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Abstract

In the Raman analysis of tribofilms produced from organic precursors, the D- and G-band features are often observed, which
resemble the characteristic bands of diamond-like carbon (DLC), amorphous carbon (a-C), or graphitic materials. This study
reports experimental evidence that the D- and G-bands features in the Raman spectra of tribofilms could be generated by
photochemical degradation of triboproducts due to the focused irradiation of laser beam during the Raman analysis, indicat-
ing that they are not unique to the genuine structure of the tribofilm produced via friction. This finding suggests that other
complementary and non-destructive characterization is required to determine whether DLC, a-C, or graphitic species are
produced tribochemically by frictional shear.

Graphical Abstract

After beam damage

Intensity (A.U.)

Before beam damage

LL_Jbrif:iOUS 1200 1600 2000
Substrate fribofilm = a-C,D Ramanshitt (sor)

Keywords Tribochemistry - Diamond-like carbon - Laser damage - Photochemical degradation

P4 Yip-Wah Chung 2 Department of Mechanical Engineering, Northwestern
ywchung @northwestern.edu University, Evanston, IL 60208, USA

P4 Seong H. Kim 3 Department of Mechanical Engineering, University
shk10@psu.edu of California, Merced, CA 95343, USA

Department of Materials Science and Engineering,

Department of Chemical Engineering and Materials Northwestern University, Evanston, IL 60208, USA

Research Institute, Pennsylvania State University,
University Park, PA 16802, USA

Published online: 15 April 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11249-023-01728-1&domain=pdf

57 Page 2 of 12

Tribology Letters (2023) 71:57

1 Introduction

Organic molecules can undergo various chemical reactions
at sliding interfaces [1]. Such reactions are specifically
called tribochemical reactions and can be driven thermally
via frictional heat or mechanochemically via shear-induced
activation [2-4]. The resulting surface layers formed through
tribochemical reactions are called tribofilms and can provide
beneficial lubrication properties [5-10]. Tribofilms, present
inside the sliding track or piled up around the contact region,
are often analyzed by Raman spectroscopy [11-38]. This
technique is widely used because it provides vibrational
spectroscopic information from small amounts of samples.
When the excitation beam is focused onto a small area
through an optical microscope (as in confocal Raman
spectroscopy), the sample within a 1~10 pm? area can be
analyzed with good detection efficiency of the scattered
Raman signal [39, 40]. Thus, Raman spectroscopy is well
suited for the analysis of tribofilms that are accumulated in
a small area.

Many Raman spectra of tribofilms reported in the
literature showed two vibrational bands at~1360 cm™!
and~1570 cm™' [11-38, 41, 42]. Numerous examples found
in the literature are organized in Table S1 in the Supporting
Information, in which readers can see that the types of
tribofilms and Raman analysis conditions vary drastically.
The spectral features at ~1360 cm™' and ~1570 cm™!
resemble the characteristic peaks, called the D- and G-bands,
respectively, of diamond-like carbon (DLC), amorphous
carbon (a-C), or graphitic materials [11, 14-27, 29-38]. DLC
and a-C are known to be good solid lubricant materials with
excellent lubricating efficiency and superior wear resistance
[43-49]. Thus, if such materials were produced by frictional
shear via tribochemical reactions, that would be very
beneficial for lubrication purposes.

However, it is noted that most DLC and a-C films with
good lubrication properties are produced by high-energy
processes such as physical vapor deposition (PVD) via
magnetron sputtering or plasma-enhanced chemical vapor
deposition (PECVD) [43, 45, 50]. Various types of a-C
can be produced via pyrolysis of organic precursors, but it
requires quite high temperatures (>700-800 °C) and often
oxygen-lean conditions [51-55]. Frictional heat generated
during the sliding process in most tribo-testing conditions is
not high enough to induce carbonization of organic products
or residues. Representative calculations of flash temperature
rise due to frictional heat are given in the Supporting
Information. In many studies, DLC-like or a-C tribofilms
were presumed to form via tribochemical reactions of
organic precursors at flash temperatures far lower than
typical temperatures required for thermal decomposition
or pyrolysis of organic compounds. Such conclusions were
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primarily drawn based on the observation of the D- and
G-band features in Raman analysis of tribofilms [16, 21, 33].
This leads to the following question: Are the D- and G-band
features in Raman spectra of tribofilms sufficient to confirm
that tribofilms contain DLC, a-C, or even graphitic material?

