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Abstract

Biomolecular condensates are important structures in various cellular processes but are

challenging to study using traditional experimental techniques. In silico simulations with resi-

due-level coarse-grained models strike a balance between computational efficiency and

chemical accuracy. They could offer valuable insights by connecting the emergent proper-

ties of these complex systems with molecular sequences. However, existing coarse-grained

models often lack easy-to-follow tutorials and are implemented in software that is not opti-

mal for condensate simulations. To address these issues, we introduce OpenABC, a soft-

ware package that greatly simplifies the setup and execution of coarse-grained condensate

simulations with multiple force fields using Python scripting. OpenABC seamlessly inte-

grates with the OpenMM molecular dynamics engine, enabling efficient simulations with per-

formance on a single GPU that rivals the speed achieved by hundreds of CPUs. We also

provide tools that convert coarse-grained configurations to all-atom structures for atomistic

simulations. We anticipate that OpenABC will significantly facilitate the adoption of in silico

simulations by a broader community to investigate the structural and dynamical properties

of condensates.

Author summary

Biomolecular condensates are essential cellular structures that underpin various cellular
processes, including RNA splicing, ribosomal RNA processing, and stress response, etc.
These membrane-less organelles exhibit liquid-like behavior, enriched with disordered
proteins and RNA that can dynamically exchange with the surrounding media. Computa-
tional modeling aids in understanding these condensates’ structural and dynamic aspects
at high resolution, connecting molecular sequences with condensate emergent properties.
Both coarse-grained and atomistic simulations can help offer insights into the nature of
the molecular interactions that drive phase separation, the microenvironment of the con-
densates, and their dynamical relaxation. However, software tools for such simulations
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are limited. We introduce OpenABC, a flexible software package for GPU-accelerated
simulations of biomolecular condensates. It simplifies setup using Python scripts, inte-
grates with the molecular dynamics engine, OpenMM, for efficient simulations, and facili-
tates transitioning between coarse-grained and atomistic representations. OpenABC aims
to empower researchers by easing simulation setups, aiding force field comparison, and
advancing biomolecular condensate research.

Introduction

Biomolecular condensates underlie the organization of many cellular processes, such as speck-
les for RNA splicing, nucleoli for ribosomal RNA processes, and P granule for stress response,
etc. [1–14]. They are also termed membrane-less organelles due to the lack of enclosure and
exhibit liquid-like properties. Intrinsically disordered proteins (IDPs) and RNA molecules are
enriched inside the condensates [3, 4, 9, 11]. These molecules promote promiscuous, multiva-
lent interactions, leading to spontaneous phase transition and condensate formation [15]. The
nature of the molecular interactions that drive phase separation, the microenvironment of the
condensates, and their dynamical relaxation, are under active investigation.

Computational modeling can prove invaluable for studying biomolecular condensates by
providing detailed structural and dynamic characterizations [16–42]. Particle-based coarse-
grained modeling approaches are promising since their computational efficiency enables long-
timescale simulations to promote large-scale reorganization for structural relaxation [43–46].
Such simulations may predict condensate physical properties de novo, elucidating the connec-
tion between molecular sequences and emergent properties [18, 47]. However, the reduced
resolution of these coarse-grained models could be insufficient to describe the complex micro-
environment of the condensate interior [48–50]. Atomistic simulations with explicit represen-
tation of solvent molecules and counter ions can be necessary to further characterize
physicochemical interactions that produce the selective partition of small molecules within
condensates [49–53]. Combining the two modeling approaches at different resolutions could
be particularly powerful since they enable long-timescale simulations for structural relaxation
while preserving the fine-resolution details.

