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Abstract
In the Raman analysis of tribofilms produced from organic precursors, the D- and G-band features are often observed, which 
resemble the characteristic bands of diamond-like carbon (DLC), amorphous carbon (a-C), or graphitic materials. This study 
reports experimental evidence that the D- and G-bands features in the Raman spectra of tribofilms could be generated by 
photochemical degradation of triboproducts due to the focused irradiation of laser beam during the Raman analysis, indicat-
ing that they are not unique to the genuine structure of the tribofilm produced via friction. This finding suggests that other 
complementary and non-destructive characterization is required to determine whether DLC, a-C, or graphitic species are 
produced tribochemically by frictional shear.
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1  Introduction

Organic molecules can undergo various chemical reactions 
at sliding interfaces [1]. Such reactions are specifically 
called tribochemical reactions and can be driven thermally 
via frictional heat or mechanochemically via shear-induced 
activation [2-4]. The resulting surface layers formed through 
tribochemical reactions are called tribofilms and can provide 
beneficial lubrication properties [5-10]. Tribofilms, present 
inside the sliding track or piled up around the contact region, 
are often analyzed by Raman spectroscopy [11-38]. This 
technique is widely used because it provides vibrational 
spectroscopic information from small amounts of samples. 
When the excitation beam is focused onto a small area 
through an optical microscope (as in confocal Raman 
spectroscopy), the sample within a 1 ~ 10 μm2 area can be 
analyzed with good detection efficiency of the scattered 
Raman signal [39, 40]. Thus, Raman spectroscopy is well 
suited for the analysis of tribofilms that are accumulated in 
a small area.

Many Raman spectra of tribofilms reported in the 
literature showed two vibrational bands at ~ 1360  cm−1 
and ~ 1570 cm−1 [11-38, 41, 42]. Numerous examples found 
in the literature are organized in Table S1 in the Supporting 
Information, in which readers can see that the types of 
tribofilms and Raman analysis conditions vary drastically. 
The spectral features at ~ 1360  cm−1 and ~ 1570  cm−1 
resemble the characteristic peaks, called the D- and G-bands, 
respectively, of diamond-like carbon (DLC), amorphous 
carbon (a-C), or graphitic materials [11, 14-27, 29-38]. DLC 
and a-C are known to be good solid lubricant materials with 
excellent lubricating efficiency and superior wear resistance 
[43-49]. Thus, if such materials were produced by frictional 
shear via tribochemical reactions, that would be very 
beneficial for lubrication purposes.

However, it is noted that most DLC and a-C films with 
good lubrication properties are produced by high-energy 
processes such as physical vapor deposition (PVD) via 
magnetron sputtering or plasma-enhanced chemical vapor 
deposition (PECVD) [43, 45, 50]. Various types of a-C 
can be produced via pyrolysis of organic precursors, but it 
requires quite high temperatures (> 700–800 °C) and often 
oxygen-lean conditions [51-55]. Frictional heat generated 
during the sliding process in most tribo-testing conditions is 
not high enough to induce carbonization of organic products 
or residues. Representative calculations of flash temperature 
rise due to frictional heat are given in the Supporting 
Information. In many studies, DLC-like or a-C tribofilms 
were presumed to form via tribochemical reactions of 
organic precursors at flash temperatures far lower than 
typical temperatures required for thermal decomposition 
or pyrolysis of organic compounds. Such conclusions were 

primarily drawn based on the observation of the D- and 
G-band features in Raman analysis of tribofilms [16, 21, 33]. 
This leads to the following question: Are the D- and G-band 
features in Raman spectra of tribofilms sufficient to confirm 
that tribofilms contain DLC, a-C, or even graphitic material?

