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This paper proposed the explicit generalized-« time scheme and periodic boundary conditions in the
material point method (MPM) for the simulation of coseismic site response. The proposed boundary
condition uses an intuitive particle-relocation algorithm ensuring material points always remain within
the computational mesh. The explicit generalized-a time scheme was implemented in MPM to enable
the damping of spurious high frequency oscillations. Firstly, the MPM was verified against finite element
method (FEM). Secondly, ability of the MPM in capturing the analytical transfer function was investi-
gated. Thirdly, a symmetric embankment was adopted to investigate the effects of ground motion arias
intensity (I,), geometry dimensions, and constitutive models. The results show that the larger the model
size, the higher the crest runout and settlement for the same ground motion. When using a Mohr-
Coulomb model, the crest runout increases with increasing I,. However, if the strain-softening law is
activated, the results are less influenced by the ground motion. Finally, the MPM results were compared
with the Newmark sliding block solution. The simplified analysis herein highlights the capabilities of
MPM to capture the full deformation process for earthquake engineering applications, the importance of
geometry characterization, and the selection of appropriate constitutive models when simulating
coseismic site response and subsequent large deformations.
© 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

to obtain an “effective” strain induced in a soil layer using the linear
elastic closed-from solutions (e.g. Idriss and Seed, 1968; Schnabel

During earthquakes, soils are subject to irregular and multi-
directional cyclic vibrations. Depending on the site characteristics,
seismic waves can be either amplified or attenuated at site-specific
frequencies. The reliable evaluation of wave propagation is impor-
tant to understand manifestations in soils and infrastructure. During
slow intensity earthquake shaking, soil behavior can be approximated
to be linear and material damping is approximated to be negligible.
One-dimensional (1D) wave propagation closed-form transfer func-
tions are available for these small-strain wave propagation problems
(Kramer, 1996). However, under more intense shaking, soil behavior
can be extremely nonlinear. As such, the equivalent-linear approach
was developed as a simple way to handle nonlinear soil behavior. The
stiffness modulus and damping ratio are varied in an iterative manner
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et al., 1972). Although this approach is computationally efficient
compared to other numerical techniques, the secant stiffness
modulus and damping ratio are implicitly assumed to remain con-
stant for the entire duration of the shaking. This particularly repre-
sents an important limitation of the method because it fails to reflect
accurate soil behavior. Additionally, the equivalent-linear approach is
incapable of considering case scenarios that involve soil-water-
structure interaction, staged construction, and complex geometries.

The rigid sliding block solution was proposed by Newmark
(1965) to assess slope performance and to obtain the incurred
runout due to seismic loading. Newmark (1965) assumed that soil
behaves in a rigid-perfectly plastic manner across a well-defined
slip surface, with no dynamic site response or strength loss due
to shaking. The sliding mass exhibits displacement episodes when
the factor of safety goes below unity. This model provides a simple
method that requires only two input parameters, namely (a) yield
coefficient (ky), as proxy for the threshold of dynamic resistance in
units of g = 9.81 m/s?, and (b) the acceleration-time history of the
ground foundation. Practitioners often employ the pseudo-static
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limit equilibrium analysis to quantify the value of ky. For these
reasons, the scope of the Newmark (1965) method is restricted to
simple constitutive behaviors and geometries. Various researchers
employed Newmark’s approach to propose simplified regression
equations which facilitate the calculation of permanent displace-
ment, although all of Newmark’s crude assumptions are retained
(e.g.Jibson, 2007; Saygili and Rathje, 2008; Hsieh and Lee, 2011; Lee
and Green, 2015). To overcome some of the limitations, the
“decoupled” approach was developed to overcome the rigid sliding
mass assumption and to take into account the effect of dynamic
response due to shear wave (S-wave) propagation upon permanent
slip of the sliding mass (e.g. Makdisi and Seed, 1978; Lin and
Whitman, 1983; Jibson, 1993; Bray and Rathje, 1998; Bray and
Travasarou, 2007; Rathje and Antonakos, 2011; Bray et al., 2018).
The most important limitation of the decoupled procedure is that
the computation of the seismic response of the potential sliding
mass is decoupled from the subsequent slip. For this, the “coupled”
approach was developed to consider the role of internal shear
deformation of the sliding mass upon the permanent displacement
accumulation (e.g. Rathje and Bray, 2000; Bray and Travasarou,
2007; Bray et al., 2018). The coupled approach solves the equa-
tion of motion using simplified viscoelastic-perfectly plastic ele-
ments which simulate the 1D deformation of the flexible sliding
mass during the landslide. Besides the dynamic site response, the
coupled approach inherits the other limitations of the Newmark
and decoupled approaches (i.e. simple geometries and soil
behavior). In contrast to Newmark’s original approach, the decou-
pled and coupled simplified regressions provide only the final
magnitude of permanent displacement with no indication of the
time of sliding initiation or final mass stabilization.

Alternatively, numerical methods are often employed in
geotechnical engineering to simulate coseismic site response using
nonlinear constitutive models and complex geometries. Advance-
ments in numerical mesh-based techniques incorporate nonlinear
soil behavior that can successfully model small-strain boundary
value problems associated with site response. However, these
mesh-based techniques have limited capabilities when simulating
large strains associated with post-failure deformations induced by
strong-motion shaking (Alsardi et al., 2021). This is because of
excessive mesh entanglement and distortion. Examples of such
large strain applications include coseismic landslides, tunnel col-
lapses, and liquefaction. To address large deformation in multi-
phase problems, in the last decade, the geotechnical engineering
community has widely adopted the material point method (MPM)
(e.g. Bandara and Soga, 2015; Yerro et al., 2015; Soga et al., 2016;
Kularathna and Soga, 2017; Alonso, 2021; Feng et al., 2021; Salgado
and Bisht, 2021). However, the MPM has been rarely used for the
study of earthquake-triggered failures. Most of the current state-of-
the-art models of large deformations rely on simulating small-scale
shaking table experiments where fully reflective boundaries are
generally accepted (e.g. Bhandari et al., 2016; Alsardi and Yerro,
2021). When using fully-reflective boundary conditions, there are
inherit numerical limitations which prevent the study of coseismic
site response. This is because of the artificial wave reflections across
the boundaries of the numerical domain. The 1D wave propagation
solution using periodic boundary conditions plays an important
role in simulating in situ free-field conditions in numerical simu-
lations (Zienkiewicz et al., 1989a,b). This setup is depicted in Fig. 1,
whereby a free-field soil layer overlies bedrock. Periodic boundary
conditions simulate a representative unit of the free-field soil layer.
Recently, Feng et al. (2021) extended the use of MPM with free-field
boundary conditions to simulate the Lower San Fernando Dam case
study although there was no verification conducted to assess the
implemented periodic conditions that serve to calculate the 1D
free-field wave propagation solution. It should be noted that the

2R
Soil layer
unbounded unbounded
periodic Free-field periodic
domain column domain
7K

Rigid Bedrock layer

Fig. 1. Schematic of in situ conditions to be simulated using periodic boundary con-
ditions in a numerical model.

numerical results using free-field boundary conditions are highly
dependent on the accuracy of the used 1D wave propagation so-
lution when using periodic boundary conditions (Nielsen, 2006). As
such, rigorous element-level verification of periodic boundary
conditions in MPM is required to ensure that performance of the
free-field columns is consistent with the results of analytical and
other numerical techniques.

