

Surrogate-based cyber-physical aerodynamic shape optimization of high-rise buildings using wind tunnel testing

Wei-Ting Lu¹, Brian M. Phillips^{2*}, and Zhaoshuo Jiang³

¹Postdoctoral Associate, Department of Civil and Coastal Engineering,
University of Florida, Gainesville, United States

²Associate Professor, Department of Civil and Coastal Engineering,
University of Florida, Gainesville, United States

³Associate Professor, Department of Civil and Environmental Engineering, San Francisco State University, San Francisco, United States

*Corresponding author, brian.phillips@essie.ufl.edu

Abstract

12 This study proposes a surrogate-based cyber-physical aerodynamic shape
13 optimization (SB-CP-ASO) approach for high-rise buildings under wind loading. Three
14 components are developed in the SB-CP-ASO procedure: (1) an adaptive subtractive
15 manufacturing technique, (2) a high-throughput wind tunnel testing procedure, and (3) a
16 flexible infilling strategy. The downtime of the procedure is minimized through a parallel
17 manufacturing and testing (IIM&T) technique. An unexplored double-section setback
18 strategy with various cross-sections and transitions positions is used to demonstrate the
19 performance of the proposed procedure. A total of 173 physical specimens were
20 evaluated to reach the optimization convergence within the reserved testing window.
21 Further analysis of promising shapes considering multiple design wind speeds is
22 suggested to achieve target performance objectives at various hazard levels. Practical
23 information on setback and cross-section modification strategies is discussed based on

24 the optimization results. In comparison with a square benchmark model, the roof drifts
25 for promising candidates with similar building volumes are reduced by more than 70% at
26 wind speeds higher than 50 m/s. This procedure is expected to provide an efficient
27 platform between owners, architects, and structural engineers to identify ideal
28 candidates within a defined design space for real-world applications of high-rise
29 buildings.

30

31 **Keywords:** Aerodynamic shape optimization, Surrogate modeling, Wind tunnel testing,
32 CNC manufacturing, Tall buildings, Aerodynamic strategies

33

List of acronyms and notations

ASO	Aerodynamic shape optimization
BLWT	Boundary layer wind tunnel
CAD	Computer-aided design
CAM	Computer-aided manufacturing
CFD	Computational fluid dynamics
CNC	Computer numerical control
CP-ASO	Cyber-physical aerodynamic shape optimization
EI	Expected improved
FND	Farthest neighbor distance
HFFB	High-frequency force balance
KRL	KUKA Robot Language
IIM&T	Parallel manufacturing and testing
MSE	Mean square error
NHERI EF	Natural Hazards Engineering Research Infrastructure Experimental Facility
NMFP	Number of maximum feasible points
OTM	Overturning moment
PSD	Power spectral density
RPM	Revolutions per minute
SB-ASO	Surrogate-based aerodynamic shape optimization

SB-CP-ASO	Surrogate-based cyber-physical aerodynamic shape optimization
SQ	Square
TOPSIS	Technique for Order of Preference by Similarity to Ideal Solution
UF	University of Florida
\bar{CMD}	Mean along-wind base moment coefficient
RMS_{CML}	Root mean square across-wind coefficient
σ_{CML}	Standard deviation across-wind coefficient
B	The width of square section
B_F	Building width
d	The depth of side protrusion
f_1	Fundamental frequency
H_F	Building height
w	The width of side protrusion
ξ	Damping ratio

34

35

36 **1. Introduction**

37 It is well recognized that aerodynamic modification is an effective strategy to
 38 mitigate wind responses for high-rise buildings. The modification strategies can be
 39 divided into two categories: (1) cross-section modification and (2) height modification.
 40 The idea of cross-section modification is to alter flow characteristics, such as flow
 41 separation, flow attachments, or vortex shedding frequencies, by changing side (Lu et
 42 al., 2023) or corner geometries (Stathopoulos, 1985; Kwok et al., 1998; Kawai, 1998;
 43 Tamura and Miyagi, 1999; Gu and Quan, 2004; Tse et al., 2009; Tanaka et al., 2012;
 44 Carassale et al., 2014; Gu et al., 2020; Li et al., 2020). The concept of height
 45 modification is to destroy the coherence of vortex shedding in the across-wind direction
 46 by changing the cross-section at different elevations for a building. Methods include
 47 twisting (Tanaka et al., 2012; Li et al., 2021), tapering (Tanaka et al., 2012; Chen et al.,
 48 2021; Li et al., 2022), and setback (Kim and Kanda, 2010; Kim et al., 2011; Tanaka et

49 al., 2012; Kim and Kanda, 2013). For the setback strategy, there is no study to
50 systematically compare the aerodynamic behavior of high-rise buildings with different
51 cross-sections at different elevations. For example, the ideal transition heights and ideal
52 cross-sections at different elevations to mitigate wind responses is not clear. Thus,
53 more information regarding on how to effectively utilize this strategy in real-world
54 applications is needed. Due to the larger design space, however, it may not be feasible
55 to find the answers using parametric study.

56 Instead, optimization is an efficient technique to seek ideal candidates in a large
57 design space for an unknown problem with predefined objectives and constraints using
58 limited resources. To find better solutions, potential candidates can be generated using
59 traditional optimization strategies, such as particle swarm algorithms or genetic
60 algorithms, and the outputs are evaluated immediately at each iteration until a stop
61 criterion is activated. Valid solutions are returned anytime along the iteration before the
62 results are converged. For problems that consist of continuous variables, such as shape
63 optimization, it is expected that there is a correlation in behavior between adjacent
64 solutions. This characteristic can be leveraged using the surrogate modeling technique
65 (Jones et al., 1998; Forrester and Keane, 2009; Ahmed et al., 2009) to predict the
66 behavior of the entire search space with limited data points. To increase the accuracy of
67 surrogate modeling, an adaptive infilling strategy based on the latest collected
68 information can be used to achieve the goal of optimization. This technique is called
69 surrogate-based (or model-based) optimization procedure. In comparison with the
70 traditional optimization strategies, this is a more efficient technique for problems with
71 large search space. The surrogate-based aerodynamic shape optimization (SB-ASO)

72 procedure has been successfully applied to different wind-sensitive structures in civil
73 engineering, including bridge decks (Xu et al., 2020), large-span structures (Qiu et al.,
74 2022), low-rise buildings (Townsend et al., 2023), and high-rise buildings (Bernardini et
75 al., 2015; Elshaer et al., 2017; Ding and Kareem, 2018; Elshaer and Bitsuamlak, 2018;
76 Paul and Dalui, 2021; Wang et al., 2022; Wang et al., 2023) using computational fluid
77 dynamics (CFD) or offline wind tunnel testing data.

78 For high-rise buildings, however, CFD simulation is not able to accurately capture
79 the flow characteristics around a bluff body immersed in the boundary layer effects
80 (Bernardini et al., 2015), in particular when deviating from classical benchmark shapes.
81 According to ASCE 7-22, conducting wind tunnel testing is required to obtain the design
82 demands for tall buildings which are not with regular external shapes. Since uniqueness
83 is an important design objective, it is reasonable to say that wind tunnel testing is
84 needed for all high-rise buildings for real-world applications. However, there is currently
85 no study to integrate a SB-ASO procedure with physical testing, meaning that only
86 limited candidates are evaluated in the wind tunnel at the preliminary design stage.

87 Fig. 1 (a) shows an iterative traditional cyber-physical aerodynamic shape
88 optimization (CP-ASO) procedure, which involves three components: model
89 manufacturing, model testing, and an optimization algorithm. The cyber component can
90 be a traditional or surrogate-based optimization algorithm. In the iterative process, the
91 new data point for manufacturing and testing is unknown until the latest results are
92 obtained. This implies that model manufacturing plays a crucial role on the efficiency of
93 the entire procedure since the testing cannot be carried out until the model is produced,
94 which is a major difference for optimization problems using physical testing. The issue

95 of manufacturing can be relieved if a new testing candidate can be rapidly changed via
96 adaptive mechanical devices, such as the height of parapet wall of a low-rise building
97 (Whiteman et al., 2018), the fundamental frequencies of a high-rise building
98 (Fernandez-Caban et al., 2020), and the angles of a fin system for a high-rise building
99 (Whiteman et al., 2022). However, only changes within the mechanical range of motion
100 can be achieved using mechatronic models, implying that the dimensionality/complexity
101 of the search space is limited due to physical constraints.

102

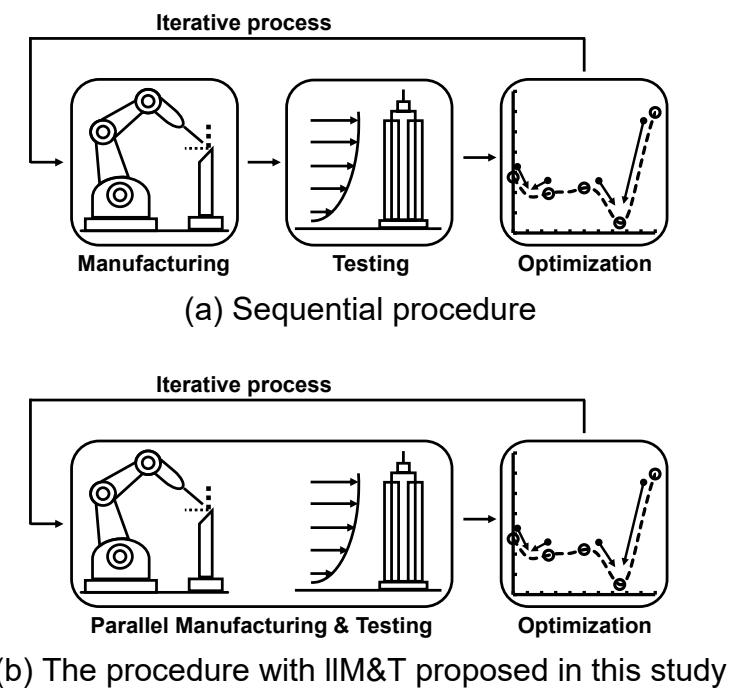


Fig. 1. Conceptual procedure for CP-ASO procedure

103

104 For SB-ASO, there are several types of surrogate models available in the
105 literature, including kriging, radial basis function, support vector regression, artificial
106 neural network, etc. Among these surrogate models, kriging is a Gaussian process
107 interpolation technique that can predict outputs based on the distances and variations

108 between collected data points (Krige, 1951; Matheron, 1963; Sacks et al., 1989).
109 Although there are variations of kriging, ordinary kriging is the most common model type
110 used by several studies (e.g., Bernardini et al., 2015; Xu et al., 2020; Qiu et al. 2022)
111 because it is easy to select model parameters. In ordinary kriging, users only need to
112 determine the type of regression model and the range of the corresponding
113 hyperparameter.