Reported in this paper is experimental evidence 
indicating that the D- and G-band features in Raman 
spectra of tribofilms may originate from post-synthesis 
photochemical degradation of carbonaceous organic matters 
during the Raman analysis. This finding suggests that 
the observation of the D- and G-band features in Raman 
spectra is not sufficient to say that DLC, a-C, or graphitic 
species are produced via tribochemical reactions assisted by 
interfacial friction or shear of organic molecules. Therefore, 
other complementary characterization methods [37, 56] are 
necessary to test the hypothesis of producing DLC, a-C, or 
graphitic species by friction.

1.1 � Experimental Details

Vapor phase lubrication (VPL) conditions were first used to 
produce tribofilms on two different substrates, AISI 440C 
stainless steel (SS; McMaster-Carr) and 4 mm thick soda 
lime silicate (SLS; PPG) glass. The SS plate was polished 
with sandpaper and alumina slurry to the root-mean-square 
surface roughness (Rq) of ~ 20 nm. Note that high-vapor-
pressure products of tribochemical reactions were lost into 
the gas phase and only the tribofilms remaining in or around 
the sliding track were analyzed [57, 58]. The precursor was 
methylcyclopentane and its partial pressure was about 
3750 Pa at 20 °C (30% with respect to its saturation vapor 
pressure) [28]. The saturated vapor of methylcyclopentane 
was generated by flowing dry N2 (moisture volume 
concentration ~ 18  ppm) through a flask filled with 
methylcyclopentane liquid. An AISI 440C stainless steel 
ball (diameter = 3 cm; Rq ≈ 6 nm [9]) was placed and loaded 
with a 0.5 N force against the SS plate. At this load, the 
maximum Hertzian contact pressure was estimated to be 
450 MPa. A borosilicate glass ball (Pyrex; diameter = 3 mm) 
was used as the counter-body to the glass plate at a normal 
load (0.5 N) that generated the maximum Hertzian contact 
pressure of 320 MPa. For both material systems, the sliding 
speed was 3 mm/s and the total sliding time was 18 min. 
With these experimental conditions, the flash temperature 
due to frictional heat was calculated to be 0.5 °C on the SS 
plate [59] (see the Supporting Information for calculation 
details). The produced tribofilms were analyzed with 
Raman spectroscopy using a Horiba LabRam HR Evolution 
Vis–NIR system. The excitation wavelengths were 532 nm, 
633 nm, and 785 nm, and the excitation laser was focused 
with an objective lens 50 × (NA = 0.5) or 100 × (NA = 0.9). 
The exposure time was 1  s and 10 accumulations. The 
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thickness of the tribofilms was measured with atomic force 
microscopy (AFM; Bruker Digital Instrument Multimode).

Oil-lubricated conditions were also tested, which were 
more relevant to industrial conditions. A multi-functional 
tribometer (RTEC MFT-5000) with a reciprocating module 
was used to produce the tribofilm deposit on the ball. The flat 
AISI 52100 steel samples were heat-treated to obtain Vickers 
hardness of 311 ± 22 HV. The heat treatment procedure 
consisted of austenization treatment at 900 °C for 1 h in 
air, followed by quenching in water at room temperature 
and then aging at 550 °C for 1 h. The flat samples were 
then polished using the standard metallographic technique 
to an average Rq of ~ 22  nm. An AISI 52100 steel ball 
(52100 ball) with a diameter of 9.5 mm and Rq of ~ 5.6 nm 
was used. Tribological tests were conducted at 25 °C and 
about 24% relative humidity under a normal load of 2 N, 
a reciprocating frequency of 5 Hz, and a stroke length of 
10 mm, using PAO-4 as the lubricant. This normal load 
corresponded to a maximum Hertzian contact pressure of 
611 MPa. After 1 h of tribo-testing, a dark-colored deposit 
was accumulated on the ball, which was then rinsed with 
hexane to remove the residual lubricant. Raman spectra were 
collected using a Horiba LabRam HR Evolution confocal 
Raman microscope with the excitation laser wavelength of 
473 nm and a 100 × objective lens (NA = 0.95) to select the 
region of interest for the analysis. The laser power used for 
data collection varied between 1 to 10% of the full power 
(25 mW). The exposure time was 30 s and 3 accumulations.