The MPM is well suited to simulate large deformations, but it is
more computationally expensive than mesh-based approaches
such as finite element method (FEM). This is due to the back-and-
forth information mapping between the nodes from the compu-
tational mesh and the material points (i.e. integration points). Also,
the use of the MPM is traditionally accompanied with the explicit
forward Euler-Cromer (MPM-EC) time integration scheme which
may result in spurious high-frequency numerical oscillation when
simulating earthquake engineering problems such as coseismic
landslides (Kontoe et al., 2008a; Tran and Solowski, 2019). Recent
advancements in time integration schemes offer user-controlled
high frequency numerical noise elimination to stabilize these os-
cillations (Chung and Hulbert, 1993; Hulbert and Chung, 1996;
Kontoe et al, 2008a). Notably, the explicit generalized-«a time
integration scheme was developed by Hulbert and Chung (1996)
and was adapted for MPM by Tran and Solowski (2019). This time
scheme is second order accurate, self-staring, and enables user-
controlled damping. The generalized-« scheme is a more general
implementation of the commonly employed Newmark-# scheme in
earthquake dynamics (e.g. Chopra, 2007). To the authors’ knowl-
edge, the use of periodic boundary conditions and explicit gener-
alized-a time scheme in MPM has never been verified for site
response against element-level FEM soil column and the linear
analytical site response solution. This is a crucial step to simulate
free-field earthquake engineering problems accurately.

The objective of this paper is to propose a verified MPM
framework capable of accurately simulating the full deformation
process of earthquake-triggered failures. To achieve this goal, pe-
riodic boundary conditions together with the explicit generalized-«
time integration scheme were implemented. Contrary to the
implementation of Feng et al. (2021), the periodic boundary con-
ditions proposed herein were attached to a moving mesh and were
equipped with a particle relocation algorithm to improve the ac-
curacy of the solution. The paper is organized as follows. Firstly, the
implementation of the periodic boundary conditions and the MPM
computational cycle in the explicit generalized-a time scheme
(MPM-GA) were presented. Secondly, the numerical model of a
linear-elastic column was used to verify the MPM-GA imple-
mentation with periodic boundary conditions against the FEM us-
ing Plaxis software (Brinkgreve et al., 2016). The MPM results were
also compared with an analytical linear site response solution in
the frequency domain. Thirdly, the periodic boundary conditions
were leveraged to conduct a parametric analysis to investigate the
effect of the ground motion intensity, model dimensions, and ma-
terial brittleness on the coseismic slope instability of a symmetric
slope embankment. Finally, the numerical results were compared
against Newmark rigid sliding-block solution (Newmark, 1965).
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2. Advancements in MPM for earthquake-triggered site
response

The MPM is a particle-based numerical tool whereby a contin-
uum is discretized into a set of Lagrangian points, each so-called a
material point (MP) (Sulsky et al., 1994). The MPs move within an
Eulerian computational mesh and represent the deformation of the
continuum. Fig. 2 summarizes the MPM computational cycle usu-
ally integrated explicitly in time and it involves:

(a) Interpolating state variables from MPs to nodes,

(b) Solving the governing dynamic momentum balance equa-
tions at the nodes,

(c) Remapping the nodal solution back to the MPs, and

(d) Updating the final MP positions and state variables.

The computational mesh does not usually store any information
and can be moved or regenerated after each time step. In the MPM
framework, the boundary conditions can be applied on the nodes or
on the MPs. Some of the numerical limitations of the original MPM
framework include the generation of spurious noise when inte-
grating upon the mobile MPs that cross from one element to
another (i.e. cell-crossing noise) (Bardenhagen and Kober, 2004;
Dhakal and Zhang, 2016). This is because of the discontinuity in the
shape function derivatives when using lower-order elements.
Several MPM variations have been proposed to alleviate the cell-
crossing noise errors (e.g. Bardenhagen and Kober, 2004;
Sadeghirad et al., 2011; Moutsanidis et al., 2020), including the use
of mixed MPM-Gauss-Point integration, which allows the compu-
tation of an averaged incremental stress using optimally positioned
Gauss points (Jassim, 2013). Another limitation of the use of
advanced absorbing boundary conditions in MPM when the de-
formations are large can be the sporadic incidents of MPs leaving
the background computational mesh, which often terminates the
numerical simulations. Recent developments for earthquake-
induced shaking include the advancement of boundary conditions
to prescribe seismic action in terms of acceleration, velocity, and
displacement (e.g. Bhandari et al.,, 2016; Ering and Babu, 2016;
Alsardi and Yerro, 2021; Alsardi et al., 2021) or traction (e.g. Feng
et al., 2021). In particular, for this research, an in-house version of
the Anura3D open-source software was used (Anura3D, 2021).
Details of the MPM one-phase formulation and implementation in
Anura3D can be found in Fern et al. (2019). Recent advancements in
the simulation of seismic shaking implemented within the Anu-
ra3D framework are described in Alsardi et al. (2021). They
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Fig. 3. Schematic of the particle relocation technique employed with periodic
boundary conditions.

proposed to prescribe the ground motion as a time-dependent
Dirichlet boundary condition applied at the nodes of a moving
background computational mesh (i.e. the mesh rigidly moves
following the input ground motion). This approach, also used in this
paper, is seen to reduce the number of cell-crossing occurrences
because there is less relative movement between the MPs and the
mesh.

2.1. Periodic boundary conditions in MPM

The 1D site response analysis due to shear wave propagation in a
soil column is commonly adopted to understand free-field soil
amplification response. This analysis is often considered as an
element-level verification approach for numerical and constitutive
models (Toloza, 2018; Taborda, 2011; Chen, 2020). In this paper,
periodic boundary conditions were implemented in the MPM
framework to simulate 1D site response in a two-dimensional (2D)
problem. The main objective of the periodic boundary condition is
to ensure identical displacements (i.e. solution in Fig. 2b) for the
nodes at the same spatial level from both lateral sides of the model.
This constrains the model to simulate a free-field domain through
the effect of periodicity. Similar to mesh-based methods, periodic
boundary conditions can be implemented in the MPM framework
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Fig. 2. MPM computational cycle where squares represent mesh nodes and circles represent MPs. (a) Mapping information from MPs to background mesh nodes, (b) Solving
dynamic momentum balance equation to obtain nodal accelerations, (c) Updating velocity and momentum balance at the MPs from nodal acceleration, and (d) Updating state
variables at MPs using constitutive equations and mass balance equations. Nodal values are discarded.
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by overwriting the degrees of freedom of the corresponding nodes
to obtain the same nodal solution. The implementation enables the
sharing of information between the tied nodes. Effectively, the
mass and the forces of these tied nodes are summed so that they are
identical. A single acceleration, velocity, and ultimately displace-
ment value is obtained for each set of nodes. The nodal solution is
mapped to the MPs within the computation cycle (Fig. 2c).

Under large deformations due to strong-motion shaking in level
ground conditions, the MPs may leave the computational domain
which terminates the simulation. An initial intuitive approach used
by others (e.g. Feng et al., 2021) is to increase the element size to
provide more space for the MPs to move. However, spatial dis-
cretization refinement can impose an element size restriction
based on the maximum frequency content of the ground motion
(Kuhlemeyer and Lysmer, 1973). Also, the use of coarse mesh
compromises the accuracy of the solution. In the implementation
herein, a novel and intuitive particle relocation technique was
incorporated to ensure that the MPs remain within the computa-
tional domain. This technique is schematically illustrated in Fig. 3.
When the MP moves out of the computational domain due to
deformation (see Fig. 3b), the MP is relocated to its corresponding
periodic position by subtracting the repeating unit width.