114 In addition, kriging is able to provide the predicted mean square errors (MSEs) in
115 the design space, which is a promising indicator for adaptive infilling since all collected
116 data points can be used for updating the surrogate model. An MSE-based infill strategy
117 can be used to increase the global accuracy of surrogate modeling by infilling new data
118 points with the largest predicted MSE. For optimization purposes, after an acceptable
119 level of global accuracy is achieved, the second stage is to infill/validate the predicted
120 optimum if it has not been collected. For an unexplored problem, however, it may not be
121 easy to evaluate the global accuracy of a surrogate, meaning that it is hard to define the
122 stop criterion for the MSE-based approach in the two-stage optimization process.
123 Exhaustive global exploration will waste resources, while insufficient global exploration
124 will result in becoming trapped at local optimal solutions. Since the surrogate model
125 continues to be updated in the second stage, it is also not clear how many points need
126 to be infilled for optimum validation (optimization) purpose. Other than the MSE, the
127 expected improved (EI) is another popular infilling strategy to increase the local
128 accuracy of surrogate models by directly including the objective function when making
129 infilling decisions. However, this approach can easily get stuck at a local optimum if a

130 certain level of global accuracy is not achieved (Forrester and Keane, 2009), meaning
131 that EI is not a flexible approach for optimization.

132 Other than the robustness of the infilling strategy discussed above, there are
133 other considerations that need to be addressed when it comes to CP-ASO using the
134 surrogate model technique. First, in general, wind tunnel testing windows are reserved
135 in advance, meaning that the optimization process needs to converge within a fixed
136 time. Although a stop criterion based on time, such as total iteration, can be applied, it is
137 preferred to achieve a balance between global exploration of the search space and
138 convergence to the optimization results by fully utilizing the entire testing window (not to
139 stop too early). Second, the CP-ASO procedure is using a physical resource and may
140 be interrupted. The ability to return valid optimum solutions anytime along the iteration
141 process is preferred, which is not be able to achieve using either the MSE or EI
142 strategies because data points are not infilled at predicted optima. Third, the results of
143 physical testing are nondeterministic. The infilling strategy must include features to
144 address experimental uncertainty and also flag potential outliers. With the
145 aforementioned considerations, there is a need to develop a tailored infilling strategy for
146 the CP-ASO procedure using the surrogate-based technique.

147 This study proposes a surrogate-based cyber-physical aerodynamic shape
148 optimization (SB-CP-ASO) procedure for high-rise buildings. The procedure consists of
149 three components with techniques to overcome the aforementioned challenges, as
150 shown in Fig. 1 (b). In the physical part, an adaptive subtractive manufacturing
151 technique, which is able to produce complex external shapes for high-rise buildings, and
152 a high-throughput high-frequency force balance (HFFB) wind tunnel testing procedure

153 are developed at the University of Florida (UF) Boundary Layer Wind Tunnel (BLWT). In
154 the cyber part, a robust infilling strategy augmented with surrogate-based local search is
155 proposed to pursue a balance between global exploration and optimization. The infilling
156 strategy is able to: (1) return valid optimal solutions anytime in the iteration, (2) ensure
157 the local accuracy at promising regions, and (3) escape a local optimal solution. A
158 parallel manufacturing and testing (IIM&T) technique is realized by an indicator,
159 “sparsity level”, to integrate the three components together with the intention of
160 maximizing the throughput of the procedure. A double-section setback shape
161 optimization problem for high-rise buildings with three design variables is used to
162 demonstrate the robustness of the proposed procedure. Practical information is
163 provided regarding ideal transition position of the setback strategy with different cross-
164 sections.

165 This paper is organized as follows. Section 2 discusses some unique
166 considerations for shape optimization design of high-rise buildings. The three
167 components and IIM&T in the SB-CP-ASO procedure are introduced in Section 3. The
168 optimization problem and the setup of the SB-CP-ASO procedure are presented in
169 Section 4. The reliability of the three components and optimization results are discussed
170 in Section 5. The selection approach of promising candidates for high-rise buildings
171 considering multiple design wind speeds is presented in Section 6 with the conclusions
172 summarized in Section 7.

173

174 **2. Background**

175 To conduct wind design for high-rise buildings, both the time and frequency
176 domain results are needed to calculate the structural responses (e.g., base overturning
177 moment, roof drift, and roof acceleration) under different wind speeds and wind angles
178 (ASCE 7-22, 2022). Due to the variation of power spectral density (PSD) responses in
179 the frequency domain results, the structural responses do not change linearly with wind
180 speed. When aerodynamic strategies are compared, the relative performance between
181 different candidates varies with the design wind speed (Lu et al., 2023). This indicates
182 that different cities will have different optimal solutions given the same optimization
183 problem. Additionally, a promising candidate is expected to achieve multiple
184 aerodynamic performance objectives, such as serviceability and survivability at different
185 hazard levels (Kareem, 1983; Irwin, 2009).

186 Due to the complex behavior mentioned above, it may not be practical to use the
187 structural response or frequency domain results as an objective function for the
188 optimization process. Thus, statistics from time domain results are used as objectives
189 functions to find optimal candidates for SB-ASO problems of high-rise buildings
190 (Bernardini et al., 2015; Elshaer et al., 2017; Ding and Kareem, 2018; Elshaer and
191 Bitsuamlak, 2018, Paul and Dalui, 2021). However, the link between structural
192 responses under different design wind speeds and the time domain results were not
193 addressed in the literature. The appropriateness of using time-domain statistics for
194 surrogate modeling and optimization in achieving excellent structural scale responses
195 for high-rise buildings is needed.

196 In addition to aerodynamic performance, other design considerations, such as
197 aesthetic appeal, building volume, and operation purposes, also influence the external

198 shape of a high-rise building. Therefore, seeking a single solution with the best
199 aerodynamic performance is not enough for owners and architects at the preliminary
200 design stage. Instead, a group of candidates which can satisfy a defined threshold is
201 required for designers to have more freedoms to achieve different objectives, a practical
202 consideration of ASO procedure for high-rise building design.

203 This section discussed some unique aspects of optimization design for high-rise
204 buildings which are not addressed in the literature. A customized approach to identify a
205 set of ideal candidates under multiple design wind speeds for high-rise buildings will be
206 introduced along the optimization results in Section 6.

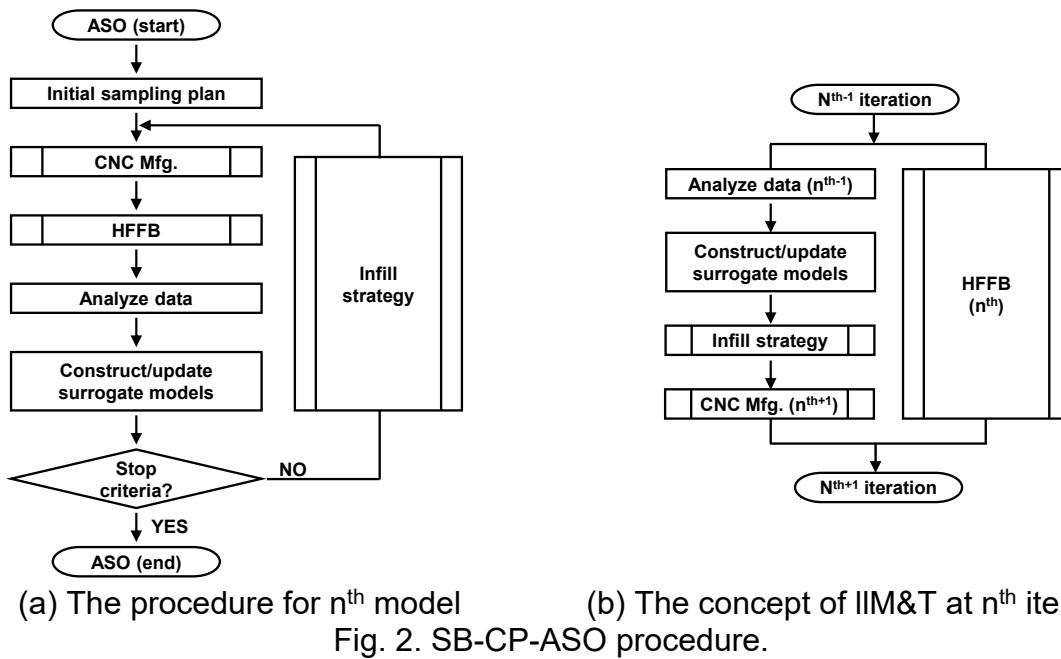
207

208 **3. SB-CP-ASO procedure**

209 The proposed SB-CP-ASO procedure is illustrated in Fig. 2 (a). The procedure
210 includes the following three components: (1) an adaptive milling manufacturing
211 procedure, discussed in Section 3-1, (2) a high-throughput wind tunnel testing
212 procedure, discussed in Section 3-2, and (3) a flexible infilling strategy, discussed in
213 Section 3-3. The procedure begins by selecting an initial set of samples within the
214 design space. The ideal number of initial samples is problem dependent. It can be
215 determined based on the number of models that can be evaluated in the testing window
216 or the number of feasible models in the search space. These samples are then
217 fabricated and evaluated in the wind tunnel. An initial kriging surrogate model is
218 constructed after the results of the initial samples are collected. From that point onward,
219 the kriging model is used as part of the infilling strategy to suggest the next sample to
220 manufacture and evaluate in the wind tunnel. After each testing, the kriging model is

221 updated and the process repeats. The iterative process is continued until one of the two
 222 established stop criteria for the infill strategy is activated. The first stop criterion is the
 223 total allowable duration of the tests, a practical limitation for a shared resource such as
 224 a wind tunnel. The second criterion is flexible and controlled by the optimization
 225 strategy, which will be discussed later (Section 3.3.3). Ideally, the stop criterion is
 226 activated by the optimization strategy, meaning the optimization results are converged.