A further study of the tribofilms generated in oil-
lubricated conditions was conducted at a faster speed and 
run for longer time using a different lubricant, dodecane, 
subjected to boundary lubrication conditions. This 
experiment was performed with a flat D2 steel sample and a 
52100 ball. Both substrate and ball have a Vickers hardness 
of about 800 HV. The flat D2 substrate was used for this 
experiment instead of 52100 because a larger production of 
tribofilm was observed with the D2 steel than 52100 when 
lubricated with dodecane [29]. The test was conducted for 
5 h at normal load of 5 N and sliding speed of 1 m/s, with 
the contact being fully flooded in dodecane. In this high-
speed condition, the flash temperature was estimated to be 
150 °C. After the experiment, the tribofilm accumulated at 
the leading edge of the wear scar on the 52100 ball was 
examined by Raman spectroscopy after a short hexane 
rinse to remove residual dodecane, and after soaking for 
24 h in dichloromethane (DCM), followed by a five-minute 
sonication in hexane to remove the remaining hydrocarbons. 
Raman spectroscopy was conducted with a Horiba LabRam 
HR Evolution confocal Raman microscope with the laser 
excitation wavelength of 473 nm, laser power of 1.25 mW 
and 100 × objective lens (NA = 0.95). The exposure time was 
30 s and 3 accumulations.

As an independent test of the laser-induced degradation 
possibility, two organic compounds were analyzed with 
Raman spectroscopy (Horiba LabRam HR Evolution 
Vis–NIR). One was organic granulated cane sugar (Great 
Value, Walmart) purchased at a local grocery store, and the 
other was an air-dried inner bark of a poplar tree (~ 30 years 
old, dead) collected from a house yard at State College, PA.

2 � Results and Discussion

Figure 1 shows the Raman spectra of tribofilms produced on 
SS during VPL of methylcyclopentane [37]. When irradi-
ated with a low power laser (0.41mW) at 532 nm (= 2.33 eV 
photon energy, Fig. 1a), the tribofilm showed a large fluores-
cence background and negligible D- and G-bands. The fluo-
rescence background means that the tribofilm absorbs the 
532 nm irradiation and is excited electronically [60]. Elec-
tronic excitation in the visible wavelength is often observed 
for many aromatic hydrocarbons as well [61, 62]. It is pos-
sible that such aromatic components were produced and pre-
sent in the tribofilm. When the 532 nm excitation laser power 
was increased to 2.05 mW, the D- and G-bands appeared 
prominent over the fluorescence background. At the same 
time, a burn mark could be seen in the illuminated spot (mid-
dle panel in Fig. 1a). When the laser power was reduced 
back to 0.41 mW, the D- and G-band features remained. 
This result clearly indicated that the D- and G-bands were 
induced by the high intensity laser beam via photochemical 
degradation. The laser power used in this study was compa-
rable to the power of a simple commercial laser pointer; so 
it was quite low. But, when it was focused onto the sample 
with a 100 × objective lens, the power density was on the 
order of 105–106 W/cm2. Heat diffusion calculations showed 
that the maximum temperature rise was only 47 K under 
these irradiation conditions [38] (see the Supporting Infor-
mation for calculation detail). One might question whether 
the photochemical degradation was due to the photoelectron 
emission from the substrate. The work function of stainless 
steel is between 4.7 and 5.6 eV [63], which is far larger than 
the photon energy of 532 nm (2.3 eV). Thus, photoelectron 
emission is highly unlikely to occur under continuous wave 
(CW) laser irradiation at 532 nm.

