


INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY
https://doi.org/10.1080/0020739X.2023.2249901

CLASSROOM NOTE

Literate programming for motivating and teaching neural
network-based approaches to solve differential equations

Alonso Ogueda-Oliva and Padmanabhan Seshaiyer

Department of Mathematical Sciences, George Mason University, Fairfax, VA, USA

ABSTRACT
In this paper, we introduce novel instructional approaches to engage
students in using modelling with data to motivate and teach dif-
ferential equations. Specifically, we introduce a pedagogical frame-
work that will execute instructional modules to teach different
solution techniques for differential equations through repositories
and notebook environments during real-time instruction. Each of
these teaching modules employs a literate programming approach
that uses the notebook environment to explain the concepts in
a natural language, such as English, interspersed with snippets of
macros and traditional source code on a web browser. The peda-
gogical approach employed is reproducible and leads to openac-
cess material for students to motivate and teach differential equa-
tions efficiently. We will share examples of this framework applied
to teaching advanced concepts such as machine learning and neu-
ral network approaches for solving ordinary and partial differen-
tial equations as well as estimating parameters in these equations
for given datasets. More details of the work can be accessed from
https://aoguedao.github.io/teaching-ml-diffeq.

ARTICLE HISTORY
Received 17 March 2023

KEYWORDS
Literate programming;
differential equations;
machine learning

1. Introduction

Undergraduate students are first exposed to differential equations in Calculus when they
learn about the notion of a derivative followed by the anti-derivative and finally connecting
these two big concepts through the Fundamental Theorem of Calculus. Once exposed,
they learn that these differential equations or systems of differential equations often do
not admit exact solutions and hence they need to understand numerical methods to solve
them (Seshaiyer, 2017).

While there have been several efforts to revitalise the calculus curriculum and its
instruction, less well-publicised and far less well-researched are the changes occurring in
the content, pedagogy, and learning of differential equations. With evolving interests in

CONTACT P. Seshaiyer pseshaiy@gmu.edu

Supplemental data for this article can be accessed here. https://doi.org/10.1080/0020739X.2023.2249901

© 2023 Informa UK Limited, trading as Taylor & Francis Group



2 A. OGUEDA-OLIVA AND P. SESHAIYER

dynamical systems and motivated by calculus reform efforts, there have been technologi-
cal advances to incorporate graphical and numerical approaches to understand and analyse
solutions to differential equations that were previously reserved for advanced undergrad-
uate or graduate study. Technology is also often used to enhance the student learning
of differential equations and to help them appreciate the applications of these equations
to real-world problems through mathematical modelling (Ding et al., 2019; McCarthy
et al., 2019; Seshaiyer & Solin, 2017). An example is the application to understand and
study infectious diseases using compartmental models described via coupled differential
equations (Seshaiyer, 2017).

One of the innovative instructional approaches to engage students in learning
content along with structured programming was introduced about four decades
back (Knuth, 1984). Specifically, the goal was to change a traditional attitude about the
construction of the programmes. The main task was to instruct a computer on what to do
giving more time for the instructor to explain to students what we want a computer to do.
This idea of programming came to be known as literate programming, where instruction
drives the coding and the output of the piece of code informs the instruction in real-time.
Over the years the literate programming style has been used to enhance student learning
of differential equations (Nedialkov, 2011; Seshaiyer & Solin, 2017).

A grand challenge that still exists is the need to develop a coherent learning framework
that enables researchers to blend differential equations with the vast amount of data sets
that are available. This is also needed to estimate the parameters used in the governing dif-
ferential equations efficiently (Raissi, Ramezani, et al., 2019). In recent years, mathematical
modelling has gained the attention of researchers and educators with a need to develop
mathematical proficiency for students to be able to apply the mathematics they know to
solve problems arising in everyday life, society, and the workplace. Specifically, mathe-
matical modelling is an iterative problem-solving process that goes through the following
steps.

• Observe: Here an observation process leads to help posing open-ended problems from
a real-world context.

• Theorise: Next, one makes appropriate assumptions that are physically meaningful and
identifies constraints and variables that are relevant to the situation.

• Formulate: Once theorised, the next step is to build a mathematical formulation that
describes relationships.

• Analyse: With a possible equation or expression formulated, the next step is to analyse
and interpret the mathematical solution.

• Simulate: To understand the qualitative behaviour of the solution, this next step often
involves performing numerical computations.

• Validate: Once we have potential solutions, the next step would be to validate them
against known models or datasets (if appropriate).

• Predict: In this final step, one can use what has been created to make predictions and
evaluate how close the model predicts the observation, completing the modelling cycle.

In this work, we introduce a novel instructional approach using literate programming
to engage students in using modelling with data to motivate and teach differential equa-
tions. In Section 2, we introduce the methodology that we have used to develop the four



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 3

instructional modules along with an instructional toolkit with a workflow for teaching
and learning. Section 3 presents review material on what the students may independently
prepare as they move through the scaffolded modules as the instructor presents each via
literate programming. In Section 4, the students are introduced to solving systemof twodif-
ferential equations using a classical numerical approach that is often used to solve ordinary
differential equations. Also, in this section, an alternate approach called Physics Informed
Neural Networks (PINNs) is introduced to solve the problem in a forward fashion and
compared to the traditional Runge–Kutta algorithm and also used to solve the problem in
an inverse fashion to determine the optimal parameters in the system. Section 5 provides
an opportunity for the students to engage a real-world problem of solving infectious dis-
eases modelled by governing differential equations by building on the PINNs technique
presented in the previous section. Section 6 summarises this work as a conclusion and
discusses potential extensions for future work.

2. Methodology

Along with the ability to learn to model physical systems by differential equations, it is
also important for students to learn to compute a model’s parameter values from known
data sets (Raissi, Ramezani, et al., 2019). Often some of the parameters in the equations
may be estimated from patterns in the data, but most of them have to be computed
using heuristic algorithms that are computationally motivated such as inverse methods,
least-squares approach, agent-based modelling and more or statistically motivated such as
maximum-likelihood, Bayesian inference and Poisson regressionmethods.While these are
sophisticated techniques that have their advantages and disadvantages, students often do
not become aware of these unless they work on a research project with a mentor (often at
a graduate level). So one of the ideas is to see if there are techniques that we can bring into
an undergraduate classroom that can be integrated with the teaching of differential equa-
tions that will help determine unknown parameters. One of the alternative and powerful
approaches, that teaches computers to process data in a way that is inspired by the human
brain is using a neural network. The connection between the neurons in our brain to com-
municate and make data-driven decisions has helped areas such as machine learning to
evolve over the past decade.

There is however, a great need to take advanced concepts such as machine learning
and neural networks to create a structured curriculum to teach aspects of differential
equations that involves a scaffolded learning progression consisting of introductions to
concepts grounded in contextual experiences, hands-on activities, interactive web-based
explorations, and analysing andmodifying existing code used to build, train and test mod-
els within cloud-based notebooks. This is the focus of this paper. Specifically, we introduce
four teaching and learning modules that successively build student knowledge as they
progress through them. These include:

• Module 0: This is a required prerequisite reading for the students to get motivated to
learn about differential equations and exposure to some numerical methods for solving
these differential equations. For simplicity, we are focusing on Ordinary Differential
Equations (ODEs) and applications.