227



228

229 As shown in Fig. 2(a), the efficiency of the procedure will be significantly reduced if
 230 the manufacturing and testing are in series for shape optimization problems with major
 231 modifications. To address this issue, the IIM&T is proposed to let the three components
 232 be conducted at the same time, as shown in Fig. 2 (b). It should be pointed out that Fig.
 233 2 (a) and (b) do not conflict with each other, but are illustrated from different
 234 perspectives, which are from the n^{th} model (Fig. 2 (a)) and n^{th} iteration (Fig. 2 (b)). The
 235 concept of IIM&T is to manufacture the $n^{\text{th}+1}$ model based on the available information

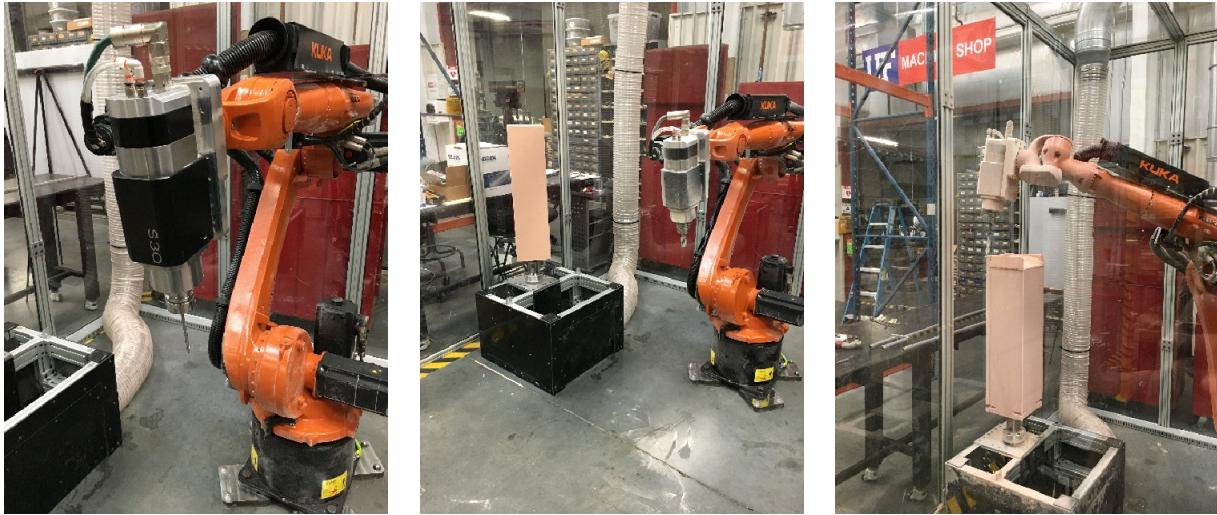
236 from cyber part (analyzing testing results, updating the surrogate model, and running
237 the infilling strategy) when the n^{th} model is tested in the wind tunnel. At each iteration,
238 the downtime can be minimized if the summation of the time for cyber part and physical
239 manufacturing is shorter than the time for physical testing. More details regarding how
240 to realize this technique will be discussed in Section 3-3.

241

242 **3.1 Adaptive subtractive manufacturing procedure**

243 Milling (subtractive manufacturing) is a process to manufacture a target shape by
244 removing material from an initial workpiece. This manufacturing process can be
245 achieved using computer numerical control (CNC) technique in which the movement of
246 milling tools is operated via pre-programmed numerical control. Multi-axis industrial
247 robotic arms are recognized as a promising tool for CNC milling manufacturing because
248 of their high flexibility and large workspace. A 6-axis industrial robotic arm (KUKA model
249 KR 20 R1810-2) was used to manufacture different models for this study, as shown in
250 Fig. 3. A 3 hp 18,000 rpm ATI Model SC30 spindle with automatic tool changer was
251 installed on the robot to control various flat and ball end mills for CNC milling (see Fig. 3
252 (a)). A turntable 50 cm away from the base of the robot was installed to provide an
253 additional axis (7th axis) to increase the workspace of the system (see Fig. 3 (b) and
254 (c)). A 5C collet chuck was installed on the turntable to hold a model for CNC milling
255 (see Fig. 4 (a)).

256



257
258 Fig. 3. Photographs for the adaptive CNC subtractive procedure.
259
260
261
262
263
264
265
266
267
268
269
270
271

Blocks of urethane foam material with a density of 96 kg/m^3 and a hardness of 8 Shore D on the Durometer scale were used to fabricate the models for wind tunnel testing. All model blanks began as a square prism $90 \text{ mm} \times 90 \text{ mm}$ in plan and 405 mm in height as shown in Fig. 4 (a). For a consistent base size for wind tunnel testing, all models included a 5 mm thick, $90 \text{ mm} \times 90 \text{ mm}$ square base. The top of this base was set flush with the wind tunnel floor. A 25.4 mm outer diameter hollow aluminum rod with 3.175 mm wall thickness was inserted in the model to provide sufficient stiffness to avoid interactions between the upper bound of the frequencies of interest and specimen's fundamental natural frequency under wind excitation. An $85 \text{ mm} \times 85 \text{ mm}$ in plan 10 mm thick 3D-printed collar was clamped to the aluminum rod and glued to the bottom of the model to provide torsional resistance between the rod and the model. Fig. 4 (b) shows the aluminum rod with the plastic collar. The rod and collar are reusable for a new foam blank.

(a) Blank model in the 5C collect chuck.

(b) Aluminum rod with plastic collar.

(c) Plate with the notch.

Fig. 4. Photographs of details for foam model.

272

273 The adaptive CNC subtractive manufacturing procedure is realized by a
 274 remanufacturing technique to reuse previously tested foam models, saving time and
 275 material. The procedure of the adaptive CNC manufacturing is illustrated in Fig. 5 (a).
 276 On the software side, an algorithm was developed to select from among a set of
 277 available, previously tested models. The previously tested models that the new target
 278 model can nest into are considered. Milling volumes are calculated based on the
 279 difference between the target model and the tested models. The zig-zag cutter path
 280 strategy, equidistant parallel lines that fit within the milling volumes, is adopted in this
 281 study to avoid redundant tool paths and to minimize manufacturing time. Parametric
 282 design for different CNC coordinate milling paths is developed using C# scripts to
 283 interface with computer-aided design/manufacturing (CAD/CAM) software Rhino6 and
 284 Grasshopper. A plug-in KUKAprc is used to convert the tool paths into KUKA Robot
 285 Language (KRL). If there is more than one feasible candidate, reusability and the
 286 predicted manufacturing time are used as selection criteria to prioritize the models. If

287 there are no suitable models available to reuse, a blank model (see Fig. 4 (a)) will be
 288 used to make the target model. On the hardware side, a 1 cm long notch is included at
 289 the end of all aluminum rods (see Fig. 4 (b)). A plate with the same notch, as shown in
 290 Fig. 4 (c), was installed at the bottom of the 5C collet chuck to ensure that a previously
 291 tested model can be reinstalled at the same elevation and orientation in the 5C chuck
 292 for remanufacturing.

293

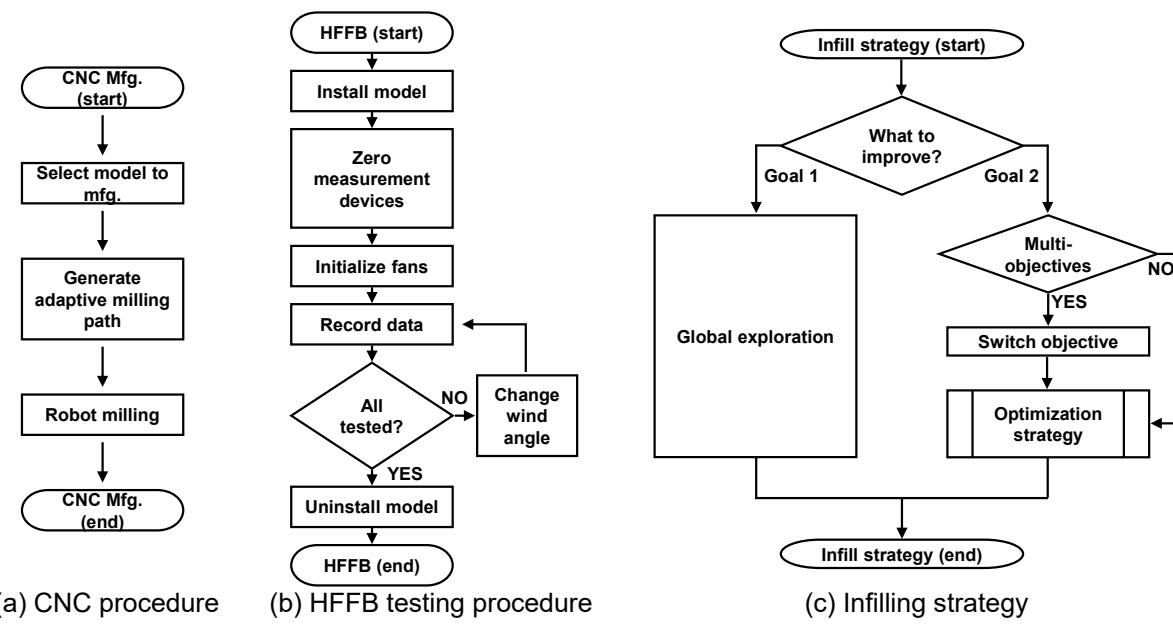


Fig. 5. Procedures for tasks described in Section 3.