2.2. Explicit generalized-« time integration scheme

Given the suitable selection of time scheme parameters, the
generalized-a time scheme (Chung and Hulbert, 1993) is capable of
achieving an optimal combination of maximum dissipation of high
frequency numerical noise but minimum low frequency dissipa-
tion. The fundamental idea of this time scheme is evaluation of the
various terms of the equation of motion at different points within
the time step. Hulbert and Chung (1996) proposed this
conditionally-stable explicit version of the generalized-a time
scheme by setting the numerical parameter corresponding to the
internal forces computation («f) to zero. The explicit scheme is
recommended to be used for problems where the time step (At)
needed for sampling accuracy is of the same order of the critical
time step (At.) (e.g. wave propagation problems in compressible
and drained media). Tran and Solowski (2019) adopted the explicit
algorithm using in MPM, and their work forms the basis for the
MPM-GA implementation presented herein. In this explicit time
scheme, the user can control the damping by varying the values of
At and minimum spectral ratio (pp). Kontoe et al. (2008a) recom-
mended the use of p, = 9/11 with a time step of At = 0.01 s which
achieves 18.2% of damping and prevents excessive dissipation of
physical high frequencies. However, this recommendation is ori-
ented towards the implicit generalized-a« scheme and it is not
strictly applicable to the explicit version herein.

Fig. 4 shows the variation of the spectral ratio (p) versus the
dimensionless angular frequency (£2), which equals the product of
the generated angular frequency (w) and the chosen time step (At).
When p = 1, it corresponds to no damping. By contrast, when p =0,
complete damping of the corresponding frequency is achieved. The
maximum damping associated with the minimum spectral ratio
(pp) occurs at the bifurcation limit (Qp). The value of p increases
after reaching Qy, experiencing a reduction in the damping beyond
the bifurication limit. The stability limit (Qs) is the limit at which
p = 1 beyond the Q}, limit. The existence of frequencies beyond the
Qg limit results in amplification of those frequencies which ulti-
mately might lead to an unstable numerical model. The stability of
the model using MPM-GA scheme is conditional on the selection of
At and pp such that the frequencies beyond py limit are kept to
minimum. Since this is an explicit scheme, the time step increment
(At) must also satisfy At. using the Courant-Friedrichs-Levy (CFL)
condition (Kafaji, 2013; Yerro et al., 2015, 2022) (At < Ate).
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Fig. 4. Spectral ratio variation with dimensionless angular frequency

(Q = At = 2mfAt, f: frequency.) (Chung and Hulbert, 1993). The plots are shown for
different bifurcation spectral ratios.

Note that the Qp and Qg are both a function of the py and do not
depend on the chosen time step as presented in their closed form in
Egs. (1) and (2), respectively. All other numerical parameters (o,
Bm and v) in the time scheme can be calculated as a function of py,
using Egs. (3)—(5), respectively. The reader is referred to Chung
(1992) for details regarding the derivation of Egs. (1)—(5).

Qy = 1+pp)vV2—pp (1)

0. | 1201+p)*2—pp) @)
10+ 15p, — p3 + P} — 1

- 2pb -1
Om fm (3)
_ 5—3pb 4
o = T 2 ) @
Y=>am (5)

Overall, the advantage of this explicit MPM-GA formulation is
that it does not require expensive iteration to keep a desired high
frequency damping. The drawback is that it requires calibration to
ensure the stability of the solution for the level of damping
required. The MPM-GA algorithm is primarily based on storing the
acceleratitons at the nodes to obtain an initial acceleration (?f) at
time t. ﬁi is assumed to be zero in the first time step. The dynamic
momentum balance is then solved at the nodes to compute an
intermediate acceleration (a; ( 7“"’)) att = At (1 — o). This al-
gorithm linearly interpolates the initial and intermediate solution

. . —t+AL

to obtain the final acceleration (a; ~ ) at t = t+ At. In the
implementation herein and contrary to Tran and Solowski (2019),
the acceleration-to-velocity integration was at the MP-level similar
to the fluid implicit particle (FLIP) scheme. This approach is rec-
ommended by Brackbill et al. (1988) because it reduces numerical
diffusion when the nodal solution is remapped to the MPs. The
computational cycle of the MPM-GA is presented as follows (noting
that the subscripts denote node or MP index, and superscripts
denote the time of the evaluated term):

(1) Compute nodal mass (M) by mapping MP mass (imyp) using
basis functions (N;) and looping across the number of active
elements associated with the node (n,) and the number of
MPs located within these elements (1nyp) by
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.
M} = Sy, Zny Ni myp (6)

—t
(2) Compute the rate of change of momentum ( f ;) by

—t —extt —intt
fi=fi —Ffi (7)
—extt —intt | .
where f; is the external force and f; is the internal force.
. . . At( 1-ap
(3) Compute intermediate nodal acceleration (3f+ f(1-e )) at

the nodes by dividing the rate of change of momentum by
the mass using

t+At( 1-a
H)i ( m)

(8)

A

—~=

(4) Compute final nodal accelerations (7?“

interpolation by

) through linear

car @A) gt
N ; _ ;
a; = e 9)

L 1-—any

(5) Compute MP velocity (7,&,}“) at time t+ At using basis

functions (N;) of active element nodes (1) by

A
T = Typ+ S0 Ni|(1—y) @ +v @) | At (10)

(6) Compute nodal velocity (7™
1

mentum by nodal mass by

) by dividing nodal mo-

—t+At
7F+At _ Zng Znye MMP_V vp (11)

1 Mlt

(7) Compute incremental nodal displacements (Aﬁ,&“) by Eq.

(12) agd subsequently multiply by the basis function gradi-
ents ( B) to obtain MP incremental strain (A€’ yp) by Eq. (13).

AT = AL (12)
Aewp = B AT (13)

(8) Compute final MP displacement (7;,}“) by

A
Up = Unp + Ty At
- [/1 t t+At
+ I N; KT ﬁm) @i+6m@; | (AD? (14)

. At, . .
(9) Store the nodal accelerations (E’lH t) in the subsequent time
step.

In this paper, we adopted a Courant number of 0.95 for all
simulations, which means At = 0.95 At. according to the CFL
condition. The value of p,, can be varied for each simulation with the

goal of damping out high frequencies (above 35 Hz consistent with
Kontoe et al. (2008a), while ensuring that €} is not reached. If this
is not possible due to the CFL critical time step restriction, a reduced
value of py, is adopted (note that the value of p, = 0 is always
avoided to prevent a very low value for the bifurcation and stability
limits). The frequency f where dissipation starts to occur is calcu-
lated using Eq. (15). In each example herein, the value of the used py,
and At is documented with the corresponding damped out fre-
quency range.