4 A. OGUEDA-OLIVA AND P. SESHAIYER

• Module 1: Here we develop the understanding of applying the background techniques
learnt in Module 0 to simulate the numerical solution to a coupled system of differ-
ential equations using two different approaches including the traditional Runge–Kutta
approach and a Physics Informed Neural Network (PINNs) approach. For simplicity,
we consider a predator-prey example that is presented using a literate programming
approach to simulate the equations using the two different approaches.

• Module 2: Now that the student learns to solve a system of differential equations
in a forward fashion in multiple ways, we introduce the application of PINNs as an
inverse approach to compute and validate parameters in the differential equations that
correspond to a given data set.

• Module 3: Finally, we engage the students in applying what they have learnt through
a system of two differential equations to an example from public-health, specifically,
disease dynamics that consists of a compartmental model with four coupled differential
equations along with a known data set. The challenge for the students is to make the
necessary revisions and updates to the code to reflect the new model; employ PINNs to
identify the parameters in this model and; use the value of the parameters obtained to
run the model to help predict the dynamics of the disease.

Next, we introduce some of the foundational computing tools that would be needed to
help guide the instructor to use the instructional modules presented herein within their
own classrooms to enhance student learning of differential equations. The material in this
work has been created with the intention to not use technology as simply a tool for simu-
lation or computation. But it is really to help educators move beyond using technology as
an afterthought to technology-enhanced instruction.

2.1. Technology-enhanced instructional toolkit

As educators, we constantly seek new technologies to engage and intrigue our students.
With the amount of open source software and the availability of free web-based tools, it
is important to select appropriate technology that will first engage and capture their inter-
est, then improve and maximise their understanding and retention of the content, and
finally encourage and reinforce their own independent creative work.We also need to pick
and introduce tools to our students that help them to practice peer-reviewing. Finally, it is
important to choose free or low-cost technology in the classroom, that will permit instruc-
tors to employ technology that they might otherwise be unable to afford. In Table 1, we list
a collection of technology resources that will form an instructional toolkit that goes with
the four modules outlined earlier to help collectively support the learning of differential
equations for students.

2.2. Workflow

One of the great tools for teaching literate programming is Jupyter Notebooks, since
instructors can write rich text with a markdown format, which allows one to display math-
ematical formulas and explanations along with an interactive code students can write and
practice in the same document, run and modify it multiple times. Jupyter notebooks sup-
port several programming languages, in particular, we have used Python since it is open



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 5

Table 1. Summaryof tools for theproposedmethodology, including abrief description andadvantages.

Name Description Advantages

Python General purpose programming
language

Used of Scientific computation, simulation, machine
learning. Scalable and platform-agnostic

Jupyter Notebook Web-based interactive computing
platform

Contains a complete record of the user’s sessions and
includes code, narrative text, equations, and rich output

Jupyter Book A wrapper around Python tools Build books, documentation and lecture notes from
computational content

Git Free and open source distributed
version control system

Handles small to very large projects with speed and
efficiency

GitHub A code hosting platform for version
control and collaboration

Lets students to work together on projects from anywhere

Google Colab A hosted Jupyter notebook service Requires no setup to use, while providing access free of
charge to computing resources including GPUs. Enables
students to write and execute arbitrary python code
through the browser, and is especially well suited to
machine learning, data analysis and education

source and has a strong support community. There are several scientific packages thatmake
Python one of fastest-growing programming Languages in the world. Since the proposed
modules focus on ordinary differential equations, we would need to use built-in packages
such as NumPy, SciPy and DeepXDE.

While Jupyter notebooks are useful, there are also challenges. For instance, the process
of sharing Jupyter notebooks between students and instructors sometimes can become very
tedious, because of the need to upload/download each file under each lecture. That adds
another layer of complexity. Jupyter Notebooks are JSON files that need to be rendered in
order to show rich text and code. Learningmanagement systems (LMS) like BlackBoard or
Moodle do not offer this functionality by default, and even if it was possible, they only offer
a reading mode. This does not allow one to run code there. Storage platforms like Google
Drive, Dropbox, OneDrive, etc. are also not solutions for this problem either.

Git-based source code repository hosting services such as GitHub, BitBucket, GitLab,
etc. can renderise Jupyter Notebooks easily, but they still lack interactivity. This is a feature
of these platforms since these tools are made for hosting code and track changes in a rig-
orous way. Finally, there are cloud-based solutions such as Google Colab, Binder, Amazon
Sagemaker, Azure Notebook, Kaggle, etc. that include a nice feature of allowing students
and instructors to open an interactive session from a URL. So one of the popular choices
is to store modules or lessons as Jupyter Notebooks in GitHub and then allow students to
open those links from Google Colab.

There also exists a workflowwhere instructors can upload Jupyter Notebooks to GitHub
and then students will be able to interact with them using Google Colab. However, this
approach is not organic and it seems like several scattered lessons that involve single files
without communication with each other. We propose a more organic workflow on top of
the previous one with three defined goals:

• Contents have to be well organised, showing coherence between lessons (similar to a
book);

• It has to be easily accessible by students (avoid installing any software as first task) and;
• It has to be flexible and easy to update by instructors.



6 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 1. Workflow of tools for students and instructors.

Here, Jupyter Books plays a critical role, it permits one to gather several Jupyter Note-
books and organise them in chapters and sections with only configuration and table of
contents files, so instructors do not need to learn another tool. Jupyter Books builds HTML
files that are necessary for a website, which can be stored in a GitHub repository in order
to enable GitHub pages, a host for websites based in repositories. Now, students can access
directly a website with all the lessons (or modules) well organised. Finally, by modifying
just a few lines of code in the Jupyter Book’s configuration file, one can add a button in
each lesson to open it in a Google Colab session. Students do not need to install Python or
Jupyter on their computers, but with a single click on the button Launch on Colab (upper-
right corner) the lesson will be opened on a new and personal Google Colab instance.
Students can explore the lesson while they follow the class, but also they are able to mod-
ify code on the fly to understand better each execution. Final workflow of this proposed
description is shown in Figure 1. Most of the work is to set up the website and then upload
content of each lesson while students only interact with the website and Google Colab.

Advanced students would like to use their own laptops or personal computers, for that
purpose, they need to install Python and the additional packages mentioned before. This
installation process is out of the scope of this work, but it is recommendable to use an envi-
ronment manager, for instance, conda, mamba or a Python native solution as venv +
pip. It is a standard practice to provide a requirements file (list of packages and their ver-
sions) on the GitHub repository which users can use for setting their own environments.
It is important to notice here each lesson is based on Jupyter Notebook files (.ipynb),
hence it is recommendable to install Jupyter Lab (or Jupyter Notebook) for reading these
files. Students can download every lesson at once from theGitHub repository (direct down-
load or using git commands). However, an easier option it is just to press the Download
source file button in the upper-right corner of each lesson for getting each file at a time.

Next, we provide details of each of the fourmodules that were itemised earlier.Module 0
forms the backbone foundation that includes a quick review of both motivation for differ-
ential equations as well as numerical approaches to solving ODEs. The instructor may use
this module as a flipped classroom or asynchronous learning for the students to indepen-
dently review and then come to class. Modules 1–3, then describe how instructors can use
the workflow description provided in the last section with literate programme to engage
students in technology-enhanced learning of differential equations.