While many computational models and force fields have been introduced for simulations
of IDPs and biomolecules, software engineering has yet to catch up. There is an urgent need to
build user-friendly tools to set up and execute condensate simulations. Preparing biomolecular
simulations can be rather involved. Even creating initial configurations for such simulations is
often non-trivial. Much-dedicated software has been introduced to prepare atomistic simula-
tions [54–57], and existing molecular dynamics (MD) simulation packages are highly opti-
mized for computational efficiency [54, 57–59]. However, existing tools are not immediately
transferable for setting up coarse-grained condensate simulations. Furthermore, coarse-
grained force fields are often implemented into disparate simulation engines not necessarily
best suited for condensate simulations, hindering cross-validation and the unleashing of full
modeling potential. Further software development can significantly reduce the entry barrier
for in silico studies, allowing more researchers to experience the usefulness of computational
modeling. They could facilitate comparing and benchmarking various force fields, driving
continuous improvement.

We introduce a software package termed OpenABC for “OpenMM GPU-Accelerated sim-
ulations of Biomolecular Condensates”. The package is flexible and implements multiple pop-
ular coarse-grained force fields for simulating proteins and nucleic acids. It dramatically
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simplifies the simulation setup: only a few lines of Python scripts are needed to carry out con-
densate simulations starting from initial configurations of a single protein or DNA. The pack-
age is integrated with OpenMM, a GPU-accelerated MD engine [60], enabling efficient
simulations with advanced sampling techniques. Finally, we include tools that convert coarse-
grained configurations to atomistic structures for further condensate modeling with all-atom
force fields. Tutorials in Jupyter Notebooks are provided to demonstrate the various capabili-
ties. We anticipate that OpenABC will greatly facilitate the application of existing computer
models for simulating biomolecular condensates and the continued force field development.

Results

Flexible force field selections for Biomolecular simulations

OpenABC implements several existing force fields for coarse-grained (CG) modeling of pro-
tein, RNA, and DNA molecules (Fig 1). Single-bead per amino acid force field for proteins
include the hydropathy scale (HPS) models [20, 28], the Mpipi force field [29], a generalized
structure-based model [41, 61, 62], and the maximum entropy optimized force field (MOFF)
[63]. HPS models define interactions between different pairs of amino acids based on various
hydrophobicity scales [20, 28]. Recent studies have attempted to improve the accuracy of HPS
models with systematic optimizations of the hydrophobicity scale to match experimental

Fig 1. OpenABC facilitates coarse-grained and atomistic simulations of biomolecular condensates with multiple
force fields. The diagram illustrates the workflow and various functionalities of OpenABC. To set up condensate
simulations, the users must provide a configuration file in the PDB format for the molecule of interest. OpenABC
parses topological and structural information from the PDB file to build a molecule object. Specifying force field
options allows direct simulations of individual molecules. On the other hand, the molecule object can be replicated for
condensate simulations. In addition, OpenABC allows the conversion of CG configurations to atomistic structures for
simulations with all-atom force fields.

https://doi.org/10.1371/journal.pcbi.1011442.g001
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observations of IDP monomers [34, 36]. They have been used to study the phase behaviors of
numerous proteins [64–66], revealing the contribution of charge distribution patterns, cation-
π interactions, and the balance between hydrophobic and electrostatic interactions [65, 67] to
the stability of condensates.

The Mpipi force field was parameterized using data from all-atom simulations and bioin-
formatics analysis with a careful calibration of π-π and π-cation interactions [29]. These inter-
actions play significant roles in the formation of biomolecular condensates. The force field was
shown to accurately capture the radius of gyration and critical temperatures of diverse protein
sequences.

SMOG was originally introduced for studying folded proteins using interaction potentials
derived from initial input configurations. We generalized the model to describe proteins with
disordered domains and leveraged the Miyazawa-Jernigan statistical potential [68] for protein-
protein interactions [41, 62].

MOFF was parameterized with the maximum entropy algorithm [69, 70] and the protein
folding energy landscape theory [71] to provide consistent descriptions of both folded and dis-
ordered proteins [63, 72–74]. It was shown to reproduce the radius of gyration for a collection
of proteins, including both ordered and disordered proteins [63, 75]. The balanced interac-
tions among amino acids have proven beneficial in describing complex contacts among phase-
separating proteins, including those with both ordered and disordered domains [47, 63, 74].