294

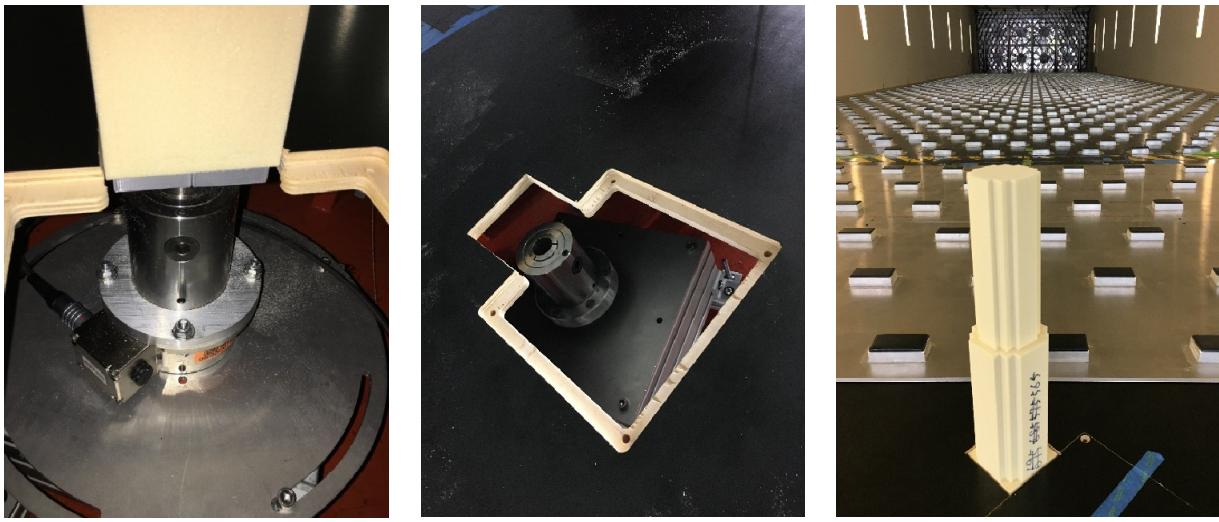
295 3.2 HFFB testing procedure and evaluation approach

296 A high-throughput HFFB BLWT testing procedure (Fig. 5 (b)) is established at the
 297 UF NHERI EF (Natural Hazards Engineering Research Infrastructure Experimental
 298 Facility) to accurately capture the base responses of different testing candidates with
 299 complex external shapes. The base responses (e.g., overturning moments, OTM) can
 300 be used to generate structural responses (e.g., roof drift) of interest (Tschanz and
 301 Davenport, 1983; Zhou et al., 2003; Kwon et al., 2008). The Terraformer, an automated

302 roughness grid composed of 1116 elements, was used to generate desired approach
303 flow conditions in the test section. More details of the UF BLWT can be found in
304 literature (Catarelli et al., 2020a; Catarelli et al., 2020b). In addition to approach flow
305 conditions, wind angle is another important testing condition for high-rise buildings
306 (ASCE 7-22, 2022). The desired wind directions were realized by an automatic turntable
307 in the wind tunnel. During testing, a TFI cobra probe was installed at the model height
308 offset in the spanwise direction to capture the reference wind speed.

309 The high-throughput testing procedure is supported by a fast installation
310 mechanism for the models. The installation mechanism is shown in Fig. 6. A 5C collet
311 chuck, which is identical to the chuck for manufacturing, was installed on a six-axis load
312 cell (ATI Industrial Automation, Delta model) to hold the models as shown in Fig. 6 (a).
313 The load cell was used to measure the base reactions during HFFB BLWT testing. On
314 the wind tunnel floor, a wood panel with a 96 mm x 96 mm square opening was made to
315 fit the base (90 mm x 90 mm square) for all testing models. A 180 mm x 180 mm square
316 opening provides access to the collet chuck nut for changing models (see Fig. 6 (b)).
317 This panel was closed during testing (see Fig. 6 (c)). With this setup, the models can be
318 installed quickly and at a consistent elevation and orientation. As shown in Fig. 5 (b),
319 the load cell and cobra probe were zeroed after model installation and prior to engaging
320 the fans.

321



(a) Close view (b) Wood panel (c) During testing

Fig. 6. The setup of load cell and 5C collect chuck in the wind tunnel.

322

323 In this study, the time series results of base moments were used to assess the
324 aerodynamic performance for each model. As mentioned in Section 2, both the time
325 domain and frequency domain results in different wind angles are needed to generate
326 the structural responses for high-rise buildings. In the time domain, the non-dimensional
327 base coefficients (mean, root mean square, and standard deviation) for each wind angle
328 were calculated. The PSD curves for each wind angle were calculated from the
329 frequency domain responses. The statistical time domain responses and PSD
330 responses were enveloped across all wind angles to generate full-scale OTM responses
331 at different wind speeds assuming a Gaussian process. The structural responses were
332 calculated using a modal analysis procedure (Zhou et al., 2003; Kwon et al., 2008).
333 More details on this HFFB post-processing approach can be found in the literature (Lu
334 et al., 2023).

335

336 3.3 Infilling strategy

337 For continuous problems, parameter discretization is a crucial step to achieve an
338 economical and effective optimization process. If the discretization interval is too large,
339 a critical design alternative might be missed. If the interval is too small, the results might
340 be insensitive to the incremental changes of inputs, leading to redundant samples and
341 wasted resources. For physical testing, furthermore, the difference in results between
342 neighboring samples may be dominated by experimental uncertainty rather than the
343 small interval of input parameters, complicating the optimization process and surrogate
344 modeling. Thus, appropriately selecting intervals for the design parameters is an
345 important step for the infilling strategy.

346 The flow chart of the infilling strategy is shown in Fig. 5 (c). There are two goals
347 for the infilling strategy: (Goal 1) improving the global accuracy of surrogate modeling,
348 and (Goal 2) seeking the optimum solution for an objection function. In this study wind,
349 tunnel testing controls the throughput, so only one data point is infilled at each iteration.
350 As mentioned in Section 1, it is not easy to evaluate the global accuracy for an
351 unexplored surrogate model problem. Instead of adopting a decoupled strategy where
352 the surrogate model is fully trained and then used to evaluate the optimal solution, a
353 switch between the two infilling goals along the SB-CP-ASO procedure is proposed in
354 this study. There are two benefits for the switch between the two infill goals. First, the
355 ASO procedure can return a set of valid optimum solutions anytime in the case that the
356 physical testing must be halted prematurely. Second, it naturally introduces a jump-out
357 mechanism into the optimization process.

358 The infill ratio and conditional operation between the two infill goals can be
359 defined by the user. A larger infill ratio on global exploration leads to a better

360 understanding of the entire design space but more iterations will be needed to achieve
361 the convergence of the procedure. In contrast, if the infill ratio on optimization is higher,
362 the solution will converge more quickly, but the chance of getting stuck at a local
363 optimum is increased. The operator that selects between the two infill goals can be fixed
364 or evolve based on the iteration count or results themselves. In addition to single
365 objective, the procedure is also able to pursue multiple objectives in parallel as needed,
366 as shown in Fig. 5 (c). It is suggested to switch the optimization objectives in a fixed
367 sequence at each iteration.

368

369 **3.3.1 Sparsity level for IIM&T**

370 As shown in Fig. 2 (b), the idea of IIM&T is to manufacture the n^{th+1} model when
371 the n^{th} model is tested in the wind tunnel. Since the output for the n^{th} model is unknown,
372 the sparsity level is proposed in the infilling strategy to consider the position (input) in
373 the design space of the 1st to the n^{th-1} previously tested models and the n^{th} model in the
374 wind tunnel. With parameter discretization, there are finite data points that can be
375 infilled in the design space. The sparsity level is defined as the ratio between the
376 number of uncollected points and the number of maximum feasible points (NMFP) that
377 can be infilled within the farthest neighbor distance (FND) for a point of interest. The
378 FND is defined as:

$$FND = \sqrt{D * d^2} \quad (1)$$

379 where D is the dimensionality of the problem and d is the normalized unit-distance in the
380 design space. The concept of sparsity level is illustrated in Fig. 7 using a 2D example.
381 The unit distance is 1 for both variables and the corresponding FND is 1.4-unit distance.

382 For Point A, the NMFP is 8 and there are 7 uncollected points, which can be infilled
383 within the FND. The corresponding sparsity level for Point A is 87.5% (=7/8). The
384 sparsity levels for Point B and Point C are 67% (=2/3) and 60% (=3/5), respectively.
385 Because the sparsity level is normalized by the NMFP, it fairly evaluates points on the
386 vertexes, edges, and interior of the design space.