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 7

3. Module-0: background preparation

An equation involving one dependent variable and its derivatives with respect to one or
more independent variables is called a differential equation. Many of the general laws of
nature in science find their most natural expression in the language of differential equa-
tions. This also extends tomany applications ofmathematics, especially in geometry, and in
engineering, economics, and many other fields of applied science (Simmons, 2016). Some
typical examples of differential equations include:

dy
dt

= −ky

m
d2y
dt2

= −ky

dy
dx

+ 2xy = e−x2

d2y
dx2

− 5
dy
dx

+ 6y = 0

where the dependent variable in each of these equations as y, and the independent vari-
able is either t or x. The letters k andm represent constants (usually associated with some
physical phenomenon).

An ordinary differential equation or ODE is one in which there is only one independent
variable so that all the derivatives occurring in it are ordinary derivatives. The order of
a differential equation is the order of the highest derivative present. A general ordinary
differential equation of nth order can be written as

F

(
x, y,

dy
dx

,
d2y
dx2

, . . . ,
dny
dxn

)
= 0

where F is just an operator. Any adequate theoretical discussion of this equation would
have to be based on a careful study of explicitly assumed properties of the function F.

There are several solution methods for different types of ordinary differential equations
that yield analytical solutions. However, not all ODEs admit analytical solutions and then
it is necessary to apply numerical methods. Next, we will review high-order methods for
solving ordinary differential equations numerically.

Single-step Runge–Kutta methods associate a function�(t, y, h)which requires (possi-
bly repeated) function evaluations of f (t, y) but not its derivatives. In general, single-step
Runge–Kutta methods have the form:

y0 = y(a)

yk+1 = yk + h�(tk, yk, h)



8 A. OGUEDA-OLIVA AND P. SESHAIYER

where

�(tk, yk, h) =
R∑

r=1
crKr,

K1 = f (t, y),

Kr = f (t + arh, y + h
r−1∑
s=1

brsKs),

ar =
r−1∑
s=1

brs, r = 2, 3, . . . ,R

The most well-known Runge–Kutta scheme (Ackleh et al., 2009) is 4th order; it has the
form:

y0 = y(t0)

yk+1 = yk + h
6
[K1 + 2K2 + 2K3 + K4]

K1 = f (tk, yk)

K2 = f
(
tk + h

2
, yk + h

2
K1

)

K3 = f
(
tk + h

2
, yk + h

2
K2

)

K4 = f (tk + h, yk + hK3)

i.e. �(tk, yk, h) = h
6 [K1 + 2K2 + 2K3 + K4].

Let us consider the following example of an initial value problem

y′(t) = t
9
cos(2y) + t2

y(0) = 1
(1)

After logging into a notebook environment (such as Google Colab), to solve this example,
one should first include some python packages that are needed for scientific computing
such as (numpy), plotting (matplotlib) and a tool for solving initial values problems
with Runge–Kutta methods (scipy.integrate.solve_ivp).
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

Next, we define a function by importing from the numerical python (np) library which
takes as arguments t and y and returns the right side of the equation. In this case,

f (t, y) = t
9
cos(2y) + t2



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 9

def f(t, y):
return t / 9 * np.cos(2 * y) + t ** 2

Now, we need to define the domain over which we will solve the equation. Since our
initial condition is given at t0 = 0 our domain must include it. And consider, just as an
example, the final time as tn = 10 and h = 0.5 (this is an opportunity for the instructor to
give the students to later try smaller values to see numerical convergence).
t0 = 0
tn = 10
h = 0.5
t_array = np.arange(t0, tn, h)
t_array

Note that solve_ivp function only needs f (t, y), a time span (t_span) and ini-
tial conditions (y_0). However, we can include the points where the solution we will be
evaluated with t_eval.
sol = solve_ivp(f, t_span=[0, 10], y0=[1], t_eval=t_array)

Finally, one can retrieve the solution values with sol.y. But for plotting, we need a flat
array (just use .flatten()method).
y_sol = sol.y.flatten()
plt.plot(t_array, y_sol, linestyle="dashed")
plt.xlabel(r"$t$")
plt.ylabel(r"$y(t)$")
plt.title("Numerical solution using Runge-Kutta method")
plt.show()

The final result of the numerical solution is seen in Figure 2. At this point, the instructor
can allow the students to go back to the different blocks of the code and change parameters
such as the step size h and see the effect of doing this in the solution. The students may
be asked to halve the step size repeatedly and observe the error between the exact solution
(if it is available for the problem) and the numerical solution and ask students to discover
the rate of convergence. This will help them to understand why the method gets the name
‘Fourth’ order Runge–Kutta.

4. Module-1: system of differential equations

After working with first-order equations, it is natural to motivate students to learn about
systems such as Lotka-Volterra equations. A good example for motivating this is the
predator-prey equationswhich are a pair of first-order nonlinear coupled ordinary differen-
tial equations, frequently used to describe the dynamics of biological systems in which two
species interact. The populations change through time according to the pair of equations:

dx
dt

= αx − βxy

dy
dt

= −γ y + δxy
(2)

where x is the number of prey; y is the number of some predator; dydt and
dx
dt represent the

instantaneous growth rates of the two populations; t represents time and; α, β , γ and δ are
positive real parameters describing the interaction of the two species.



10 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 2. Numerical solution to the Initial Value Problem (1).

4.1. Using classical Runge–Kutta

To run this one will need the following packages as before includingnumpy for array oper-
ations, matplotlib for visualisations and scipy for getting a numerical solution with
Runge–Kutta method. The first block of the code then becomes:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

For this module, we will use the following known values of α, β , γ and δ.
alpha = 2 / 3
beta = 4 / 3
gamma = 1
delta = 1

It is important to decide a time interval over which we will work. As an example let’s
consider between t = 0 and t = 1. As well as initial conditions x(0) and y(0).
t_initial = 0
t_final = 10

x0 = 1.2
y0 = 0.8

Now that students already have learned about Runge–Kutta, the instructors help them
to apply the algorithm to the system of ODEs. Note we canmodularise this step by creating
a function, for instance, runge_kuttawhich takes as input an array of time steps, initial



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 11

conditions and the values of the parameters that describe the interaction between the two
species.
def runge_kutta(

t,
x0,
y0,
alpha,
beta,
gamma,
delta

):
def func(t, Y):

x, y = Y
dx_dt = alpha * x - beta * x * y
dy_dt = - gamma * y + delta * x * y
return dx_dt, dy_dt

Y0 = [x0, y0]
t_span = (t[0], t[-1])
sol = solve_ivp(func, t_span, Y0, t_eval=t)
x_true, y_true = sol.y
return x_true, y_true

Next, we generate a time array and solve the initial value problem.
t_array = np.linspace(t_initial, t_final, 100)
x_rungekutta, y_rungekutta = runge_kutta(t_array, x0, y0, alpha, beta, gamma,

delta)

Finally we have the students plot their results to get better insights of their simulations
or predictions.
plt.plot(t_array, x_rungekutta, color="green", label=r"$x(t)$ Runge-Kutta")
plt.plot(t_array, y_rungekutta, color="blue", label=r"$y(t)$ Runge-Kutta")
plt.legend()
plt.xlabel(r"$t$")
plt.title("Lotka-Volterra numerical solution using Runge-Kutta method")
plt.show()

The result of the dynamics between the prey and predator is seen in Figure 3. The
dynamics are as expected where each of the predator and prey populations cycle through
time. As predators decrease numbers of prey, lack of food resources in turn decrease preda-
tor abundance, and the lack of predating pressure allows prey populations to rebound. And
this cycle continues.