In addition to protein models, we implemented several force fields for nucleic acids. For
example, the molecular renormalization group coarse-graining (MRG-CG) DNA model was
initially introduced for simulations with explicit ions to reproduce the salt-dependent DNA
persistence length [76]. We adopted it for implicit ion modeling with the Debye-Hückel
approximation for electrostatic interactions. We rescaled the strength of bonded interactions
to ensure the accuracy of the implicit-ion model in reproducing DNA persistence length at the
physiological salt concentration [47]. We further incorporated the DNA model 3SPN [77, 78]
into OpenABC for studying sequence specific properties. Unlike MRG-CG DNA that only
uses one bead to represent each nucleotide, 3SPN adopts three beads to differentiate sugar,
base, and phosphate. Finally, the Mpipi force field can be used to simulate RNA molecules.

While one can in principle combine different force fields for simulating complex systems
with both proteins and nucleic acids, care needs to be taken when modeling cross interactions.
Previous studies have carried out systematic validations of protein-DNA and protein-RNA
interactions and we implemented them into OpenABC, with combinations that include
SMOG-3SPN [37, 41, 62, 78–82], MOFF-MRG-CG DNA [47], and Mpipi Protein-RNA [29].
These combinations account for both excluded volume effect and electrostatic interactions.
Detailed expressions of all the force field potentials are provided in the S1 Text—Force Field
Definitions, with the parameters provided in Tables A-I in S1 Text.

Simplified setup of condensate simulations

OpenABC leverages the MD simulation engine, OpenMM [60], to offer simulation setup with
Python scripting, thus dramatically simplifying the workflow. The software treats each mole-
cule as an object and appends such objects into a container-like class. This class allows the
incorporation of various force field options and integration schemes for MD simulations.

An illustration of the typical workflow for condensate simulations is provided in Fig 1.
OpenABC first parses a configuration file in the PDB format supplied by users to create a mol-
ecule object. The object contains topological and structural information extracted from the
input file. Upon introducing interactions defined in various force fields, the molecule object
can be used to simulate individual biomolecules. On the other hand, the molecule object can
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also be replicated N times for condensate simulations consisting of N molecules. As demon-
strated in an example code in Fig 2, setting up an entire MD simulation of a protein conden-
sate with default parameters only requires about 20 lines of code.

To enhance conformational sampling of individual molecules and condensates, we provide
an implementation of the temperature replica exchange algorithm [83] with PyTorch [84] as

Fig 2. OpenABC simplifies simulation setup with Python scripting. The example code includes all the steps necessary for setting up and performing
MD simulations of a protein condensate with MOFF and default settings in a cubic box of length 100 nm. The ten lines included in the highlight
box correspond to the creation of the condensate system by parsing topological information from an initial PDB file, building a configuration file by
inserting molecules into a box and incorporating the molecular objects, protein, into a container class, condensate, with appropriate force fields. The rest
of the code includes standard simulation setups generic to OpenMM. We chose the Langevin middle integrator to perform simulations at 300 K with a
friction coefficient of 1 ps−1 and a timestep of 10 fs.

https://doi.org/10.1371/journal.pcbi.1011442.g002
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part of the package (see S1 Text—Implementation of the temperature replica exchange algo-
rithm for details). Furthermore, we introduce utility functions to reconstruct atomistic struc-
tures from coarse-grained protein configurations with only α carbons. This functionality relies
on the software “reconstruct atomic model from reduced representation (REMO)” [85] and
can facilitate downstream all-atom simulations. More tutorials in Jupyter Notebook format are
available online at the OpenABC GitHub repository.

Efficient simulations with GPU-enabled MD engine

A significant advantage of integrating with OpenMM comes from its native support of GPU
acceleration. Simulating implicit solvent coarse-grained condensates on GPUs can be particu-
larly beneficial due to the inhomogeneous distribution of particles arising from implicit solva-
tion [78]. CPU parallelization, which often relies on the spatially-based, domain
decomposition strategy, is often less effective because the inhomogeneity in particle density
between the condensate and dilute phases produces an imbalanced workload between CPUs.