387

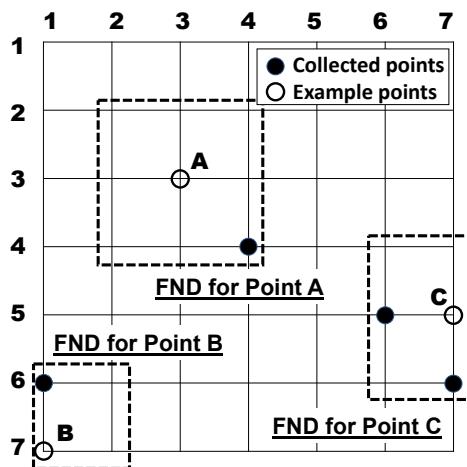


Fig. 7. The concept of sparsity level.

388

389 **3.3.2 Infill Goal 1: Global exploration**

390 For infill Goal 1, the predicted MSE (from kriging) and sparsity level (Section
391 3.3.1) are considered when selecting the infilling point. Both the collected information of
392 input and output is used to generate the predicted MSEs for all uncollected points
393 except for the model in the wind tunnel. The inputs for all tested models and the current
394 model in the wind tunnel are used to calculate the sparsity level. The technique for order
395 of preference by similarity to ideal solution (TOPSIS, (Hwang et al., 1981; Yoon, 1987;
396 Hwang et al., 1993)) is used to calculate the scores using the predicted MSE and
397 sparsity level for all candidate points (uncollected points excluding the model in the wind

398 tunnel) at each iteration. The point with the highest score from the TOPSIS is selected
399 for the infilling point and manufacturing.

400 In general, the predicted MSEs are proportional to the distance between
401 predicted points and collected points. If collected points are sparse at a region, the
402 corresponding predicted MSEs for the uncollected points will be relatively high in the
403 region. Sparsity level is proposed to realize the IIM&T technique by compensating for
404 the unknown outputs of the model currently in the wind tunnel. If the sparsity level is not
405 adopted, the suggested infill point will cluster together with the model currently in the
406 wind tunnel due to the high predicted MSE, resulting in redundant exploration. On the
407 other hand, the sparsity level alone is insufficient because most uncollected points will
408 have the same sparsity score of 100%. To balance the two criteria, it is suggested to
409 use equal weight ratios for the sparsity level and the predicted MSE to ensure the
410 effectiveness of the IIM&T technique.

411

412 **3.3.3 Infill Goal 2: optimization**

413 The procedure of the infill strategy for optimization is illustrated in Fig. 8. The first
414 step is to determine the predicted optimal solution from the most up-to-date surrogate
415 model. There are only two situations for the predicted optimal solution as illustrated in
416 Fig. 9 using a 1D example. For Situation (a), the predicted optimum is better than the
417 best observation (see Fig. 9 (a)). Situation (a) represents that the predicted optimum
418 has not been collected. As mentioned in Section 1, wind tunnel testing is required when
419 evaluating wind loads high-rise buildings with irregular shapes. This implies that
420 promising aerodynamic shapes should be evaluated in the wind tunnel. By infilling a

421 data point at the predicted optimum (“optimum validation” as shown in Fig. 8), the
 422 concern of an inaccurate prediction is relieved. For Situation (b), the surrogate model’s
 423 predicted optimum has already been gathered via wind tunnel testing (see Fig. 9 (b)).
 424 For this situation, a surrogate-based local search strategy will be executed with infilling
 425 to: (1) seek a better neighboring solution, and (2) ensure the local accuracy around the
 426 predicted optimum.

427

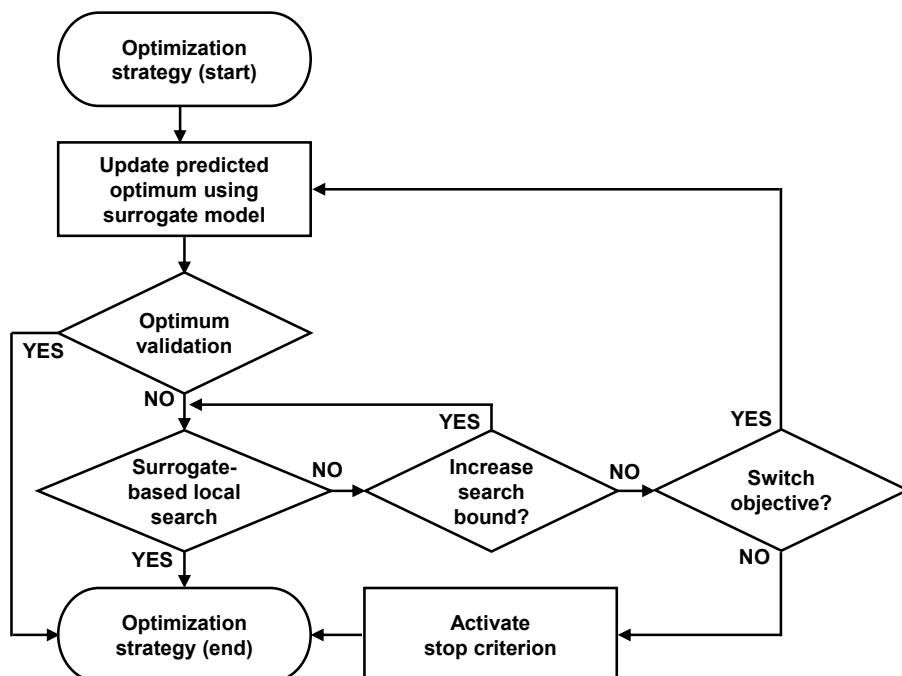
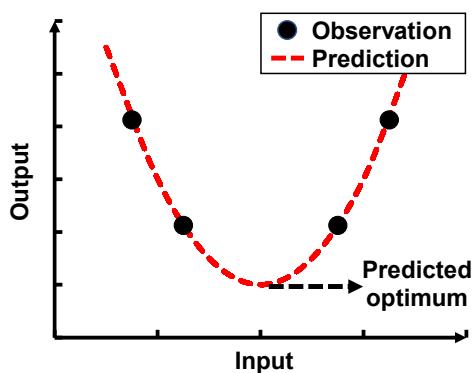
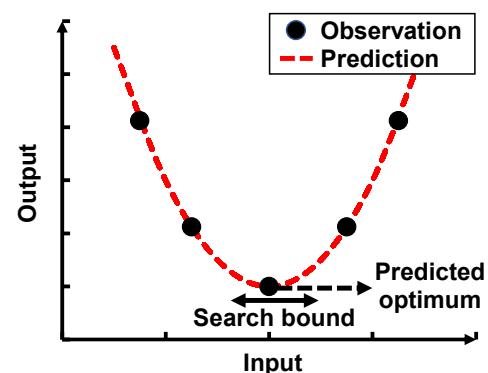


Fig. 8. Selecting an infill point based on optimization.

428



429 Fig. 9. The two situations for optimization infilling

430 The idea of the surrogate-based local search is to infill an uncollected data point
431 with the largest predicted MSE within a defined search bound, as shown in Fig. 10. The
432 search bound is centered on the predicted optimum/best observation (e.g., Point A
433 (3,3), see Fig. 10). The radius of the search bound ranges from the discrete distance of
434 1-unit distance to the FND of the search space (e.g., 1.4-unit distance for 2D problem),
435 which is related to the convergence speed of the optimization process. With parameter
436 discretization, the numbers of points that can be infilled in Fig. 10 for 1-unit and 1.4-unit
437 distance are 4 points and 8 points, respectively. For a large search bound (e.g., 1.4-unit
438 distance), although there are more data points (8 points) that need to be infilled to reach
439 convergence, the chance to achieve a better solution using fewer overall iterations
440 increases. The reason behind this is because the uncollected points (Point (2,2), Point
441 (2,4), Point (4,2), and Point (4,4)) with the greatest distance from the center of the
442 search bound have a higher chance to be infilled first due to the larger predicted MSE. If
443 a better solution occurs at one of these points, several intermediate iterations can be
444 avoided in comparison with using 1-unit distance as the search bound. Since the
445 optimum prediction is updated at every iteration, the center of the search bound might
446 move along the iteration. If the predicted optimum/best observation remains the same
447 and all points within the search bound are all collected, then that objective is considered
448 converged.

449

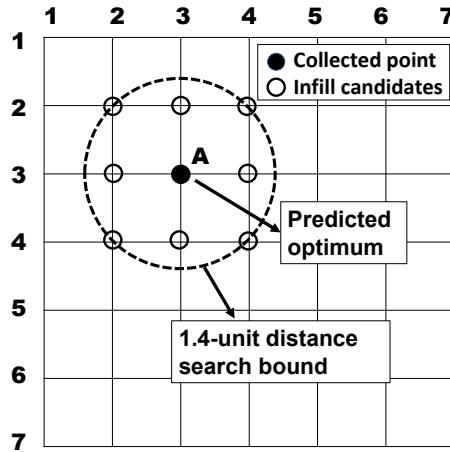


Fig. 10. The concept of surrogate-based local search

450

451 In general, the ideal size of the local search bound is problem-dependent.
 452 Instead of a fixed local search bound, an adaptive local search bound along the iteration
 453 process is proposed in this study. A small local search bound can be taken as a starting
 454 point. For single-objective case, if the results are converged early in the reserved testing
 455 window, the procedure can be continued by increasing the size of the local search
 456 bound. If the local search bound is full and not increased, the stop criterion of the
 457 optimization process will be activated (see Fig. 8). With the adaptive search strategy,
 458 the entire testing window is expected to be fully utilized since stop criterion is controlled
 459 by users.