Q

f =5 (15)

3. Ground motions

Three ground motions (I, II, III) from the PEER database (Ancheta
et al., 2013) were adopted in this paper as plotted in Fig. 5. These
recordings were selected because of their rich frequency content
(up to 30 s~ 1) which is expected to engage a range of modes in the
soil column to enable the numerical back calculation of the transfer
function (Kontoe et al., 2008a). Note that the goal is to compare
against an analytical solution and not to reproduce a particular site
response case study. As such, specific ground motion characteris-
tics, and their site class and place of occurrence are not relevant
herein, but are documented in Table 1 for the reader to facilitate
their retrieval from the PEER database if desired. I, is computed for
each ground motion as defined in Eq. (16) where g = 9.81 m/s?. The
value of I; provides a measure of the energy delivered by the input
ground motion as a function of its acceleration (a;), across the
shaking duration (d).

d
™
I — E/aﬁ de (16)
0

In addition to the PEER recordings, a Gabor wavelet (Gabor,
1946) acceleration load (aw) defined by Eq. (17) is also considered
in the examples presented herein. The wavelet shape parameters
(aw, Bw, Yw) used in the analysis are documented in Table 2. The
trapezium rule was used to integrate the acceleration of all time
histories and obtain the velocity time histories to be applied at the
base of the model. Additionally, linear baseline correction was
applied to eliminate any observed displacement drift. The wavelet
is generated at the fundamental frequency (fp) of the soil column.

Ay = \/ﬁw tTw exp( — aw t) sin(27tfy) (17)

4. Coseismic response of horizontal ground with MPM

The goal of this section is to verify the performance of the
proposed MPM formulation in horizontal ground profiles.

4.1. Numerical model

A plane-strain 10 m soil column (labeled herein “SC”) is
considered to simulate site response of an infinitely horizontal and
homogeneous ground surface due to 1D wave propagation using
MPM (Fig. 6a). This model is also generated in FEM with Plaxis
(Fig. 6b). The MPM model employs linear triangular elements, and
the FEM model employs quadratic triangular elements. The effect of
the basis function order is not significant in this problem since a
linear-elastic constitutive model was used. Parameters of all the soil
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Fig. 5. Plot of ground motion acceleration and velocity time histories used as input in the analysis.
Table 1
Summary of ground motion details used in the analysis.
Ground motion Region Station Component Date Moment magnitude Arias intensity PGA PGV  Ds.gs
(m/s) (g) (cm/s) (s)
1 San Fernando, Maricopa Array #2 H1 2 February 1971 6.61 551 x 1072 951 x 1073 133 265
California, USA
Il Morgan Hill,  Coyote Lake Dam, Southwest Abutment H1 24 April 1984  6.19 3.95 0.711 51.6 7.02
California, USA
11 Kobe, Japan KIMA H1 17 January 1995 6.9 8.39 0.821 813 9.36
Note: PGA is peak ground acceleration. PGV is peak ground velocity; Ds.g5 is significant duration.
Table 2
Summary of cases simulated in MPM and FEM using soil column model.
Case SC-1 SC-2 SC-3 SC-4
Young’s modulus, E (kPa) 1% 10* 1.85 x 10° 1 x 108 1.85 x 10°
Poisson ratio, v 0.33 0.33 0.33 0.33
Ground motion Wavelet (aw = 1,6y = 1, 7 = 1, fo = 1.116571) ! ! !
Ground motion scaling factor 1 1 1 128
Time step, At (s) 2x1073 4%x10°* 2 x107% 4 x10°*
MPM-GA parameters pp = 04 p = 04 pp = 02 pp = 04
FEM-N parameters ay = 03025 ay = 0.3025 ay = 0.3025 ay = 0.3025
By = 0.6 By = 0.6 By = 0.6 By = 0.6
Note: SC means soil column; ay (acceleration to displacement) and Sy (acceleration to velocity) are Newmark-G time integration scheme parameters.
column models are documented in Table 2. A fine element size of
0.25 m was used equal to one-tenth times the minimum wave-
length of the shear wave generated by the ground motions (Table 1) %
in the considered materials (Table 2). This spatial discretization fo= (1) 2n+1) (18)
. . . . n— - 15
approach is consistent with Lysmer and Kuhlemeyer (1969), and is 4H

commonly adopted in mesh-based numerical techniques (e.g.
Kontoe, 2006; Zalachoris et al., 2021).

Natural frequency modes of the soil column were calculated
using Eq. (18) as a function of the column height (H = 10 m), unit
weight (W = 18.5 kN/m?), and the linear-elastic material parame-
ters. The value of n corresponds to the natural frequency mode. As
such, setting n = 0, 1, and 2 corresponds to calculating the funda-
mental, first and, second natural frequency mode, respectively.

The geo-static stresses in the soil column were generated using
the Kp-procedure assuming the at-rest lateral earth pressure (Kp)
equal to 0.5. The ground motion is prescribed as a time-dependent
Dirichlet condition (Alsardi et al., 2021) at the base of the model to
generate vertically-polarized shear (SV) waves. Also, periodic
boundary conditions were specified at the lateral sides. The back-
ground computational mesh was moved after every time step to
follow the input ground motion according to Alsardi et al. (2021).



A. Alsardi, A. Yerro / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 641—-658 647

1.25m 1.25m
Linear elements |~~~
with 1 material '
point per e
element o
10m Nodes with same [ % 10m
y-coordinatesare |-
tiedinxandy AN
direction FAYAPAVAYd
Quadratic™ vy
elements oA
with 3 gauss FAVAVAYAYd
y points per /‘
[ element e
X Applied ground

motion

(a) MPM (b) FEM

Fig. 6. Numerical models used to simulate 1D site response in 10 m soil column using
(a) MPM, and (b) FEM.

Similar to MPM, the Dirichlet boundary condition was applied at
the base of the FEM model and the periodic boundary conditions
were specified at the lateral edges of the mesh. For all the FEM
models, the implicit Newmark time scheme (FEM-N) was employed
with parameters set as ay = 0.3025 (acceleration to displacement)
and 0y = 0.6 (acceleration to velocity), consistent with the dissi-
pative version of the scheme commonly used in the literature (e.g.
Kontoe et al., 2008a; Pelecanos et al., 2015).

In total, four different soil column models were considered
herein for verification purposes using different combinations of
input motions and Young’s modulus (E). Table 2 provides a sum-
mary the models’ characteristics, including the elastic material
properties, input ground motion, ground motion scaling factor,
time step, calibrated MPM-GA parameters, and FEM-N
parameters.

4.2. Verifying MPM against FEM and linear analytical solution

The goal here is to verify the implementation of the periodic
boundary conditions and the MP relocation algorithm, and evaluate
the effectiveness of the MPM-GA time integration scheme versus
the forward MPM-EC. Towards this end, MPM results were
compared against FEM and the analytically derived natural fre-
quency harmonics. Firstly, the time and frequency domain analysis
was conducted in relatively small deformation cases where cell-
crossing is avoided (cases SC-1, SC-2, and SC-3 in Table 2). Sec-
ondly, the ground motion I was scaled up (case SC-4 in Table 2) in
order to induce large deformations and evaluate the effect of par-
ticle relocation and cell-crossing in the results.

4.2.1. MPM verification for small deformations (no cell-crossing)
This section presents the results obtained for cases SC-1, SC-2, and
SC-3 (Table 2). Case SC-1 considers the Gabor wavelet load at the
fundamental natural frequency of the soil column as input motion and
E = 1 x 10% kPa; case SC-2 and SC-3 considers ground motion I using
E=1.85 x 10° kPaand E = 1 x 108 kPa, respectively. In all cases, the

recorded strain is small and all MPs remain within their original ele-
ments. Hence, the MP relocation algorithm is not employed.