The beam damage during Raman analysis is frequently 
mentioned in the literature [64, 65]. Even thick DLC or a-C 
films deposited via PECVD and PVD processes are prone 
to beam damage, which alters the relative intensity and peak 
positions of the D- and G- bands [66-69]. Note that it is the 
power density in the irradiated spot, not the power of the 
laser source, that is critical in determining whether beam 
damage will occur or not. Most Raman instruments focus 
the low-power laser beam to a small spot because typical 
Raman cross-sections of organic molecules are small, 
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and it also improves the collection efficiency of scattered 
Raman signals [40, 70]. This focusing can increase the 
power density in the irradiated spot above the beam damage 
threshold. For this reason, we have reported the laser power 
density in the irradiated spot in the captions of all figures.

A few studies provided sufficient information to calculate 
the laser power density at the analysis spot on tribofilms 
produced from organic precursors [11, 16]. The estimated 
power density was in the range of 3 × 105 W/cm2 to 1 × 
106 W/cm2. When using λEX = 514.5 nm and a spot size of 
1 μm, laser-induced damage on a-C:H film was observed 
at a power density of ~ 13 × 105 W/cm2 with an exposure 
time of ~ 30 s [67]. When an UV laser (λEX = 244 nm) was 
used, it was suggested that the power density (assuming 
the spot size was 1 μm) should be kept below ~ 1 × 105 W/
cm2 to avoid beam damage, and the sample must be rotated 
at a very high speed (> 3000  rpm) to minimize beam 
damage due to a continuous exposure (up to 60 s) [66]. In 
our study, beam damage occurred when the power density 
reached 5.0 × 105 W/cm2 when using the λEX = 532 nm 
with the exposure time of 1 s. At the same power density, 
the PECVD-deposited hydrogenated DLC film was also 
damaged, which was evident from the change of intensity 
of the D-band due to the sp3 to sp2 rehybridization of carbon 
induced by photochemical reactions [67] and the burn 

mark identifiable under the microscope. (See Figure S1 in 
Supporting Information).

To further support the hypothesis of photochemical 
degradation of tribofilms, we collected Raman spectra 
using longer wavelength excitations for tribofilms produced 
the same way as those analyzed above (Fig. 1b, c). When 
the photon energy was lowered from 532 nm (2.33 eV) to 
633 nm (1.96 eV) and 785 nm (1.58 eV), the critical power 
needed to observe the appearance of the D- and G-bands 
was much higher. The difference in the baseline slope was 
due to the variation in fluorescence emission wavelength 
and detector sensitivity. There were no discernable D- 
and G-band features in the initial low-power spectra, and 
their appearance was accompanied by a burn mark on the 
sample surface. Once observed after irradiation at a high 
power, the D- and G-band features remained in the Raman 
spectra collected with a lower power at the same location. 
These results supported the hypothesis that the observed 
D- and G-band features from the tribofilm were due to 
photochemical degradation of triboproducts.

In the case of SS, the surface is covered with chromium 
oxide. Chromium oxide is known to be a catalyst for polym-
erization of olefins [71, 72]. However, even without such 
catalytically active surfaces, the tribofilm exhibiting the D- 
and G-band Raman spectral features can be produced. To 

Fig. 1   a Evolution of D- and G-band features due to photochemical 
degradation of tribofilm produced on SS during VPL of methylcy-
clopentane. Results from experiments are shown progressing in time 
from bottom to top in these figures. The Raman analysis was done at 
the same location (marked with the red circles on the optical images) 
with λEX = 532 nm and varying laser power from 0.41 mW (1.0 × 105 
W/cm2) to 2.05 mW (5.0 × 105 W/cm2), and then back to 0.41 mW, 
using a 100 × objective lens (NA = 0.9). The data acquisition time was 
10 s at each power. The thickness of the tribofilm marked with the red 