4.2. Using a physics-informed neural networks

For years mathematicians and physicists have been trying to model the world with differ-
ential equations. However, since the advent of techniques such as machine learning, neural
networks, and deep learning, together with greater computing power, the community has
speculated that we could learn automatically (algorithms) anythingwith enough amount of
data. However, it seems this is not really true. Physics-Informed Neural Networks (PINNs)
are a type of neural networks that are trained to solve supervised learning tasks while
respecting any given law of physics described by general nonlinear partial differential equa-
tions (Raissi, Perdikaris, et al., 2019). This approach can approximate solutions by training
a neural network to minimise a loss function, including:

• Initial and boundary conditions along the space-time domain’s boundary



12 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 3. Numerical solution of system (2) using Runge-Kutta.

• Residual from governing Partial Differential Equations (PDE) at selected points in the
domain.

A simplified analogy may be thought of as the initial and boundary conditions points
being the training dataset. Along with this known information, one also needs to embed
physical laws into the neural network. PINNs can solve differential equations expressed, in
the most general form, like:

F(u(z); λ) = f (z) z in �

B(u(z)) = g(z) z in ∂�

defined on the domain � ⊂ R
d with the boundary ∂�. Where

• z := (x1, x2, . . . , t)� indicated the space-time coordinate vector,
• u the unknown function,
• λ the parameters related to the physics,
• F the non-linear differential operator,
• f the function identifying the data of the problem,
• B the operator indicating arbitrary initial or boundary conditions, and
• g the boundary function.



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 13

Figure 4. Neural Network architecture of Lotka-Volterra system (2).

In the PINNs methodology, u(z) is computationally predicted by a neural network,
parameterised by a set of parameters θ , giving rise to an approximation ûθ (z) ≈ u(z). The
optimisation problem one has to solve then is given by:

min
θ

(ωFLF (θ) + ωBLB(θ) + ωdataLdata(θ))

where the three weighted loss functions in least-squared sense are defined by:

• LF , differential equation,
• LB, boundary conditions, and
• Ldata, (eventually) some known data.

Even though PINNs are a more recent technique there are several studies that have
already applied the method to real-world applications. For example, fluids dynam-
ics (Raissi et al., 2020), turbulent fields (Mathews et al., 20218), optics and electromag-
netism (Chen et al., 2020Apr), molecular dynamics and materials (Fang & Zhan, 2020),
geosciences (Smith et al., 202108), industrial applications (Yucesan & Viana, 2021) and
infectious diseases (Shaier et al., 2022). Next, we will describe how one can implement
PINNs to solve coupled system of governing differential equations instead of using the
classical Fourth-order Runge–Kutta as before.

4.2.1. PINNs for solving ODEs
Now, let us revisit our Lotka-Volterra systemwhere the solution uwill be a vector such that
u(t) = (x(t), y(t))� and there are only initial conditions. We then want to train a network
that looks like Figure 4.



14 A. OGUEDA-OLIVA AND P. SESHAIYER

Once a notebook is initiated, we start by including the package deepxde, which allows
us to implement Physics-Informed Neural Networks approaches with just a few lines of
code.
import deepxde as dde
from deepxde.backend import tf

If the users (instructor or students) are running this experiment on Google Colab (or
similar) they will need to install DeepXDE before importing the packages by running the
following extra line of code before the import statements.
!pip install deepxde

The reason behind this is because Google Colab has only common packages installed by
default, for example NumPy, Pandas, SciPy, TensorFlow, PyTorch, etc. In order
to take advantage of the resources Google Colab offers, we recommend running these
codes using Graphical Processing Unit (GPU) hardware accelerator. This can be done by
going to Runtime > Change runtime type and selecting GPU under the option
of Hardware Accelerator.

Now, since we are trying to embed the physics onto the neural networks we need to
define the system of ODEs as follows:
def ode(t, Y):

x = Y[:, 0:1]
y = Y[:, 1:2]

dx_dt = dde.grad.jacobian(Y, t, i=0)
dy_dt = dde.grad.jacobian(Y, t, i=1)

return [
dx_dt - alpha * x + beta * x * y,
dy_dt + gamma * y - delta * x * y

]

Here t is an array corresponding to the independent variable and Y is an array with two
columns (since our system considers two equations). To define the first derivative, we use
dde.grad.jacobian, with component i=0 corresponding to the variable x(t) and
i=1 to y(t).

Next, we introduce the initial conditions by declaring this element for our neural
network.
geom = dde.geometry.TimeDomain(t_initial, t_final)

Then we create a function for defining boundaries and since it is only one time we will
use the default one as follows:
def boundary(_, on_initial):

return on_initial

And then we have to define the initial conditions for the learning process:
ic_x = dde.icbc.IC(geom, lambda x: x0, boundary, component=0)
ic_y = dde.icbc.IC(geom, lambda x: y0, boundary, component=1)

Next, we define everything related to the differential equations and initial conditions as
a new object dde.data.PDE as follows:
data = dde.data.PDE(

geom,



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 15

ode,
[ic_x, ic_y],
num_domain=512,
num_boundary=2

)

Note that to test our model, we have considered 512 points inside our domain with
num_domain=512. Finally, since we are working on a time domain there are only two
points on its boundary (num_boundary=2) which are the initial and final times.

The next step is to choose the neural network architecture. For simplicity, we will use a
fully-connected neural network (dde.nn.FNN). Themost important things to remember
when defining the neural network is that:

• Input layer (the first layer) needs only one node/neuron since our independent variable
is only time t.

• The output layer (the last layer) needs two nodes/neurons since we are working with a
system of two equations.

It should be noted that the students do not need to have much background on the
amount of layers or neurons in each hidden layer. As a rule of thumb the error from the sys-
tem should decrease as more layers and neurons are added, but adding more comes with
more computational time. Other important items that the students must choose include
the Activation functions and the initialiser. Usually Glorot normal works well as ini-
tialiser and the students can have the opportunity to consider different activation functions,
for example, relu, sigmoid or swish.
neurons = 64
layers = 6
activation = "tanh"
initialiser = "Glorot normal"
net = dde.nn.FNN([1] + [neurons] * layers + [2], activation, initialiser)

Next, we create the model in a new object using the library with just one line of code.
model = dde.Model(data, net)

For training, one may choose the Adam optimiser (Bock &Weiß, 2019) and a learning
rate of 0.001 (smaller learning rates may give you better results but it will take many more
iterations). Just for simplicity, we will take 50,000 iterations. Another rule of thumb it is
that as you increase the number of iterations the loss value should decrease as well.
model.compile("adam", lr=0.001)
losshistory, train_state = model.train(iterations=50000, display_every=10000)

Since neural networks rely on gradient descent algorithms, a good practice is to observe
how the value of the loss function changeswith each iteration. This can be plotted in a graph
called Loss History, where the horizontal axis corresponds to iterations and the vertical axis
to values of the loss function. See Figure 5 for the loss history of this particular example.
This figure can be created by executing the following line
dde.utils.external.plot_loss_history(losshistory)

Notice in Figure 5 both train and test loss are the same since we are using the same
points. There are scenarios where the user would like to test in a small dataset for avoiding
overfitting or computational cost issues. This can be accomplished setting the argument



16 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 5. Loss history of PINNs approach for system (2).

num_test in the dde.data.PDE command. Since this example is working with a
relative small dataset we considered it was not necessary to set this argument.