To demonstrate the efficiency of GPU-enabled simulations, we studied five independent
condensate systems. The first four systems consist of N1 HP1α dimers and N2 200-bp-long
dsDNA randomly distributed in a cubic box of length 200 nm with periodic boundary condi-
tions. In the fifth system, 100 HP1α dimers in a compact configuration were placed at the cen-
ter of an elongated box of size 25 × 25 × 400 nm3 (Fig 3A). This rectangular setup is typical for
the so-called slab simulations to produce a dilute and dense interface along the z-axis for com-
puting co-existence curves and phase diagrams [20, 86, 87]. MOFF and MRG-CG force fields
were used to describe the interactions among coarse-grained particles. We simulated each sys-
tem for one million steps using the Langevin middle integrator [88] to control the temperature
at 300 K, with a friction coefficient of 1 ps−1 and a time step of 10 fs. For comparison, we simu-
lated the same systems with a closely related integrator using GROMACS, a leading MD
engine with state-of-the-art performance on CPUs [54, 57]. More simulation details are pro-
vided in the S1 Text—Benchmarking the performance of condensate simulations.

As shown in Fig 3B, OpenMM single GPU performance matches GROMACS with hun-
dreds of CPUs in the first four systems. While GROMACS achieved nearly linear scaling for
the first four systems, introducing more CPUs did not lead to any significant speedup in the
last system with a dense-dilute interface. As mentioned above, the presence of vacuum regions
in slab simulations hinders the efficacy of domain decomposition. On the other hand,
OpenMM is less sensitive to the simulation setup and retains superior performance.

The performance of GROMACS depends on our implementation of the CG force fields
and may not reflect the theoretical upper limit of the software. In particular, our use of tabu-
lated potentials for the Debye Hückel potential and domain decomposition for parallelization
may significantly affect the simulation speed. While performance improvement is possible
with additional software engineering, the advantage of CG simulations of condensates on
GPUs remains given the differences shown in Fig 3B.

Application: Validating force field implementations in OpenABC

Before applying the software for extensive simulations, we validated our implementations of
various force fields with existing ones. We generated ten configurations for an HP1α dimer
with MOFF and GROMACS through an NVT simulation. As shown in Table J in S1 Text, the
potential energies evaluated using MOFF from OpenABC match those reported by GRO-
MACS. Similar comparisons with a protein-DNA complex produce nearly identical energy
values as well, as shown in Table K in S1 Text. The protein-DNA complex is formed by an
HP1α dimer with a 200-bp-long dsDNA, and MOFF and MRG-CG DNA were used to
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quantify their interactions. The minor differences between OpenMM and GROMACS ener-
gies are mainly caused by using tabulated functions for nonbonded interactions in
GROMACS.

We further evaluated the potential energies defined by the HPS model on ten configura-
tions of a disordered protein, DDX4, using both OpenMM and HOOMD-Blue [89]. As shown
in Table L in S1 Text, the two sets of energies match exactly, supporting the correctness of our
force field implementation. We also validated the Mpipi force field using interaction energies
evaluated with OpenMM and LAMMPS [59] for a protein-RNA system, as shown in Table M
in S1 Text.