circle was ~ 1 μm. b The same measurements done with λEX = 633 nm 
and varying laser power from 1.1 mW (1.9 × 105 W/cm2) to 5.5 mW 
(9.5 × 105 W/cm2), and then back to 1.1 mW. c The same measure-
ments done with λEX = 785 nm and varying laser power from 6.3 mW 
(7.0 × 105 W/cm2) to 25 mW (28 × 105 W/cm2), and then back to 6.3 
mW. The undulating features in the spectra are due to the etaloning 
effect within the detector. The blue arrows indicate the order in which 
the Raman experiments were performed
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test this hypothesis, we conducted the same VPL testing 
on 4 mm thick SLS glass (as an inert reference sample) and 
analyzed with Raman spectroscopy. The tribofilm forma-
tion yield on the SLS surface was about one tenth of that 
on the SS surface [56]. The threshold laser power needed to 
observe the D- and G-band features in the Raman spectrum 
was found to be higher for the tribofilm on SLS (Fig. 2) than 
for the tribofilm on SS (Fig. 1a). The most likely reason is 
that SLS is transparent at 532 nm and its refractive index is 
close to the values of most organic materials, while SS is 
reflective. In other words, the tribofilm on the SLS surface 
would experience less photon exposure than the SS surface 
at the same irradiation condition.

The tribofilms formed under the PAO-4 liquid lubrica-
tion condition showed the same photochemical degradation 
behavior as seen in the VPL experiments when the excitation 
laser power was high enough. Figure 3a reveals the varia-
tion of Raman spectra obtained at a fixed spot on the tribo-
film with respect to the laser power. Raman measurements 

were conducted at 1.25 mW (4.5 × 105 W/cm2), followed 
by 2.5 mW (9.0 × 105 W/cm2), and then by 1.25 mW (4.5 
× 105 W/cm2) again. At the initial 1.25 mW irradiation, the 
D- and G-band intensities were around 3 and 5 cps, respec-
tively, after removal of the background. Upon subjecting the 
same spot to 2.5 mW, their intensities rose to ~ 20 and ~ 42 
cps, respectively. When repeated at 1.25 mW laser power 
again, the same spot yielded D- and G-band intensities of ~ 7 
and ~ 10 cps, respectively. Figure 3b shows the same analy-
sis done at a different spot with laser power starting at 0.25 
mW (0.9 × 105 W/cm2), followed by 1.25 mW (4.5 × 105 W/
cm2), and then back to 0.25 mW again. The fact that similar 
signatures were obtained at 0.25 mW laser power before and 
after the exposure to 1.25 mW laser power indicates that the 
degree of photochemical degradation was relatively small 
at this low power condition. Note, however, that the Raman 
band positions and their relative intensities obtained at 0.25 
and 1.25 mW (Fig. 3b) are different from those obtained at 
2.5 mW (Fig. 3a), suggesting that the chemical nature of 
the original tribofilm is different from that induced by high-
power laser irradiation. In summary, these results confirm 

Fig. 2   a Evolution of the D- and G-bands in Raman spectra of the 
tribofilms produced on SLS glass during VPL of methylcyclopen-
tane from the bottom to the top. The Raman analysis was done at the 
same location (marked with the red circles in the optical images) with 
λEX = 532 nm and varying laser power from 0.41 mW (1.0 × 105 W/
cm2) to 10.3 mW (25 × 105 W/cm2), and then back to 0.41 mW (1.0 × 
105 W/cm2), using a 100 × objective lens (NA = 0.9). The data acqui-
sition time was 10 s at each power

Fig. 3   a Raman spectra of the tribofilm remaining on a 52100-ball 
after tribo-testing against the 52100 flat at 2N load at a reciprocat-
ing frequency of 5  Hz for 1  h in PAO-4 oil. The spectra were col-
lected at the same location with 473 nm excitation laser at a power 
of first 1.25 mW (4.5 × 105 W/cm2), then 2.5 mW (9.0 × 105 W/
cm2), and then back to 1.25 mW (4.5 × 105 W/cm2). b Raman spec-
tra of the tribofilm at another location on the 52100-ball surface with 
a lower laser power (0.25 mW (0.9 × 105 W/cm2) → 1.25 mW → 
0.25 mW). The vertical lines are the positions of the D- and G-bands 
observed at 2.5 mW irradiation in a. Two sharp peaks at ~ 1400 cm−1 
and ~ 1450  cm−1 are the C-H bending modes of the hydrocarbon-
based lubricant oil. Note that the spectra shown here are after removal 
of the fluorescence background
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that sufficiently high-power laser radiation can induce pho-
tochemical degradation of the tribofilm formed from PAO-4.

