, mutatis mutandis,
for the dual coherent states |ψα(h)〉:

|ψα(h)〉 ≡Fy
θF (α)e

−iβL(κhi′y
−δα

i′
)|ψF (α)(h′′)〉, (100c)

|ψα(h)〉 = e−i2πβai(α)|ψα(h′)〉. (100d)

Using these relations now in the usual manner inside the
S-duality relation (86), we get, for Fx:

|ψα(h)〉 = u(h)
∑

α′

ξσαα′ |ψα′(h)〉

⇒ θF (α)e
iβLδαi δF (α)α′′ξ

Fx(σ)
α′′α′ = ξσαα′e−i2πβai(α

′) ,

from which we read off the corresponding matrix equa-
tion:

eiβδiBF ξ
Fx(σ)ei2πβai = ξσ. (101a)

Similarly, using Fy and the S-duality, (86), gives

ei2πβaiξFy(σ)(eiβδFi′BF )
−1 = ξσ , (101b)

where, in the above, we have defined the following ma-
trices:

eiβδFi αα′ = δαα′eiβLδαi , BFαα′ = θF (α)δF (α)α′ ,

ei2πβai
αα′ = δαα′ei2πβai(α

′).

Finally, using Eqs. (101) together with the observation
(97) gives the following matrix equation constraining ξid:

ei2πβaieiβδiBF ξ
idei2πβai(eiβδFi′BF )

−1 = ξid . (102)

4. Mirror symmetry

We summarized the representation of mirror symmetry
in Table I. Since mirror symmetries commute with the
Hamiltonian and adiabatic evolutions, their actors on the
basis |a, α〉 and be worked out from the bare thin torus

limits |a, α), and similarly for |a, α〉. We stress again,
that Ix and Iy are both anti-linear, in fact, anti-unitary
operators, where the basis |a, α〉 is invariant under Iy,

and the basis |a, α〉 is invariant under Ix, but the two
other pairings are non-trivial, and change, in general, the
topological sector. Detailed actions are as follows:

Ix |a, α〉 = θI(α) |L− a, I(α)〉 , (103a)

Iy |a, α〉 = |a, α〉 , (103b)

Iy|a, α〉 = θI(α)|L− a, I(α)〉, (103c)

Ix|a, α〉 = |a, α〉 . (103d)

In the above, we used the shorthand notation L − a for
(L− anh

, L− anh−1, . . . , L− a1). The map I(α) is given
in Tables III and IV. A sign θI(α) is generated in the

non-trivial ones of these operations, also shown in these
tables, similar to the sign generated in translation and
F -moves. However, unlike for translations and F -moves,
this sign does not only depend on the fermionic nature
of their underlying particles, but also receives non-trivial
contributions from the reversal of bonds connecting these
particles. To understand the origin of these extra minus
signs, one must consider the entanglement structure of
the root states, constructed later in Eq. (215). Each
bond in the MPS representation of the root state carries
a Levi-Civita tensor. Under mirror symmetry they will
acquire an extra −1 sign. At this point, our “topolog-
ical tables” crucially differ from both single-component
bosons (the Gaffnian case of Ref. [34]) as well as single
component fermions (there would be no consistent solu-
tion for reasons related to results of Ref. [65]).
Using the above, it is straightforward to work out the

action of mirror (anti-unitary) operations on coherent
states:

Ix |ψα(h)〉 = θI(α)e
−iβL

∑

i(κhiy+δαi ) |ψI(α)(Lx − h∗)〉 ,
(104a)

Iy |ψα(h)〉 = e−i2β
∑

i(π+δαi )ai(α) |ψα(h
∗ + iLy)〉 ,

(104b)

Iy|ψα(h)〉 = θI(α)e
iβL

∑

i(κ̄hix−δαi )|ψI(α)(h∗ + iLy)〉,
(104c)

Ix|ψα(h)〉 = ei2β
∑

i(π−δαi )ai(α)|ψα(Lx − h∗)〉, (104d)

where, again, expressions like Lx − h∗ are shorthand no-
tations for the implicated action on all quasihole coor-
dinates. This also changes the configuration from σ to
Ix(σ) or Iy(σ), as shown in Table II. Just as with the
other symmetries, we will use the above in the S-duality
relation Eq. (86):

|ψα(h)〉 = u(h)
∑

α′

ξσαα′ |ψα′(h)〉

⇒ Ix(y) |ψα(h)〉 = u∗(h)
∑

α′

(ξσαα′)
∗
Ix(y)|ψα′(h)〉.

Simplifying above, just as we did for the other symme-
tries and operations, we obtain two matrix equations,

e−iβL
∑

i δ
α
i θI(α)δI(α)α′ξ

Ix(σ)
α′α′′ = (ξσαα′′)∗ei2β

∑

i(π−δα
′′

i )ai(α
′′)

⇒ e−iβδIBIξ
Ix(σ)e−iβ−aI = (ξσ)∗, (105a)

e−i2β
∑

i(π+δαi )ai(α)ξ
Iy(σ)
αα′′ = (ξσαα′)∗e−iβL

∑

i δ
α′

i θI(α
′)δI(α′)α′′

⇒ e−iβ+aI ξIy(σ)
(
e−iβδIBI

)−1
= (ξσ)∗. (105b)

Here, we have again introduced following matrices:

e−iβδI
αα′ = δαα′e−iβL

∑

i δ
α
i , BIαα′ = θI(α)δI(α)α′ ,

eiβ
±aI

αα′ = δαα′ei2β
∑

i(π±δα
′

i )ai(α
′).

If we combine the above two equations, we arrive at
every possible constraint on transition matrices from in-
version symmetry alone. In particular, this can be used,
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FIG. 13. A mirror symmetry operation is defined here with respect to a mirror positioned at a = L = 25. A mirror symmetry
operation can be viewed as composition of two operations. First operation, that needs the explicit form of the root state, moves
|a〉 → |L− a〉 and adds an overall minus sign due to the entanglement structure of the root state, see Section III B 2 and Eq.
(215). In the starting configuration, a takes value from 1 to L. Any particle at angular momentum L will go to 0 after this
operation. In order to keep the original modular coordinates, we have to commute the leftmost particle from 0 to L. This
process generate extra fermionic phase θI(α) = −θT (α) and a change in topological sector, α→ I(α).

in a manner similar to the one observed for F -moves, to
constrain ξσ for one given σ. Since, again, all σ’s are
related by F -moves and mirror symmetry (for two and
three particles), it suffices to focus on σ = id.

Ix(Iy(id)) = id. (106)

This then leads to the following constraint on ξid:

(e−iβ+aI )∗e−iβδIBIξ
ide−iβ−aI

(
(e−iβδI )∗BI

)−1
= (ξid).

(107)

5. Locality constraints

We have so far determined symmetry/operations con-
straints on the transition matrix ξσs. Further constraints
can be derived considering locality constraints on the
braid matrix χ itself. In Section IVB, we already com-
mented on the way locality factors into the coherent state
formalism: Matrix elements of local operators between
basis states |a, α〉, |a′, α′〉 can be non-zero only if the
underlying root states |a, α), |a′, α′) differ from one an-
other only locally. This is in particular true for matrix
elements of the identity operator, i.e, the inner products
〈a′, α′|a, α〉. In particular, we argued in this way that the
Berry connection matrix 〈ψα|∇ijψα′(h)〉, where ∇ij con-
tains derivatives with respect to the coordinates of the
moving quasiholes i and j, is diagonal in α, α′ as long as
quasiholes are well separated in hx. It is useful to contem-
plate a calculation of the Berry matrix along the whole
exchange path using the |ψα(h)〉 coherent state, even for

segments where the hx-separation of the braided quasi-
holes is small. This should be possible in principle, even
though we avoid technicalities by using the dual states
|ψα(h)〉 along those segments.
Let’s contemplate a pair of quasiholes that initially,

for well separated hx, is in the first of the following two
topological sectors:

transition is possible between:
1011011 00200200200 1101101,
10110110 1 0110110 1 01101101,

The pair will remain in the first of these two topological
sectors while well separated in x; however, at some point
along the exchange path, the intermediate 200-string of
the pattern will become small. By the above argument,
off-diagonal matrix elements in the Berry matrix between
the first and the second sector are then possible. Hence,
the transition between these two sectors as a result of
the exchange path is possible. Note that we regard the
“outer” 110-strings as essentially infinitely long during
the process, as we consider the braided pair is well re-
moved in x from all other quasiholes. In particular, then
no transition is possible during which these outer strings
change. An example is the following:

transition is not possible between:
0200200 11011011 0020020020,
1011011 00200200200 1101101.

Indeed, a stronger statement is possible. Consider the
first of the two sectors above. It is not possible to replace
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the inner 110-string with any other string such that two
charge 1/3 domain walls remain between strings. Thus,
given the outer 200-strings, by locality (and charge con-
stervation), we cannot make a transition from the first of
these two sectors into any other sector.
The above considerations impose strong constraints on

the braid matrix. Let us write the topological sector la-
bel α as α = (c, α̃), as shown in Tables III and IV. Here,
α̃ is thought of as labeling a “supersector” of transla-
tionally related sub-sectors c. This leads to the following
structure of the braid matrix:

χαα′ = δcc′ χ̃α̃α̃′ . (108)

Indeed, the labeling is such that identical “outer” strings
only happen for identical c. Moreover, sectors with dif-
ferent c but same α are related by translation, justifying
the above factorization. Further constraints apply to the
super-sector factor χ̃. For two quasiholes, the above ar-
guments imply:

χ̃(2) =





× 0 0
0 × ×
0 × ×



 , (109)

where × stands for elements that are not necessarily zero.
The zeros, on the other hand, are required precisely by
the arguments made for the two cases studied above for
two domain walls. Similar arguments imply the following
structure for χ̃ for three quasiholes, where we assume that
the two leftmost quasiholes are being braided:

χ̃(3) =






+ 0 0 0
0 + 0 0
0 0 + +
0 0 + +




 , (110)

where we used a different symbol, +, for matrix elements
not necessarily zero, for reasons that will become appar-
ent shortly. The study of three quasiholes is necessary
in this formalism, among other things, because certain
pairings of domain walls require a third domain wall on
the torus. This is true for the leftmost domain wall with
α̃ = 1, and α̃ = 2. Our locality arguments then immedi-
ately imply that the braiding in these sectors, again for
the two leftmost quasiholes, is diagonal, as shown above.
For α̃ = 3 and α̃ = 4, however, the braiding of the two
leftmost quasiholes involve pairs of domains walls that
were already resent in the two-quasihole cases. In those
cases, locality implies that the result does not depend on
the presence or absence of a third, far removed, quasi-
hole. For these reasons, the lower right 2 × 2 blocks of
χ̃(2) and χ̃(3) must be same:

(
× ×
× ×

)

=

(
+ +
+ +

)

. (111)

In the remainder of this section, we will use the symmetry
and locality constraints discussed above, respectively, on
the transition matrices and the braid matrix for two and
three quasiholes to determine braiding statistics.

D. Braid matrix for two quasiholes

We begin by considering the linear constraints on the
transition matrix ξid from translation symmetries. Using
Eqs. (92), (93b), along with the inversion symmetry δα1 =
−δα2 mod 2π, ξid is reduced to the following form,

ξid =





ξ̃11V ξ̃12V I ξ̃13V I

ξ̃21IV ξ̃22IV I ξ̃23IV I

ξ̃31IV ξ̃32IV I ξ̃33IV I



 , (112)

with

V =





1 Ω2 Ω
Ω2 1 Ω
Ω Ω Ω



 , I =





1 0 0
0 −1 0
0 0 −1



 , (113)

in the α basis of Table III, where, to simplify expressions,
we introduced Ω = ei2π/3. From F -moves, Eq. (102),

it turns out that ξ̃22 = ∆2p2ξ̃11, ξ̃23 = −∆pξ̃13, and
ξ̃23 = −∆pξ̃13 with p = −Ω−1−s and ∆ = Ω−La, where
a is related to the one unknown δ-parameter related to
the ...200200 110110... type domain wall via δαi = 2πa,
a = 0, 12 . Note that for two quasiholes on the torus,
L = 1 mod 3. Using, finally, the inversion symme-
try constraint Eq. (107), most of the parameters ξij are
forced to vanish if a = 1/2. The only solution consistent

with a = 1/2 can only have 4s = −1 mod 3 with ξ̃12,

ξ̃21 = ∆2p2ξ̃12, and ξ̃33 non-zero, and in Eq. (87), gives
a diagonal braid matrix. a = 1/2, 4S = −1 mod 3 solu-
tion, however, can be shown to be inconsistent while con-
sidering mirror symmetry for the three quasiholes case.
We will thus proceed with a = 0, thus fixing the last re-
maining δ-parameter. In summary, we have reduced ξid,
Eq. (112), to the following:

ξid =





ξ̃11V ξ̃12V I ξ̃13V I

ξ̃12IV p2ξ̃11IV I −ξ̃13IV I
ξ̃31IV −pξ̃31IV I ξ̃33IV I



 , (114)

We may now use the above form for ξid to continue the
program described above. For determining ξσ1 , where σ1
denotes the only other configuration for two particles, we
may use either F -moves, Eq. (101), or mirror symmetry
Eq. (105). Since one involves complex conjugation, and
the other does not, by comparison we may express all
complex conjugated remaining ξ̃ij parameters through
their un-conjugated counterparts in the following. We
then obtain the braid matrix from Eq. (87). Comparing
this braid matrix with the locality constraint (109) yields
two quadratic equations in the ξij-parameters. Further-
more, one obtains four more quadratic equations from
the requirement that the braid matrix is unitary. This
yields the following six non-linear equations,

2pξ̃11ξ̃12 + pξ̃213 = −Ω2,

2pξ̃231 − ξ̃233 = −Ω2,

p2ξ̃211 + ξ̃212 − pξ̃213 = 0,
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ξ̃31(−pξ̃11 + pξ̃12) + ξ̃13ξ̃33 = 0,

(1 + p2)ξ̃11ξ̃12 − pξ̃213 = 0,

ξ̃31(ξ̃11 − pξ̃12) + ξ̃13ξ̃33 = 0. (115)

where the first four express unitarity, and the last two
locality. From these equations, all the ξij can be deter-
mined when the parameter p, is known.