Reported in this paper is experimental evidence
indicating that the D- and G-band features in Raman
spectra of tribofilms may originate from post-synthesis
photochemical degradation of carbonaceous organic matters
during the Raman analysis. This finding suggests that
the observation of the D- and G-band features in Raman
spectra is not sufficient to say that DLC, a-C, or graphitic
species are produced via tribochemical reactions assisted by
interfacial friction or shear of organic molecules. Therefore,
other complementary characterization methods [37, 56] are
necessary to test the hypothesis of producing DLC, a-C, or
graphitic species by friction.

1.1 Experimental Details

Vapor phase lubrication (VPL) conditions were first used to
produce tribofilms on two different substrates, AISI 440C
stainless steel (SS; McMaster-Carr) and 4 mm thick soda
lime silicate (SLS; PPG) glass. The SS plate was polished
with sandpaper and alumina slurry to the root-mean-square
surface roughness (R,) of ~20 nm. Note that high-vapor-
pressure products of tribochemical reactions were lost into
the gas phase and only the tribofilms remaining in or around
the sliding track were analyzed [57, 58]. The precursor was
methylcyclopentane and its partial pressure was about
3750 Pa at 20 °C (30% with respect to its saturation vapor
pressure) [28]. The saturated vapor of methylcyclopentane
was generated by flowing dry N, (moisture volume
concentration ~ 18 ppm) through a flask filled with
methylcyclopentane liquid. An AISI 440C stainless steel
ball (diameter=3 cm; R .~ 6 nm [9]) was placed and loaded
with a 0.5 N force against the SS plate. At this load, the
maximum Hertzian contact pressure was estimated to be
450 MPa. A borosilicate glass ball (Pyrex; diameter =3 mm)
was used as the counter-body to the glass plate at a normal
load (0.5 N) that generated the maximum Hertzian contact
pressure of 320 MPa. For both material systems, the sliding
speed was 3 mm/s and the total sliding time was 18 min.
With these experimental conditions, the flash temperature
due to frictional heat was calculated to be 0.5 °C on the SS
plate [59] (see the Supporting Information for calculation
details). The produced tribofilms were analyzed with
Raman spectroscopy using a Horiba LabRam HR Evolution
Vis—NIR system. The excitation wavelengths were 532 nm,
633 nm, and 785 nm, and the excitation laser was focused
with an objective lens 50 X (NA=0.5) or 100X (NA=0.9).
The exposure time was 1 s and 10 accumulations. The
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thickness of the tribofilms was measured with atomic force
microscopy (AFM; Bruker Digital Instrument Multimode).

Oil-lubricated conditions were also tested, which were
more relevant to industrial conditions. A multi-functional
tribometer (RTEC MFT-5000) with a reciprocating module
was used to produce the tribofilm deposit on the ball. The flat
AISI 52100 steel samples were heat-treated to obtain Vickers
hardness of 311 +£22 HV. The heat treatment procedure
consisted of austenization treatment at 900 °C for 1 h in
air, followed by quenching in water at room temperature
and then aging at 550 °C for 1 h. The flat samples were
then polished using the standard metallographic technique
to an average R, of ~22 nm. An AISI 52100 steel ball
(52100 ball) with a diameter of 9.5 mm and R, of~5.6 nm
was used. Tribological tests were conducted at 25 °C and
about 24% relative humidity under a normal load of 2 N,
a reciprocating frequency of 5 Hz, and a stroke length of
10 mm, using PAO-4 as the lubricant. This normal load
corresponded to a maximum Hertzian contact pressure of
611 MPa. After 1 h of tribo-testing, a dark-colored deposit
was accumulated on the ball, which was then rinsed with
hexane to remove the residual lubricant. Raman spectra were
collected using a Horiba LabRam HR Evolution confocal
Raman microscope with the excitation laser wavelength of
473 nm and a 100 X objective lens (NA =0.95) to select the
region of interest for the analysis. The laser power used for
data collection varied between 1 to 10% of the full power
(25 mW). The exposure time was 30 s and 3 accumulations.