In case SC-1, the combination of At and the calibrated value of p;,
damped out frequencies higher than 35 s~!, with a high bifurcation
frequency of 140 s~!. Note that a low value of E was used in this
case, which leads to a relatively large critical time step (Table 2).
The results from case SC-1 at the top of the soil column are pre-
sented in Fig. 7. It is seen that the horizontal acceleration, hori-
zontal velocity, and horizontal displacement response of the MPM-
EC, MPM-GA, and the FEM using the implicit Newmark (FEM-N)
time scheme are at an acceptable match as shown in the time-
domain in Fig. 7a, c and e, respectively. However, when plotting
vertical displacement, it is observed that the MPM-EC results are
contaminated with spurious oscillations (see Fig. 7f). These oscil-
lations are significantly reduced when employing the MPM-GA
time scheme and are more consistent with the results of the
FEM-N time scheme results. Note that this noise is not generated by
cell-crossing since all MPs remain in their original elements
throughout the calculation. Instead, this noise might be inherited
from numerical instabilities generated as a result of spurious high
frequency oscillations in the nodal solution due to performing
numerical integration and stress recovery at non-ideal MP loca-
tions; this is stabilized when using numerical damping from the
generalized-« time scheme (Kontoe et al, 2008a; Tran and
Solowski, 2019).

Fig. 8 compares the acceleration Fourier amplitude of the top
and bottom MPs in the soil column for MPM-EC and MPM-GA for
case SC-1. The bottom MP response is consistent with the applied
wavelet ground motion. The acceleration Fourier amplitude of the
bottom MP shows a single frequency component at the funda-
mental natural frequency of the soil column (1.116 s~ ). The top MP
response shows resonant behavior whereby the natural frequency
component in the ground motion was amplified by an order of
magnitude. In this manner, it is verified that the MPM-GA and
MPM-EC schemes captured the fundamental natural frequency
mode of the soil column. When using the MPM-EC scheme, the top
MP also experienced different spurious frequency modes, but
different from those triggered by the input wavelet ground motion.

To investigate this further, case SC-2 (Table 2) used the irregular
ground motion I (Table 1). In case SC-2, considering the chosen
values of At and p,,, frequencies above 190 s~! are damped and the
bifurcation frequency is 670 s~1. Similar to case SC-1, cell-crossing
error is not generated in SC-2 (i.e. MPs do not move across different
elements). This is because the low Arias intensity from ground
motion I results in small deformations. Reasonable match is seen
between MPM-GA, MPM-EC, and FEM-N when considering hori-
zontal acceleration, horizontal velocity, and horizontal displace-
ment, as depicted in Fig. 9a, c and e, respectively. However, the
results using the MPM-EC scheme show progressive deviation from
the FEM-N, particularly when observing the shear strain and stress
in Fig. 9g and h, respectively. Also, the vertical spurious oscillations
were further exacerbated when using MPM-EC as shown in Fig. 9b,
d and f. It is observed that the MPM-GA time scheme reduces this
spurious vertical noise when using an irregular cyclic input ground
motion to be more consistent with the results of the FEM-N
approach. To this end, the MPM-GA is seen to perform better
than the MPM-EC in reducing the spurious numerical oscillations.

Using an irregular cyclic motion also offers the opportunity to
plot a transfer function which enables the user to check for spurious
frequency modes that may be inconsistent with the analytical so-
lution. A transfer function, defined as the ratio of the Fourier
amplitude of the “output” to the “input” ground motion, is
commonly used to investigate time scheme performance in
amplifying the natural frequency harmonics of a soil column
(Kontoe et al., 2008a; Visone et al., 2008; Taborda, 2011). As such,
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the task of numerically computing a transfer function and
comparing it against the analytical natural frequency is important
for verifying the MPM framework. The “input” motion is the one
applied at the base of the model and the “output” motion is the one
obtained at the top of the soil column. This is often a required step
to be conducted in linear-elasticity for verification before using
more advanced constitutive models.

In Fig. 10a and b, the results of case SC-2 in the frequency
domain using MPM-EC and MPM-GA were compared with the
linear transfer function (TF) solution (Eq. (19)) assuming rigid
bedrock and no material damping.

1
F =7 (19)
cos %
\F
3 i ' '
s Tf=11.11651
2
£
v 2L _
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%_ (top material point)
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Fig. 8. Fourier amplitude comparison of MPM and FEM when applying wavelet at
resonant frequency (Case SC-1 with top MP location at (x, y) = (0.667 m, 9.833 m)).

It is seen that the MPM-GA captured the fundamental, first and
second frequency modes (consistent with the frequency content of
the applied motion ranging from 0 to 30 s~!) with relatively low
amplification for high frequency noise. The MPM-EC scheme
generated results that approximately captured the first few modes
but it was overall highly contaminated with low and high fre-
quencies that are not consistent with the analytical solution. From
these results, it can be seen that the MPM-EC can generate nu-
merical results that resemble reasonable results in the time
domain, but does not compare reasonably with the transfer func-
tion analytical solution in the frequency domain.

For the sake of comparison, the results from case SC-3 using
MPM-GA and MPM-EC in the frequency domain are also plotted in
Fig. 10c and d. Note that the E value of case SC-3 is higher compared
to SC-2, frequencies above 265 s~ are damped, and the bifurication
frequency of 1430 s~ is not reached. Similarly, the MPM-GA results
show that the input motion frequencies (<30 s~ 1) were amplified at
their respective frequency modes, whereas the MPM-EC scheme
shows the spurious generation of high frequency modes. Case SC-3
presents similar match with the FEM-N in the time domain to
what was observed in case SC-2. Hence, this is not presented in the
paper.

4.2.2. MPM verification for large deformations (with cell crossing)
This section presents the results of case SC-4 (Table 2), which
was conducted using E = 1.85 x 10° kPa and ground motion I with a
scaling factor equal to 128. This combination ensures large de-
formations of the model, which is essential to verify the imple-
mentation of the particle relocation technique and investigate the
effect of particle cell-crossing on the stability of the MPM time
schemes. In addition, two MPM spatial integration schemes were
compared: (a) the original material point integration performed at



A. Alsardi, A. Yerro / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 641—-658 649

(b)

15
t(s)
(d)

10 15
t(s)

(a)
2
£
Ed
< A L A A s
0 5 10 15 20 25 30 0 5
t(s)
4 x10°
E 2
g 0
x -2 - Y
= 4 EApplied groindmotion | | !
0 S 10 15 20 25 30 0 5
t(s)
(e)
— 1E - - . . - 3
§
e 0
= -1 + + . . 4 3 |
0 5 10 15 20 25 30 0 5
t(s)
%10 (8)

10 15 20 25 30
t(s)
(h)

15 20 25 30
t(s)

e MPM Euler-Cromer
s MPM Generalized- cv
== == FEM Newmark-/3

t(s)

Fig. 9. Comparison of MPM and FEM when applying irregular cyclic ground motion I (case SC-2 with MP location at (x, y) = (0.667 m, 9.833 m)).