Once, we have the solution, we can then make predictions of the prey (x variable) and
predator (y variable) species with PINNs as follows:

pinn_pred = model.predict(t_array.reshape(-1, 1))
x_pinn = pinn_pred[:, 0:1]
y_pinn = pinn_pred[:, 1:2]

plt.plot(t_array, x_pinn, color="green", label=r"$x(t)$ PINNs")
plt.plot(t_array, y_pinn, color="blue", label=r"$y(t)$ PINNs")
plt.legend()
plt.xlabel(r"$t$")
plt.title("Lotka-Volterra numerical solution using PINNs method")
plt.show()

As it may be noted from Figures 3 and 6, both the Runge–Kutta and PINNs algorithms
gave us almost identical results.One of the pros thatwewould like to point out about PINNs
is that for more complex systems one only needs to change a few items, specifically residu-
als. Most of the numerical work is done automatically bymachine learning libraries such as
TensorFlow, Torch, JAX, etc. so it is easy to scale up. The performance is even better
when we can take advantage of GPUs. For students as users, they also will have the oppor-
tunity to play with the number of choices they have in picking suitable hyper-parameters
(e.g. number of layers, number of neurons, activation function, number of iterations,
etc.).



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 17

Figure 6. Numerical solution of system (2) using PINNs.

Finally, we can compare both models and notice they are practically the same curves
(see Figure 7).
plt.plot(t_array, x_rungekutta, color="green", label=r"$x(t)$ Runge-Kutta")
plt.plot(t_array, y_rungekutta, color="blue", label=r"$y(t)$ Runge-Kutta")
plt.plot(t_array, x_pinn, color="red", linestyle="dashed", label=r"$x(t)$

PINNs")
plt.plot(t_array, y_pinn, color="orange", linestyle="dashed", label=r"$y(t)$

PINNs")
plt.legend()
plt.xlabel(r"$t$")
plt.title("Lotka-Volterra numerical solution comparison between Runge-Kutta

and PINNs")
plt.show()

4.3. PINNs for parameter estimation

So far, we have considered solving the given system of differential equations in a forward
fashion to determine the unknown dependent variables with initial conditions and param-
eter values in the equations provided. Now, let us consider another scenario. Imagine the
students have access to sampled data of the two unknown variables x(t) and y(t every
day. In other words, let us suppose that xobserved = (x(t1), x(t2), . . . , x(tn)) and yobserved =
(y(t1), y(t2), . . . , y(tn))where t1, t2, . . . , tn are both provided as observed dataset over time.
The goal here will then be to determine the optimal values α, β , γ and δ in the system of



18 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 7. Comparison of numerical solution of system (2) using Runge–Kutta and PINNs.

differential equations (2) that correspond to this sampled data. This problem is referred
to as an Inverse Problem, but one may also consider this to be a Data-Driven Discovery.
A great example of this is when the CDC has to make public health decisions based on
everyday infected data in real-time. We will see in this section, how one can use PINNs for
this purpose in an inverse fashion.

As before, the first step would be to open a fresh notebook and start with a block that
imports all the necessary libraries as described before.
import re
import numpy as np
import matplotlib.pyplot as plt
import deepxde as dde

from scipy.integrate import solve_ivp
from deepxde.backend import tf

The next step would be to train data that is prescribed. To help students understand the
process of validation, one can employ the method of manufactured solutions. Specifically,
one can generate synthetic data by choosing a time interval, initial conditions, and a known
set of values of parameters. Then we feed that data (with some noise) back into a PINNs
algorithm to check for robustness.
t_initial, t_final = 0, 10 # Equivalent to 10 days
x0 = 1.2
y0 = 0.8



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 19

alpha_real = 2 / 3
beta_real = 4 / 3
gamma_real = 1
delta_real = 1
parameters_real = {

"alpha": alpha_real,
"beta": beta_real,
"gamma": gamma_real,
"delta": delta_real

} # We will use this later for studying errors

We can use a similar approach as in the last module for generating synthetic data that
will allow us to study errors.
def generate_data(

t,
x0,
y0,
alpha,
beta,
gamma,
delta

):
def func(t, Y):

x, y = Y
dx_dt = alpha * x - beta * x * y
dy_dt = - gamma * y + delta * x * y
return dx_dt, dy_dt

Y0 = [x0, y0]
t = t.flatten()
t_span = (t[0], t[-1])
sol = solve_ivp(func, t_span, Y0, t_eval=t)
return sol.y.T

The synthetic data can then be generated and plotted (see Figure 8).
t_train = np.linspace(t_initial, t_final, 100).reshape(-1, 1)
Y_train = generate_data(t_train, x0, y0, alpha_real, beta_real, gamma_real,

delta_real)

x_train = Y_train[:, 0:1]
y_train = Y_train[:, 1:2]
plt.scatter(t_train, x_train, color="green", s=3, label=r"$x(t)$ observed")
plt.scatter(t_train, y_train, color="blue", s=3, label=r"$y(t)$ observed")
plt.legend()
plt.title("Lotka-Volterra observed data")
plt.xlabel(r"$t$")
plt.show()

Since we are now solving an inverse problem, we will assume the real values of α, β ,
γ and δ are not known and the goal of this module is to learn how to estimate these
parameters. Let’s start defining them in a way that our code knows they have to be learned.
# Pick some initial guess
alpha = dde.Variable(0.0)
beta = dde.Variable(0.0)
gamma = dde.Variable(0.0)
delta = dde.Variable(0.0)

Nowwehave to define the residuals and initial conditions in the sameway as the forward
approximation (previous module).
def ode(t, Y):



20 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 8. Synthetic data generated for system (2).

x = Y[:, 0:1]
y = Y[:, 1:2]
dx_dt = dde.grad.jacobian(Y, t, i=0)
dy_dt = dde.grad.jacobian(Y, t, i=1)

return [
dx_dt - alpha * x + beta * x * y,
dy_dt + gamma * y - delta * x * y

]

And also we need to define geometry and initial conditions as follows:
geom = dde.geometry.TimeDomain(t_initial, t_final)

def boundary(_, on_initial):
return on_initial

ic_x = dde.icbc.IC(geom, lambda x: x0, boundary, component=0)
ic_y = dde.icbc.IC(geom, lambda x: y0, boundary, component=1)

We can use the observed data t_train and Y_train, which are equivalent to
xobserved = (x(t1), x(t2), . . . , x(tn)) and yobserved = (y(t1), y(t2), . . . , y(tn)) for learning the
values of our parameters. So we need to declare a new object and then include it in our
model.
observe_x = dde.icbc.PointSetBC(t_train.reshape(-1, 1), Y_train[:, 0:1],

component=0)
observe_y = dde.icbc.PointSetBC(t_train.reshape(-1, 1), Y_train[:, 1:2],

component=1)



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 21

It is important for students to recall that component=0 is associated with the vari-
able x every time, defining the gradients, initial conditions, and observed data. Same for
component=1 which corresponds to the variable y. The data object is similar but we
include the observed data as well in the list of conditions. Also note that we can add the
observed data as training points with the argument anchors.
data = dde.data.PDE(

geom,
ode,
[ic_x, ic_y, observe_x, observe_y],
num_domain=512,
num_boundary=2,
anchors=t_train,

)

Next, we can define our neural network as follows:
neurons = 64
layers = 6
activation = "tanh"
\DIFdelbegin\DIFdel{initializer } \DIFdelend \DIFaddbegin \DIFadd{initialiser

}\DIFaddend = "Glorot normal"
net = dde.nn.FNN([1] + [neurons] * layers + [2], activation, \DIFdelbegin\