ξ̃211 = − Ω2

(1 + p)2
,

ξ̃12 = ξ̃11,

ξ̃213 = ξ231 = (p+ p−1)ξ̃211,

ξ̃233 = (1− p)2ξ̃211, (116)

One then obtains for the braid matrix:

χ̃(2) = e−iβπ





p−1 0 0

0 p(p+ p−1 − 1) ±(1− p)
√

p+ p−1

0 ±(1− p)
√

p+ p−1 p+ p−1 − 1



 . (117)

Not yet having enough information to determine the re-
maining parameter gives us another reason to proceed
to three particles. Indeed, the remaining parameters can
ultimately be determined from Eq. (111). For complete-
ness, we mention that in writing Eq. (117), we have tac-
itly assumed p 6= ±i. For p = ±i one finds additional
solutions that lead to a diagonal braid matrix. These so-
lutions turn out to be inconsistent when similarly com-
pared with the three quasihole result below, as already
remarked in a similar context above. For details, we re-
fer to Ref. [33], where equations differ in detail, but the
procedure is similar.

E. Braid matrix for three quasiholes

For three quasiholes, we may proceed in a manner that
is perfectly analogous to that for two quasiholes in the
preceding section. As opposed to two quasiholes (see Ta-
ble III), in this case the total number of fermions is always
odd for all topological sectors (see Table IV). Hence, all
the fermionic sign-factors θT , θF , and θI are identical
to the bosonic ones34, since in those topological sectors
permutations do not distinguish bosons from fermions.
Therefore, the formulas in this section will be identical
to corresponding formulas in Ref. [34]. We will nonethe-
less reproduce them here for self-containedness.

Again, there are a great multitude of simple linear
constraint rendering many of the elements of ξid propor-
tional to one another. These are the constraints ended in
translational-, F -move, and inversion symmetry, ξid by
itself, to wit, Eqs. (92), (93b), (102), and (107). Indeed,
in the present case, translational symmetry by itself leads
to a major simplification of the ξσ, in that they factorize

via

ξσ = ξ̃σ ⊗ U , (118)

where ξ̃σ acts on supersectors α̃, and U acts on subsectors
c, and where

U =





1 Ω Ω2

Ω Ω Ω
Ω2 Ω 1



 , ξ̃id =







ξ̃11 ξ̃12 ξ̃13 ξ̃14
ξ̃21 ξ̃22 ξ̃23 ξ̃24
ξ̃31 ξ̃32 ξ̃33 ξ̃34
ξ̃41 ξ̃42 ξ̃43 ξ̃44






.

This factorization happens here, and not for two quasi-
holes, because of the aforementioned absence of non-
trivial fermionic-phase factors. The elements of ξ̃id,
which we will denote by ξ̃ij , can then be further deter-
mined using the global path operation and mirror sym-
metry, Eqs. (102), (107), yielding the following addi-
tional relations:

ξ̃22 = ξ̃33 = p2ξ̃11, (119a)

ξ̃31 = ξ̃13 = ξ̃21 = ξ̃12, (119b)

ξ̃32 = ξ̃23 = −pξ̃12, (119c)

ξ̃34 = ξ̃24 = −pξ̃14, (119d)

ξ̃43 = ξ̃42 = −pξ̃41 , (119e)

Again, we may now evaluate the braid matrix by plug-
ging in the above into Eq. (87), by first obtaining (ξσ2)∗

for the other configuration (σ2) that appears when the
leftmost pair is braided, starting in the configuration
σ0 = id. This can be done by subsequently applying
first Iy via Eq. (105b), and then Fx via Eq. (101a), to
the transition matrix ξid. For the resulting braid matrix
we then obtain
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χ̃(3) =







ξ̃11 ξ̃12 ξ̃12 ξ̃14
ξ̃12 ξ̃11p

2 −ξ̃12p −ξ̃14p
ξ̃12 −ξ̃12p ξ̃11p

2 −ξ̃14p
ξ̃41 −ξ̃41p −ξ̃41p ξ̃44






.








−ξ̃12pΩ ξ̃11p
2Ω ξ̃12Ω −ξ̃41pΩ

−ξ̃11pΩ ξ̃12Ω − ξ̃12Ω
p ξ̃41Ω

−ξ̃12pΩ −ξ̃12pΩ −ξ̃11pΩ −ξ̃41pΩ
−ξ̃14pΩ −ξ̃14pΩ ξ̃14Ω ξ̃44Ω







, (120)

where again we only display the “supersector” factor in
Eq. (108), and where the zeros come from the locality
constraint Eq. (110). These matrix elements are not au-
tomatically zero, but rather, enforcing their vanishing
gives us the following three constraints:

p2ξ̃211 − (p− 1)ξ̃212 − pξ̃214 = 0, (121a)

(p2 − p)ξ̃11ξ̃12 + ξ̃212 − pξ̃214 = 0, (121b)

−pξ̃11ξ̃41 + (p− 1)ξ̃12ξ̃41 + ξ̃14ξ̃44 = 0. (121c)

Finally, by imposing the locality of ξid one imposes that
of ξ̃id, as U is already unitary. This yields the following
four additional equations:

|ξ̃11|2 + 2|ξ̃12|2 + |ξ̃14|2 = 1, (122a)

3|ξ̃41|2 + |ξ̃44|2 = 1, (122b)

ξ̃12ξ̃
∗
11 +

−1 p2ξ̃11ξ̃
∗
12 − p|ξ̃12|2 − p|ξ̃14|2 = 0, (122c)

ξ̃41ξ̃
∗
11 − 2p−1ξ̃41ξ̃

∗
12 + ξ̃44ξ̃

∗
14 = 0. (122d)

The non-linear equations (119-121) have the following34

solution:

ξ̃11 = − eiθ1

(1 + p)2
, ξ̃12 =−1 ξ̃11,

ξ̃214 = e−i2θ2 ξ̃241 = (p+ p−1 − 1)ξ̃211,

ξ̃44 = eiθ2 ξ̃11. (123)

in terms of two additional unknown phases θ1 and θ2.
In Eq. (120), this gives the following result for the braid
matrix:

χ̃(3) = e−iβπeiθ1







1 0 0 0
0 1 0 0

0 0 p(1− p) ±eiθ2p
√

p+ p−1 − 1

0 0 ±eiθ2p
√

p+ p−1 − 1 ei2θ2(1− p)






. (124)

As a final step, it turns out that the remaining unknowns
are largely determined by the locality argument requir-

ing consistency between the two quasihole and the three
quasihole braid matrix, Eq. (111):

(
p(p+ p−1 − 1) ±(1− p)

√

p+ p−1

±(1− p)
√

p+ p−1 p+ p−1 − 1

)

= eiθ1
(

p(1− p) ±eiθ2p
√

p+ p−1 − 1

±eiθ2p
√

p+ p−1 − 1 ei2θ2(1− p)

)

. (125)

Comparing matrix elements yields the following equa-
tions:

eiθ1 = p2, eiθ2 = 1, (126a)

p+ p−1 = ϕ =
1 +

√
5

2
⇒ p = e±iπ/5. (126b)

s = 2± 3

10
. (126c)

As we will now explain, this determines all braiding pro-
cesses in terms of two possible and closely related non-
Abelian solutions. Eqs. (126) in the two quasihole and
three quasibole braid matrices, Eq. (117) and Eq. (124),
respectively, then give the following

χ̃2 = Ω





p 0 0
0 p−1ϕ−1 p2ϕ−1/2

0 p2ϕ−1/2 ϕ−1



 , χ̃3 = Ω







p−2 0 0 0
0 p−2 0 0
0 0 p−1ϕ−1 p2ϕ−1/2

0 0 p2ϕ−1/2 ϕ−1






. (127)

Together, these equations imply the following when ap- plied to the braiding of any pair of quasiholes, in a pat-
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tern with n quasiholes: If the pair was linked by a 110-
string bounded by two 200-string (as for two quasiholes,
α = 1, 2, 3), the state picks up a phase e−iβπp. If the
pair was linked by a 110-string bounded by one 110-string
and one 200-string (as for three quasiholes, α = 1–6), the
state picks up a phase e−iβπp−2. Finally, if the linking
string is either 200 or 110, and is bounded by 110-strings
on both sides (as is is for the last six α’s for both two and
three quasiholes), the state stays in the same topologi-
cal sector with an amplitude e−iβπp−1ϕ−1 if the linking
string is 200, and an amplitude e−iβπp−1ϕ−1 if the link-
ing string is 110. Furthermore, there is an amplitude
for transitioning between these two respective sectors of
e−iβπp2ϕ− 1

2 . It is easy to see that these off-diagonal
blocks, which we just described, have the same eigenval-
ues as those appearing in the diagonal blocks described
above. In the topological sector basis, one can thus de-
termine the result of any braiding process, for each of the
two solutions associated to the two ways to resolve the
± sign in these expressions. One may easily see, though,
that these two solutions are related by an Abelian phase
plus complex conjugation. Moreover, they share the same
Abelian phase with the bosonic case of Ref. [34]. Just
as in this reference, one may therefore show that these
solutions describe Fibonacci-type anyons. However, we
stress once more that both the assumptions of fermionic
constituent particles, as well as that of root state entan-
glement of a certain type have been essential to arrive at
this solution using the coherent state method.

V. PARTONS AS THE DENSEST ZERO MODES

In the previous sections, we have developed a general
framework and an organizing principle (the EPP) for de-
termining the densest zero-energy state of frustration-free
QH Hamiltonians. While our second quantized technique
is applicable to any k-body Hamiltonian with LL mixing,
it is often the case that QH physics is studied in the first
quantization language. In this section, we make connec-
tions to the theory of symmetric (and antisymmetric)
polynomials in holomorphic and anti-holomorphic vari-
ables, which correspond to the first-quantized descrip-
tion of the QH problem. For simplicity, we work in the
symmetric gauge. In the LLL (the holomorphic case),
many tools exist to uniquely identify subsets of these
polynomials as determined by various clustering con-
ditions enforced by frustration-free Hamiltonians. For
multiple LLs, these tools generally do not work. The
present section is devoted to the development of alterna-
tive methods. As we will show, the parton states have the
fundamental polynomial property of being the densest
zero modes of certain frustration-free QH Hamiltonians
in presence of multiple LL mixing.

A. Multivariate Polynomials with the M-clustering
property

Let AN be the algebra of multivariate polynomials
P (Z, Z̄) in variables (Z, Z̄), where Z = {z1, z2, · · · , zN}
and Z̄ = {z̄1, z̄2, · · · , z̄N}, with zi = xi+iyi and z̄i = xi−
iyi, i = 1, · · · , N . Polynomials P (Z, Z̄) consist of sums
of monomials, which are products of (not normalized and
without Gaussian factors) non-orthogonal single-particle
orbitals (already used to define the pseudofermion basis
in Eq. (53)),

φαi
(zi, z̄i) = φαi

(i) = z̄ni

i zsii , si = ji + ni. (128)

Here, αi = (ni, si) represents a pair of non-negative inte-
gers. We will be interested in working within linear sub-
spaces satisfying 0 ≤ ni ≤ NL−1 (i.e., those restricted to
NL LLs). Moreover, as we will now discuss, finite dimen-
sional subspaces may be obtained by placing additional

restrictions on (the number operator n̂bi = b†i bi eigenval-
ues of Eq. (5)) si, via 0 ≤ si ≤ smax and/or restrictions on
the total angular momentum of the polynomial. Finally,
we will further restrict our linear subspaces of interest
by the condition their elements are either symmetric or
antisymmetric under the exchange operations

(zi, z̄i) ↔ (zj, z̄j), i, j = 1, · · · , N , i 6= j, (129)

of all pairs of variables. Let the total angular momentum
operator be defined as

Ĵ = ~

N∑

i=1

(zi∂zi − z̄i∂z̄i). (130)

The application of the total angular momentum opera-
tor on any monomial in the variables (Z, Z̄) leaves the
monomial invariant up to a multiplicative (angular mo-

mentum) factor J = ~
∑N

i=1(si − ni). It is clear that
the total angular momentum operator defines a linear
map Ĵ : AN → AN that also preserves all linear sub-
spaces defined above. Ĵ has the natural (infinite) basis
of eigenstates (128). However, we shall now consider the
finite-dimensional linear subspaces HN,J,n of AN of poly-
nomials of angular momentum less than or equal to J and
maximum degree n = NL − 1 in each z̄i, and their (anti-

)symmetrized subspaces (Â)ŜHN,J,n. Note that, more-
over, all such polynomials automatically have bounded si,
i.e., satisfy 0 ≤ si ≤ smax with an appropriately chosen
smax depending on N , J , and n. The subspaces HN,J,n

form finite dimensional Hilbert spaces having an inner
product (` = 1/

√
2)

〈P |P ′〉 =
∫

dZdZ̄ P̄ (Z, Z̄)P ′(Z, Z̄) e−
1
2

∑N
i=1 ziz̄i . (131)

From now on, we will be working in these finite dimen-
sional Hilbert spaces HN,J,n.
Within the space of polynomialsHN,J,n, there are fam-

ilies of polynomials that have special properties. A poly-
nomial P (Z, Z̄) ∈ HN,J,n has the M -clustering property,
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with M a positive integer, in the pair (i, j) if

P (Z, Z̄) =

M∑

q=0

zqij z̄
M−q
ij Pq(Z, Z̄) = P (M)(Z, Z̄), (132)

where zij = zi − zj, z̄ij = z̄i − z̄j, and Pq(Z, Z̄) ∈
HN,J+M−2q,n. If furthermore P (Z, Z̄) ∈ (Â)ŜHN,J,n,
then P (Z, Z̄) is a polynomial (anti-)symmetric with re-
spect to variables exchanges (zi, z̄i) ↔ (zj, z̄j). Clearly,
polynomials with theM -clustering property can only ex-
ist if smax ≥ M or n ≥ M . Those polynomials with the
M -clustering property in all pairs (i, j) form a subspace
HN,J,n,M ⊂ HN,J,n. Moreover, P (Z, Z̄) ∈ HN,J,n has the
M -clustering property in the pair (i, j), iff ∀ s+ t < M ,

Qst
ij P (Z, Z̄) ≡ ∂szij ∂

t
z̄ijP (Z, Z̄)

∣
∣
∣
zi=zj,z̄i=z̄j

= 0. (133)

A little reflection shows that for N even and P (Z, Z̄) ∈
(Â)ŜHN,J,n,M , Eq. (132) can be written as