High-speed (1 m/s) ball-on-disk tribotest was conducted 
to determine if a DLC or a-C film could be formed tribo-
chemically under more severe experimental conditions. In 
this case, the average flash temperature was estimated to 
be about 150 °C above the ambient temperature [59] (see 
the Supporting Information). The tribofilm formed after 
such tribotests showed two broad peaks around 1300 cm−1 
and 1580 cm−1 (Fig. 4), which are similar to the Raman 
D and G band signatures of DLC or a-C. However, after 
soaking the tribofilm in DCM for 24 h, followed by a short 
sonication in hexane, these bands disappeared. The disso-
lution of the tribofilm in DCM suggests that the tribofilm 
is not DLC or a-C. Instead, the tribofilm formed under 
this harsher condition might be a mixture of various oli-
gomeric species.

The photochemical degradation caused by the high-inten-
sity laser beam during the Raman analysis suggests that tri-
bochemically produced organic species are photochemically 
unstable. When a thin film of polystyrene (PS) was deposited 
on pristine SS and SLS surfaces and the Raman analysis 
was conducted with the 532 nm excitation at 10.3 mW (25 
× 105 W/cm2), the vibrational spectral features of PS did not 

Fig. 4   Raman spectra of the tribofilm remaining on a 52100 ball 
(after hexane rinse and after soaking in DCM for 24 h + sonicating in 
hexane for 5 min) after tribo-testing against the D2 steel at 5N load 
at a sliding speed of 1 m/s for 5 h in dodecane. The spectra were col-
lected with 473 nm excitation laser at a power of 1.25 mW (4.5 × 105 
W/cm.2) using a 100 × objective lens (NA = 0.95)

Fig. 5   Raman spectra of a 300  nm thick polystyrene (PS) film dip-
coated on (a) SS or (b) SLS substrates. The Raman analysis was done 
at the same location (marked with the red circles on optical images) 
with λEX = 532 nm and under varying laser power from 0.41 mW (1.0 

× 105 W/cm2) to 10.3 mW (25 × 105 W/cm2), and then back to 0.41 
mW, using a 100 × objective lens (NA = 0.9). The data acquisition 
time was 10 s at each power. In the case of PS/SLS, no optical image 
was taken since the substrate was not visible
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change at all, indicating that PS did not degrade at this high-
power irradiation condition (Fig. 5). Note that the baseline 
of the PS Raman spectrum is quite flat, indicating that there 
is no electronic excitation. In the UV–VIS absorption spec-
trum, PS shows a peak around 270 nm (which corresponds 
to 4.6 eV) [73, 74]. Thus, its photochemical activity is neg-
ligible at 532 nm irradiation. In comparison, the tribofilms 
studied here absorbed the 532 nm laser beam and fluoresced 
(Figs. 1 and 2). Such electronic excitation and subsequent 
relaxation processes are likely to be accompanied by photo-
chemical degradation reactions [75] that occur more readily 
at shorter-wavelength laser excitation [64].