(a) SC-2: Generalized-«, E = 1.85x105 kPa

fo i lfs
c 60} c
o o
£ =
2 2
2 r 3
8 k3
2 20} i a
g o
= =
0 HEE_ I SEEIEP LAWY @ . ¢,
10° 10t
Frequency (%) Frequency (s)
(c) SC-3: Generalized-q, E = 1x10° kPa (d) SC-3: Euler-Cromer, E = 1x10° kPa
80 T 80 T
fo hlf 0 1 |f
c 60F c 60
o o
2 =
o Q
§ a0l § 40
2 20} i 2 20
& ] © :
= .J’ \ | ! = 2
0 EEEEEEET G N A3 0 <
3 3
10° 10 10? 10 10° 10 10° 10
1! Analytical linear elastic solution 1
Frequency (S ) = == MPM linear elastic solution (Anura3D) Frequency (S )
Fig. 10. Transfer function obtained using MPM and comparing with the natural frequency harmonics of the soil column (cases SC-2 and SC-3).
the mobile MPs (MP-integration) (Sulsky et al., 1994), and (b) the internal forces, and the constitutive equation was evaluated at each
mixed MPM-Gauss-Point integration (Jassim, 2013) often used to individual MP to retain the history of the MP state variables.
reduce cell-crossing noise. In this paper, the mixed MPM-Gauss- Fig. 11 shows the comparison between FEM-N, MPM-EC using

Point integration scheme was adopted to compute the nodal MP integration, and MPM-EC using mixed MPM-Gauss-Point
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integration. The zones highlighted in gray correspond to the in-
stants when cell-crossing occurs. Note that there is a significant
deviation of the results using MPM-EC (whether MP or mixed
MPM-Gauss-Point integration) from the FEM-N when cell-crossing
occurs. This is particularly observed in the acceleration response in
Fig. 11a and b. The cumulative error resulted in spikes in the ac-
celeration solution of MPM-EC ultimately leading to a results that is
almost one order of magnitude larger than FEM-N. Additionally, the
MPM-EC shows a base drift in the vertical displacement solution
which manifests as an unrealistic settlement of the linear-elastic
free-field column. The mixed MPM-Gauss-Point integration
scheme does not show significant improvements to the spurious
oscillation or the base drift seen in this case. However, the hori-
zontal displacement solution of MPM-EC remains acceptable when
comparing it to FEM-N. This highlights the significant errors that
may be generated when using MPM-EC scheme for site response
analysis which might be overlooked by the user of the numerical
method if attention is solely given to the horizontal displacement
response of the free-field column.

Moreover, the same example was repeated using the MPM-GA
time integration scheme and the results are plotted in Fig. 12, us-
ing the same aforementioned values of At, p,, and damping ranges
of case SC-2. It is observed that the acceleration response in Fig. 12a
using MPM-GA (either MP or mixed MPM-Gauss-Point integration)
matches reasonably well with FEM-N. This ultimately generates
shear strain and shear stress profiles in MPM-GA that match the
results of FEM-N, as shown in Fig. 12g and h, respectively. Addi-
tionally, the vertical base drift is eliminated when using MPM-GA as
shown in Fig. 12f. Although significantly reduced, it is seen that the
some spurious oscillations still exist in MPM-GA particularly when
observing the vertical accelerations in Fig. 12b. Also, the mixed
MPM-Gauss-Point integration is consistent with the MP-
integration, and does not offer significant improvement.
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Finally, case SC-4 was analyzed in the frequency domain by
calculating the transfer function and comparing it to the analytical
solution. It is seen that both MPM-GA and MPM-EC accurately
captured the fundamental, first and second frequency modes as
shown in Fig. 13. However, the most important difference is that
while the MPM-GA effectively damped the high frequencies noise
partially due to cell crossing (only a few frequencies remain near
the bifurcation limit), the high frequency content in the MPM-EC
results is very significant. Consistently with the time domain re-
sults, no noticeable improvement is seen when comparing MPM-EC
using MP and mixed MPM-Gauss-Point spatial integration
schemes. It is important to emphasize that for the previously pre-
sented cases SC-1, SC-2, and SC-3, both spatial integration schemes
(MP and mixed MPM-Gauss-Point integration) give the same re-
sults; this is expected since no cell-crossing is observed. The results
presented in this section demonstrated the viability of the pro-
posed MPM scheme to better deal with site response in small and
large deformations. Consistently, all simulations presented here-
after were performed with the MPM-GA time integration scheme
with the mixed MPM-Gauss-Point spatial integration.

5. Coseismic response of embankment slopes with MPM

Periodic boundary conditions have been often used in sym-
metric real-scale mesh-based numerical simulations. This is
attributed to the simplicity in the boundary condition imple-
mentation and efficacy of the corresponding results when
compared to more advanced site response treatments (Nielsen,
2006). Example problems in the geotechnical literature using pe-
riodic boundary conditions include foundation structures (Kontoe
et al., 2008a; Karamitros et al.,, 2013), tunnels (Kontoe et al.,
2008b), retaining walls (Galavi et al., 2013), and slopes (Pretell
et al., 2021). The purpose of this section is to show the

-5000
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Oxy (kPa)

Fig. 11. MP versus mixed MPM-Gauss-Point integration scheme on time domain results using Euler-Cromer scheme (Case SC-4 with MP location at (x, y) = (0.667 m, 9.833 m)).
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parametric analysis is presented to explore the effect of different
size embankment geometries, and highlight the implications of
using different constitutive models on the runout.

capabilities of the proposed MPM framework to simulate real-scale
coseismic failures involving large deformations. For this, a theo-
retical example of a symmetric embankment slope was used. A
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5.1. MPM numerical model

A plane-strain 35° embankment geometry overlying a 10 m soil
foundation is considered for reference at small-size (Model “S”, 5 m
high embankment) and large-size (Model “L”, 10 m high embank-
ment). The initial spatial discretization and dimensions of both S
and L models are presented in Fig. 14a and b, respectively. The soil
foundation at the base of the embankment is assumed linear-elastic
with material parameters provided in Table 3. The unit weight (W)
was assumed equal to 18.5 kN/m> for both the embankment and
foundation. The MPM-GA time scheme parameters are consistent
with case SC-3 in Table 2 since it has the same linear elastic pa-
rameters value. Two different constitutive soil models were adop-
ted for the embankment. One set of simulations was performed
using the linear-elastic perfectly-plastic Mohr-Coulomb (MC)
model. The second set of calculations was performed with a Mohr-
Coulomb model incorporating strain-softening behavior (MCSS).
The second model qualitatively captures the soil strength loss
suffered during cyclic loading events in a very simple way. The
MCSS, also used by others (e.g. Yerro et al., 2016; Conte et al., 2019;
Alsardi et al., 2021) can simulate material brittleness according to
the exponential strain-softening laws presented in Eqgs. (20) and
(21), which shrinks the MC yield surface through the reduction of
the peak friction angle and cohesion (d);, ¢p) to their residual values
(¢, c,) at a rate controlled by the exponential fitting factor () and
deviatoric plastic strain (egq). The peak strength parameters are
consistent with silty sand material and were chosen to trigger
failure for the considered ground motions so the capabilities of the
MPM to capture large deformations can be demonstrated. The value
of n was chosen to simulate a sharp drop from peak to residual
conditions, consistent with brittle behavior. Note that the results of
strain-softening constitutive models are mesh dependent and the
value of 7 should be calibrated with laboratory data (e.g. Rots et al.,
1985; Soga et al., 2016; Alsardi et al., 2021). This example is theo-
retical and a calibration is not required. All selected material pa-
rameters for the embankment are presented in Table 3.

¢ = 9+ (¢ — ¢t )exp(—neby) (20)

Elevation (m)

Elevation (m)

40
Abscissa (m)

(b)
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Table 3
Summary of embankment (brittle and non-brittle) and foundation material pa-
rameters used in the parametric analysis.