Fig 3. OpenABC integrates with OpenMM for GPU-accelerated MD simulations. (A) Snapshots of the five systems used to benchmark simulation
performance. The systems consist of N1 HP1α dimers (blue) and N2 200-bp-long dsDNA (red, N2 = 0 if not specified). The first four systems adopt
homogeneous density distributions in cubic boxes of length 200 nm, while the last exhibits a dense-dilute interface in an elongated box of size 25 × 25 × 400
nm3. (B) The five data sets compare the performance of CPU simulations using GROMACS with single GPU simulations using OpenMM. The different
colors indicate the number of CPUs in GROMACS simulations, as shown in the legends. The benchmarks were performed with Intel Xeon Gold 8260
CPUs and Nvidia Volta V100 GPUs.

https://doi.org/10.1371/journal.pcbi.1011442.g003
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In addition to energy comparisons, we examined the conformational ensembles of HP1α
and HP1β dimers using MOFF with temperature replica exchange simulations [83]. Consistent
with our previous study [63], the force field succeeds in resolving the difference in their con-
formational distribution between the two homologs (Fig 4). The radii of gyration for the two
dimers at 300 K are 3.33 ± 0.19 nm, and 4.27 ± 0.09 nm, respectively. These values match the
previously reported values computed using GROMACS quantitatively, reproducing experi-
mental trends. Therefore, OpenABC produces consistent results with other software despite
differences in integration schemes.

Using the MRG-DNA model, we computed the persistence length of a 200-bp-long DNA
segment. The estimated value at a monovalent salt concentration of 100 mM, 48.83 ± 2.71 nm
(see Fig A in S1 Text), is consistent with that reported in a previous study using simulations of
the same model but with GROMACS [47]. Additional simulation details for estimating the
persistence length are provided in the S1 Text—Estimating the persistence length of
MRG-DNA.

Application: Coarse-grained simulation of protein condensates

As additional evaluations of force field implementation and to demonstrate the usefulness of
OpenABC, we performed slab simulations to determine the phase diagram of four proteins,
which are known to form various biomolecular condensates inside the cell. For example, HP1
dimers are involved in chromatin compaction and regulation [91], while DDX4 and FUS are a
primary constituent of nuage or germ granules [92] and cytoplasmic RNP granules [93],
respectively. The simulations for HP1α and HP1β were performed with MOFF, while those for
FUS LC and DDX4 were modeled with the HPS model using the shifted Urry hydrophobicity
scale [28].

The resulting phase diagrams are shown in Fig 5, with the concentrations listed in Tables
N-P in S1 Text. The density profiles at different temperatures and the representative snapshots

Fig 4. OpenABC produces consistent results with a previous studying, resolving the structural differences between two HP1 homologs. (A) Secondary
structures of HP1α and HP1β along sequences. (B) Representative structures for HP1α and HP1β dimer rendered with Mol* Viewer [90]. The radii of
gyration (Rg) for the two structures are 2.77 and 4.44 nm, respectively. We colored the chromodomain (CD) in orange, the chromoshadow domain (CSD)
in blue, and the rest in green. (C) Probability density distributions of Rg for HP1α (red) and HP1β dimer (blue).

https://doi.org/10.1371/journal.pcbi.1011442.g004
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at the lowest temperatures are shown in Figs B-C in S1 Text. We fitted the computed phase
diagrams with an analytical expression to determine the critical temperature Tc (see Methods).
The critical temperatures are 306.30 K for HP1α and 245.99 K for HP1β, consistent with previ-
ous results obtained with GROMACS simulations [63]. Similarly, the critical temperatures for
DDX4 and FUS LC are 324.21 K and 340.04 K, respectively, matching values reported in a pre-
vious study that used the software HOOMD-Blue for simulations [28]. Thus, OpenABC pro-
duces statistically indistinguishable results on the phase behavior of protein condensates as in
previous studies.

Application: Atomistic simulation of protein condensates

While residue-level CG models are helpful for long timescale simulations, their limited resolu-
tion may prove insufficient to characterize specific properties of condensates, including the
solvation environment [48], counter-ion distributions [49], and protein-ligand interactions
[50]. Therefore, we implemented functionalities in OpenABC to convert equilibrated CG con-
figurations to atomistic structures. Starting from these structures, well-established tools, such
as CHARMM-GUI [55], GROMACS [54, 57], and AMBER [56], can be easily applied to set up
explicit solvent simulations with diverse force fields. Furthermore, for explicit solvent simula-
tions, the advantage of OpenMM over other MD packages is less evident. Therefore, we termi-
nate the OpenABC workflow at producing atomistic condensate structures and leave the users
with flexibility to choose MD packages and force fields for further studies.