A further study of the tribofilms generated in oil-
lubricated conditions was conducted at a faster speed and
run for longer time using a different lubricant, dodecane,
subjected to boundary lubrication conditions. This
experiment was performed with a flat D2 steel sample and a
52100 ball. Both substrate and ball have a Vickers hardness
of about 800 HV. The flat D2 substrate was used for this
experiment instead of 52100 because a larger production of
tribofilm was observed with the D2 steel than 52100 when
lubricated with dodecane [29]. The test was conducted for
5 h at normal load of 5 N and sliding speed of 1 m/s, with
the contact being fully flooded in dodecane. In this high-
speed condition, the flash temperature was estimated to be
150 °C. After the experiment, the tribofilm accumulated at
the leading edge of the wear scar on the 52100 ball was
examined by Raman spectroscopy after a short hexane
rinse to remove residual dodecane, and after soaking for
24 h in dichloromethane (DCM), followed by a five-minute
sonication in hexane to remove the remaining hydrocarbons.
Raman spectroscopy was conducted with a Horiba LabRam
HR Evolution confocal Raman microscope with the laser
excitation wavelength of 473 nm, laser power of 1.25 mW
and 100 X objective lens (NA =0.95). The exposure time was
30 s and 3 accumulations.

As an independent test of the laser-induced degradation
possibility, two organic compounds were analyzed with
Raman spectroscopy (Horiba LabRam HR Evolution
Vis—NIR). One was organic granulated cane sugar (Great
Value, Walmart) purchased at a local grocery store, and the
other was an air-dried inner bark of a poplar tree (~ 30 years
old, dead) collected from a house yard at State College, PA.

2 Results and Discussion

Figure 1 shows the Raman spectra of tribofilms produced on
SS during VPL of methylcyclopentane [37]. When irradi-
ated with a low power laser (0.41mW) at 532 nm (=2.33 eV
photon energy, Fig. 1a), the tribofilm showed a large fluores-
cence background and negligible D- and G-bands. The fluo-
rescence background means that the tribofilm absorbs the
532 nm irradiation and is excited electronically [60]. Elec-
tronic excitation in the visible wavelength is often observed
for many aromatic hydrocarbons as well [61, 62]. It is pos-
sible that such aromatic components were produced and pre-
sent in the tribofilm. When the 532 nm excitation laser power
was increased to 2.05 mW, the D- and G-bands appeared
prominent over the fluorescence background. At the same
time, a burn mark could be seen in the illuminated spot (mid-
dle panel in Fig. 1a). When the laser power was reduced
back to 0.41 mW, the D- and G-band features remained.
This result clearly indicated that the D- and G-bands were
induced by the high intensity laser beam via photochemical
degradation. The laser power used in this study was compa-
rable to the power of a simple commercial laser pointer; so
it was quite low. But, when it was focused onto the sample
with a 100 X objective lens, the power density was on the
order of 10°~10° W/cm?. Heat diffusion calculations showed
that the maximum temperature rise was only 47 K under
these irradiation conditions [38] (see the Supporting Infor-
mation for calculation detail). One might question whether
the photochemical degradation was due to the photoelectron
emission from the substrate. The work function of stainless
steel is between 4.7 and 5.6 eV [63], which is far larger than
the photon energy of 532 nm (2.3 eV). Thus, photoelectron
emission is highly unlikely to occur under continuous wave
(CW) laser irradiation at 532 nm.

The beam damage during Raman analysis is frequently
mentioned in the literature [64, 65]. Even thick DLC or a-C
films deposited via PECVD and PVD processes are prone
to beam damage, which alters the relative intensity and peak
positions of the D- and G- bands [66-69]. Note that it is the
power density in the irradiated spot, not the power of the
laser source, that is critical in determining whether beam
damage will occur or not. Most Raman instruments focus
the low-power laser beam to a small spot because typical
Raman cross-sections of organic molecules are small,
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Fig. 1 a Evolution of D- and G-band features due to photochemical
degradation of tribofilm produced on SS during VPL of methylcy-
clopentane. Results from experiments are shown progressing in time
from bottom to top in these figures. The Raman analysis was done at
the same location (marked with the red circles on the optical images)
with Agy =532 nm and varying laser power from 0.41 mW (1.0 x 10°
Wicm?) to 2.05 mW (5.0 x 10° W/ecm?), and then back to 0.41 mW,
using a 100 X objective lens (NA =0.9). The data acquisition time was
10 s at each power. The thickness of the tribofilm marked with the red