DIFdel{initializer} \DIFdelend \DIFaddbegin \DIFadd{initialiser}\
DIFaddend)

The next step is also similar as before, except we need to tell our model it has to learn
external variables (α, β , γ and δ) using external_trainable_variables.
model = dde.Model(data, net)
model.compile(

"adam",
lr=0.001,
external_trainable_variables=[alpha, beta, gamma, delta]

)

In order to study the convergence of the learning process related to the parameters we
want to estimate, we need a separate file where we can store these estimations. The file
variables.dat will store our estimations of α, β , γ and δ every 100 iterations.
variable = dde.callbacks.VariableValue(

[alpha, beta, gamma, delta],
period=100,
filename="variables.dat"

)

In the training process one must also remember to add a variable using ‘call-
backs=[variable]’. Figure 9 shows the loss history of PINNs approach when trying to
estimate the parameters in the system.
losshistory, train_state = model.train(iterations=30000, display_every=5000,

callbacks=[variable])
dde.utils.external.plot_loss_history(losshistory)

We can also plot the data as well, but it is not the main point of this module. This can
now be seen in Figure 10.
plt.scatter(t_train, x_train, color="green", s=5, label="x_observed")
plt.scatter(t_train, y_train, color="blue", s=5, label="y_observed")

sol_pred = model.predict(t_train.reshape(-1, 1))
x_pred = sol_pred[:, 0:1]



22 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 9. Loss history of PINNs approach for system (2) trying to estimate α, β , γ and δ.

y_pred = sol_pred[:, 1:2]

plt.plot(t_train, x_pred, color="red", linestyle="dashed", label=r"$x(t)$
predicted")

plt.plot(t_train, y_pred, color="orange", linestyle="dashed", label=r"$y(t)$
predicted")

plt.legend()
plt.title("Lotka-Volterra predicted and observed data")
plt.xlabel(r"$t$")
plt.show()

Next, we open the file variables.dat and create arrays for each parameter. The
students need not worry about this next block of code as it will only return a dictionary
where keys are the name of the parameters and values are their learning history (Figure 11).
lines = open("variables.dat", "r").readlines()
raw_parameters_pred_history = np.array(

[
np.fromstring(

min(re.findall(re.escape("[") + "(.*?)" + re.escape("]"), line),
key=len),

sep=",",
)
for line in lines

]
)
iterations = [int(re.findall("^[0-9]+", line)[0]) for line in lines]

parameters_pred_history = {
name: raw_parameters_pred_history[:, i]
for i, name in enumerate(parameters_real.keys())



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 23

Figure 10. Observed data and PINNs prediction for system (2) trying to estimate α, β , γ and δ.

}
n_callbacis, n_variables = raw_parameters_pred_history.shape
fig, axes = plt.subplots(nrows=n_variables, sharex=True)
for ax, (parameter, parameter_value) in zip(axes, parameters_real.items()):

ax.plot(iterations, parameters_pred_history[parameter] , "-")
ax.plot(iterations, np.ones_like(iterations) * parameter_value, "--")
ax.set_ylabel(parameter)

ax.set_xlabel("Iterations")
fig.suptitle("Parameter estimation")
fig.tight_layout()

Note that within 5000 iterations one can get a really good approximation for each
parameter. Next, we can calculate the relative error for each parameter as well.
alpha_pred, beta_pred, gamma_pred, delta_pred = variable.value
print(f"alpha - real: {alpha_real:4f} - predicted: {alpha_pred:4f} - relative

error: {np.abs((alpha_real - alpha_pred) / alpha_real):4f}")
print(f"beta - real: {beta_real:4f} - predicted: {beta_pred:4f} - relative

error: {np.abs((beta_real - beta_pred) / beta_real):4f}")
print(f"gamma - real: {gamma_real:4f} - predicted: {gamma_pred:4f} - relative

error: {np.abs((gamma_real - gamma_pred) / gamma_real):4f}")
print(f"delta - real: {delta_real:4f} - predicted: {delta_pred:4f} - relative

error: {np.abs((delta_real - delta_pred) / delta_real):4f}")

alpha - real: 0.666667 - predicted: 0.665105 - relative error: 0.002342
beta - real: 1.333333 - predicted: 1.330125 - relative error: 0.002406
gamma - real: 1.000000 - predicted: 0.999372 - relative error: 0.000628
delta - real: 1.000000 - predicted: 0.998206 - relative error: 0.001794



24 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 11. Learning history of parameter estimation of system (2) using PINNs.

Figure 12. SIRD compartmental model.

5. Module-3: application to disease dynamics

In this section, students have an opportunity to work with datasets obtained for under-
standing disease dynamics. Specifically, we consider the following differential equation
system (for simplicity) described by the SIRD system (Anastassopoulou et al., 2020). SIRD
compartmental models are mathematical models used to describe the spread of infec-
tious diseases in a population. The name SIRD stands for Susceptible, Infected, Recovered,
and Dead, which are the four compartments (see Figure 12) that individuals can be clas-
sified into based on their disease status. In this model, individuals can move from one
compartment to another over time, based on the parameters of the model. Specifically,
individuals can move from the susceptible compartment to the infected compartment if



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 25

they are exposed to the disease, from the infected compartment to the recovered compart-
ment if they recover from the disease, and from the infected compartment to the dead
compartment if they die from the disease. The SIRD model assumes that once an individ-
ual recovers from the disease, they are immune to future infections, and that the rate of
transmission of the disease is proportional to the number of susceptible individuals and
the number of infected individuals in the population. These models are used to predict the
spread and impact of infectious diseases and can be used to evaluate different intervention
strategies, such as vaccination programmes and social distancing measures, to control the
spread of the disease. This model leads to the following equations

dS
dt

= −βS
N

I

dI
dt

= βS
N

I − ωI − γ I

dR
dt

= ωI

dD
dt

= γ I

(3)

where S(t), I(t), R(t), D(t) are the number of Susceptible, Infected, Recovered, and Dead
individuals, respectively. Here β , ω and γ are the rates of transmission, recovery, and mor-
tality, respectively. In order to get a good insight into the spread of an infectious disease, it
is important to be able to estimate these dynamic parameters using data.

As a first step, we import all the libraries needed to employ numerical methods for
solving differential equations and for using PINNs as before.
import re
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import deepxde as dde

from deepxde.backend import tf
from scipy.integrate import solve_ivp

sns.set_theme(style="darkgrid")

Again, to validate the code, we will manufacture a solution first for a prescribed set of
parameters which will serve as synthetic data. Consider a population of 10.000.000 people
and only one person infected.
N = 1e7
S_0 = N - 1
I_0 = 1
R_0 = 0
D_0 = 0
y0 = [S_0, I_0, R_0, D_0] # Initial conditions vector

beta = 0.5
omega = 1 / 14
gamma = 0.1 / 14

parameters_real = {
"beta": beta,



26 A. OGUEDA-OLIVA AND P. SESHAIYER

"omega": omega,
"gamma": gamma,

}

We will use the same approach as the last module using a numerical solver in order to
create the data.
def generate_data(

t_array,
y0,

):
def func(t, y):

S, I, R, D = y
dS_dt = - beta * S / N * I
dI_dt = beta * S / N * I - omega * I - gamma * I
dR_dt = omega * I
dD_dt = gamma * I

return np.array([dS_dt, dI_dt, dR_dt, dD_dt])

t_span = (t_array[0], t_array[-1])
sol = solve_ivp(func, t_span, y0, t_eval=t_array)
return sol.y.T

For illustration purposes, for this example, we will take a time span of four months,
which is approximately 120 days. The output is an array of 4 columns and 120 rows.
n_days = 120 # 4 months
t_train = np.arange(0, n_days, 1)[:, np.newaxis]
y_train = generate_data(np.ravel(t_train), y0)
y_train.shape

Now we can explore the simulated data. For this we will include some Python libraries
including pandas (pd) that are often used for working with data sets as needed for
analysing, cleaning, exploring, andmanipulating data. Similarly we also includeseaborn
(sns) for getting better plots, respectively.