P (M)(Z, Z̄) =

M∑

q=0

zq112z̄
M−q1
12 . . . z

qN/2

N−1N z̄
M−qN/2

N−1N Pq(Z, Z̄),

(134)

where q ≡ (q1, q2, . . . , qN/2), and Pq(Z, Z̄) is a polyno-
mial symmetric under the exchange of all pair of coordi-
nates (z2i−1, z̄2i−1) ↔ (z2i, z̄2i), i = 1, · · · , N/2.
We will mostly be interested in the antisymmetric sub-

space ÂHN,J,n,M of polynomials with the M -clustering
property. Slater determinants

χp(Z, Z̄) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

φα1
(1) φα1

(2) · · · φα1
(N)

φα2
(1) φα2

(2) · · · φα2
(N)

...
... · · ·

...
φαN

(1) φαN
(2) · · · φαN

(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (135)

represent the simplest examples of those polynomials
with an M = 1 clustering property, since they do have
a linear behavior as two-particles approach each other79.
Specifically, any Slater determinant satisfies the following
identity

χp(Z, Z̄) = Sp(Z, Z̄) zij + S̃p(Z, Z̄) z̄ij, (136)

where Sp and S̃p are symmetric polynomials with respect
to the coordinate exchange (zi, z̄i) ↔ (zj, z̄j). Another
example of polynomials with the M -clustering property
are parton-like states Ψp(Z, Z̄), defined as a product of
M Slater determinants

Ψp(Z, Z̄) =

M∏

µ=1

χpµ
(Z, Z̄), (137)

where M ∈ odd for fermions and M ∈ even for bosons.
Using Eq. (136) for each Slater determinant in Ψp(Z, Z̄),
it is straightforward to show that Ψp(Z, Z̄) is an ele-
ment of HN,J,n,M and can be written as the P (Z, Z̄)

of Eq. (132). Although, Ψp(Z, Z̄) is an element of

(Â)ŜHN,J,n,M , i.e., the (anti-)symmetric subspace of
HN,J,n,M , it is not clear whether parton-like states lin-
early generate this subspace. While in the following, we
will be mostly concerned with the antisymmetric case,
our reasoning and results carry, without difficulty, to the
symmetric case.

B. Schmidt decomposition of M-clustering
polynomials

The Schmidt decomposition of a many-body state can
be used to study the non-trivial properties of the system
such as entanglement entropy. Entanglement properties
are often employed to determine the particular topolog-
ical phase of matter that a given many-body state may
belong to80. In this subsection, we will not emphasize the
entanglement properties but rather demonstrate an ana-
log of the Schmidt decomposition to polynomials P (Z, Z̄)
that satisfy the M -clustering property.
Lemma 1: Let P ∈ ÂHN,J,n,M and 1 ≤ n < N . Then

P = Â
∑

λ

cλP
λ
n (1, 2, . . . , n)P̃

λ
N−n(n + 1, . . . , N), (138)

where λ runs over a finite index set, and Pλ
n ∈ ÂHn,J,n,M ,

P̃λ
N−n ∈ ÂHN−n,J,n,M .
Proof: Note that, so far, we have been consider-

ing abstract polynomials. Two such abstract polyno-
mials are identical if and only if they are identical as
maps from CN to C, since all the coefficients are en-
coded in the associated maps via differential opera-
tions. We will now identify polynomials with their as-
sociated evaluation maps. For Pλ

n we now choose an

orthonormal basis {Pλ
n } of ÂHn,J,n,M . If we now fix

zi, z̄i to arbitrary complex numbers ai, āi for i > n, then
P (z1, z̄1, . . . , zn, z̄n, an+1, ān+1, . . . , aN , āN ) is an element

of ÂHn,J,n,M . As a result

P (z1, z̄1, . . . , zn, z̄n, an+1, ān+1, . . . , aN , āN ) =
∑

λ

cλP
λ
n (z1, z̄1, . . . , zn, z̄n)P̃

λ
N−n(an+1, ān+1, . . . , aN , āN ),

(139)

where

cλP̃
λ
N−n =

∫

dz1dz̄1 · · · dzndz̄n P̄λ
n P e−

1
2

∑n
i=1 ziz̄i . (140)

It is clear that as a function of ai, āi, the righthand
side defines a polynomial in the variables an+1, . . . , āN ,

which we will argue to be an element of ÂHN−n,J,n,M .
Since Eq. (139) holds as an identity for fixed but ar-
bitrary z1, z̄1, . . . , zn, z̄n and an+1, . . . , āN , the two sides
are identical as polynomial maps and therefore as ele-
ments of ÂHN,J,n. Furthermore, since the lefthand side
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is in ÂHN,J,n,M so is the righthand side (though indi-
vidual terms are not). We can thus introduce the (anti-

)symmetrizer Â on the righthand side as it is in Eq. (138)
without changing the polynomial.
We finally show that the polynomials P̃λ

N−n also enjoy
the M -clustering property. This is easy: In Eq. (140)
change (ai, āi) → (zi, z̄i), then apply Qst

ij for i, j > n on
both sides. On the righthand side, this results in 0 for
s+ t < M . Thus, P̃λ

N−n ∈ ÂHN−n,J,n,M . This completes
the proof of the Lemma.
Indeed, a Slater determinant is the simplest example

illustrating the Lemma forM = 1. The following identity

P (Z, Z̄) = n!(N − n)!

∣
∣
∣
∣
∣
∣
∣
∣
∣

φα1
(1) φα1

(2) · · · φα1
(N)

φα2
(1) φα2

(2) · · · φα2
(N)

...
... · · ·

...
φαN

(1) φαN
(2) · · · φαN

(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

= Â [Dn(1, · · · , n)DN−n(n + 1, · · · , N)] , (141)

explicitly realizes a Schmidt decomposition. Here, the
determinants in the argument of the antisymmetrizer are

Dn(1, · · · , n) =

∣
∣
∣
∣
∣
∣
∣

φα1
(1) · · · φα1

(n)
... · · ·

...
φαn

(1) · · · φαn
(n)

∣
∣
∣
∣
∣
∣
∣

, (142)

DN−n(n + 1, · · · , N) =

∣
∣
∣
∣
∣
∣
∣

φαn+1
(n + 1) · · · φαN

(N)
... · · ·

...
φαn+1

(n + 1) · · · φαN
(N)

∣
∣
∣
∣
∣
∣
∣

.

More sophisticated relations appear for M ≥ 3. The
first non-trivial example is a product of an odd number
of Slater determinants, i.e., the parton-like state,

Ψp(Z, Z̄) =
M∏

µ=1

χpµ
(Z, Z̄) =

=

M∏

µ=1

Â
[

D(pµ)
n (1, · · · , n)D(pµ)

N−n(n + 1, · · · , N)
]

. (143)

If M ∈ odd

S(Z, Z̄) =

M∏

µ=2

χpµ(Z, Z̄) (144)

is a totally symmetric function of all particle coordinates,
and

Ψp(Z, Z̄) = Â
[

D(p1)
n D

(p1)
N−nS(Z, Z̄)

]

= Â
∑

λ

cλP
λ
n P̃

λ
N−n. (145)

Here, we employed the property that D
(p1)
n S(Z, Z̄) =

∑

λ cλP
λ
n S

λ
N−n, where S

λ
N−n(n+1, . . . , N) is totally sym-

metric in its arguments, holds by arguments similar
to those used in the proof of Eq. (138). Moreover,

D
(p1)
N−nS

λ
N−n = P̃λ

N−n.

FIG. 14. The state χ4(Z, Z̄), with L = 6, NL = 4, and Norb =
18, filled with N = 17 and 18 particles. For the state with
17 particles, the largest angular momentum orbitals are not
completely filled, i.e., the “shell” is not closed. For N = 18
particles, χ4 is a closed-shell Slater determinant.

C. Closed-shell parton states

Consider a parton-like state Ψp(Z, Z̄). When its Slater
determinant components are constructed out of single-
particle orbitals φαi

(i) of νµ LLs (maximum degree of z̄i
is νµ − 1), it is easy to verify that the number of single-
particle orbitals for νµ LLs, with distinct Lµ = L(NL =
νµ) defining the highest available angular momenta for
each Slater determinant, is given by

Nshell = νµLµ − νµ(νµ − 1)

2
. (146)

We define a Slater determinant to be closed-shell when-
ever N = Nshell. Equivalently, a closed-shell Slater de-
terminant is obtained when all the orbitals with certain
angular momentum and less are filled, which results in a
unique and densest possible configuration (Fig. 14).
We will define a parton state to be given by

Φν(Z, Z̄) =

M∏

µ=1

χνµ(Z, Z̄), (147)

when all Slater determinants χνµ
are closed-shell. That

is, the parton states are a special subset of all possible
parton-like states (Eq. (137)).
One can associate with any such parton state, a string

[ν1, ν2, · · · , νM ] of positive integers νµ, µ = 1, 2, · · · ,M ,
such that ν1 ≤ ν2 ≤ · · · ≤ νM , and show that8 Φν(Z, Z̄)

represents a state of filling fraction ν = (
∑M

µ=1 ν
−1
µ )−1.

Restricting the single-particle orbitals to be confined to
the subspace generated by the NL LLs imposes the con-
straint

M∑

µ=1

νµ = NL +M − 1. (148)

A natural question concerns the possible filling fractions
ν compatible with this constraint. To answer this ques-
tion, we write down the generating function of partitions
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of the integer NL +M − 1 into M elements

∞∏

t=1

1

1− ut v wt−1 =
∑

t1,t2

ut1vt2
∑

ν

wν−1

, (149)

from which one can extract all possible ν’s by inspection
of the coefficient of the term with t1 = NL +M − 1, and
t2 =M . For M = 3, up to NL = 6, we obtain

u3v3 (w3),

u4v3 (w5/2),

u5v3 (w2 + w7/3),

u6v3 (w3/2 + w11/6 + w9/4),

u7v3 (w4/3 + w5/3 + w7/4 + w11/5),

u8v3 (w7/6 + w5/4 + w19/12 + w17/10 + w13/6). (150)

For instance, scanning the third line in Eq. (150), we see
that when NL = 3, one could get parton states of filling
fractions ν = 1/2 and ν = 3/7.

Both the smallest, νmin, and the largest, νmax, possible
values of ν carry a special physical meaning. The min-
imum corresponds to the Jain sequence νmin = NL

2NL+1 .
The maximum, on the other hand, plays a role in the
determination of incompressible (highest density) zero
modes of TK type frustration-free QH Hamiltonians,
Eq. (25). For fixed NL andM , we next obtain the largest
possible filling fraction νmax in a systematic manner.

The filling fraction νmax can be computed by max-
imizing ν (over integers) subject to the constraint of
Eq. (148). This integer optimization procedure leads to
the following condition

{

νµ(νµ + 1) = νµ′(νµ′ + 1), or

νµ(νµ + 1) = νµ′(νµ′ − 1),
(151)

for all pairs µ, µ′ = 1, 2, . . . ,M . This associates the
unique ordered string

[ν1, . . . , ν1
︸ ︷︷ ︸

M−nν

, ν1 + 1, · · · , ν1 + 1
︸ ︷︷ ︸

nν

] (152)

to νmax, with Mν1 =M +NL − 1− nν . This results in

νmax =
ν1(ν1 + 1)

2Mν1 −NL + 1
. (153)

Table V displays various examples of parton states
[ν1, ν2, · · · , νM ] corresponding to maximun filling frac-
tion. It is clear, from Eq. (152), that a unique string
of numbers [ν1, ν2, · · · , νM ] is associated to a maximum
filling-fraction parton state. However, this does not im-
ply that there is a unique parton state associated with
this unique string. Indeed, there are, in general, several
parton-like states (with different total angular momen-
tum) that are associated with a given ordered string. We
next study the conditions for the existence of a unique
parton-like state.

M NL [ν1, ν2, . . . , νM ] νmax

3 1 [1, 1, 1] 1/3
3 2 [1, 1, 2] 2/5
3 3 [1, 2, 2] 1/2
3 4 [2, 2, 2] 2/3
3 5 [2, 2, 3] 3/4
3 6 [2, 3, 3] 6/7
3 7 [3, 3, 3] 1
3 8 [3, 3, 4] 12/11
3 9 [3, 4, 4] 6/5
5 1 [1, 1, 1, 1, 1] 1/5
5 2 [1, 1, 1, 1, 2] 2/9
5 3 [1, 1, 1, 2, 2] 1/4
5 4 [1, 1, 2, 2, 2] 2/7
5 5 [1, 2, 2, 2, 2] 1/3
5 6 [2, 2, 2, 2, 2] 2/5
5 7 [2, 2, 2, 2, 3] 3/7
5 8 [2, 2, 2, 3, 3] 6/13
5 9 [2, 2, 3, 3, 3] 1/2
7 1 [1, 1, 1, 1, 1, 1, 1] 1/7
7 2 [1, 1, 1, 1, 1, 1, 2] 2/13
7 3 [1, 1, 1, 1, 1, 2, 2] 1/6
7 4 [1, 1, 1, 1, 2, 2, 2] 2/11
7 5 [1, 1, 1, 2, 2, 2, 2] 1/5
7 6 [1, 1, 2, 2, 2, 2, 2] 2/9
7 7 [1, 2, 2, 2, 2, 2, 2] 1/4
7 8 [2, 2, 2, 2, 2, 2, 2] 2/7
7 9 [2, 2, 2, 2, 2, 2, 3] 3/10

TABLE V. Parton states Φν(Z, Z̄) = [ν1, ν2, . . . , νM ] =
∏M

µ=1
χνµ(Z, Z̄) corresponding to maximum filling fraction

νmax, given M and NL.