and it also improves the collection efficiency of scattered
Raman signals [40, 70]. This focusing can increase the
power density in the irradiated spot above the beam damage
threshold. For this reason, we have reported the laser power
density in the irradiated spot in the captions of all figures.
A few studies provided sufficient information to calculate
the laser power density at the analysis spot on tribofilms
produced from organic precursors [11, 16]. The estimated
power density was in the range of 3 X 103 W/cm? to 1 x
10° W/cm?. When using Agy =514.5 nm and a spot size of
1 pm, laser-induced damage on a-C:H film was observed
at a power density of ~ 13 x 103 W/cm? with an exposure
time of ~30 s [67]. When an UV laser (Agx =244 nm) was
used, it was suggested that the power density (assuming
the spot size was 1 pm) should be kept below ~ 1 x 10> W/
cm? to avoid beam damage, and the sample must be rotated
at a very high speed (>3000 rpm) to minimize beam
damage due to a continuous exposure (up to 60 s) [66]. In
our study, beam damage occurred when the power density
reached 5.0 X 10° W/cm? when using the Agy =532 nm
with the exposure time of 1 s. At the same power density,
the PECVD-deposited hydrogenated DLC film was also
damaged, which was evident from the change of intensity
of the D-band due to the sp® to sp® rehybridization of carbon
induced by photochemical reactions [67] and the burn
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circle was~1 pm. b The same measurements done with Ay =633 nm
and varying laser power from 1.1 mW (1.9 x 10° W/ecm?) to 5.5 mW
(9.5 x 10° W/cm?), and then back to 1.1 mW. ¢ The same measure-
ments done with Agx =785 nm and varying laser power from 6.3 mW
(7.0 x 10° W/ecm?) to 25 mW (28 x 10° W/cm?), and then back to 6.3
mW. The undulating features in the spectra are due to the etaloning
effect within the detector. The blue arrows indicate the order in which
the Raman experiments were performed

mark identifiable under the microscope. (See Figure S1 in
Supporting Information).

To further support the hypothesis of photochemical
degradation of tribofilms, we collected Raman spectra
using longer wavelength excitations for tribofilms produced
the same way as those analyzed above (Fig. 1b, c). When
the photon energy was lowered from 532 nm (2.33 eV) to
633 nm (1.96 eV) and 785 nm (1.58 eV), the critical power
needed to observe the appearance of the D- and G-bands
was much higher. The difference in the baseline slope was
due to the variation in fluorescence emission wavelength
and detector sensitivity. There were no discernable D-
and G-band features in the initial low-power spectra, and
their appearance was accompanied by a burn mark on the
sample surface. Once observed after irradiation at a high
power, the D- and G-band features remained in the Raman
spectra collected with a lower power at the same location.
These results supported the hypothesis that the observed
D- and G-band features from the tribofilm were due to
photochemical degradation of triboproducts.

In the case of SS, the surface is covered with chromium
oxide. Chromium oxide is known to be a catalyst for polym-
erization of olefins [71, 72]. However, even without such
catalytically active surfaces, the tribofilm exhibiting the D-
and G-band Raman spectral features can be produced. To
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Fig.2 a Evolution of the D- and G-bands in Raman spectra of the
tribofilms produced on SLS glass during VPL of methylcyclopen-
tane from the bottom to the top. The Raman analysis was done at the
same location (marked with the red circles in the optical images) with
Apx =532 nm and varying laser power from 0.41 mW (1.0 x 10° W/
cm?) to 10.3 mW (25 x 10° W/cm?), and then back to 0.41 mW (1.0 x
10° W/cm?), using a 100X objective lens (NA =0.9). The data acqui-
sition time was 10 s at each power

test this hypothesis, we conducted the same VPL testing
on 4 mm thick SLS glass (as an inert reference sample) and
analyzed with Raman spectroscopy. The tribofilm forma-
tion yield on the SLS surface was about one tenth of that
on the SS surface [56]. The threshold laser power needed to
observe the D- and G-band features in the Raman spectrum
was found to be higher for the tribofilm on SLS (Fig. 2) than
for the tribofilm on SS (Fig. 1a). The most likely reason is
that SLS is transparent at 532 nm and its refractive index is
close to the values of most organic materials, while SS is
reflective. In other words, the tribofilm on the SLS surface
would experience less photon exposure than the SS surface
at the same irradiation condition.