460 For the multi-objective case, each objective is fit using its own independent
 461 surrogate model. As a new point is infilled, all surrogate models are updated in parallel.
 462 In other words, infilling for one objective will improve the surrogate modeling of all
 463 objectives at that infill point. By doing this, seeking a better optimal solution for one
 464 objective can benefit to the global accuracy or the optimal solutions for other objectives.
 465 If an objective is converged, then either: (1) the search bound can be increased for the

466 objective, or (2) the algorithm can switch to another optimization objective at this
467 iteration (see Fig. 8). Note that it is possible to discover a better solution from the jump-
468 out mechanism, even for objectives that had been considered converged. For this
469 reason, it is suggested to increase the search bounds for different objectives at the
470 same time.

471

472 **3.3.4 Summary of infilling strategy**

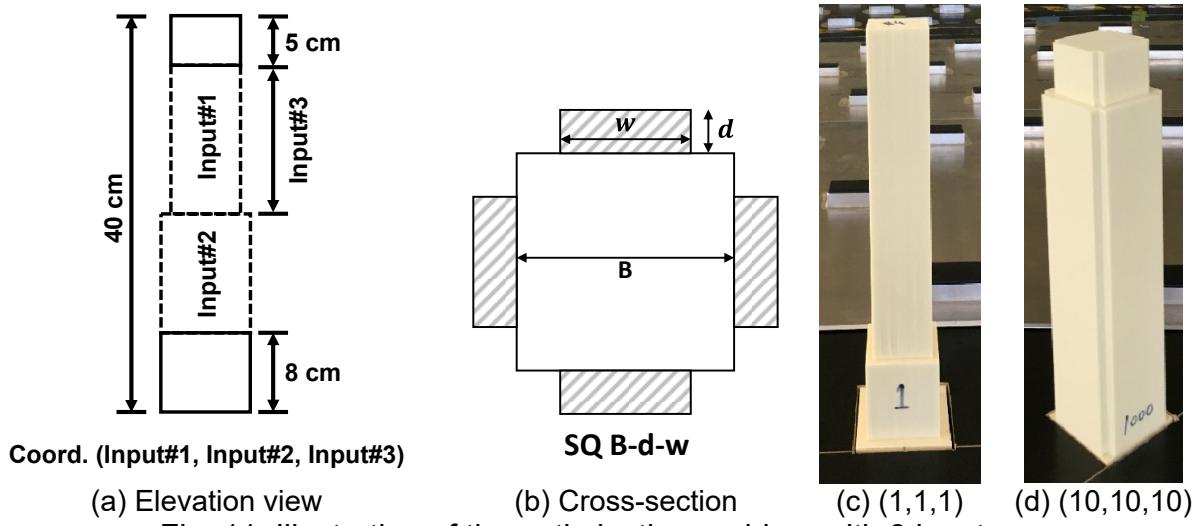
473 As mentioned in Section 1, the issues of the two-stage infilling strategy of MSE
474 and optimal validation are (1) not easy to define a stop criterion between the two
475 strategies, and (2) easy to get trapped at a local optimal solution with insufficient global
476 exploration. By switching the two infilling strategies, the first issue disappears and the
477 second issue is partially resolved. In addition to find a better solution, the surrogate-
478 based local search algorithm is able to further relieve the second issue by improving the
479 local accuracy of promising region when the surrogate model suggests the same
480 optimal solution. The benefits of improving local accuracy are to (1) find similar
481 promising solutions within the search bound, which provide important information for
482 architectural considerations (see Section 2), and (2) eliminate the concerns of
483 uncertainties from physical testing based on the trends of the results in the local search
484 bound. The two benefits cannot be achieved using the global exploration goal, meaning
485 that the proposed surrogate-based local search optimization procedure is a practical
486 step for SB-CP-ASO problems of high-rise buildings.

487

488 **4. Optimization problem and the setup of the SB-CP-ASO procedure**

489 A double-section setback building with three design variables is selected as an
 490 example to demonstrate the robustness of the proposed ASO procedure. The elevation
 491 view of the problem is presented in Fig. 11(a). The total model height is fixed at 40 cm.
 492 Input#1 and Input#2 are the widths of side protrusions on the top and bottom sections,
 493 respectively (Fig. 11(b)). Input#3 is the transition position between the two sections. The
 494 top and bottom sections can each independently be described by the designation SQ B-
 495 d-w, as shown in Fig. 11 (b), where SQ represents the square section, B is the
 496 dimension of the square, d is the depth of side protrusion, and w is the width of side
 497 protrusion. B and d are fixed for each of the two sections, resulting in one parameter w
 498 for each section. In this study, the depth ratio is defined as the ratio between d and B
 499 and the width ratio is defined as the ratio between w and B.

500



504

505 The design space is discretized into 10 options for each input. Discrete options
 506 for Input#1 and Input#2 are shown in Fig. 12 and Fig. 13, respectively. The depth ratios,
 507 which are fixed, for the top and bottom sections are 12.5% (7 mm) and 14.3% (10 mm),

505 respectively. The width ratios, which are the design variable for both sections, vary from
 506 0% to 100%. The smallest intervals of side protrusion width for the top and bottom
 507 sections are 6 mm and 8 mm, respectively, which are equivalent to a 10% modification
 508 ratio with respect to the square section. Based on the literature (Stathopoulos, 1985;
 509 Kwok et al., 1998; Kawai, 1998; Tamura and Miyagi, 1999; Gu and Quan, 2004; Tse et
 510 al., 2009; Tanaka et al., 2012; Carassale et al., 2014; Gu et al., 2020; Li et al., 2020; Lu
 511 et al., 2023), these intervals are sufficient to produce different aerodynamic responses
 512 (i.e., detectable above experimental uncertainty). It can be observed that the top section
 513 can always nest into the bottom section, ensuring that any combination of the two
 514 features will result in a realistic building. Table 1 lists the transition positions for Input#3
 515 with an interval of 30 mm (7.5% of model height). The lowest and highest transition
 516 positions are 80 mm (20% of model height) and 350 mm (87.5% of model height),
 517 respectively from the ground.

518

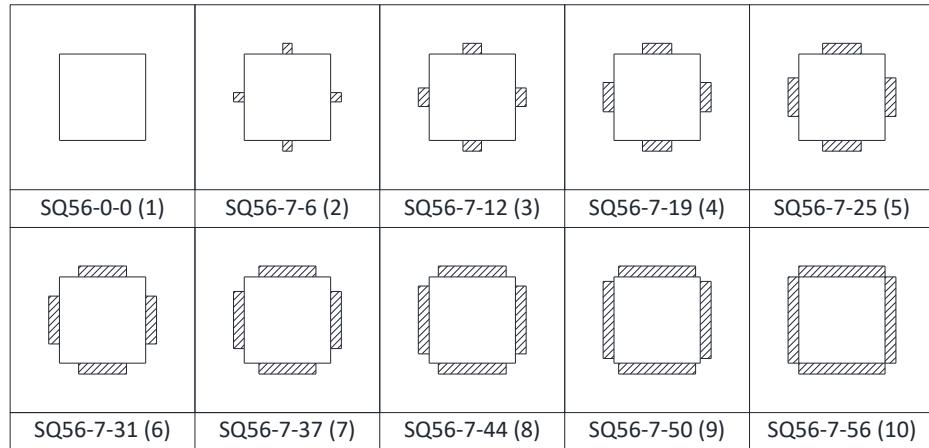


Fig. 12. Plan view and detail for the top section (Input#1). The numbers in the parentheses indicate the corresponding coordinates in the optimization problem.

519

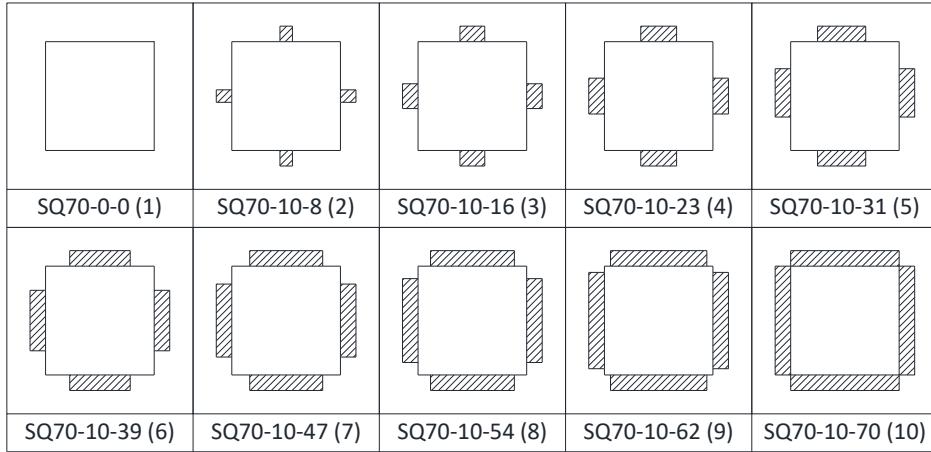


Fig. 13. Plan view and detail for the bottom section (Input#2). The numbers in the parentheses indicate the corresponding coordinates in the optimization problem.

520

521

Table 1. The transition positions for input#3.