Material Parameter Value
Embankment Constitutive model Mohr-Coulomb with strain-
(brittle) softening (MCSS)
Peak friction angle, ¢; 37
()
Residual friction angle, 20

()

Peak cohesion, ¢, (kPa) 1

Residual cohesion, ¢; 0.5
(kPa)

Exponential shape 100
factor, n

Young’s modulus, E 1 x 106
(kPa)

Poisson ratio, v 0.33

Tension cutoff (kPa) 0

Embankment Constitutive model Mohr-Coulomb (MC)

Friction angle, ¢’ (°) 37
Cohesion, ¢’ (kPa) 1
Young's modulus, E 1x 108
(kPa)

Poisson ratio, v 0.33

Tension cutoff (kPa) 0

Foundation Constitutive model Linear-elastic
Young's modulus, E 1x 106
(kPa)
Poisson ratio, v 0.33

d=c+ (C'p - c’r) exp(—n eepq) (21)

The calculation stages include, first, a quasi-static gravity stress
initialization whereby the bottom boundary is fully fixed and the
lateral sides are normally fixed. Subsequently, these boundary
conditions are removed in the dynamic stage, and the ground
motion is prescribed as a time-dependent Dirichlet condition (as
described by Alsardi et al. (2021)) at the base of the model. Periodic
boundary conditions were specified at the lateral sides in the dy-
namic stage. The moving mesh technique was also used. The
parametric analysis for 18 simulations are summarized in Table 4.

5

Fig. 14. MPM model of the embankment overlying soil foundation. Two different size geometries adopted in this study: (a) Model S (small size), (b) Model L (large size).
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To improve the comprehension of this section, the cases were
labeled with the employed embankment size (S/L), constitutive
model (MC/MCSS), ground motion (I/II/Ill), and corresponding
ground motion scale factors.

5.2. Effects of ground motion arias intensity, embankment size, and
constitutive model on slope runout

To the authors’ experience, the horizontal movement of the MP
at the crest of the embankment serves as a good approximation of
the slope runout. Note that the MP initially located at the toe of the
slope usually presents a more restrained movement since material
located above the slope toe can override such point. To evaluate the
permanent displacement from the slopes, the input ground motion
at the base of the model was subtracted from the horizontal
displacement time-history at the MP located at the two crests (left
and right).

Fig. 15 presents a comprehensive overview of the parametric
analysis in terms of the horizontal runout results versus I, for the
left and right crests (Fig. 15a and b, respectively). It is seen that the
I; versus runout trend is very similar for both small and large-sized
embankments. However, for the same ground motion, the large-
scale models always generate higher runout than the small-scale
counterparts; for these particular results, the scaling factor ranges

Table 4

Summary of the 18 cases simulated in the example parametric analysis with details
on the embankment size, constitutive model, ground motion used and ground
motion scaling factor.

Embankment Embankment Ground Ground Case
scale constitutive model motion motion scale label
Small MC I 8 S-MC-I-
8
MC I 16 S-MC-I-
16
MC I 32 S-MC-I-
32
MC 11 1 S-MC-II-
1
MC 11 1 S-MC-
1I-1
MCSS I 8 S-MCSS-
-8
MCSS I 16 S-MCSS-
I-16
MCSS I 32 S-MCSS-
1-32
MCSS Il 1 S-MCSS-
1I-1
MCSS 11 1 S-MCSS-
II-1
Large MC 1 8 L-MC-1-8
MC I 32 L-MC-I-
32
MC Uil 1 L-MC-
-1
MCSS I 8 L-MCSS-
-8
MCSS I 16 L-MCSS-
I-16
MCSS I 32 L-MCSS-
1-32
MCSS Il 1 L-MCSS-
1I-1
MCSS 1l 1 L-MCSS-

1I-1

from 2.1 to 3.4. Besides this, the permanent displacements of the
embankments that behave elastic-perfectly plastic (i.e. using the
MC constitutive model) are more sensitive to the input ground
motion than the brittle slopes (i.e. with MCSS constitutive model).
An increase by an order of magnitude of I, results in an increase by
an order of magnitude of the runout when using the MC model. The
MCSS model is seen to generate runouts that are almost indepen-
dent of I,. Additionally, the runout computed by simulations using
MCSS model is always larger, ranging from one (for I; > 2) to two
(for I < 2) orders of magnitude than the MC counterparts. These
observations are consistent with the common belief that, if failure
is triggered in a brittle embankment and the residual strength is
very low, the runout is highly controlled by the residual strength of
the mobilized material, and is less dependent on than the ground
motion characteristics. Additionally, despite the ground motions
are not symmetric, for the set of ground motions selected, it is
quantitatively inferred that the permanent displacements are
almost symmetric as the left and right crest runouts are similar for
all simulations (Fig. 15a and b, respectively).

Fig. 16a, b and c present the initial failure mechanism, final
plastic deviatoric strain, and final horizontal displacement contour
plots, respectively, for the models with the highest intensity ground
motion III (for reference). The initial failure mechanisms, presented
in terms of localization of deviatoric strain, show that the deviatoric
strain profile is similar in magnitude and shape in all cases. This
similarity can be explained because the peak strength parameters
used by the MCSS model at initiation are identical to the strength
parameters of the MC model. Despite the similar initial failure
mechanisms in all the models, larger proportion of mass is mobi-
lized and larger final runout is observed when comparing the MCSS
simulations (Fig. 16c(ii) and (iv)) with their MC counterparts
(Fig.16¢(i) and (iii)). This is consistent with the results presented in
Fig. 15. Also, the initial failure mechanisms and final deformed
geometries are approximately symmetric.

In order to analyze the performance of the slope in the time
domain, horizontal displacement and settlement time-histories of
the right crest are presented in Figs. 17 and 18 for the simulations
using MC and MCSS models, respectively. Note that the right side of
the embankment was arbitrarily selected for discussion herein. The
magnitude of runout is consistently larger than the corresponding
settlement, but all time-histories, either runout or settlement,
present an S-shape curve. At the beginning of the shaking, the
slopes remains stable and no permanent displacement is observed.
Then, a sudden increase indicates the initiation of the failure.
Finally, a stable geometry is achieved and the permanent
displacement becomes constant until the end of the shaking. From
observing Figs. 17 and 18, for a particular ground motion and
constitutive model (i.e. MC or MCSS), the failure initiates at the
same time independent of the model being large or small; hence,
the time of failure initiation is not highly influenced by the scale of
the problem. Instead, the failure initiation is much controlled by the
ground motion. From these results, the constitutive model has a
minor effect on the time of failure initiation. This is likely because
the time of failure initiation is highly controlled by the initial
strength parameters in the slope, and as discussed before, the peak
strength parameters considered in the MCSS model coincide with
the strength parameters of the MC model.

For the simulations with MC model (Fig. 17), it is observed that
when using the same ground motion scaled with different factors
(e.g. -8, 1-32), the runout and settlement time-histories are scaled.
However, the runout and settlement time-history are not consis-
tently scaled according to the scaling factor of the ground motion.
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Fig. 15. Horizontal permanent displacements of the crest obtained from 18 ground
motions using the MPM model plotted against the arias intensity of the used ground
motion. (a) Left crest, (b) right crest.