As proof of principle, we converted the final snapshot from the slab simulation of HP1α
dimer at 260 K to an atomistic configuration (Fig 6). This conversion leverages the software
REMO [85] to build atomistic details starting from the Cα positions of each amino acid. We
solvated the atomistic HP1α dimer condensates with water molecules and counter ions. After
energy minimization, we carried out an all-atom MD simulation using GROMACS with the
CHARMM36m force field [94] and the CHARMM-modified TIP3P water model [95]. More
details on simulation preparation can be found in the S1 Text—Building and relaxing atomistic
structures from coarse-grained configurations. As shown in Fig 6, the system relaxes with a con-
tinuously decreasing potential energy in the first 20 ns and remains stable afterward.

Fig 5. OpenABC produces phase diagrams that match previous results. (A) Phase diagrams for HP1α (red) and HP1β (blue) dimer condensates
computed with MOFF. (B) Phase diagrams for DDX4 (red) and FUS LC (blue) computed with the HPS model parameterized using the Urry
hydrophobicity scale. The dots in both plots denote the density values determined from slab simulations, and the triangles represent the critical point
obtained from numerical fitting.

https://doi.org/10.1371/journal.pcbi.1011442.g005
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Conclusion

We introduced a software package, OpenABC, to facilitate coarse-grained and all-atom simu-
lations of biomolecular condensates. The package implements several of the leading coarse-
grained force fields for protein and DNA molecules into OpenMM, enabling GPU-accelerated
simulations with performances rivaling GROMACS simulations with hundreds of CPUs. New
force fields can be quickly introduced within the framework, and we plan to incorporate RNA
models into the package as the next step. Comprehensive tutorials are provided to familiarize
the users with the various functionalities offered by OpenABC. We anticipate the intuitive
Python interface of OpenABC to reduce entry barriers and promote coarse-grained modeling
for its adoption by a broader community.

Materials and methods

Details of molecular dynamics simulations

We performed temperature replica-exchange simulations [83] with MOFF to determine the
conformational ensembles of HP1α and HP1β dimers. Atomistic protein structures were pre-
dicted with RaptorX [96] and used to initialize simulations. Details on modeling HP1 proteins
to preserve the tertiary structure of folded domains are provided in the S1 Text—Setting up
MOFF HP1 system. Six independent replicas were simulated to maintain temperatures at 300
K, 315.79 K, 333.33 K, 352.94 K, 375.00 K, and 400 K, respectively, with the Langevin middle
integrator [88] and a friction coefficient of 1 ps−1. Each replica lasted for 200 million steps with
a timestep of 10 fs. Exchanges between neighboring replicas were attempted every 1000 steps.
More details on the replica exchange simulations are attached in the S1 Text—Implementation

Fig 6. OpenABC facilitates all-atom simulations by producing equilibrated initial atomistic configurations. (A) Illustrations of the conversion from a
coarse-grained configuration (top) to a fully atomistic model with explicit solvent molecules (bottom). Only 2% of water molecules and counter ions of the
atomistic model are shown for clarity. The system consists of 100 HP1α dimers, and different molecules are shown in one of 25 colors. Both figures are
rendered with Mol* Viewer [90]. (B) The atomistic potential energy evaluated using the CHARMM force field is shown as a function of simulation time.

https://doi.org/10.1371/journal.pcbi.1011442.g006
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of the temperature replica exchange algorithm. We discarded the first 100 million steps as equil-
ibration and used the remaining data for analysis.