Since each closed-shell Slater determinant χνµ(Z, Z̄) is
an eigenstate of total angular momentum

Ĵχνµ
(Z, Z̄) = Jµχνµ

(Z, Z̄), (154)

with

Jµ =
~

6
(νµ + 3Lµνµ + 3L2

µνµ − 3ν2µ − 6Lµν
2
µ + 2ν3µ)

=
~

24
(
12N2

νµ
− (12N − 1)νµ − ν3µ), (155)

this implies that parton states are also eigenstates of total
angular momentum

ĴΦν(Z, Z̄) = Jmin Φν(Z, Z̄), (156)

with eigenvalue Jmin

Jmin

~
=
N2

2ν
−
∑M

µ=1 ν
3
µ + (12N − 1)(NL +M − 1)

24
.(157)

For a fixed filling fraction ν, it is possible to have sev-
eral parton states with different values of J . This is also
true for the minimum total angular momentum J = Jmin.
As we showed previously, the constraint that makes the
parton-like state with ν = νmax and Jmin to be unique,
is the closed-shell condition. In conclusion, a closed-
shell parton state projected onto NL LLs is the unique
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and densest (in the sense of angular momentum) pos-
sible parton-like state. As will be demonstrated in the
next section, the unique closed-shell parton state with
ν = νmax and Jmin will be related to our densest zero
mode of previous sections.

D. Parton-like states as a basis

The set of Slater determinants forms a basis for the en-
tire antisymmetric Hilbert subspace ÂHN,J,n. In other

words, any polynomial in ÂHN,J,n can be written as
a linear superposition of Slater determinants. Given a
single-particle orbital basis B = {φαi

(z, z̄)} with 0 ≤ ni ≤
NL − 1 and 0 ≤ si ≤ smax, the total number of orbitals
is Norb = NL(smax + 1) ≥ N . Then, the dimension of the

Hilbert subspace ÂHN,J,n is given by dH =
(
Norb

N

)
. Any

polynomial P (Z, Z̄) ∈ ÂHN,J,n can be written as

P (Z, Z̄) =

dH∑

µ=1

cµχpµ
(Z, Z̄). (158)

Obviously, this expansion also applies for the subspaces
ÂHN,J,n,M , whose dimension dHM

< dH, but it does not

apply for the symmetric subspaces ŜHN,J,n,M . Then,
given a polynomial with the M -clustering property, it
seems reasonable (and resource efficient) to look for an
expansion in terms of elements of HN,J,n,M .

Do parton-like states form a basis for the symmet-
ric and antisymmetric polynomials with the M -clustering
property? Consider the simple case of N = 2 particles,

P (M)(Z, Z̄) =
M∑

q=0

zq12z̄
M−q
12 Pq(Z, Z̄). (159)

Since the Slater determinants χpµ
(Z, Z̄) form a complete

basis of ÂH2,J,n

z12Pq(Z, Z̄) =
∑

µ

cµ χpµ(Z, Z̄), (160)

z̄12Pq(Z, Z̄) =
∑

µ

c̃µ χpµ
(Z, Z̄). (161)

It thus follows that

P (M)(Z, Z̄) =
∑

µ

(
M∑

q=1

cµ χpµ z
q−1
12 z̄M−q

12 + c̃µ χpµ z̄
M−1
12

)

=
∑

µ

dµΨpµ
(Z, Z̄), (162)

can be expanded in terms of parton-like states Ψpµ(Z, Z̄).
This simple line of reasoning cannot be straightfor-

wardly generalized to N > 2. For polynomials depending
only on variables (holomorphic coordinates) Z (NL = 1),
one can use an alternative proof: consider the simple case
of polynomials with the M -clustering property depend-
ing only on variables Z. It is a well-known result from

commutative algebra, that the ring of multivariate poly-
nomials over the complex field is a unique factorization
domain (UFD), or factorial81. In our case, this implies
the factorization

P (M)(Z) = S(Z) χ1(Z)
M , (163)

with S(Z) a totally symmetric polynomial under the ex-
change of arbitrary indices i and j, and

χ1(Z) =
∏

i<j

(zi − zj) (164)

a Vandermonde determinant, i.e., a totally antisymmet-
ric polynomial under the exchange of arbitrary indices i
and j. This factorization is valid for M even or odd (i.e.,
bosons or fermions, respectively). Expanding the totally
antisymmetric polynomial

S(Z) χ1(Z) =
∑

µ

cµ χpµ(Z), (165)

in terms of Slater determinants χpµ
(Z), one obtains

P (M)(Z) =
∑

µ

cµΨpµ(Z), (166)

with parton-like states

Ψpµ
(Z) = χpµ

(Z)χ1(Z)
M−1. (167)

The proof of the expansion in Eq. (162) for any N > 2
and arbitraryNL is beyond the scope of this paper. If one
conjectured that all elements of the space of polynomi-
als withM -clustering exponent, P (M)(Z, Z̄) ∈ HN,J,n,M ,
can always be written as

P (M)(Z, Z̄) =
∑

µ

cµP
(M−1)
µ (Z, Z̄) P̃ (1)

µ (Z, Z̄) ,(168)

then, it is straightforward to show by induction that
those same elements can always be written as linear su-
perpositions of parton-like states, i.e., Eq. (162). We
will further elaborate on the completeness of parton-like
states in the M -clustering subspace in the following sec-
tion(s).

E. Generating algebras of polynomials P (Z, Z̄)

We are interested in determining a generating algebra
of the elements of

⊕

J ÂHN,J,n,M . Concretely, we mean

by that the idea of understanding
⊕

J ÂHN,J,n,M as a
cyclic module of some symmetry algebra. Here, a cyclic
module is a representation that is generated by one par-
ticular element (a “vacuum”) via the action of the algebra

in question. Since, for given N , n, M ,
⊕

J ÂHN,J,n,M is
the zero-mode space of an associated frustration-free TK
Hamiltonian (25), we can think of the algebras in ques-
tion as symmetry algebras preserving the ground state
subspace of this Hamiltonian. The goal of this section
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is thus to define algebras of operators acting on poly-
nomials that are as rich as possible while preserving the
number of LLs NL = n+1 as well as the (anti-)symmetry
and the M -clustering property of these polynomials. At
first, we will let n → ∞, so as to remove the restriction
on the number of LLs. We will subsequently identify
sub-algebras that preserve a given maximum n.

Define the following symmetric linear operators,

A1
α = Ŝ

[
ϕα(Z, Z̄)∂z̄N

]
, A−1

α = Ŝ
[
ϕα(Z, Z̄)∂zN ] ,

A0
α = Ŝ

[
ϕα(Z, Z̄)] , (169)

where Ŝ is the symmetrizer with respect to variable in-
dices i = 1, · · · , N , and

ϕα(Z, Z̄) ≡
N∏

i=1

φαi
(i). (170)

These operators form a Lie algebra,

[Aε
α, A

ε′

α′ ] =
∑

β

Cβ
αα′ A

ε
β +

∑

β′

Cβ′

αα′ A
ε′

β′ , (171)

where Cβ
αα′ are integers, and ε, ε′ = 0,±1. They satisfy

[
Ĵ , Aε

α

]
= (Jα + ~ε)Aε

α. (172)

The action of these symmetric operators on elements
of ÂHN,J,n,M , preserves their (anti-)symmetry. As for
the invariance of the M -clustering property, it is evident
that the action of the symmetric operator A0

α on any
polynomial does not change that property since its action
is multiplicative. It remains to analyze the action of A±1

α .
Without loss of generality, we single out a pair (i, j) of
indices and write the action of A−1

α on P (Z, Z̄) as

A−1
α P (Z, Z̄) =

∑

q

(A−1
α zqijz̄

M−q
ij )Pq(Z, Z̄)

+ zqijz̄
M−q
ij A−1

α Pq(Z, Z̄). (173)

The last term in (173) preserves the M -clustering prop-
erty in the pair (i, j). Our last task is thus to show

that A−1
α zqijz̄

M−q
ij also preserves the M -clustering prop-

erty in (i, j), since we know the expression (173) to
be totally (anti-)symmetric, so the pair (i, j) is arbi-

trary. We may rewrite A−1
α = Ŝ

[
Si(Z, Z̄)φαN

(i) ∂zi
]
=

Ŝ
[
Sj(Z, Z̄)φαN

(j) ∂zj
]
, where Si(j)(Z, Z̄) is a symmetric

polynomial of N − 1 variables that does not contain par-
ticle index i(j) and orbital αN . As a result,

A−1
α zqijz̄

M−q
ij =

[
Si(Z, Z̄)φαN

(i)− Sj(Z, Z̄)φαN
(j)
]

× qzq−1
ij z̄M−q

ij . (174)

It is clear that in this expression, the bracketed term is
antisymmetric with respect to exchanging i and j. The
latter antisymmetry restores the overall clustering ex-
ponent M in the expression. This concludes the proof

that A−1
α zqijz̄

M−q
ij preserves the M -clustering property.

Finally, since the steps above generalize to ε = ±1, if
P (Z, Z̄) ∈ ÂHN,J,n,M one gets

Aε
α P (Z, Z̄) = P̃ (Z, Z̄) ∈ ÂHN,J+Jα+~ε,ñ,M , (175)

where ñ = n− ε(ε+1)/2+max (ni). Moreover, it is easy
to see that the action of Aε

α on any parton-like state
results in a linear superposition of parton-like states,

Aε
α Ψp(Z, Z̄) =

∑

µ

dµΨpµ
(Z, Z̄) . (176)

Finally, all of the above clearly carries over in straight-
forward ways to any element of the algebra generated by
the Aε

α.
The Lie algebra (171) has several interesting sub-

algebras that are noteworthy for their preservation of a
maximum number of LLs NL. Their action is graphically
depicted in Table VI, with definitions given as follows:

• Affine Kac-Moody algebra. For m > 0, and
n = NL − 1 non-negative integers, the generators

S+
m =

∑

i

zm+1
i (nz̄i − z̄2i ∂z̄i) ,

S−
m =

∑

i

zm−1
i ∂z̄i ,

Sz
m =

∑

i

zmi (z̄i∂z̄i − n/2) , (177)

define an untwisted affine Kac-Moody82 algebra

[S+
m, S

−
m′ ] = 2Sz

m+m′ , [Sz
m, S

±
m′ ] = ±S±

m+m′ . (178)

The action of these operators on P (Z, Z̄) changes
its total angular momentum via

[Ĵ , S±,z
m ] = m~S±,z

m . (179)

• su(2) algebras. For given smax and n = NL −
1, we define generators of three independent su(2)
algebras:

S+ =
∑

i

ziz̄i(n− z̄i∂z̄i) , S− =
∑

i

z−1
i ∂z̄i ,

Sz =
∑

i

(z̄i∂z̄i − n/2) , (180)

where [S+, S−] = 2Sz, [Sz, S±] = ±S±,

L+ =
∑

i

(smaxzi − z2i ∂zi), L− =
∑

i

∂zi ,

Lz =
∑

i

(zi∂zi − smax/2), (181)

such that [L+, L−] = 2Lz, [Lz, L±] = ±L±, and

L̄+ =
∑

i

(nz̄i − z̄2i ∂z̄i), L̄− =
∑

i

∂z̄i ,
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L̄z =
∑

i

(z̄i∂z̄i − n/2), (182)

satisfying [L̄+, L̄−] = 2L̄z, [L̄z, L̄±] = ±L̄±. One
may verify that

[Ĵ , S±] = 0, [Ĵ , L±] = ±~L±, [Ĵ , L̄±] = ∓~L̄±.

(183)

We point out that the algebra defined in Eq. (180)
is the first quantization representation of the pseudospin
algebra in Eq. (54), which is well-defined only when ji ≥ 0
(away from the boundary).

S+
m S−

m S+ S− L− L+ L̄− L̄+

�
m �

m ↑ ↓ ← → ↘ ↖

TABLE VI. Action of sub-algebra generators. Arrows repre-
sent direction of change in a (J, L̄z) plane, where right direc-
tion corresponds to increasing angular momentum while up
refers to increasing LL index.

Consider now polynomials P (Z, Z̄) ∈ ⊕J ÂHN,J,n,M

with well-defined angular momentum J (parton-like
states are examples of such polynomials). What is(are)
the Pmin(Z, Z̄) with lowest total angular momentum, i.e.,

ĴPmin(Z, Z̄) = JminPmin(Z, Z̄)? We will approach this
question first by defining a highest weight state(s) of
the algebra generated by the Aε

α to be a polynomial
Phw(Z, Z̄) satisfying

Aε
αPhw(Z, Z̄) = 0, (184)

whenever Jα+~ε < 0 and ñ ≤ n. For instance, for n = 0,
the polynomial χ1(Z)

M (Laughlin states) is a highest
weight state of the algebra. Clearly, any Pmin(Z, Z̄) must
also be a heighest weight state, otherwise the condition of
minimal angular momentum would be violated. By the
same token, any minimum angular momentum parton-
like state is a heighest weight state, as the action of the
algebra preserves the parton-like character. We claim
that for arbitrary n the highest weight states of the al-
gebra are parton-like states. If such a parton-like state
satisfies the condition of being closed-shell, then, accord-
ing to the claim, it must be the unique minimum angular
momentum highest weight state. This is so since by Sec-
tion VC, such a closed-shell parton state is the unique
parton-like state with lowest total angular momentum.
Here we give a heuristic justification for the above

claim. We wish to argue that the general symmetric op-
erators given in Eq. (169) are the “generators of all poly-
nomials with M -clustering exponent” in the following
sense. Consider the sub-algebra that preserves NL LLs.
The claim follows if it can be argued that this algebra is
rich enough such that

⊕

J ÂHN,J,n,M is irreducible as a
representation of this algebra. As is well known in the
representation theory of algebras, every irreducible rep-
resentation is cyclic, where every single state can serve to
generate the whole representation: Otherwise, the cyclic

module generated by such a state would be a proper in-
variant sub-module, contradicting irreducibility. Thus,
then, every state in

⊕

J ÂHN,J,n,M can be reached from
any other via actions of the algebra. Moreover, since
⊕

J ÂHN,J,n,M contains parton-like states, and the ac-
tion of the algebra preserves the property of being a
parton-like superposition, any element of

⊕

J ÂHN,J,n,M

must be a parton-like superposition. All the above con-
jectures then follow from properties of parton-like states,
in particular the uniqueness of partons as minimum an-
gular momentum parton-like states. While we find it
plausible that the algebra defined here is rich enough in
the precise sense defined above, we leave the proof of this
as an interesting mathematical problem.
As a useful application, we note the following corol-

lary: The MR Pfaffian and RR states cannot be
densest–incompressible–ground states of the two-body
frustration-free parent Hamiltonians of this work. The
reason is that these states are not closed-shell parton
states but are expanded in terms of parton-like states.
For instance, consider the MR Pfaffian state

ΨMR(Z) = Pf

(
1

zi − zj

)

χ1(Z)
M+1. (185)

One can check that for N = 4 it can be expanded as

ΨMR(Z) = Ψ1(Z)− 2Ψ2(Z) + 10Ψ3(Z), (186)

where the parton-like states are

Ψ1(Z) =

∣
∣
∣
∣
∣
∣
∣

1 1 1 1
z1 z2 z3 z4
z41 z42 z43 z44
z51 z52 z53 z54

∣
∣
∣
∣
∣
∣
∣

χ1(Z)
M−1,

Ψ2(Z) =

∣
∣
∣
∣
∣
∣
∣

1 1 1 1
z21 z22 z23 z24
z31 z32 z33 z34
z51 z52 z53 z54

∣
∣
∣
∣
∣
∣
∣

χ1(Z)
M−1,

Ψ3(Z) =

∣
∣
∣
∣
∣
∣
∣

z1 z2 z3 z4
z21 z22 z23 z24
z31 z32 z33 z34
z41 z42 z43 z44

∣
∣
∣
∣
∣
∣
∣

χ1(Z)
M−1. (187)

Similarly, for the (N = 4) Read-Rezayi state one obtains
ΨRR(Z) = 2ΨMR(Z).