Option	Transition height (mm)	Percentage of bottom section (%)
1	80	20%
2	110	27.5%
3	140	35%
4	170	42.5%
5	200	50%
6	230	57.5%
7	260	65%
8	290	72.5%
9	320	80%
10	350	87.5%

522

523 With the selected parameter discretization, there are 1000 feasible candidates,
 524 which cannot feasibly be explored using an exhaustive search approach through wind
 525 tunnel testing. Each candidate can be represented using coordinates (Input#1, Input#2,
 526 Input#3) with a range of [1,10] in the search space. Among the candidates, the max
 527 (10,10,10) and minimum (1,1,1) building volumes are 2930 cm² and 1397 cm²,
 528 respectively (see Fig. 11 (c) and (d)). A prismatic square model (70 mm x 70 mm,
 529 SQ70) with a volume of 1960 cm², which is in the middle of the search space, is taken
 530 as the benchmark to validate the wind tunnel testing conditions and to demonstrate the

531 benefits of the setback strategy. Although the range of the building volume is significant
532 in the design space, the solutions with ideal aerodynamic performance are not expected
533 to occur at the extreme model volumes. In addition, as mentioned in Section 2, there
534 are other factors need to take into consideration when it comes to design a high-rise
535 building, such as operation purpose, construction cost, and return on investment, etc.
536 The aerodynamic performance of the models with extreme building volumes can
537 provide useful references for designers to evaluate optimal candidates in the preliminary
538 design stage.

539

540 **4.1 The setup of the adaptive subtractive manufacturing procedure**

541 As mentioned in Section 3, previously tested models will be reused in the ASO
542 procedure to the extent possible to save material cost and manufacturing time. There
543 were 50 pairs of rods and collars (see Fig. 4 (b)) created to support a maximum of 50
544 models at the same time in the lab. A maximum of 40 tested models were preserved for
545 reuse alongside ten blanks. If there were more than 40 tested models, some of the
546 models were abandoned based on their remaining usefulness to make new blank
547 models (see Fig. 4 (a)). Ten new blank models were prepared in advance each day in
548 case a target model cannot nest into any of the preserved models.

549

550 **4.2 The setup of the HFFB procedure**

551 **4.2.1 Wind angle**

552 Wind angle is another parameter that needs to be evaluated for wind design
553 since the critical response can occur at any wind direction for high-rise buildings with

554 different aerodynamic shapes (Lu et al., 2023). In theory, wind angle could be an input
555 to the surrogate model, such as the literature using CFD simulation (Elshaer et al.,
556 2017; Elshaer and Bitsuamlak, 2018), implying that there is no need to test all wind
557 angles for a given shape. However, such an approach will lead to several problems for
558 SB-CP-ASO procedure. First, models with the same shape may need to be retested at
559 different times for different wind angles. Since it is impractical and impossible to
560 preserve all models with limited space and resources, the same model may need to be
561 remanufactured several times. Second, the demand of accuracy for surrogate modeling
562 is increased since the objective function is pursuing the best performing model from the
563 worst performing wind angle. Third, there is a fixed time to setup a model before data
564 collection no matter how many wind angles are evaluated, including model installation,
565 zeroing measurement devices, and initializing fan speeds (see Fig. 5 (b)). If the same
566 model is tested at different times, the time to collect data will be significantly reduced.

567 For the aforementioned reasons, wind angle is taken as a testing condition and
568 not as an input in the SB-CP-ASO procedure. An additional benefit to testing all wind
569 angles is that the trend of the responses across different wind angles can be used to
570 evaluate whether a response is an outlier or not (i.e., the responses should not differ
571 significantly from the responses at adjacent wind angles) since the results of wind
572 tunnel testing are nondeterministic. Note that the pros and cons of taking wind angle as
573 a testing condition mentioned above do not apply for studies using CFD simulation,
574 another critical difference between SB-ASO and SB-CP-ASO procedures.

575

576 **4.2.2 Testing conditions**

577 Since all models are doubly-symmetric, a total of 10 wind angles from 0° to 45° at
578 5-degree increments was used as a testing condition. To simulate the boundary layer
579 effects, a suburban terrain condition with power-law index of 0.22 was generated in the
580 test section with a length scale ratio of 1:750. The mean wind speed at model height
581 was 9.8 m/s with a fan speed of 750 RPM (revolutions per minute). The approach flow
582 conditions were evaluated in the longitudinal direction including: (1) mean wind speed
583 profiles, (2) turbulence intensity profiles, and (3) PSD at the model height. More details
584 of the approach flow conditions can be found in the literature (Lu et al., 2023). In
585 addition, the aerodynamic performance of the benchmark model, SQ70, was evaluated
586 in the testing condition before exploring the optimization problem using the SB-CP-ASO
587 procedure. By doing this, the testing setup, including measurement devices, approach
588 flow conditions, and model orientations can be validated with benchmark data.

589 To calculate the structural responses, the structural properties assumed for this
590 study are summarized in Table 2. The full-scale building height and width were 300 m
591 and 52.5 m, respectively. The fundamental frequency was assumed to be 0.1 Hz with a
592 damping ratio of 1%. The building density was assumed as 200 kg/m³. Linear mode
593 shapes in the along and across wind direction were considered.

594

595 **Table 2. Structural properties.**

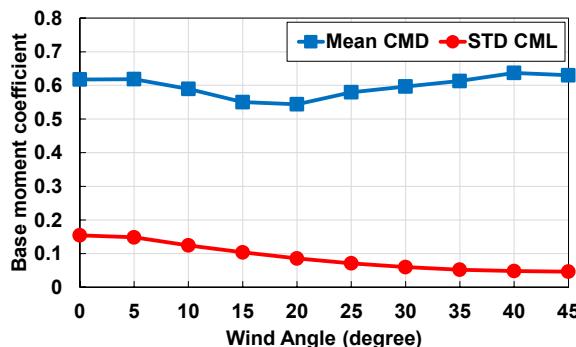
Parameters	Value
Building height, H_F	300 m
Building width, B_F	52.5 m
Fundamental frequency, f_1	0.1 Hz
Damping ratio, ξ	0.01
Mass per unit volume	200 kg/m ³

596

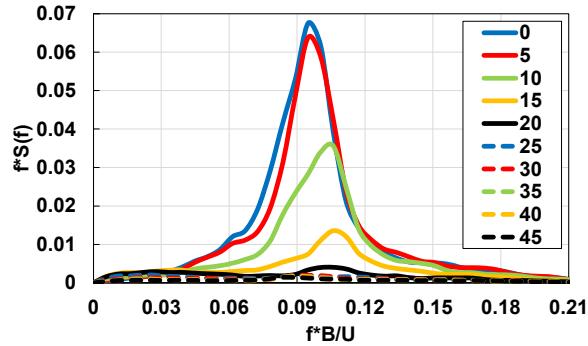
597 **4.2.3 Aerodynamic response of the benchmark model**

598 Fig. 14 (a) shows the variation of base moment coefficients for the benchmark
599 model (SQ70) under different wind angles. The peak \overline{CMD} (mean along-wind base
600 moment coefficient) is 0.64 at the wind angle of 40° , and the peak σ_{CML} (standard
601 deviation across-wind coefficient) is 0.15 at the wind angle of 0° . Fig. 14 (b) shows the
602 PSD responses for the benchmark model in the across-wind direction under different
603 wind angles. The responses are mainly dominated by the wind angle of 0° with the
604 Strouhal number of 0.1. As wind angles larger than 20° , the amplification effects are
605 negligible in comparison with the wind angle of 0° . Both the time and frequency domain
606 results are consistent with the literature (Tamura and Miyagi, 1999; Tanaka et al., 2012;
607 Carassale et al., 2014; Lu et al., 2023). Fig. 14 (c) shows the peak roof drift demands
608 for the benchmark model for wind speeds of 40 m/s to 60 m/s. The drifts are controlled
609 by the across-wind direction. The roof drift demands are larger than 2% and 3% at the
610 wind speeds of 48 m/s and 53 m/s, respectively, suggesting the need to suppress wind
611 responses through aerodynamic modification strategies.

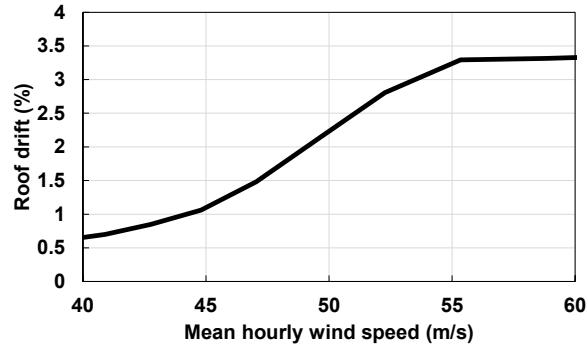
612



(a) Base moment coefficients



(b) PSD responses



(c) Roof drift demands

Fig. 14. Wind tunnel testing results for the benchmark model

613

614 **4.3 The setup of the infilling strategy**

615 Based on the available BLWT testing window and the expected throughput of the
 616 SB-CP-ASO procedure, the first stop criterion was set as 200 iterations (specimens).
 617 Ten initial samples were selected using the Latin Hypercube Sampling technique
 618 (McKay et al., 1979). Three optimization objectives, mean along-wind coefficient (\overline{CMD}),
 619 RMS across-wind coefficient (RMS_{CML}), and standard deviation across-wind coefficient
 620 (σ_{CML}), were pursued in parallel in the optimization process. The \overline{CMD} , RMS_{CML} , and
 621 σ_{CML} refer to the maximum values across all wind angles. An independent ordinary
 622 kriging model using the Gaussian regression approach was generated for each of the
 623 objective functions using the ooDACE (Cnockaert et al., 2014) toolbox in MATLAB. As a
 624 proof-of-concept study, three objectives were selected to demonstrate that multiple

625 objectives can be pursued in parallel. Note that when infilling for one of the three
626 objectives, the accuracy of the surrogate model for all three objectives is improved.
627 Alternatively, because σ_{CML} is critical to the wind response of tall buildings, it could have
628 been pursued in isolation.