We carried out slab simulations to evaluate the stability of condensates formed by HP1α
and HP1β dimers. Initial configurations of these simulations were prepared as follows. First,
we randomly placed 100 copies of protein dimers into a cubic box of length 75 nm. Then we
performed 5-million-step constant pressure and constant temperature (NPT) simulations at
one bar and 150 K to compress the system with a timestep of 10 fs. Control of pressure and
temperature was achieved by coupling the Monte Carlo barostat with the Langevin middle
integrator [88]. The length of the compressed cubic box was about 25 nm. Then we fixed the
compressed configuration and extended the box size to 25 × 25 × 400 nm3. The rectangular
geometry leads to the creation of a dense-dilute interface along the z-axis. Simulation results
are expected to be independent of the exact box lengths and we chose 400 nm to be long
enough to support phase coexistence (Fig B in S1 Text). Starting from this initial configuration,
we gradually increased the temperature from 150 K to a target value in the first 0.1 million
steps. We then performed 200-million-step production simulations at constant volume and
constant temperature using the Nosé-Hoover integrator [88] with a collision frequency of 1
ps−1 and a timestep of 5 fs. Compared to the Langevin thermostat, the Nosé-Hoover integrator
allows faster diffusion of protein molecules in the dilute phase to facilitate the equilibration of
slab simulations.

Following similar protocols outlined above, we performed slab simulations for disordered
regions of protein DDX4 and FUS with the HPS model using parameters derived from the
Urry hydrophobicity scale [97]. Detailed amino acid sequences of the two proteins are pro-
vided in the S1 Text. For each protein, we first obtained an equilibrium configuration from a
0.1-million-step constant temperature simulation initialized with a straight Cα chain. We
placed 100 replicas of the equilibrium configurations into a cubic box of length 75 nm. Upon
compression by a 5-million-step NPT compression at 1 bar and 150 K with a timestep of 10 fs,
the system reaches a cubic box with a size of about 15 nm. We then performed slab simulations
with an elongated box of size 15 × 15 × 280 nm3 and a 10 fs timestep. Nosé-Hoover integrator
was again applied with a collision frequency of 1 ps−1 to maintain the temperature.

Computing phase diagrams from slab simulations

To determine the concentration of dense and dilute phases from slab simulations, we first
identified the largest cluster in a given configuration as the largest connected component of
the protein-contact network. Two monomers were defined as in contact if their center-of-
mass distance was less than 5 nm, though the computed phase diagrams are rather insensitive
to this specific cutoff value (Table O in S1 Text). Subsequently, we translated the system so that
the center of mass of the largest cluster coincides with the box center, which was located at
z = 0. We recognized the region with |z|< 5 nm for HPS simulations and |z|< 10 nm for
MOFF simulations as the dense phase, while the region with |z| > 50 nm as the dilute phase.
The threshold values were chosen to be consistent with prior literature [20, 63] and to roughly
follow the size of the condensate as revealed in the density profiles (Figs B-C in S1 Text). The
concentrations were determined as the average density value in specified regions using the sec-
ond half of the simulation trajectories. We fitted the concentration values at various tempera-
tures using the following equation to determine the critical temperature

rH � rL à AÖTc � TÜb: Ö1Ü

ρH and ρL are the densities at the concentrated and dilute phases. Parameter β = 0.325 is the
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critical exponent corresponding to the universality class of 3D Ising model [98]. Tc is the criti-
cal temperature and A is the coefficient.

Supporting information

S1 Text. Fig A. The log of the bond vector correlation, log C(n), as a function of the bond sep-
aration n. The dots were obtained from MD simulations, with three colors indicate three inde-
pendent simulations. The lines are numerical fits to the data. See text Section: Computing DNA
persistence length with the MRG-CG model for simulation details and computing persistence
length from the numerical fitting. Fig B. Density profiles obtained from slab simulations of
HP1α (left) and HP1β (right) dimers with the MOFF model. Vertical lines are set at z = ±10
and ±50 nm. The final snapshots of the slab simulations at the lowest temperatures are shown.
CG atoms with |z|< 10 nm are colored in yellow, while the remaining are shown in blue. Fig
C. Density profiles obtained from slab simulations of DDX4 and FUS LC with the HPS model