The tribofilms formed under the PAO-4 liquid lubrica-
tion condition showed the same photochemical degradation
behavior as seen in the VPL experiments when the excitation
laser power was high enough. Figure 3a reveals the varia-
tion of Raman spectra obtained at a fixed spot on the tribo-
film with respect to the laser power. Raman measurements

lected at the same location with 473 nm excitation laser at a power
of first 1.25 mW (4.5 x 10° W/cm?), then 2.5 mW (9.0 x 10° W/
cm?), and then back to 1.25 mW (4.5 x 10> W/cm?). b Raman spec-
tra of the tribofilm at another location on the 52100-ball surface with
a lower laser power (0.25 mW (0.9 x 10° W/em?) — 1.25 mW —
0.25 mW). The vertical lines are the positions of the D- and G-bands
observed at 2.5 mW irradiation in a. Two sharp peaks at~ 1400 cm™!
and~1450 cm™' are the C-H bending modes of the hydrocarbon-
based lubricant oil. Note that the spectra shown here are after removal
of the fluorescence background

were conducted at 1.25 mW (4.5 x 10° W/cm?), followed
by 2.5 mW (9.0 x 10> W/cm?), and then by 1.25 mW (4.5
x 10° W/cmz) again. At the initial 1.25 mW irradiation, the
D- and G-band intensities were around 3 and 5 cps, respec-
tively, after removal of the background. Upon subjecting the
same spot to 2.5 mW, their intensities rose to~20 and ~42
cps, respectively. When repeated at 1.25 mW laser power
again, the same spot yielded D- and G-band intensities of ~7
and ~ 10 cps, respectively. Figure 3b shows the same analy-
sis done at a different spot with laser power starting at 0.25
mW (0.9 x 10° W/cm?), followed by 1.25 mW (4.5 x 10° W/
cm?), and then back to 0.25 mW again. The fact that similar
signatures were obtained at 0.25 mW laser power before and
after the exposure to 1.25 mW laser power indicates that the
degree of photochemical degradation was relatively small
at this low power condition. Note, however, that the Raman
band positions and their relative intensities obtained at 0.25
and 1.25 mW (Fig. 3b) are different from those obtained at
2.5 mW (Fig. 3a), suggesting that the chemical nature of
the original tribofilm is different from that induced by high-
power laser irradiation. In summary, these results confirm
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at a sliding speed of 1 m/s for 5 h in dodecane. The spectra were col-
lected with 473 nm excitation laser at a power of 1.25 mW (4.5 x 10
W/cm.?) using a 100 X objective lens (NA =0.95)
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Fig.5 Raman spectra of a 300 nm thick polystyrene (PS) film dip-
coated on (a) SS or (b) SLS substrates. The Raman analysis was done

at the same location (marked with the red circles on optical images)
with Agzx =532 nm and under varying laser power from 0.41 mW (1.0
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that sufficiently high-power laser radiation can induce pho-
tochemical degradation of the tribofilm formed from PAO-4.

High-speed (1 m/s) ball-on-disk tribotest was conducted
to determine if a DLC or a-C film could be formed tribo-
chemically under more severe experimental conditions. In
this case, the average flash temperature was estimated to
be about 150 °C above the ambient temperature [59] (see
the Supporting Information). The tribofilm formed after
such tribotests showed two broad peaks around 1300 cm™!
and 1580 cm™! (Fig. 4), which are similar to the Raman
D and G band signatures of DLC or a-C. However, after
soaking the tribofilm in DCM for 24 h, followed by a short
sonication in hexane, these bands disappeared. The disso-
lution of the tribofilm in DCM suggests that the tribofilm
is not DLC or a-C. Instead, the tribofilm formed under
this harsher condition might be a mixture of various oli-
gomeric species.

The photochemical degradation caused by the high-inten-
sity laser beam during the Raman analysis suggests that tri-
bochemically produced organic species are photochemically
unstable. When a thin film of polystyrene (PS) was deposited
on pristine SS and SLS surfaces and the Raman analysis
was conducted with the 532 nm excitation at 10.3 mW (25
x 10° W/cm?), the vibrational spectral features of PS did not