VI. PARTONS, DNA, AND MPS STATES

When we determined, in the preceding sections, the
ground subspace of the general two-body frustration-free
Hamiltonians of the type of Eq. (25), we discussed two
seemingly distinct threads. These centered on the EPP
on the one hand and the parton construction on the
other. The emergent EPP establishes constraints on any
pair of particles in the DNA or root pattern of the ground
state. Thus far, we have, however, refrained from demon-
strating that any ground states satisfying the EPP indeed
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qualify as ground states of our frustration-free Hamilto-
nian. The closed-shell parton states Φν(Z, Z̄) represent
the densest ground states. Nevertheless, on its own, this
property does not yield the complete set of ground states
of Hamiltonians given by Eq. (25). By combining the
rules set by the EPP and parton constructs, one can
provide a rigorous method to establish completeness of
parton-like states to span

⊕

J ÂHN,J,n,M . In this Sec-
tion, we will establish completeness for the special case
of M = 3, n = NL − 1 = 3. Prior to doing so, we will
start our discussion by constructing root patterns and
root states (DNA) from a given parton-like state. We will
firmly connect these to the EPPs. We will next show the
MPS structure of the DNA illustrating the complex and
interesting pattern of entanglement that encodes those
non-Abelian fluids. We will then derive a scheme that
will enable us to extract possible parton-like states given
a root pattern.

A. Root pattern and DNA of parton-like states

Consider a single Slater determinant χp(Z, Z̄) with a
root pattern {j}root = {j1, j2, . . . , jN}root that is arranged
in an ascending order of angular momenta j1 ≤ j2 ≤
· · · ≤ jN , where ji is the angular momentum of particle
i. It is clear that this root pattern is extracted from the
monomial ϕα(Z, Z̄), where χp(Z, Z̄) = Â

[
ϕα(Z, Z̄)

]
. In

the LLL, due to the Pauli exclusion principle, the mono-
mial ϕα(Z, Z̄) is unique. When multiple LLs are present,
several orbitals may share the same angular momenta.
This allows for many monomials ϕα(Z, Z̄) satisfying the
rule of ascending ji. Among all N ! monomials comprising
a Slater determinant, the number of distinct monomials

ϕα(Z, Z̄) satisfying this rule is Mp =
∏L

j=1 λj !, where λj
is the multiplicity of angular momentum j. For example,
consider N = 3 with j1 = j2 < j3. The corresponding
distinct monomials (Mp = 2) would be

ϕα(Z, Z̄) = φα1
(1)φα2

(2)φα3
(3),

ϕσα(Z, Z̄) = φα2
(1)φα1

(2)φα3
(3), (188)

where σ ∈ SN is a permutation of the αi indices. The
root pattern of the product χp(Z, Z̄)χp′(Z, Z̄) is28,83

{j1 + j′1, · · · , jN + j′N}root ≡ {j}root + {j′}root (189)
which is associated with the MpMp′ monomials

ϕα(Z, Z̄)ϕα′(Z, Z̄) = ϕα+α′(Z, Z̄). (190)

We stress that, although Mpµ
is the number of distinct

monomials in each individual Slater χpµ , not all of the
monomials MpMp′ may be distinct. This implies that
MpMp′ constitutes an upper bound on the number of
distinct monomials in the root state of χp(Z, Z̄)χp′(Z, Z̄).
Now, in an arbitrary parton-like state with M Slater de-
terminants, the number of distinct monomials

ϕ~α(Z, Z̄) ≡
M∏

µ=1

ϕαpµ
(Z, Z̄) = ϕ∑M

µ=1 αpµ
(Z, Z̄) (191)

is upper bounded by
∏M

µ=1 Mpµ
. With M ∈ (odd)even,

the (anti)symmetrization of each monomial provides a
non-expandable (Slater determinant)permanent. The
corresponding root state is a linear superposition of all
such non-expandable (Slater determinants)permanents.
Such a superposition encodes a specific pattern of entan-
glement. In what follows, we focus on the root pattern of
parton-like states. We will then study the corresponding
root states in the next subsection.
To illustrate our basic premise for the root patterns,

we examine a specific example. We will then discuss
the generalization to other states. Towards this end, we
first consider the particular closed-shell parton state of
N = 7 particles and NL = 3 (see Fig. 15), Φ1/2(Z, Z̄) =

χ1(Z, Z̄)χ2(Z, Z̄)χ2(Z, Z̄). The root occupation config-
uration for the two Slater determinants, χ2(Z, Z̄) and
χ1(Z, Z̄) are, respectively,

{j′}root = {−1, 0, 0, 1, 1, 2, 2}root,
{j′′}root = {0, 1, 2, 3, 4, 5, 6}root, (192)

so that the final root occupation configuration of the par-
ton is {j}root = {j′}root + {j′}root + {j′′}root, with

j1 = −1− 1 + 0 = −2,

j2 = 0 + 0 + 1 = 1,

j3 = 0 + 0 + 2 = 2,

j4 = 1 + 1 + 3 = 5,

j5 = 1 + 1 + 4 = 6,

j6 = 2 + 2 + 5 = 9,

j7 = 2 + 2 + 6 = 10. (193)

This leads to the following map

j −2 −1 0 1 2 3 4 5 6 7 8 9 10
λj 1 0 0 1 1 0 0 1 1 0 0 1 1

with root pattern {λ}root = 1001100110011. Neglecting
boundaries (j < 0), in the bulk each four consecutive
states are filled by two electrons. This defines the “bulk
root pattern” {λ}broot = {1100}. The above analysis may

FIG. 15. Angular momentum (in units of ~) occupation con-
figuration of Slater determinants components of the seven par-
ticles parton state Φ1/2(Z, Z̄) = χ1(Z, Z̄)χ2(Z, Z̄)χ2(Z, Z̄).
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NL Bulk root pattern ν
1 {100} 1/3
2 {10100} 2/5
3 {1100} 1/2
4 {200} 2/3
5 {20020110} 3/4
6 {2002101} 6/7
7 {300} 1
8 {30030120210} 12/11

TABLE VII. Bulk root patterns, {λ}broot, for densest closed-
shell parton states Φν with third order zeroes, M = 3, and
filling fractions ν.

be repeated for other states. In Table VII, we show exam-
ples of bulk root patterns and their corresponding filling
fractions for other closed-shell parton states.

1. Root states or DNAs from a given parton-like state

When confined to the LLL, the root patterns encode
all of the important information regarding the parton-
like states. However, in the presence of higher LL mix-
ing, there is an entanglement between the patterns in the
root states. This entanglement contains important infor-
mation, such as zero-mode counting, on the parton-like
states. In order to extract this information, we need to
determine the root states, or DNAs, for the root patterns
obtained from the given parton-like states.

As described above, given an N particle parton-like
state Ψp(Z, Z̄) in the subspace of NL LLs, one can deter-
mine its root pattern {λ}root. Since we are interested in
the bulk part of the root pattern, {λ}broot, consider the
Ψp(Z, Z̄) which consists of single-particle orbitals of non-
negative angular momenta, ji ≥ 0. Our aim is to keep all
of the non-expandable Slater determinants in the expan-
sion of Ψp(Z, Z̄) with pattern {λ}root. Thus, we exclude
inward-squeezed states.

To that end, consider a simple rescaling of the coor-
dinates zi → ζizi and z̄i → ζ−1

i z̄i, where i = 1, . . . , N .
Let us denote the rescaled coordinates by (Z ′, Z̄ ′). An
algebraic algorithmic way of extracting the root state is
the following: In the expansion of Ψp(Z

′, Z̄ ′), the mono-

mials with a common factor ΠN
i=1ζ

ji
i relate to the non-

expandable determinants and are determined by

N∏

i=1

1

ji!
(∂ζi)

ji Ψp(Z
′, Z̄ ′) =

( N∏

i=1

zjii

)

f
{λ}broot

NL,ν

=
∑

~α

C~α ϕ~α(Z, Z̄). (194)

Here, f
{λ}broot

NL,ν (Z, Z̄) has zero total angular momentum

Ĵf
{λ}broot

NL,ν = 0, C~α = ±1. The sum contains
∏M

µ=1 Mpµ

terms. As a result, the root state (DNA) can be obtained

by performing a simple antisymmetrization,

Ψroot(Z, Z̄) = Â
[(

N∏

i=1

zjii

)

f
{λ}broot

NL,ν

]
. (195)

Let us provide a few examples (with N even). The
root state for the ν = 1/M Laughlin state is ob-

tained by f
{10M−1}

1, 1
M

(Z, Z̄) = 1 (representing a single

Slater determinant). Next, consider the parton state
with {10100} (ν = 2/5), NL = 2 and root pattern
{j}root = {0, 2, 5, 7, · · · }root. For this state, we obtain

f
{10100}

2, 2
5

=

N−2
2∏

r=0

Dα1α2
(2r + 1, 2r + 2). (196)

In this example and throughout this section, α1 = (1, 1)
and α2 = (0, 0), i.e.,

Dα1α2
(2r + 1, 2r + 2) ≡

∣
∣
∣
∣

z2r+1z̄2r+1 z2r+2z̄2r+2

1 1

∣
∣
∣
∣
. (197)

For the parton state with {200} (ν = 2/3), NL = 4, and
{j}root = {0, 0, 3, 3, · · · }root, it can be checked that

f
{200}

4, 2
3

=

N−2
2∏

r=0

D3
α1α2

(2r + 1, 2r + 2). (198)

From the above structure, it is evident that the {200}
pattern is a simple product state of entangled pairs in
the root pattern. Applying the pseudospin algebra of
Eq. (180),

Szf
{200}

4, 2
3

= S±f
{200}

4, 2
3

= 0. (199)

This suggests that the 2 in the root pattern indeed rep-
resents a singlet state.
We have, so far, discussed bulk root patterns for

(closed-shell) parton states. For these, there is a one-to-
one correspondence between the parton state and its root
pattern. However, in general, several parton-like states
may share the same root pattern. For instance, for the
{110} pattern, NL = 4, we have four different root states
corresponding to the four different parton-like states
given by {110}n1

nN
=1n1

10110...11011nN
0. Here, n1, nN

identify the pseudospin degrees of freedom. The cor-
responding parton-like states are χn1nN

(Z, Z̄)χ2(Z, Z̄)
2,

n1, nN = 0, 1, with χn1nN
(Z, Z̄) constructed such that

the lowest and highest angular momentum orbitals are,
respectively, occupied by electrons with LL indices given
by n1 and nN . Consequently,

f
{110}n1

nN

4, 2
3

= (z1z̄1)
n1(zN z̄N )nN

N−2
2∏

r=0

D2
α1α2

(2r + 1, 2r + 2)

×
[N−3

2
]

∏

r=0

Dα1α2
(2r + 2, 2r + 3), (200)
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FIG. 18. Slater determinants χ′
nn′(Z, Z̄) and χ′′

nn′(Z, Z̄) for
2r − 1 particles in two LLs. In χ′

nn′(Z, Z̄) there is single
occupancy in ji = 0 and r − 1. For ji = 0 (ji = r − 1) the
nth (n′th) orbital is occupied. In χ′′

nn′(Z, Z̄), the ji = r− 1 is
unoccupied and ji = 0 and r are singly occupied. For ji = 0
(ji = r) the nth (n′th) orbital is occupied. For the states
above, one can use the pseudospin algebra of Eq. (180). For
χ′
nn′ and χ′′

nn′ the pseudospin is given by n+ n′ − 1.

states of the form, χ′
n1n2

(Z, Z̄)χ′
n′

1n
′

2
(Z, Z̄)χ2(Z, Z̄) and

4 states of the form χ′′
nn′(Z, Z̄)χ2(Z, Z̄)

2. All of these 14
states can be constructed from the 9 root patterns of Eq.
(60). The zero modes corresponding to the root states of
Eq. (60) are

Ψ
(1)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ
′
00(Z, Z̄)χ2(Z, Z̄),

Ψ
(2)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ
′
01(Z, Z̄)χ2(Z, Z̄),

Ψ
(3)
0 (Z, Z̄) = χ′

00(Z, Z̄)χ
′
10(Z, Z̄)χ2(Z, Z̄),

Ψ
(4)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
00(Z, Z̄)χ2(Z, Z̄),

Ψ
(5)
0 (Z, Z̄) = χ′

10(Z, Z̄)χ
′
10(Z, Z̄)χ2(Z, Z̄),

Ψ
(6)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
10(Z, Z̄)χ2(Z, Z̄),

Ψ
(7)
0 (Z, Z̄) = χ′

01(Z, Z̄)χ
′
01(Z, Z̄)χ2(Z, Z̄),

Ψ
(8)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
01(Z, Z̄)χ2(Z, Z̄),

Ψ
(9)
0 (Z, Z̄) = χ′

11(Z, Z̄)χ
′
11(Z, Z̄)χ2(Z, Z̄). (218)

Here, the root state corresponding to Ψ
(i)
0 (Z, Z̄) is given

by 〈Z, Z̄|Ψ(i)
root〉 as in Eq. (60) for N = 2. Using the

parton construction, we have successfully determined all
possible two particle ground states for the EPPs we have

derived for NL = 4 projected Hamiltonian. We will use
these constraints for many particle systems to construct
many particle root patterns of the zero-energy modes of
our Hamiltonian.