using the Urry scale optimal parameter set (m à mopt
Urry à 1 and D à Dopt

Urry à 0:08) at different

temperatures. Vertical dashed lines are set at z = ±5 nm and ±50 nm. The final snapshots of
the slab simulations at 260 K are shown. CG atoms with |z| < 5 nm are colored in yellow,
while the remaining are shown in blue. This figure shows that the |z| < 5 nm and |z|> 50 nm
regimes can represent the concentrated and dilute phases, respectively. Table A. The amino
acid mass, sizes, and charges used by MOFF and HPS models. Both models share the same
amino acid mass and sizes. The charge of HIS differs in the two models, while other amino
acids share the same charge. Here e is the elementary charge. Table B. MOFF protein contact
✏ij values as defined in equation S6 in S1 Text. Due to limited space, the numbers are rounded
to 3 decimal places. The values are in unit kJ/mol. Table C. MRG DNA model bond parame-
ters. All the kbond,n are in unit kcal/mol/nm2, and r0 unit is nm. Table D. MRG DNA model
angle parameters. All the kangle,n are in unit kcal/mol/degree2, and θ0 unit is degree. Table E.
MRG DNA model fan bond parameters. All the kfan bond,n are in kcal/mol/nm2, and rΔ,0 unit is
nm. Δ means the fan bond between CG nucleotide i and j + Δ, where nucleotide i and j are
WC-paired. Table F. The normalized KR scale and Urry hydropathy scale values (i.e. λi
parameters in equation S14 in S1 Text). Table G. Mpipi parameter ✏ values as defined in equa-
tion S25 in S1 Text. Due to limited space, the numbers are rounded to 3 decimal places. The
values are in unit kJ/mol. Table H. Mpipi parameter σ values as defined in equation S25 in S1
Text. Due to limited space, the numbers are rounded to 3 decimal places. The values are in
unit nm. Table I. SMOG MJ potential parameter ✏ as defined in equation S31 in S1 Text. Due
to the limited space, the numbers are rounded to 3 decimal places. The values are in unit kJ/
mol. Table J. Comparison of potential energies computed with OpenMM and GROMACS
using MOFF for ten configurations of HP1α dimer. Table K. Comparison of potential energies
computed with OpenMM and GROMACS using MOFF for proteins and MRG for DNA for
ten configurations of HP1α dimer bound to a dsDNA. The energy unit is kJ/mol. See text Sec-
tion: Validating the force field implementation in OpenMM for simulation details. Table L.
Comparison of potential energies computed with OpenMM and HOOMD-Blue using HPS
with Urry or KR scales for ten configurations of protein DDX4. The energy unit is kJ/mol. See
text Section: Validating the force field implementation in OpenMM for simulation details.
Table M. Comparison of potential energies computed with OpenMM and LAMMPS using
Mpipi force field for a polyR+polyK+polyU system. The system consists of a chain of 10 argi-
nines, a chain of 10 lysines, and 2 individual chains of 10 uracils. The energy unit is kJ/mol.
See text Section: Validating the force field implementation in OpenMM for simulation details.
Table N. The coexistence concentrations of HP1α and HP1β dimers measured by slab simula-
tions with MOFF at different temperatures below the critical temperature. The cutoff distance
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for searching the largest cluster is 5 nm. Table O. The coexistence concentrations of HP1α and
HP1β dimers measured by slab simulation with MOFF. The concentrations were similarly
determined as those shown in Table N but the cutoff distance for searching the largest cluster
set as 8 instead of 5 nm. The results are almost identical to the ones shown in Table N, support-
ing the robustness of phase diagrams with respect to the cutoff distance used for protein
clustering. Table P. The coexistence concentrations of FUS LC and DDX4 proteins measured
by performing slab simulations with HPS model Urry scale and the optimal parameter set

(m à mopt
Urry à 1 and D à Dopt

Urry à 0:08) at different temperatures below the critical temperature.

The cutoff distance for searching the largest cluster is 5 nm.
(PDF)
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