(b) PS on Soda lime
100+ silicate (SLS) glass
50
0.41 mW
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T T T
—~ 4000+
(2]
o
)
2 2000+
(2]
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9
£ 0-
1 1 T
1004
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0.41 mW
0_
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x 10° W/em?) to 10.3 mW (25 x 10° W/cm?), and then back to 0.41
mW, using a 100X objective lens (NA=0.9). The data acquisition
time was 10 s at each power. In the case of PS/SLS, no optical image
was taken since the substrate was not visible
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Fig.6 Evolution of the D- and G-bands in the Reman spectra of
(a) granulated cane sugar and (b) poplar bark. The Raman analysis
was done at the same location (marked with the red circles on opti-
cal images, and the green dot indicates the measurement point)
with Agx =532 nm and under varying laser power. Objective lens of
100x (NA=0.9) and 50X (NA=0.5) were used to focus laser beams

change at all, indicating that PS did not degrade at this high-
power irradiation condition (Fig. 5). Note that the baseline
of the PS Raman spectrum is quite flat, indicating that there
is no electronic excitation. In the UV-VIS absorption spec-
trum, PS shows a peak around 270 nm (which corresponds
to 4.6 eV) [73, 74]. Thus, its photochemical activity is neg-
ligible at 532 nm irradiation. In comparison, the tribofilms
studied here absorbed the 532 nm laser beam and fluoresced
(Figs. 1 and 2). Such electronic excitation and subsequent
relaxation processes are likely to be accompanied by photo-
chemical degradation reactions [75] that occur more readily
at shorter-wavelength laser excitation [64].

Note that the excitation laser beam used for the Raman
analysis can degrade even stable compounds if the laser
power is sufficiently high. To demonstrate this, we did a
series of control experiments with a granule of cane sugar
and the inner bark of a poplar tree. Figure 6 shows the
Raman spectra of cane sugar and tree bark collected at high
laser powers. When cane sugar was irradiated with 17 mW
(41 x 10° W/cm?) of 532 nm excitation laser (Fig. 6a), the
collected Raman spectrum was in good agreement with that
found in the literature (see the Supporting Information) and

1200 1600 2000
Raman shift (cm™)

on sugar cane granule and polar bark, respectively. The cane sugar
was damaged after being exposed to the 34 mW (82 x 10° W/cm?)
laser for 220 s, while the tree bark was damaged when it was exposed
to the 34 mW (33 x 10° W/cm?) laser for 10 s. The blue lines in the
Raman spectra of cane sugar were obtained by subtracting the back-
ground from the raw spectra

did not change over time [76]. When the laser power was
increased to 34 mW (82 x 10° W/cm?), the sharp molecular
vibration features disappeared gradually, and a broad fluo-
rescent background grew over time. Eventually, weak but
clearly noticeable D- and G-band features appeared on top
of the fluorescent background. After subtracting the back-
ground of the raw spectra, apparent D- and G- bands were
observed. Similar to the tribofilm case, this appearance was
accompanied by a burn mark (beam damage) on the sample
surface. In this case, it is possible that the degradation pro-
cess was thermochemical. Assuming the thermal conduc-
tivity of sugar is 0.15 W/m—K [77, 78] and the absorption
cross section is 0.01 [79], the maximum temperature inside
the focused beam of 532 nm at 34 mW could reach~ 1300 K
when focused with the 100 X (NA =0.9) objective lens. Ini-
tially, the degradation must be of thermal origin because
there was no fluorescence detected prior to beam damage.
After the onset of thermal decomposition, the products could
undergo photochemical degradation as well, accelerating
further degradation. Thus, it is likely that the beam damage
has both thermal and photochemical processes, which even-
tually leads to significant changes in the spectrum.

@ Springer
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In the case of the poplar bark (Fig. 6b), only a broad
fluorescence background signal was detected at 3.4 mW
(3.3 x 10° W/cm?) irradiation. This must be due to the
autofluorescence of lignin components in the bark [80,
81]. At 34 mW (33 x 10° W/cm?), a clear burn mark
was observed, and the D- and G-bands appeared in the
Raman spectrum. Because pyrolysis of tree bark is known
to produce active carbon materials [82, 83], a similar
degradation process is expected under the high-intensity
laser irradiation, producing the D- and G-band features
in the collected spectrum. Therefore, it is possible that
thermochemical degradation reactions can also take place
when conducting Raman experiment at high laser power.