Note that the excitation laser beam used for the Raman 
analysis can degrade even stable compounds if the laser 
power is sufficiently high. To demonstrate this, we did a 
series of control experiments with a granule of cane sugar 
and the inner bark of a poplar tree. Figure 6 shows the 
Raman spectra of cane sugar and tree bark collected at high 
laser powers. When cane sugar was irradiated with 17 mW 
(41 × 105 W/cm2) of 532 nm excitation laser (Fig. 6a), the 
collected Raman spectrum was in good agreement with that 
found in the literature (see the Supporting Information) and 

did not change over time [76]. When the laser power was 
increased to 34 mW (82 × 105 W/cm2), the sharp molecular 
vibration features disappeared gradually, and a broad fluo-
rescent background grew over time. Eventually, weak but 
clearly noticeable D- and G-band features appeared on top 
of the fluorescent background. After subtracting the back-
ground of the raw spectra, apparent D- and G- bands were 
observed. Similar to the tribofilm case, this appearance was 
accompanied by a burn mark (beam damage) on the sample 
surface. In this case, it is possible that the degradation pro-
cess was thermochemical. Assuming the thermal conduc-
tivity of sugar is 0.15 W/m–K [77, 78] and the absorption 
cross section is 0.01 [79], the maximum temperature inside 
the focused beam of 532 nm at 34 mW could reach ~ 1300 K 
when focused with the 100 × (NA = 0.9) objective lens. Ini-
tially, the degradation must be of thermal origin because 
there was no fluorescence detected prior to beam damage. 
After the onset of thermal decomposition, the products could 
undergo photochemical degradation as well, accelerating 
further degradation. Thus, it is likely that the beam damage 
has both thermal and photochemical processes, which even-
tually leads to significant changes in the spectrum.

Fig. 6   Evolution of the D- and G-bands in the Reman spectra of 
(a) granulated cane sugar and (b) poplar bark. The Raman analysis 
was done at the same location (marked with the red circles on opti-
cal images, and the green dot indicates the measurement point) 
with λEX = 532 nm and under varying laser power. Objective lens of 
100 × (NA = 0.9) and 50 × (NA = 0.5) were used to focus laser beams 

on sugar cane granule and polar bark, respectively. The cane sugar 
was damaged after being exposed to the 34 mW (82 × 105 W/cm2) 
laser for 220 s, while the tree bark was damaged when it was exposed 
to the 34 mW (33 × 105 W/cm2) laser for 10 s. The blue lines in the 
Raman spectra of cane sugar were obtained by subtracting the back-
ground from the raw spectra
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In the case of the poplar bark (Fig. 6b), only a broad 
fluorescence background signal was detected at 3.4 mW 
(3.3 × 105 W/cm2) irradiation. This must be due to the 
autofluorescence of lignin components in the bark [80, 
81]. At 34 mW (33 × 105 W/cm2), a clear burn mark 
was observed, and the D- and G-bands appeared in the 
Raman spectrum. Because pyrolysis of tree bark is known 
to produce active carbon materials [82, 83], a similar 
degradation process is expected under the high-intensity 
laser irradiation, producing the D- and G-band features 
in the collected spectrum. Therefore, it is possible that 
thermochemical degradation reactions can also take place 
when conducting Raman experiment at high laser power.

During the literature review, we noted that many papers 
reported Raman spectra after background removal to show 
the D- and G-bands clearly (similar to those shown in Figs. 3 
and 4; the raw Raman spectrum of another sample without 
background subtraction is shown in Figure S3 in the Sup-
porting Information) [11-28, 30-38, 84-86]. The fluorescence 
background in the Raman spectrum gives important struc-
tural information. If the tribofilm is truly DLC, a-C, or gra-
phitic material, the fluorescence background could be related 
to the hydrogen content in the amorphous carbon network 
[87]. The results of this study, however, revealed that, for the 
examples analyzed here, a strong fluorescence background 
could be produced by unstable organic molecules that absorb 
the excitation laser beam of Raman analysis and undergo 
photochemical degradation. The Raman cross-sections of 
organic hydrocarbon molecules are relatively small [40, 
88], so it is difficult to observe their molecular vibrational 
spectral features when the fluorescence background is high. 
Therefore, in Raman analysis of aromatic compounds, the 
excitation wavelength is carefully chosen to avoid such fluo-
rescence background [65]. In the absence of clearly identifi-
able molecular features in the spectrum collected with a low 
laser power, one may increase the laser power until some 
identifiable spectral features appear. However, as shown in 
Figs. 1–3 and 6, those spectral features observed under the 
high-power-density laser irradiation cannot be assumed to be 
the features of the pristine sample unless the possibility of 
beam damage is ruled out.