Note that pandas allows us to get a more general structure for data analysis,
pd.DataFrame, for instance, we can give each column a name, S, I, R, D, respectively.
And seaborn is a plotting tool built on top of matplotlib. It works better with
‘pandas’ and one can get really good results with a few lines of code.
model_name = "SIRD"
populations_names = list(model_name)
data_real = (

pd.DataFrame(y_train, columns=populations_names)
.assign(time=t_train)
.melt(id_vars="time", var_name="status", value_name="population")

)

fig, ax = plt.subplots(figsize=(10, 4))
sns.lineplot(

data=data_real,
x="time",
y="population",
hue="status",
legend=True,
linestyle="dashed",
ax=ax

)

ax.set_title(f"{model_name} model - Training Data")
fig.show()



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 27

Figure 13. Synthetic data generated for system (3).

Figure 13 plots the dynamics of each of the variables in the SIRD model which reflects
the typical behaviour that is often observed.

5.1. Diseases informed neural networks

Now that the students have been exposed to PINNswe help them to explore the application
of PINNs to understand disease dynamics by estimating parameters in the SIRD model.
The students can refer back to the predator-prey model parameter estimation approach
and extend that for the SIRD model.

As a first step, we start with parameter prediction andwe define an initial guess for those
parameters we want to estimate.
_beta = dde.Variable(0.0)
_omega = dde.Variable(0.0)
_gamma = dde.Variable(0.0)

The next step is to describe the residuals for the SIRD system which are given by:

LFS = dS
dt

−
(

−βS
N

I
)

LFI = dI
dt

−
(

βS
N

I − ωI − γ I
)

LFR = dR
dt

− ωI

LFD = dD
dt

− γ I

def ode(t, y):

S = y[:, 0:1]
I = y[:, 1:2]
R = y[:, 2:3]
D = y[:, 3:4]



28 A. OGUEDA-OLIVA AND P. SESHAIYER

dS_dt = dde.grad.jacobian(y, t, i=0)
dI_dt = dde.grad.jacobian(y, t, i=1)
dR_dt = dde.grad.jacobian(y, t, i=2)
dD_dt = dde.grad.jacobian(y, t, i=3)

return [
dS_dt - ( - _beta * S / N * I ),
dI_dt - ( _beta * S / N * I - _omega * I - _gamma * I ),
dR_dt - ( _omega * I ),
dD_dt - ( _gamma * I )

]

Next, we introduce the relevant geometry, boundary conditions (if any), and initial
conditions.
# Geometry
geom = dde.geometry.TimeDomain(t_train[0, 0], t_train[-1, 0])

# Boundaries
def boundary(_, on_initial):

return on_initial

# Initial conditions
S_0, I_0, R_0, D_0 = y_train[0, :]
ic_S = dde.icbc.IC(geom, lambda x: S_0, boundary, component=0)
ic_I = dde.icbc.IC(geom, lambda x: I_0, boundary, component=1)
ic_R = dde.icbc.IC(geom, lambda x: R_0, boundary, component=2)
ic_D = dde.icbc.IC(geom, lambda x: D_0, boundary, component=3)

The next step is to record the observed data for all four variables in the SIRD model.
observed_S = dde.icbc.PointSetBC(t_train, y_train[:, 0:1], component=0)
observed_I = dde.icbc.PointSetBC(t_train, y_train[:, 1:2], component=1)
observed_R = dde.icbc.PointSetBC(t_train, y_train[:, 2:3], component=2)
observed_D = dde.icbc.PointSetBC(t_train, y_train[:, 3:4], component=3)

Next, we describe the data for the model.
data = dde.data.PDE(

geom,
ode,
[

ic_S,
ic_I,
ic_R,
ic_D,
observed_S,
observed_I,
observed_R,
observed_D,

],
num_domain=256,
num_boundary=2,
anchors=t_train,

)

Nowwe define the neural network as the next step. Here we need to define the structure
of the network. Once again, there is just one input (time) but there are four neurons in the
last layer since we are working on a system of four equations. A neural network architecture
is shown in Figure 14.
neurons = 64
layers = 3



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 29

Figure 14. Neural Network architecture of SIRD system (3).

activation = "relu"
net = dde.nn.FNN([1] + [neurons] * layers + [4], activation, "Glorot uniform"

)

The next step is the training part.
variable_filename = "sird_variables.dat"
variable = dde.callbacks.VariableValue(

[_beta, _omega, _gamma],
period=100,
filename=variable_filename

)

model = dde.Model(data, net)
model.compile(

"adam",
lr=1e-3,
external_trainable_variables=[_beta, _omega, _gamma]

)
losshistory, train_state = model.train(

iterations=30000,
display_every=5000,
callbacks=[variable]

)
dde.saveplot(losshistory, train_state, issave=False, isplot=True)

We can plot training and predicted data together (see Figure 15). Notice it is almost a
perfect fit, which makes sense, since we are predicting data for which we already know the
parameter values.
t_pred = np.arange(0, n_days, 1)[:, np.newaxis]
y_pred = model.predict(t_pred)
data_pred = (

pd.DataFrame(y_pred, columns=populations_names, index=t_pred.ravel())
.rename_axis("time")
.reset_index()
.melt(id_vars="time", var_name="status", value_name="population")

)



30 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 15. Observed data and PINNs prediction for system (3) for parameter estimation.

g = sns.relplot(
data=data_pred,
x="time",
y="population",
hue="status",
kind="line",
aspect=2,
height=4

)

sns.scatterplot(
data=data_real,
x="time",
y="population",
hue="status",
ax=g.ax,
legend=False

)
(

g.set_axis_labels("Time", "Population")
.tight_layout(w_pad=1)

)

g._legend.set_title("Status")
g.fig.subplots_adjust(top=0.9)
g.fig.suptitle(f"SIRD model estimation")

plt.savefig("sird_prediction.png", dpi=300)
plt.show()

To find the robustness of the algorithm, we next study how well this neural net-
work learned the parameters of our infectious disease system. The model predictions are
illustrated in Figure 15.

lines = open(variable_filename, "r").readlines()
raw_parameters_pred_history = np.array(

[
np.fromstring(

min(re.findall(re.escape("[") + "(.*?)" + re.escape("]"), line),
key=len),

sep=",",
)



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 31

Table 2. Parameter predictions and relative errors for SIRD model using DINNs.