To this end, the use of totally different ground motions (e.g. IlI-1)
completely changes the evolution of permanent displacements.
Also, consistently with previous observations (Figs. 15 and 16)
when considering the MCSS model for the same scale, Fig. 18 shows
that the crest final runouts and settlements are roughly constant for
all the simulations. This parametric analysis shows the importance
of geometry and material behavior characterization. The selection
of an adequate constitutive model capable of reproducing the key
features of the material is essential to capture the runout and set-
tlement trends. These modeling decisions can greatly determine
the displacement trends observed at large deformations.

5.3. Comparing MPM numerical results with the newmark method

The purpose of this subsection is to compare the performance of
the MPM model with the well-known Newmark sliding block so-
lution (Newmark, 1965). The value of fundamental natural period of
the MPM embankments (To = 1/fy) was calculated as an
approximation to guide whether the models can be characterized
as “rigid” or “flexible”. The value of fy was calculated using Eq. (18),
assuming H equals to the height of the embankment and funda-
mental mode (n = 0). This approximation was pragmatically
adopted for slopes in geotechnical earthquake engineering (e.g. Cho
et al,, 2022). It is seen that T is equal to 0.04 s and 0.09 s for small
and large-sized embankments, respectively. For this study, a
threshold value of Ty = 0.2 s was adopted as the limit of rigid
behavior, consistent with Fotopoulou and Pitilakis (2015). Thus,
both slope geometries analyzed herein can be characterized as

rigid, which is consistent with Newmark’s assumptions. As such,
the numerical solution of the MPM was compared to the Newmark
rigid sliding block solution, obtained using Slammer software
(Jibson et al., 2013).

To determine yield pseudostatic coefficient (ky), for use in
Newmark rigid sliding block solution, pseudostatic analyses using
the Spencer (1967) limit equilibrium method was performed to
identify the failure surface with yield pseudostatic coefficient ky
that provides a factor of safety equal to one. The limit equilibrium
software package by GeoStudio (GEO-SLOPE, 2012) was used
whereby a pseudostatic analysis was conducted and ky, was varied
incrementally by 0.01 until a factor of safety of one was reached for
each geometry. The resulting value of ky is 0.21 and 0.11 for model S
(small-sized) and L (large-sized), respectively. Even though base-
line corrected, the ground motions time-histories are not sym-
metric in the left and right directions. Due to this, the choice of
using Newmark-forward (positive ky) and Newmark-inverse
(negative ky) methods would generate different results. It is
postulated to compare Newmark-forward method with the left-to-
right deformation of the right crest in the MPM model, and
Newmark-inverse method with the right-to-left deformation of the
left crest in the MPM model. Ground motion III that has the highest
Arias intensity is considered for comparison. The evolution of the
horizontal permanent displacements using the MPM models and
Newmark method are presented in Fig. 19a and b for the left and
right crest points, respectively. The order of magnitude of Newmark
permanent displacements is consistent with the results from cases
employing the MC model (i.e. S-MC-III-1 and L-MC-III-1). The
Newmark results are slightly lower than the MPM results. This can
be explained because the ground motion is amplified in the nu-
merical model when it passes through the linear-elastic soil foun-
dation, while the Newmark approach does not account for such
amplification (equivalent to a fully rigid foundation). The
Newmark-forward generated results that are higher than the
Newmark-inverse. This is consistently captured in the MPM with
the right crest having larger runout than the left crest. It is noted
that, if a brittle material behavior is assumed, e.g. using the MCSS
model, the numerical results are larger by a factor ranging from 6 to
10 times (i.e. approximately one order of magnitude) than the
Newmark results. Additionally, in this case, the MCSS model pre-
dicts a slightly earlier point of failure initiation than Newmark
method. This further highlights the importance of the constitutive
model selection when simulating coseismic landslides and the
limitations of the Newmark rigid sliding block solution to predict
permanent displacements in relatively complex sites.

6. Conclusions

This paper presents the MPM as a capable tool to simulate
coseismic site response and embankment instabilities using peri-
odic boundary conditions. A particle relocation technique at the
periodic boundaries was proposed to ensure that the material
points always remain within the computational mesh. Additionally,
for the first time, the explicit generalized-« time scheme was used
for earthquake engineering applications in MPM. The developed
MPM framework was verified at element-level against corre-
sponding FEM simulations and the linear analytical site response
approach in the time domain. Additionally, analysis of the transfer
function in the frequency domain highlights the ability of the MPM
framework in capturing the natural frequency harmonics of a soil
column. The high frequency oscillations are appropriately damped
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to filter out the noise, and this effect is observed in the time-domain
and frequency-domain.

A parametric analysis was provided to demonstrate the new
MPM framework to simulate real-scale coseismic failures and the
performance of a theoretical embankment was investigated. The
effects of ground motion Arias intensity, embankment size
(doubling the size), and constitutive models (i.e. MC and MCSS)
were considered. The larger the model size, the higher the crest
runout and settlement for the same ground motion. Brittle em-
bankments (using MCSS) resulted in larger slope mobility
compared to the models using MC model. When considering MC
model, the crest runout and settlement increases with I,.
Contrarily, when brittle embankment material is considered, the
runout and settlement is relatively constant for the different
ground motions considered, indicating that the runout of brittle
embankments is highly controlled by the residual strength of the
mobilized material, and is less dependent on than the ground
motion characteristics. Similar failure mechanisms are observed in
all cases.

Finally, the Newmark rigid sliding block solution (Newmark,
1965) was compared to the MPM embankment simulations. The

Newmark-forward (positive ky) and Newmark-inverse (negative
ky) are seen to be consistent with the right and left crest, respec-
tively, when using MC model. This is consistent with the fact that
the considered embankments have a low natural period (<0.2 s).
However, the assumption of brittle embankment behavior using
MCSS model leads to runout results that one order of magnitude
larger. This paper highlights the importance of the geometry and
the selection of appropriate constitutive models when simulating
coseismic site response, failure, and post-failure behavior of slopes.
Future work includes the use of advanced constitutive models
especially developed for geotechnical earthquake engineering ap-
plications for a more accurate estimation of soil behavior under

cyclic loading.
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List of symbols

I Arias intensity
ky Yield pseudostatic coefficient
p Spectral ratio
Pb Bifurication spectral ratio
At Time step
At Critical time step
t Overall time
Q Non-dimensional angular frequency
Qy Non-dimensional bifurication frequency
Qs Non-dimensional stability frequency
© Angular frequency
f Frequency
n Frequency mode
To Fundamental period
fo Fundamental frequency
g Gravitational acceleration
ag, om, Bm, Y Generalized-« time scheme parameters
q; Nodal acceleration
ﬁi Basis function value
M; Nodal mass
N Number of elements
Nyp Number of material points
mMmp Material point mass
-t Total force
1
T?Xt External force
1
—int Internal force
1
Vmp Material point velocity
v Nodal velocity
AT Incremental nodal displacement
B Basis function gradient
A€ \vp Incremental material point strain
Ump Material point displacement
Ground motion duration
ag Acceleration-time history
aw Wavelet acceleration-time history
aw, Bw, Yw Wavelet parameters
w Unit weight
H Column height
Ko Coefficient of lateral earth pressure
ay, 0N Newmark-{ time integration parameters
E Young’s modulus
v Poisson’s ratio
¢;) Peak friction angle
g Residual friction angle
[ Peak cohesion
c Residual cohesion
¢ Friction angle
c Cohesion
ggq deviatoric plastic strain
n Exponential shape factor
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