C. Parton-like states from a given root pattern

We have, so far, discussed how to extract root pat-
terns from parton-like states. One may be interested in
determining whether a given root pattern is compatible
with a valid ground state, that is, one that respects the
EPP. We will now start with a given root pattern and
construct possible parton-like states. It is useful to re-
mind the reader of the concise definition of parton-like
states. A parton-like state is a product of M building
blocks. Each building block is a Slater determinant of
particle coordinates zi, z̄i, i = 1, · · · , N . These Slater de-
terminants can be further translated into an increasing
set of angular momenta in second quantized language.
For a given root pattern {λ}root, in the angular mo-

mentum basis {j}root = {j1, j2, j3, ..., jN}root, an allowed
parton-like state should enable an integerM -partition for
each ji

ji = j
(1)
i + j

(2)
i + ...+ j

(M)
i , i = 1, ..., N, (219)

such that j
(µ)
i ≤ j

(µ)
j , ∀ µ ∈ {1, ...,M}, i < j, with the

constraint that for fixed µ the number of identical j
(µ)
i ’s

must be ≤ N
(µ)
m where N

(µ)
m = min (N

(µ)
L + j

(µ)
i , N

(µ)
L ) is

the maximal multiplicity. Here, N
(µ)
L , 1 ≤ N

(µ)
L ≤ NL,

represents the number of LLs making up the µ Slater

determinant satisfying
∑

µN
(µ)
L = NL +M − 1 (see Eq.

(148)). Under these constraints we can organize the data
in the following table

j1 j2 j3 · · · jN












j
(1)
1 j

(1)
2 j

(1)
3 · · · j

(1)
N

j
(2)
1 j

(2)
2 j

(2)
3 · · · j

(2)
N

...
...

...
. . .

...

j
(M)
1 j

(M)
2 j

(M)
3 · · · j(M)

N













N
(1)
m

N
(2)
m

...

N
(M)
m

, (220)

and, if the constraints are satisfied, it leads to the parton-
like state

Ψp(Z, Z̄) =

M
∏

µ=1

χ
N

(µ)
L

(Z, Z̄), (221)

where the N -particles Slater determinants χ
N

(µ)
L

(Z, Z̄)

are made out of orbitals spanning N
(µ)
L LLs with angular

momenta {j(µ)1 , j
(µ)
2 , j

(µ)
3 , · · · , j(µ)N }root.

Let us illustrate the algorithm by applying it to a sim-
ple example. Consider the case of N = 5, M = 3,
NL = 4 with root pattern 1002002 ({−3, 0, 0, 3, 3}root
in angular momentum representation). Our first step
amounts to finding the possible integer partitions of six
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(since NL + M − 1 = 4 + 3 − 1 = 6), subject to the

above noted constraints, leading to [N
(1)
L , N

(2)
L , N

(3)
L ]. In

this example, these integer partitions are [2, 2, 2], [1, 2, 3],
and [1, 1, 4]. Next, following Eq. (219), we find all possi-
ble partitions of {−3, 0, 0, 3, 3}root in each decomposition.
For [2, 2, 2] the solution can be written as

−3 0 0 3 3




−1 0 0 1 1
−1 0 0 1 1
−1 0 0 1 1





2
2
2

. (222)

Notice that the boundary state with angular momentum
−1 can only appear once as per our algorithm. For the
other two decompositions, i.e., [1, 2, 3], [1, 1, 4], we do not
have any solution which satisfies Eq. (219) and the con-
straints. In each decomposition, one Slater determinant

has N
(3)
L = 1. Hence, j

(1)
1 < j

(1)
2 < j

(1)
3 < j

(1)
4 < j

(1)
5 .

But, j2 = j3 = 0, implying j2 − j
(1)
2 > j3 − j

(1)
3 . Using

ji = j
(1)
i + j

(2)
i + j

(3)
i together with the above observation

we get, j
(2)
2 + j

(3)
2 > j

(2)
3 + j

(3)
3 . This clearly contra-

dicts our assumption that, j
(µ)
i ≤ j

(µ)
j , ∀i < j. Hence, we

conclude that the root pattern 1002002 has associated
only the parton state [2, 2, 2] with identical Slater deter-
minants of angular momentum {−1, 0, 0, 1, 1}root. This
state corresponds to the closed-shell parton structure
χ2(Z, Z̄)

3, the unique parton solution allowed for the
1002002 root pattern.
For a (non closed-shell) less dense root pattern in the

ground state, one usually has multiple parton-like solu-
tions. Consider the root pattern 1101010101 (N = 6,
M = 3, NL = 4) having the angular momentum repre-
sentation {0, 1, 3, 5, 7, 9}root. This pattern admits more
than one solution,

0 1 3 5 7 9




0 0 1 1 2 2
0 0 1 2 2 3
0 1 1 2 3 4





2
2
2

→ [2, 2, 2] , (223)

0 1 3 5 7 9




0 0 1 1 2 2
0 0 1 1 2 2
0 1 1 3 3 5





2
2
2

→ [2, 2, 2] . (224)

Both of these parton-like states share the same,
1101010101, root pattern.
Clearly, given a root pattern it is possible not to have

any single parton-like state associated to it. To illustrate,
we discuss N = 7, M = 3 and NL = 4, which has root
pattern 100111000111 with angular momentum represen-
tation {−3, 0, 1, 2, 6, 7, 8}root. To derive this root pattern,
we need to satisfy following constraints

j2 = j
(1)
2 + j

(2)
2 + j

(3)
2 = 0,

j3 = j
(1)
3 + j

(2)
3 + j

(3)
3 = 1, (225)

j4 = j
(1)
4 + j

(2)
4 + j

(3)
4 = 2.

To satisfy these constraints along with, j
(µ)
i ≤ j

(µ)
j , ∀i <

j, {j(1)3 , j
(2)
3 , j

(3)
3 } must have at least two common el-

ements with both {j(1)2 , j
(2)
2 , j

(3)
2 } and {j(1)4 , j

(2)
4 , j

(3)
4 }.

In other words, at least one j
(µ)
i must appear in all

three cases. Without loss of generality, we assume all

j
(1)
i ’s for i = 2, 3, 4 are identical. Thus, one Slater

determinant must have, at least N
(1)
L = 3. More-

over, {j(1)2 , j
(2)
2 , j

(3)
2 } and {j(1)3 , j

(2)
3 , j

(3)
3 } have one more

common element. Again, we assume without any loss

of generality, identical j
(2)
i ’s for i = 2, 3. Finally,

{j(1)3 , j
(2)
3 , j

(3)
3 } and {j(1)4 , j

(2)
4 , j

(3)
4 } should have two com-

mon elements. Given identical j
(1)
i ’s for i = 2, 3, 4 and

identical j
(2)
i ’s for i = 2, 3, we have two scenarios,

1. j
(2)
3 = j

(2)
4 . In this scenario, j

(2)
i s for i = 2, 3, 4 are

the same and N
(2)
L ≥ 3. In this case, N

(1)
L +N

(2)
L +

N
(3)
L ≥ 3 + 3 + 1 > 6.

2. j
(3)
3 = j

(3)
4 =⇒ N

(2)
L ≥ 2 and N

(3)
L ≥ 2. Thus,

N
(1)
L +N

(2)
L +N

(3)
L ≥ 3 + 2 + 2 > 6.

In both scenarios, in order to have a parton-like solution,
we need NL+M −1 > 6. However, this inequality is not
satisfied given that NL = 4 and M = 3.
As an illuminating application of our algorithm, we

next show that the bulk root pattern {11000} (equal to
{0, 1, 5, 6, 10, 11, . . .}root in angular momentum represen-
tation) for arbitrary NL (the Gaffnian 2/5 state84 cor-
responds to NL = 1) cannot have a closed-shell parton
structure associated to it, although it can have a parton-
like structure. For a closed-shell parton, we have one

additional constraint, j
(µ)
i+1 ≤ j

(µ)
i + 1 for all µ, i.e., all

shells must be filled. Assume that there exists a closed-
shell parton state with a zero of order M ∈ odd. Then,
starting at j1 = 0

j1 = j
(1)
1 + j

(2)
1 + j

(3)
1 + . . .+ j

(M)
1 = 0,

j2 = j
(1)
2 + j

(2)
2 + j

(3)
2 + . . .+ j

(M)
2 = 1. (226)

Thus, j
(µ)
1 = j

(µ)
2 for any set of M − 1 µ values. With-

out any loss of generality, we assume j
(1)
2 = j

(1)
1 + 1.

Being a closed-shell parton, this is possible only if the
first Slater determinant has a single LL (no degeneracy)
with angular momentum {0, 1, 2, 3, 4, 5, ...}root. Subtruct-
ing {0, 1, 2, 3, 4, 5, ...}root from the original root pattern
{0, 1, 5, 6, 10, 11, . . .}root leads to {0, 0, 3, 3, 6, 6, . . .}root,
which is the same as {λ}broot={200}. Then, the rest of
the Slater determinants in the parton must form a root
pattern of the form {200}. But we have already shown
that the only closed-shell parton associated with such
root pattern is [2, 2, 2]. Thus, for {11000} the only possi-
ble closed-shell parton is [1, 2, 2, 2] with a 4th order zero,
i.e., M = 4. However, a fermionic state should haveM ∈
odd. Thus, we proved that the fermionic {11000} root
pattern cannot have a closed-shell parton structure.
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D. Completeness of parton-like states for M = 3 in

4 LLs

We begin by showing that there exist parton-like states
giving every possible root pattern consistent with the

EPP. We do so by solving explicitly Eq. (219) for N
(µ)
L =

2, µ = 1, 2, 3. This can be done in the following way:

j
(1)
i = bji/3c,
j
(2)
i = dji/3e,
j
(3)
i = ji − j

(1)
i − j

(2)
i ,

(227)

where, b c and d e are the floor and ceiling func-
tions, respectively. This obviously satisfies Eq. (219), is
monotonically increasing in i, and it is consistent with

N
(µ)
L = 2 for the following reason: For any pattern con-

sistent with the EPP, increasing the particle index i by
2 increases ji by at least 3, thus, every row in Eq. (227)

by at least 1. Thus, for every fixed µ = 1, 2, 3, j
(µ)
i can

assume every value at most twice as a function of i. It
remains to be shown that the value of −1 can occur at
most once. The EPP must be supplemented by boundary
conditions “on the left”, associated to negative angular
momenta, as shown in Appendix D. For root patterns,
these boundary conditions can be simply summarized as
enforcing

j2 ≥ 0 (228)

in addition to the already established rules. In Eq. (227),

this then trivially also implies j
(µ)
i ≥ 0.

Next, we argue that, moreover, for every root state that
is the product of MPS as constructed in Sec. VIA 2 and
general factors 00200 and 001sz00, there is a correspond-
ing parton-like state. Given now a root state |Φ〉 with
the MPS/product structure defined above, we construct
a parton-like |ψ〉 state having a root state corresponding
to the root pattern of |Φ〉. Now we compare |Φ〉 to the
root state |ψroot〉 of |ψ〉, each in general a tensor product
of mutually un-entangled units. Every factor ‘2’ in this
product must be the same in |Φ〉 and |ψ〉, as |ψ〉 is a
zero mode, and this determines the state of any ‘2’ in its
root state uniquely, as we have seen. Likewise, any 1100-
string in |ψroot〉 automatically follows the MPS construc-
tion principle of Sec. VIA 2. However, a string involving
1’s has certain degeneracies associated to it that must be
recovered in general root states obtained (via the rule of
(227)) from parton-like states. Indeed, one verifies from
this rule that every leading 1 in a . . . 00101 unit will be
mapped to a singly occupied j-orbital in exactly two of
the three Slater determinants. An analogous statement
holds for the left-right reversed situation. Every central
1 in a 10101-pattern will be mapped to a singly occupied
j-orbital in exactly one of the three Slater determinants.
Every . . . 001sz00 unit will be mapped to singly occupied
j-orbitals in all three Slater determinants. Each singly
occupied j-orbital in a Slater determinant leads to a free

spin-1/2 degree of freedom in the root level of the MPS.
Indeed, all of the expected spin-1/2 degrees of freedom
of the MPS associated with the 1-carrying patterns are
generated in this way and lead to all of the possible MPS
described in Sec. VIA 2. This illustrates that for every
possible MPS-solution for the EPP, we find a parton-like
state whose root state or DNA is precisely this MPS-
solution.
The completeness of the parton-like states as zero

modes is now obtained as follows. We may assume
that the MPS states described in Sec. VIA 2 represent
a complete set of solutions for the EEP governing the
. . . 110110 . . . pattern, based on general arguments for
AKLT-type constructions68. Then, the MPS/product
states discussed here represent a complete set of possi-
ble root states {|Φd〉}, where d is some label referencing
all such states. (Here and in the following, we may re-
strict to fixed total angular momentum J to keep the set-
ting finite dimensional). By the above, we always have
a parton-like state |ψd〉 whose root state is |Φd〉. We
may now reproduce the proof given in Ref. [14] for the
completeness of the states |ψd〉 as zero modes. By con-
struction, 〈Φd|ψd〉 6= 0 yet the matrix 〈Φd′ |ψd〉 need not
be diagonal. Nonetheless, for given |ψd〉, every |Φd′〉 with
d′ 6= d is not the root state of |ψd〉. If 〈Φd′ |ψd〉 6= 0, then
|Φd′〉 consists of Slater determinants that can be obtained
from those of |Φd〉 via inward-squeezing processes. This
is enough to show that an ordering of the labels {d} exists
such that the matrix 〈Φd′ |ψd〉 is triangular. Thus, this
matrix is invertible. Given any zero-mode |ψ〉, this fact
allows the construction of a superposition |ψ′〉 of parton-
like states |ψd〉 such that 〈Φd|ψ〉 = 〈Φd|ψ′〉. The differ-
ence |ψ〉 − |ψ′〉 is then a zero mode that is orthogonal to
all possible root states, a contradiction unless |ψ〉 = |ψ′〉.
Therefore, |ψ〉 is a superposition of |ψd〉’s.