Real Predicted Rel. Error

β .5000 .4995 .0010
ω .0714 .0711 .0047
γ .0071 .0071 .0092

for line in lines
]

)

iterations = [int(re.findall("^[0-9]+", line)[0]) for line in lines]

parameters_pred_history = {
name: raw_parameters_pred_history[:, i]
for i, (name, nominal) in enumerate(parameters_real.items())

}

n_callbacis, n_variables = raw_parameters_pred_history.shape
fig, axes = plt.subplots(nrows=n_variables, sharex=True, figsize=(6, 5),

layout="constrained")
for ax, (parameter, parameter_value) in zip(axes, parameters_real.items()):

ax.plot(iterations, parameters_pred_history[parameter] , "-")
ax.plot(iterations, np.ones_like(iterations) * parameter_value, "--")
ax.set_ylabel(parameter)

ax.set_xlabel("Iterations")
fig.suptitle("Parameter estimation")
fig.tight_layout()
fig.savefig("sird_parameter_estimation.png", dpi=300)

Finally, we can compute the relative errors, which are in Table 2.
parameters_pred = {

name: var for name, var in zip(parameters_real.keys(), variable.value)
}
error_df = (

pd.DataFrame(
{

"Real": parameters_real,
"Predicted": parameters_pred

}
)
.assign(

**{"Relative Error": lambda x: (x["Real"] - x["Predicted"]).abs() /
x["Real"]}
)

)
error_df

Also, students will be able to observe that within a few iterations (neural networks in
industry can take millions and billions of iterations) we were able to obtain results within
a 0.01 relative error. This predictions can be bettered by hyper-tuning the algorithm’s
parameters; however, that will require more advanced study (Figure 16 ).

6. Conclusion and future work

In this work, we introduce a literate programming style to teach the numerical solution to
differential equations. With a goal to engage students with technology to learn more about
applications of differential equations, we introduce neural networks as a potential approach
to advance their learning. The paper also presents some of the important software tools



32 A. OGUEDA-OLIVA AND P. SESHAIYER

Figure 16. Learning history of parameter estimation of system (3) using PINNs.

including programming languages, notebooks and storage repositories that can be used
in combination by instructors to enhance their own pedagogical practices when teaching
differential equations.

Applications of the Physics Informed Neural Networks (PINNs) were introduced and
shown as a potential alternative to traditional numerical approaches used to solve ODEs
such as the classical Runge–Kutta methods. The power of PINNs to also be able to solve
for the parameters in the models in an inverse fashion was also introduced and applied
to some benchmark problems. It is also important to highlight some elements inherent to
machine learning approaches, such as initial guesses or machine architectures. For exam-
ple, using Graphical Processor Units (GPU) for PINNswill substantially increase the speed
of the algorithm. On the other hand, it is very likely when students run their models they
will notice prediction or estimation values are not exactly the same between each other,
however, these differences will not be big enough for discarding this methodology. In fact,
the results shown in the paper validate that PINNs are not only a viable candidate, but also
are a robust and reliable algorithm for both solving differential equations numerically in
both a forward and inverse fashion.

As a next step, we hope to study the impact of such instructional approaches on enhanc-
ing the learning of students as well as faculty mindset change in using such approaches to
enhance their own pedagogical practices. Based on a few presentations and workshops
the authors have given to faculty and students at various conferences and programmes,
the response has been positive in accepting the approach presented in this work. We hope
to do more rigorous quasi-experimental studies to see longitudinal impact of changes in
instructional practices and student learning in a forthcoming paper. We are also planning



INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY 33

to use this material for bootcamps that are associated with projects related to modelling,
analysis and simulation of infectious diseases.

The resources linked to this paper can be accessed from https://aoguedao.github.io/
teaching-ml-diffeq. A separate supplemental resource file has also been added that includes
a guide for instructors to access all the relevant Python codes.

Acknowledgments

The authors are also very grateful to the anonymous reviewers whose feedback was very useful.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work is partially supported by the National Science Foundation [grant numbers DMS-2031029
and DMS-2230117].

References

Ackleh, A. S., Allen, E. J., Kearfott, R. B., & Seshaiyer, P. (2009). Classical and modern numerical
analysis: Theory, methods and practice. CRC Press.

Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C., & Othumpangat, S. (2020). Data-based
analysis, modelling and forecasting of the COVID-19 outbreak. PloS One, 15(3), e0230405.
https://doi.org/10.1371/journal.pone.0230405

Bock, S., & Weiß, M. (2019). A proof of local convergence for the Adam optimizer. In 2019
International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE.

Chen, Y., Lu, L., Karniadakis, G. E., & Negro, L. D. (2020, April). Physics-informed neural net-
works for inverse problems innano-optics andmetamaterials.Optics Express, 28(8), 11618–11633.
https://doi.org/10.1364/OE.384875

Ding, W., Florida, R., Summers, J., Nepal, P., & Burton, B. (2019). Experience and lessons learned
from using SIMIODE modeling scenarios. PRIMUS, 29(6), 571–583. https://doi.org/10.1080/
10511970.2018.1488318

Fang, Z., & Zhan, J. (2020). Deep physical informed neural networks for metamaterial design. IEEE
Access, 8, 24506–24513. https://doi.org/10.1109/ACCESS.2019.2963375

Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111. https://doi.org/
10.1093/comjnl/27.2.97

Mathews, A., Francisquez, M., Hughes, J. W., Hatch, D. R., Zhu, B., & Rogers, B. N. (2021, August).
Uncovering turbulent plasma dynamics via deep learning from partial observations. Physical
Review E, 104(2), 025205. https://doi.org/10.1103/physreve.104.025205

McCarthy, C., Swanson, E., & Winkel, B. (2019). Special issue of primus: Modeling approach to
teaching differential equations. PRIMUS, 29(6), 503–508. Taylor & Francis. https://doi.org/10.
1080/10511970.2019.1565789

Nedialkov, N. S. (2011). Implementing a rigorous ODE solver through literate programming. In
Modeling, design, and simulation of systems with uncertainties (pp. 3–19). Springer.

Raissi,M., Perdikaris, P., &Karniadakis, G. (2019). Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.
10.045

Raissi, M., Ramezani, N., & Seshaiyer, P. (2019). On parameter estimation approaches for predict-
ing disease transmission through optimization, deep learning and statistical inference methods.
Letters in Biomathematics, 6(2), 1–26. https://doi.org/10.30707/LiB



34 A. OGUEDA-OLIVA AND P. SESHAIYER

Raissi, M., Yazdani, A., & Karniadakis, G. E. (2020). Hidden fluid mechanics: Learn-
ing velocity and pressure fields from flow visualizations. Science, 367(6481), 1026–1030.
https://doi.org/10.1126/science.aaw4741

Seshaiyer, P. (2017). Leading undergraduate research projects in mathematical modeling. PRIMUS,
27(4–5), 476–493. https://doi.org/10.1080/10511970.2016.1240732

Seshaiyer, P., & Solin, P. (2017). Enhancing student learning of differential equations through
technology. International Journal for Technology in Mathematics Education, 24(4), 207–215.
https://doi.org/10.1564/tme_v24.4.05

Shaier, S., Raissi, M., & Seshaiyer, P. (2022). Data-driven approaches for predicting spread of infec-
tious diseases throughDINNs:Disease informedneural networks. Letters in Biomathematics, 9(1),
71–105.

Simmons, G. F. (2016). Differential equations with applications and historical notes. CRC Press.
Smith, J. D., Ross, Z. E., Azizzadenesheli, K., & Muir, J. B. (202108). HypoSVI: Hypocentre inver-

sion with Stein variational inference and physics informed neural networks. Geophysical Journal
International, 228(1), 698–710. https://doi.org/10.1093/gji/ggab309

Yucesan, Y. A., & Viana, F. A. (2021). Hybrid physics-informed neural networks for main
bearing fatigue prognosis with visual grease inspection. Computers in Industry, 125, 103386.
https://doi.org/10.1016/j.compind.2020.103386