During the literature review, we noted that many papers
reported Raman spectra after background removal to show
the D- and G-bands clearly (similar to those shown in Figs. 3
and 4; the raw Raman spectrum of another sample without
background subtraction is shown in Figure S3 in the Sup-
porting Information) [11-28, 30-38, 84-86]. The fluorescence
background in the Raman spectrum gives important struc-
tural information. If the tribofilm is truly DLC, a-C, or gra-
phitic material, the fluorescence background could be related
to the hydrogen content in the amorphous carbon network
[87]. The results of this study, however, revealed that, for the
examples analyzed here, a strong fluorescence background
could be produced by unstable organic molecules that absorb
the excitation laser beam of Raman analysis and undergo
photochemical degradation. The Raman cross-sections of
organic hydrocarbon molecules are relatively small [40,
88], so it is difficult to observe their molecular vibrational
spectral features when the fluorescence background is high.
Therefore, in Raman analysis of aromatic compounds, the
excitation wavelength is carefully chosen to avoid such fluo-
rescence background [65]. In the absence of clearly identifi-
able molecular features in the spectrum collected with a low
laser power, one may increase the laser power until some
identifiable spectral features appear. However, as shown in
Figs. 1-3 and 6, those spectral features observed under the
high-power-density laser irradiation cannot be assumed to be
the features of the pristine sample unless the possibility of
beam damage is ruled out.

All a-C and graphitic materials show D- and G-bands in
Raman; even cokes and carbon soot produced by thermal
degradation of organics show the same D- and G-band fea-
tures [41, 42, 51, 64, 89-91]. In addition, many carbonaceous
materials exhibit Raman peaks near the D- and G- band peak
positions [23, 92-94], and a change in the D- and G- band
peak intensities was also observed between oxidized and
non-oxidized samples of carbonaceous material [95]. Thus,
the observation of the D- and G-bands in Raman spectra of
tribofilms may not be sufficient to claim that the tribofilm
produced was DLC, a-C, or graphitic species or contains
such components.

@ Springer

Other complementary and non-destructive characteriza-
tion methods should be employed to test and confirm if DLC,
a-C, or graphitic species are produced indeed by tribochem-
ical processes, and such methods should be free from the
beam damage during the analysis [64, 96-100]. Such tech-
niques include infrared spectroscopy for detection of organic
functional groups [37, 101, 102], matrix-assisted laser des-
orption/ionization mass spectrometry (MALDI-MS) or sec-
ondary ion mass spectrometry (SIMS) for molecular weight
distribution [18, 25, 56, 103, 104], x-ray photoelectron spec-
troscopy (XPS) for elemental analysis [28, 101, 105-108],
x-ray absorption near edge structure (XANES) or electron
energy loss spectroscopy (EELS) for carbon hybridization
[18, 25, 27, 101, 104-106, 108], transmission electron spec-
troscopy (TEM) for imaging [18, 21, 32, 35, 101], and so on.
However, it should be noted that each technique has its own
limitations. Although IR is known to be molecular-specific,
it would be difficult to differentiate individual species if the
tribofilm contains many different chemical species. MALDI
and SIMS suffer from fragmentation during the ionization,
although the fragmentation pattern could be specific to cer-
tain molecular patterns [56]. If the tribofilm is not stable, it
could get oxidized upon exposure to air during the sample
transfer, which may alter the XPS elemental analysis result
[109] During the XANES analysis at C K-edge, the high
intensity x-ray beam can degrade the sample [110-112].
Similarly, organic materials are highly susceptible to beam
damage under high-energy electron irradiation during TEM
and EELS analysis unless specific care is taken to reduce
beam damage [113, 114]. If graphitic domains are present
in the sample, they could be found and imaged with TEM;
but without proper statistics or concentration information, it
would be difficult to fully evaluate the importance of their
presence. Since no single technique can provide sufficient
information, the use of multiple techniques with proper
knowledge of experimental artifacts and limitations of each
technique is critically needed to better and more accurate
characterization of tribofilms which are inherently complex
due to the lack of reaction specificity under highly dynamic
and non-equilibrium conditions of tribological interfaces [37,
115].

3 Conclusions

A possible origin of the D- and G-band features in the
Raman spectra of tribofilms produced by tribochemical
reactions was explored. While the D- and G- bands in the
Raman spectrum can serve as an indicator of the presence
of DLC or a-C films, it is important to delineate the origin
of such D- and G- bands in the spectrum. Control studies
conducted with varying laser powers and wavelengths
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indicated that such spectral features can be produced by
beam damage during the Raman analysis. This finding
suggests that the hypothesis of synthesizing DLC, a-C, or
graphitic species by friction solely based on the observation
of D- and G-bands in Raman spectra needs to be confirmed
with complementary characterization methods that do not
cause degradation of tribofilms during the analysis.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11249-023-01728-1.
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