VII. CONCLUSIONS AND OUTLOOK

Traditionally, FQH systems have been largely exam-
ined either via wave function Ansatz or effective field the-
ories. The links between these two approaches run deep
with illuminating insights between edge conformal field
theories (CFTs) and bulk polynomial wave functions, and
relations to edge CFTs and topological quantum field
theories (TQFTs) on the other. In this paper, we pro-
ceeded along an inter-related third approach rooted in
the study of microscopic many-body Hamiltonians. We
studied the structure of entangled multiple Landau level

(LL) states and their local (in real space) many-body par-
ent Hamiltonians. Our results may potentially further
help bridge the divide between the above noted micro-
scopic wave functions and long distance continuum field
theories. A focus of our work was the study of universal
structures present in multiple, NL, LL FQH systems. We
have studied the general zero-mode structure of rather
general positive semi-definite local Hamiltonians. In our
analysis of their zero modes, a key role was played by
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the “M -clustering property” of QH wave functions- the
existence ofM -th order zeroes near a two-particle coinci-
dence hyperplane. Since Laughlin’s celebrated construc-
tion of his variational wave function for the 1/3 FQH
state, numerous wave functions with M -clustering prop-
erties have seen proposed. Laughlin’s wave function can
be expressed as the product of M Slater determinants of
lowest LL (LLL) orbitals (expressed in terms of holomor-
phic variables), with filling fraction of the form 1/M (odd
M). Jain has further extended this construct by intro-
ducing his composite fermion picture, wherein a single LL
is replaced by multiple Λ-levels. In spite of their immense
success in explaining a plethora of FQH plateaus, all of
these states are qualitatively similar to integer QH states.
Filling fractions observed at higher LLs, such as85, 5/2,
12/5, 7/3, and 8/3 are, however, suspected to exhibit
more intricate physics demanding far more complicated
wave functions. A unified systematic understanding of
these systems invites the search of general principles and
tools of analysis.

Inspired by these all too well-known challenges, we ex-
tended the Hamiltonian approach to more general FQH
states. In the current work, we examined, in great de-
tail, the zero-mode subspace of the aforementioned local,
multiple LL, two-body Hamiltonians. Consequently, we
determined a basis for the Hilbert space formed by poly-
nomials associated with general states that entangle the
different LLs and obey the M -clustering property. We
conjectured that these basis elements are parton-like, i.e.,
are products of M Slater determinants, and rigorously
demonstrated it for M = 3, NL ≤ 4. These parton-
like structures capture a very rich class of states. Our
parent Hamiltonians are frustration-free QH Hamiltoni-
ans. The construction of the Laughlin wave function as
the above noted product of Slater determinants—a par-
ton state built from LLL wave functions satisfying the
two-body M -clustering properties—can be extended in
several ways. These principally include the construc-
tion of (a) LLL (holomorphic) wave function with k-body
(k > 2) M -clustering properties or, as we pursue in this
paper, of (b) parton states (two-bodyM -clustering) from
multiple LLs. The more traditional approach (a) gives
rise to the Moore-Read (MR) 1/2 state (candidate for
5/2 filling fraction3), the Read-Rezayi (RR) 2/3 state
(candidate for 12/5 filling fraction86), and many other
CFT inspired states. The MR and RR states are mem-
bers of a polynomial space satisfying the M -clustering
property. We have, instead, followed the aforementioned
approach (b). As emphasized above, we extended par-
ton states to higher LLs. In particular, we constructed
candidate FQH states that are topologically similar to
the MR and RR states. These states not only provide
candidate wave functions for several FQH plateaus but
can also be further associated with frustration-free pos-
itive semi-definite two-body parent Hamiltonians in flat
bands with higher Chern numbers87. Our specific anal-
ysis focused on degenerate LLs arising when the kinetic
energy is quenched. As such, our results may capture

the detailed physics of systems that allow for mixing be-
tween multiple nearly flat bands such as those realized in
layered graphene10,88. In multi-layer graphene, multiple
degenerate LLs can appear with quenched kinetic energy.

Within our parton construction, we are not limited to
states with conformal block structures. Constructing a
multiple LL parton state is far more challenging than that
of its single LL counterpart. There exist no effective flux
attachment analogies in the former case and the result-
ing wave function can have very different edge excitation
than the constituting Slater determinant states. In or-
der to establish these states as the unique densest ground
state of some two-body parent Hamiltonian, we have used
fundamental organizing principles, known as the Entan-
gled Pauli Principles (EPPs). The EPP provides a rigor-
ous zero-mode counting method for zero-energy excita-
tions and determines, in a way that we make precise, the
quintessential DNA of the densest ground state. The
zero-mode counting enabled by the EPP for the non-
holomorphic multiple LL states prompted queries that
go beyond known mathematical results. In particular,
our results and resulting conjectures can be interpreted
as new developments in commutative algebra, of which
we prove special instances. Specifically, we posit that
all polynomials P (z1, z2, . . . , zN , z̄1, z̄2, . . . z̄N ) of complex
variables {zi} and their complex conjugates {z̄i} that (a)
adhere to (anti-)symmetry under the interchange of any
pair of complex coordinates, (b) satisfy the M -clustering
property, and (c) are not of order higher than n = NL−1
in any z̄i, are linearly spanned by parton-like states. Our
study of the EPP and FQH DNAs can further be used in
torus geometry to construct a coherent state description
of the ground state encoding useful information such as
exchange statistics and topological classification for the
corresponding parton states.

We have shown that in the toroidal geometry, our par-
ent Hamiltonians satisfy an S-duality. That is, there
exists a duality that links Hamiltonians associated with
two different aspect ratios of the torus (i.e., those with
Lx/Ly < 1 to those with Lx/Ly > 1). The S-duality
enabled us to extract characteristic properties of the QH
fluid, being a key ingredient in our approach to the quasi-
particle statistics. For instance, for a QH system in the
subspace of four LLs we have obtained the DNA of the
fluid and topological classifications. We have furthermore
demonstrated that the excitations are none other than
Fibonacci anyons. As is well known, Fibonacci anyons
may provide a simple platform for achieving universal
topological quantum computation. In an earlier work, we
found that the corresponding excitations for the Jain-221
state15 are Majorana fermions. Majorana and Fibonacci
statistics are naturally associated with groups suggested
by underlying TQFTs (related to SU(2)2 and SU(2)3 re-
spectively). Thus, the results of our braiding analysis
exhibit natural connections between the DNA and asso-
ciated EPPs, which emerge microscopically in our mod-
els, and TQFTs. It is noteworthy that the domain walls
generally arising in our multiple LL setting are not sim-
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ple domain walls such as those in classical spin chains
nor a tensor product of such defects. Rather, these are
bona fide quantum topological defects that may feature
entanglement.

In the context of strongly correlated physics, one of-
ten uses the Hilbert space of Slater determinants as a
basis for numerical calculations. However, the dimension
of the Hilbert space of parton-like states with an M -
clustering property is drastically smaller than the Hilbert
space of Slater determinants. For this reason, we believe
that using the Hilbert space of parton-like states reduces
complexity of numerical calculations for strongly corre-
lated many-body systems such as QH systems, or other
non-Fermi liquids. In the particular context of Quantum
Monte Carlo simulations, updating Slater determinants
becomes polynomially efficient because of the Sherman-
Morrison formula89. This procedure can also be extended
to the case of parton-like states. We postpone the elab-
oration of these ideas for a later publication.

Beyond our specific results, our work provides a gen-
eral framework that naturally highlights several broad
concepts and further underscores several open questions.
We elaborate on one of these below.

The relation between generic parton states and bound-

ary Conformal Field Theories. In the current work, we
derived numerous results for the system bulk. However,
apart from insightful Chern-Simons theory type conjec-
tures,90 a systematic understanding of the edge theory
of general parton states is non-existent. Our general ap-
proach to QH states lies outside the purview of stan-
dard CFT framework in which the boundary behaviors
are transparent. Indeed, nowhere in our analysis have
we relied on CFT notions. This is partially so since stan-
dard CFT recipes cannot be straightforwardly applied to
general non-holomorphic states such as the one that we
investigate here. Obtaining the associated boundary the-
ories for generic parton states is a non-trivial challenge.

We next briefly speculate on how our exact many-
body Hamiltonian and zero-mode counting based scheme
may be effective in establishing the link between non-
holomorphic QH states and their effective boundary the-
ories. The results of our approach must be in a one-to-one
correspondence with the zero-mode counting of the con-
formal edge theory. In the conventional CFT type modus

operandi, plausible CFTs are guessed and, subsequently,
a check is performed to see whether the conformal blocks
in these proposed CFTs match with those of the wave
function. Given a candidate CFT, the number of pos-
sible edge modes of a given angular momentum may be
computed. Our method should enable the unambiguous
identification of the boundary theory by employing zero-
mode counting that can be rigorously established via the
use of the EPPs. This may afford as strong a connection
between mixed-LL parton QH states and their effective
edge CFTs as that which one usually takes for granted in
the lowest LL. For the Jain-221 state15, we have indeed
made such a zero-mode counting based “bulk-boundary
correspondence type” connection rigorous. We anticipate

such a link to be far more general. This may complement,
especially for non-holomorphic states, the insightful con-
formal block trick of Moore and Read. In other words,
we speculate that a zero-mode counting of the bulk states
(using the precise many-body microscopic Hamiltonian
that we employed in the current work) may, generally,
lead to the relevant edge theories. This approach will not
invoke discussions of effective Chern-Simons theories. In
particular, such a many-body based technique may be
applicable for generic parton theories for which there are
currently no known CFTs. As we additionally explained
in the current work, the coherent state method enables a
way to infer the bulk braiding statistics. Taken together,
all of the above ingredients suggest how our many-body
approach may allow unambiguous determination of effec-
tive field theory from microscopic Hamiltonians.
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I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
n1 0 0 1 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3
n2 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 2 2 2 3 3 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3
m 1 0 2 1 1 3 1 3 0 2 1 3 0 2 4 1 3 5 1 3 0 2 4 0 2 4 1 3 5 0 2 4 6 1 3 5 1 3 5 7

TABLE VIII. Quantum numbers labeling the fermionic basis operators Tn1,n2 −
j,m for fixed j and NL = 4 LLs.

Appendix A: Two-particle states: From wave

functions to Fock states

Consider the following normalized vacua

|0, 0, 2j −m,m〉 (A1)

=
1

√

(2j −m)!m!
b†2j−m
c b†mr |0〉

=
1

√

(2j −m)!m!

∑

k

Cmjk

2j
b†j−k
1 b†j+k

2 |0〉,

where

〈zc, z̄c; zr, z̄r|0〉 =
1

√

2π`2c
e
−

zcz̄c
4`2c

1
√

2π`2r
e
−

zrz̄r
4`2r , (A2)

with zc = (z1 + z2)/2, zr = z1 − z2, `c = `/
√
2, and `r =√

2`. In this paper, unless specified otherwise, we set the
magnetic length `r to be the unit of length, i.e., `r = 1
or ` = 1/

√
2. On the torus geometry, for convenience, we

will work with ` = 1.
Each individual vacuum state is of total angular mo-

mentum 2j and lies in the LLL (i.e., is a holomorphic
state in a first quantization description). In a disk ge-
ometry, when using the symmetric gauge A(xi, yi) =
B
2 (yix̂ − xiŷ), the LL and cyclotron-orbit-center ladder
operators become

ai =
1√
2
(
zi
2`

+ 2`∂z̄i) , a
†
i =

1√
2
(
z̄i
2`

− 2`∂zi),

bi =
1√
2
(
z̄i
2`

+ 2`∂zi) , b
†
i =

1√
2
(
zi
2`

− 2`∂z̄i). (A3)

As a result, the coefficients in the expansion of Eq. (A1)
are given by24

Cmjk = (−1)m+j−k

×
j−k
∑

q=0

(−1)q
(

2j −m

q

)(

m

j − k − q

)

. (A4)

This expression indicates that j−k is an integer. Thus, if
j is an integer (half-odd integer) then k is an integer (half-
odd integer). The normalized vacua in Eq. (A1) may be
either symmetric (m ∈ even) or antisymmetric (m ∈ odd)
under particle exchange, the fermionic basis states |I〉F
given in Eq. (C1) are, by definition, antisymmetric.

We want now to find the Slater determinant decompo-
sition of the two-particle states |I〉F . This decomposition
will allow us to find an immediate representation of the
corresponding state in terms of fermionic operators. In
turn, this decomposition will reveal a fundamental two-
particle generator in Fock space. It can be checked that
Eq. (C1) can be expressed as

|I〉F =
1

√

n1!n2! 22j+1(1 + δn1,n2
)

(A5)

×
j
∑

k=−j

Cmjk
√

(2j −m)!m!
Q(k)|0〉,

where we have used the property that, for m odd (even),
Cmj −k = −(+)Cmjk, and

Q(k) =

∣

∣

∣

∣

a†n1

1 b†j−k
1 a†n1

2 b†j−k
2

a†n2

1 b†j+k
1 a†n2

2 b†j+k
2

∣

∣

∣

∣

. (A6)

In first quantization,

〈z1, z̄1; z2, z̄2|Q(k)|0〉 =
√

n1!n2!(j − k)!(j + k)! Dα1α2
,

showing that the operator Q(k) is a generator of two-
particles Slater determinants. Now defining

ηk(j,m) ≡
√

(j − k)!(j + k)!

22j−1(2j −m)!m!
Cmjk, (A7)

Eq. (12) is obtained.

Appendix B: Interaction potential expansion

In this Appendix, we will obtain the general pseudopo-
tential expansion for any sufficiently short range two-
body (rotationally symmetric) interaction. Consider the
two-body interaction V (ri − rj) = V (rij) with Fourier
transform

V (rij) =

∫

d2k

(2π)2
Ṽ (k) eik·rij

=

∫ ∞

0

dk

2π
kṼ (k) J0(k|rij|), (B1)

where J0(x) is the zeroth spherical Bessel function53.
From the definition of the delta function

Lα(−`2∇2
ij)δ

2(rij) =

∫

d2q

(2π)2
Lα(`

2q2) eiq·rij
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=

∫ ∞

0

dq

2π
qLα(`

2q2) J0(q|rij|),

where Lα(x) is the αth Laguerre polynomial53, and ` the
magnetic length. We multiply the last expression by

Vα = `2
∫ ∞

0

dk2 Ṽ (k)Lα(`
2k2) e−`2k2

, (B2)

and sum over the whole range of α’s. After using the
identity

`2
∞
∑

α=0

Lα(`
2k2)Lα(`

2q2) = δ(q2 − k2) e`
2(k2+q2)/2,

we arrive at the pseudopotential expansion52,91

V (ri − rj) =

∞
∑

α=0

Vα Lα(−`2∇2
ij)δ

2(ri − rj). (B3)

The expansion to lowest order is

V (ri − rj) = (V0 + V1 + V1`
2 ∇2

ij) δ
2(ri − rj). (B4)

Note that terms proportional to δ2(ri−rj) have vanishing
matrix elements for fermionic wave functions.