All a-C and graphitic materials show D- and G-bands in 
Raman; even cokes and carbon soot produced by thermal 
degradation of organics show the same D- and G-band fea-
tures [41, 42, 51, 64, 89-91]. In addition, many carbonaceous 
materials exhibit Raman peaks near the D- and G- band peak 
positions [23, 92-94], and a change in the D- and G- band 
peak intensities was also observed between oxidized and 
non-oxidized samples of carbonaceous material [95]. Thus, 
the observation of the D- and G-bands in Raman spectra of 
tribofilms may not be sufficient to claim that the tribofilm 
produced was DLC, a-C, or graphitic species or contains 
such components.

Other complementary and non-destructive characteriza-
tion methods should be employed to test and confirm if DLC, 
a-C, or graphitic species are produced indeed by tribochem-
ical processes, and such methods should be free from the 
beam damage during the analysis [64, 96-100]. Such tech-
niques include infrared spectroscopy for detection of organic 
functional groups [37, 101, 102], matrix-assisted laser des-
orption/ionization mass spectrometry (MALDI-MS) or sec-
ondary ion mass spectrometry (SIMS) for molecular weight 
distribution [18, 25, 56, 103, 104], x-ray photoelectron spec-
troscopy (XPS) for elemental analysis [28, 101, 105-108], 
x-ray absorption near edge structure (XANES) or electron 
energy loss spectroscopy (EELS) for carbon hybridization 
[18, 25, 27, 101, 104-106, 108], transmission electron spec-
troscopy (TEM) for imaging [18, 21, 32, 35, 101], and so on. 
However, it should be noted that each technique has its own 
limitations. Although IR is known to be molecular-specific, 
it would be difficult to differentiate individual species if the 
tribofilm contains many different chemical species. MALDI 
and SIMS suffer from fragmentation during the ionization, 
although the fragmentation pattern could be specific to cer-
tain molecular patterns [56]. If the tribofilm is not stable, it 
could get oxidized upon exposure to air during the sample 
transfer, which may alter the XPS elemental analysis result 
[109] During the XANES analysis at C K-edge, the high 
intensity x-ray beam can degrade the sample [110-112]. 
Similarly, organic materials are highly susceptible to beam 
damage under high-energy electron irradiation during TEM 
and EELS analysis unless specific care is taken to reduce 
beam damage [113, 114]. If graphitic domains are present 
in the sample, they could be found and imaged with TEM; 
but without proper statistics or concentration information, it 
would be difficult to fully evaluate the importance of their 
presence. Since no single technique can provide sufficient 
information, the use of multiple techniques with proper 
knowledge of experimental artifacts and limitations of each 
technique is critically needed to better and more accurate 
characterization of tribofilms which are inherently complex 
due to the lack of reaction specificity under highly dynamic 
and non-equilibrium conditions of tribological interfaces [37, 
115].

3 � Conclusions

A possible origin of the D- and G-band features in the 
Raman spectra of tribofilms produced by tribochemical 
reactions was explored. While the D- and G- bands in the 
Raman spectrum can serve as an indicator of the presence 
of DLC or a-C films, it is important to delineate the origin 
of such D- and G- bands in the spectrum. Control studies 
conducted with varying laser powers and wavelengths 
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indicated that such spectral features can be produced by 
beam damage during the Raman analysis. This finding 
suggests that the hypothesis of synthesizing DLC, a-C, or 
graphitic species by friction solely based on the observation 
of D- and G-bands in Raman spectra needs to be confirmed 
with complementary characterization methods that do not 
cause degradation of tribofilms during the analysis.
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