When projected onto the LLL, the expansion above
coincides with the Haldane pseudopotential over the rel-
ative angular momentum ~α = ~m.

Eigensolutions of Eq. (25) with vanishing eigenvalue
must have (at least) third order zeros when two fermions
coalesce. This defines the clustering properties of the
zero modes, as we show next.

Given a zero energy state |Ψ0〉, i.e., 〈Ψ0|Hint |Ψ0〉 = 0,
assume it is of the general form

Ψ0(Z, Z̄) =

M
∑

q=0

zqij z̄
M−q
ij Pq(Z, Z̄) e

− 1
4`2

∑N
i=1 ziz̄i (B5)

in coordinate representation, with Z = {z1, z2, · · · , zN}
and Z̄ = {z̄1, z̄2, · · · , z̄N}, zij = zi − zj, z̄ij = z̄i −
z̄j, Pq(Z, Z̄) a polynomial symmetric with respect to
(zi, z̄i) ↔ (zj, z̄j), and (anti-)symmetric with respect to
other variables exchanges (it does not depend on the co-
ordinate differences zij, z̄ij), andM an (odd)even integer.

Then, from the zero energy condition and integration
by parts

〈Ψ0|Hint |Ψ0〉

= V1`
2

∫

dZdZ̄
∑

i<j

δ2(rij)∂zij∂z̄ij |Ψ0(Z, Z̄)|2 = 0, (B6)

given the general form of Eq. (B5), M must satisfy M ≥
2. For fermions, due to antisymmetry,M should be larger
than 3.

Appendix C: Projection onto four LLs

Using the states defined in Eq. (C1) in the subspace of
four LLs such that 0 ≤ ni ≤ 3 for i = 1, 2, we find a forty
dimensional basis (n1 + n2 = nc + nr). This basis is not
an eigenbasis of relative angular momentum Lr. In Table
VIII, we present the set of numbers {n1, n2,m} used to
construct each basis state |I〉F . We express these states
(in which subscript F is dropped for brevity) in terms of
|nc, nr, 2j −m,m〉 (see Section IIA),

|I〉 = Gn1,n2

± |0, 0, 2j −m,m〉
=
∑

nc,nr

Cncnr
|nc, nr, 2j −m,m〉 , (C1)

where

〈zc, z̄c; zr, z̄r|nc, nr, 2j −m,m〉 =
φcnc,2j−m(zc, z̄c)φ

r
nr,m(zr, z̄r), (C2)

with Landau orbital defined as51 (ϑ = c, r)

φϑn,s(z, z̄) =
(−1)n

√
n! e

− zz̄

4`2
ϑ

√

2π`2ϑ
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2s−ns!

(

z

`ϑ

)s−n

Ls−n
n

(

zz̄

2`2ϑ

)

.

(C3)

Here, Ls−n
n (x) is the associated Laguerre polynomial.

Due to the fermionic nature of the states |I〉, Lr/~ =
m− nr ∈ odd. Then, the basis vectors are given by

|1〉 = |0, 0, 2j − 1, 1〉,
|2〉 = |0, 1, 2j, 0〉,
|3〉 = |0, 1, 2j − 2, 2〉,
|4〉 = |1, 0, 2j − 1, 1〉,

|5〉 = 1√
2
(|2, 0, 2j − 1, 1〉 − |0, 2, 2j − 1, 1〉),

|6〉 = 1√
2
(|2, 0, 2j − 3, 3〉 − |0, 2, 2j − 3, 3〉),

|7〉 = 1√
2
(|2, 0, 2j − 1, 1〉+ |0, 2, 2j − 1, 1〉),

|8〉 = 1√
2
(|2, 0, 2j − 3, 3〉+ |0, 2, 2j − 3, 3〉),

|9〉 = |1, 1, 2j, 0〉,
|10〉 = |1, 1, 2j − 2, 2〉,

|11〉 = 1

2
(
√
3 |3, 0, 2j − 1, 1〉 − |1, 2, 2j − 1, 1〉),

|12〉 = 1

2
(
√
3 |3, 0, 2j − 3, 3〉 − |1, 2, 2j − 3, 3〉),

|13〉 = 1

2
(|2, 1, 2j, 0〉 −

√
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|14〉 = 1

2
(|2, 1, 2j − 2, 2〉 −

√
3 |0, 3, 2j − 2, 2〉),

|15〉 = 1

2
(|2, 1, 2j − 4, 4〉 −

√
3 |0, 3, 2j − 4, 4〉),

|16〉 = 1√
64

(
√
24|4, 0, 2j − 1, 1〉+

√
24|0, 4, 2j − 1, 1〉
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− 4|2, 2, 2j − 1, 1〉),

|17〉 = 1√
64
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5!|0, 5, 2j − 6, 6〉

− 4
√
3|2, 3, 2j − 6, 6〉),

|34〉 = 1√
192

(
√
5!|5, 0, 2j − 1, 1〉+

√
4!|1, 4, 2j − 1, 1〉

− 4
√
3|3, 2, 2j34 − 1, 1〉),

|35〉 = 1√
192

(
√
5!|5, 0, 2j − 3, 3〉+

√
4!|1, 4, 2j − 3, 3〉

− 4
√
3|3, 2, 2j − 3, 3〉),

|36〉 = 1√
192

(
√
5!|5, 0, 2j − 5, 5〉+

√
4!|1, 4, 2j − 5, 5〉

− 4
√
3|3, 2, 2j − 5, 5〉),

|37〉 = 1√
2304

(
√
6!|6, 0, 2j − 1, 1〉

− 3
√
4!
√
2|4, 2, 2j − 1, 1〉 −

√
6!|0, 6, 2j − 1, 1〉

+ 3
√
4!
√
2|2, 4, 2j − 1, 1〉),

|38〉 = 1√
2304

(
√
6!|6, 0, 2j − 3, 3〉

− 3
√
4!
√
2|4, 2, 2j − 3, 3〉 −

√
6!|0, 6, 2j − 3, 3〉

+ 3
√
4!
√
2|2, 4, 2j − 3, 3〉),

|39〉 = 1√
2304

(
√
6!|6, 0, 2j − 5, 5〉

− 3
√
4!
√
2|4, 2, 2j − 5, 5〉 −

√
6!|0, 6, 2j − 5, 5〉

+ 3
√
4!
√
2|2, 4, 2j − 5, 5〉),

|40〉 = 1√
2304

(
√
6!|6, 0, 2j − 7, 7〉

− 3
√
4!
√
2|4, 2, 2j − 7, 7〉 −

√
6!|0, 6, 2j − 7, 7〉

+ 3
√
4!
√
2|2, 4, 2j − 7, 7〉). (C4)

Notice that all these 40 vectors contain a vector compo-
nent |nc, nr, 2j −m,m〉 with Lr = ±1~. These vectors
are the ones that lead to non-vanishing matrix elements
of the TK Hamiltonian. States |I〉 with m > 7 compo-
nents do not contribute to the subspace of positive energy
eigenvalues since max(nr) = 6.
We have diagonalized the interaction potential in this

basis and obtained only 12 non-zero positive eigenval-

ues Eξ, ξ = 1, · · · , 12. The expansion coefficients Λξ
I

are presented as elements of a 40 × 12 matrix in Table
IX, with (I, ξ) specifying number of rows and columns,
respectively.
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TABLE IX. The matrix Λξ
I , with ξ = 1, · · · , 12 and I = 1, · · · , 40.

Appendix D: The boundary root pattern

Here, we follow the method of Section III B 3 to estab-
lish the left boundary conditions for a generic N -particle
zero-energy ground state |Ψ0〉 with NL = 4 LLs. By left
boundary conditions, we specifically refer to the allowed
negative angular momentum orbitals of |Ψroot〉. Two-

fermion operators T ξ−
j and their linear superpositions

annihilate |Ψ0〉. For the present purposes, a convenient

linear superposition, T ξ′

j , is shown in Table X. Near the
boundary, since the two-body basis elements must obey

n1 + n2 −m ≥ −2j, (D1)

not all two-fermion operators T ξ′

j satisfy the constraint.

For example, when j = −3 + 1/2 = −5/2 only two-
fermion operators with ξ′ = 1, 2 are well defined. When
j = −2, the well defined two-fermion operators are ξ′ =
1, · · · , 4. For j = −3/2, we get ξ′ = 1, · · · , 6. And for
j = −1, we get ξ′ = 1, · · · , 8.

To study the multiplicity of orbitals with −3 < j < 0,
we can utilize Eq. (66). Note that the smallest angular

momentum orbital j = −3 can only be occupied by a sin-
gle electron. When orbitals with j = −2 are occupied by
two electrons, the resultant root state with a single co-
efficient Cj

n1,n2
= C−2

2,3 has to satisfy 4 constraints from

Eq. (66). As a result, the multiplicity two in j = −2
orbitals is not allowed. Similarly, j = −1 orbitals oc-
cupied by two electrons cannot be allowed since such a
root state has only 3 coefficients C−1

n1,n2
, which cannot

simultaneously satisfy the 8 constraints of Eq. (66). As
a result, in a generic root state, we conclude that mul-
tiplicity of j < 0 orbitals can be at most one. That
is, 111 · · · , 110 · · · , 101 · · · , 011 · · · , 100 · · · , 010 · · · , or
001 · · · , where · · · refers to some bulk root pattern with
orbitals j ≥ 0.

The root pattern 111 · · · can have 6 coefficients. Steps
similar to those that led to Eq. (65) can be followed to ob-
tain constraints governing the appearance of Slater deter-

minants of the form |n〉 = c†n1,j−k′c
†
n2,j+k′ |n2〉 in the root

state. However, the corresponding root state must si-
multaneously satisfy the j = −5/2, −2, −3/2 constraints
which indicates that such a pattern is not possible. The
patterns 110 · · · , 101 · · · , and 011 · · · have, respectively,
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ξ′ T ξ′

j

1 T 30
j

2 T 37
j

3 T 24
j

4 T 34
j

5
√
3T 13

j + 3T 21
j − 2

√
2T 27

j − T 31
j

6 − 2√
3
T 13
j +

√

2

3
T 16
j − 2T 21

j + 2
√
2T 27

j − T 38
j

7
√
6T 9

j − 4T 19
j − T 25

j

8 T 11
j + 3

√
3T 19

j − T 35
j − 2

√
2T 9

j

9
√
2T 14

j − 2
√
2T 2

j − 3
√
6T 22

j − 4T 28
j − T 32

j + 4
√
2T 7

j

10 4√
5
T 10
j +

√

6

5
T 12
j − 3

√

2

5
T 20
j − 4√

5
T 26
j − T 36

j − 2
√

2

5
T 4
j

11 −2
√

2

15
T 14
j + 2√

5
T 17
j + 8

√

2

15
T 2
j + 14

√

2

5
T 22
j + 16√

15
T 28
j − T 39

j − 2
√

2

15
T 5
j − 6

√

6

5
T 7
j

12 4√
35
T 1
j + 4

√

3

35
T 15
j +

√

6

7
T 18
j − 4√

35
T 23
j − 2

√

2

7
T 29
j − 4

√

2

35
T 3
j − 2

√

3

7
T 33
j − T 40

j − 2
√

6

35
T 6
j + 2

√

6

35
T 8
j

TABLE X. T I
j ≡ T

n1,n2,−
j,m , for I (n1, n2 m) given in Table VIII. The ground state |Ψ0〉 satisfies 12 linear constraints,

T ξ′

j |Ψ0〉 = 0, for ξ′ = 1, · · · , 12. These constraints are established using the matrix Λξ
I in Table IX.

2, 4, and 6 coefficients that are needed to satisfy, in each
case, just as many constraints.
Invoking the linear independence of the equations, in

the homogeneous set of linear equations, leads to only the
trivial solution, where all the coefficients are zero. As a
result, none of the patterns with two particles occupying
the j < 0 orbitals are allowed.
Consequently, in a root state satisfying the EPP con-

ditions in the bulk (j ≥ 0) the boundary orbitals (j < 0)
can only be occupied with a single particle. For example,
pattern 100 · · · is generally allowed (N ≥ 2). Fusing this
admissible left boundary and the densest bulk patterns,
and assuming no change in the bulk pattern to ensure
the existence of no excitation, we obtain that the densest
pattern consistent with the EPP is the root pattern

100200200 . . . 2002. (D2)

Appendix E: Braiding Statistics: Proof of Eq. (77)

ψn,j =
1√
L

∑

j′

ωjj′ ψ̄n,j′ =
1√
L

∑

j′,s′

ei
2π
L

jj′ φ̄n,j′+s′L =
1√
L

∑

j′,s,s′

ei
2π
L

(j+sL)(j′+s′L)φ̄n,j′+s′L =
1√
L

∑

s,j′

ei
2π
L

(j+sL)j′ φ̄n,j′

=⇒ ψn,j =
1√
L

∑

s,j′

ei
2π
L

(j+sL)j′e−i2πj′x∆Hn

(√
−i2πτL

(

y∆ − j′

L

))

e
iπτL

(

y∆− j′

L

)2

=⇒ ψn,j =
1√
L

∑

s,j′

e
i2πL

(

y∆− j′

L
−y∆

)

(x∆− j
L
−s)Hn

(√
−i2πτL

(

y∆ − j′

L

))

e
iπτL

(

y∆− j′

L

)2

=⇒ ψn,j = e−i2πLx∆y∆

∑

s

e2π(j+sL)y∆
1√
L

∑

j′

e
i2πL

(

y∆− j′

L

)

(x∆− j
L
−s)Hn

(√
−i2πτL

(

y∆ − j′

L

))

e
iπτL

(

y∆− j′

L

)2

=⇒ ψn,j = e−i2πLx∆y∆

∑

s

e2π(j+sL)y∆Hn

(

√

i2π
L

τ

(

x− j

L
− s

)

)

e−iπ L
τ (x−

j
L
−s)

2

= e−i2πLx∆y∆

∑

s

φn,j+sL