629 A fixed, equal ratio was used to alternate between infill goals of global
630 exploration (Goal 1) and optimization (Goal 2). For global accuracy infilling, TOPSIS
631 weights were selected as 0.5 for the sparsity level and 0.167 each for the predicted
632 MSEs of the three optimization objectives. For optimization infilling, a fixed-sequence for
633 the three objective functions was adopted, essentially converging them in parallel. With
634 the three design variables (3D problem), the available search distances are 1-unit, 1.4-
635 unit, and 1.7 unit- distances. The initial local search bound for the three objectives was
636 select as 1.4-unit distance with the intention to demonstrate that a better solution can be
637 achieved through a shortcut path. With two alternating infill goals and three alternating
638 objectives, the infill pattern repeats every six iterations. If one objective is converged
639 (the search bound is full), the optimization infilling will focus on other objectives instead
640 (e.g., infill pattern repeats every four iterations). The local search bounds for the three
641 objectives will be increased to 1.7 unit-distance at the same time until the optimal
642 solutions are all converged if there is enough testing time remaining.

643

644 **5. The optimization results of the SB-CP-ASO procedure**

645 This section discusses the optimization results of the double-section setback
646 problem through the SB-CP-ASO procedure. A total of 173 models were evaluated in 11
647 workdays. The three optimization objectives all converged with a search bound of 1.4-

648 unit distance. The reliability and the throughput of the adaptive subtractive
649 manufacturing and HFFB testing procedures are discussed in Sections 5.1 and 5.2,
650 respectively. The robustness of the infilling strategy is discussed in Sections 5.3 and 5.4
651 with respect to the input of samples and the convergence history of the three objective
652 functions. A brief summary of the SB-CP-ASO procedure is presented in Section 5.5.

653

654 **5.1 Evaluation of the adaptive subtractive manufacturing procedure**

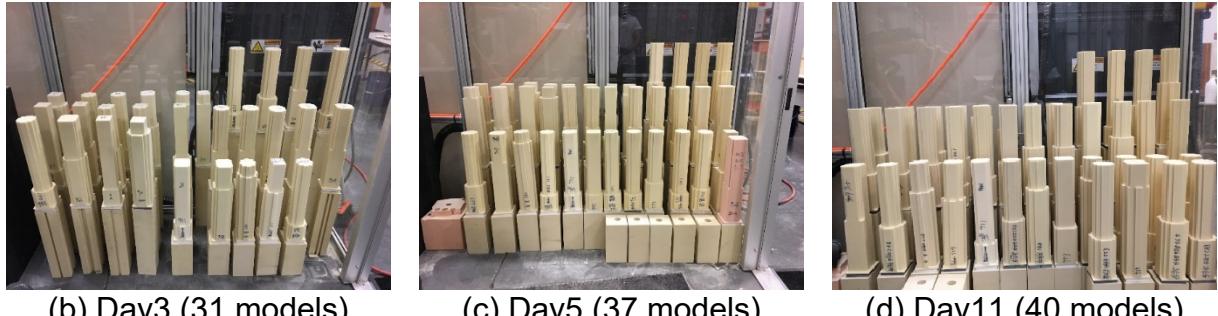
655 The reliability of the proposed adaptive subtractive manufacturing technique
656 (introduced in Section 3.1) integrated into the SB-CP-ASO procedure is discussed in
657 this subsection. The discussion includes model reusage, manufacturing time, and
658 downtime in the iteration process.

659

660 **5.1.1 Remanufacturing technique**

661 Through the remanufacturing technique, 68 individual models were used to
662 create the 173 models, indicating 60% foam material was saved. Fig. 15 shows the
663 photos of preserved models at different days in the SB-CP-ASO procedure (note the
664 models are displayed on foam stands of different heights). Fig. 16 shows the number of
665 times the 68 individual models were reused. The individual models were reused an
666 average of 2.54 times with a minimum of zero (not reused) and maximum of four.

667



(b) Day3 (31 models)

(c) Day5 (37 models)

(d) Day11 (40 models)

Fig. 15. Photographs of blank models and tested models.

668

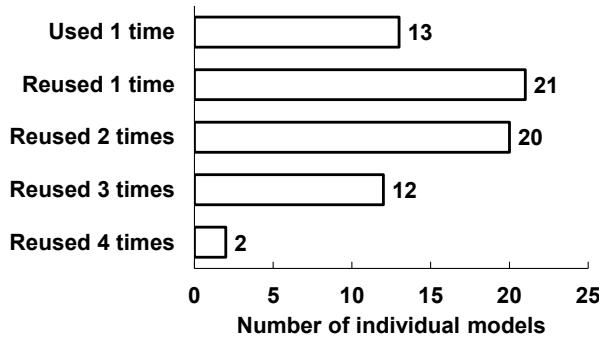


Fig. 16. Number of reused times for tested models.

669

670

671 5.1.2 Manufacturing time and downtime

672 Fig. 17 (a) shows the manufacturing time for the infilled samples along the
 673 iteration process (after collecting the results of initial samples). With the help of the
 674 adaptive milling procedure, the average manufacturing time for the 163 infilled
 675 candidates was 10 mins, which is considered as very fast for shape optimization
 676 problems with major modification strategy. The wind tunnel downtime for each iteration
 677 in the SB-CP-ASO procedure is presented in Fig. 17 (b). It can be seen that there is no
 678 downtime for 126 samples and the average downtime is 45 secs in the entire
 679 procedure. The downtime is defined as the time between the end of data collection for
 680 the previous model and the start of installation of the next model in the wind tunnel. The

681 negligible downtime demonstrates the efficiency of the SB -ASO procedure is not
682 influenced by model manufacturing, which is a critical challenge for SB-CP-ASO
683 problems resolved by using the IIM&T technique.

684

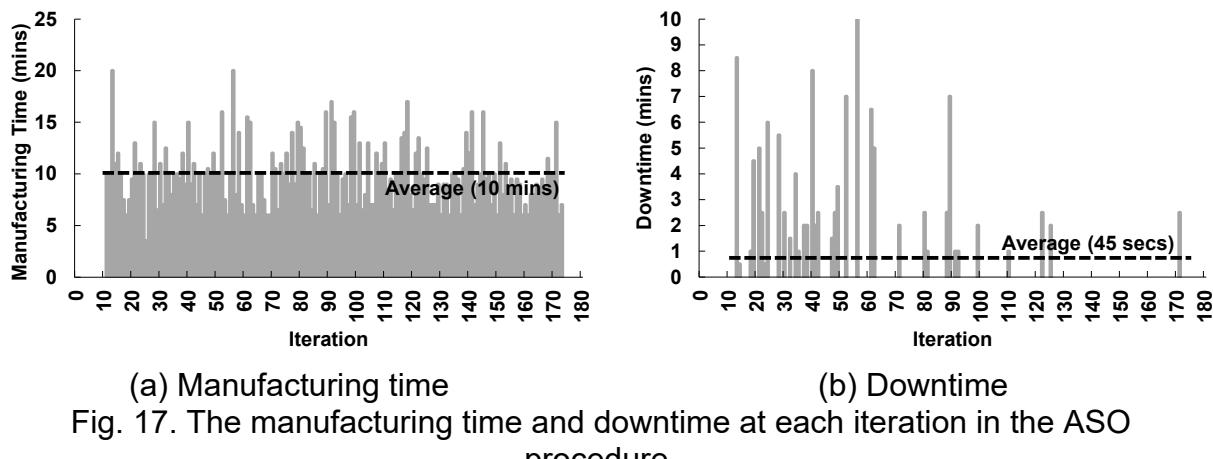


Fig. 17. The manufacturing time and downtime at each iteration in the ASO procedure.

685

686 The success of the IIM&T technique is attributed to the fast manufacturing time
687 (10 mins on average, see Fig. 17 (a)), which is less than half of the HFFB testing
688 procedure (25 mins on average, discussed later). It is worth repeating that the
689 manufacturing process is preceded by analyzing wind tunnel results, updating the
690 surrogate models, running the infill strategy, and generating an adaptive milling strategy
691 (see Fig. 2 (b)), which adds approximately 10 minutes to the actual manufacturing time.
692 If the IIM&T was not adopted, the downtime for each iteration would be around 20 mins
693 at each iteration, meaning that half of the entire testing window was not be used for data
694 collection.

695

696 **5.2 The throughput of the HFFB procedure**

697 Fig. 18 shows the number of samples tested each day. On the first day, only
698 seven models were evaluated due to apparatus installation for the HFFB testing. On the
699 last day, only 5 models were evaluated because of the stop criteria of objective
700 functions. On average, 17 models were evaluated each day from Day 2 to Day 10.
701 Since the downtime was negligible (see Section 5.1), the entire reserved testing window
702 was used for HFFB testing. The average testing time for one model under 10 wind
703 angles, including model un/installation, zeroing measurement devices, and reaching
704 desired approaching flow conditions, was 25 mins for the procedure presented in Fig. 5
705 (b). This is considered as a high-throughput HFFB BLWT testing procedure.
706

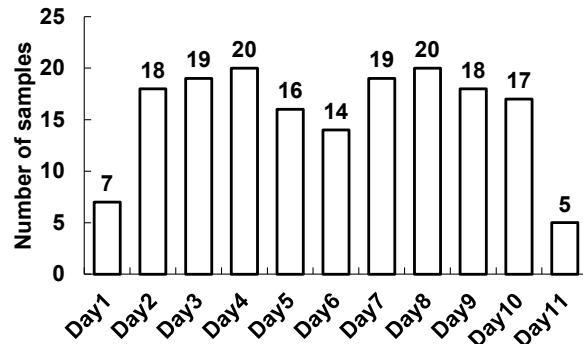
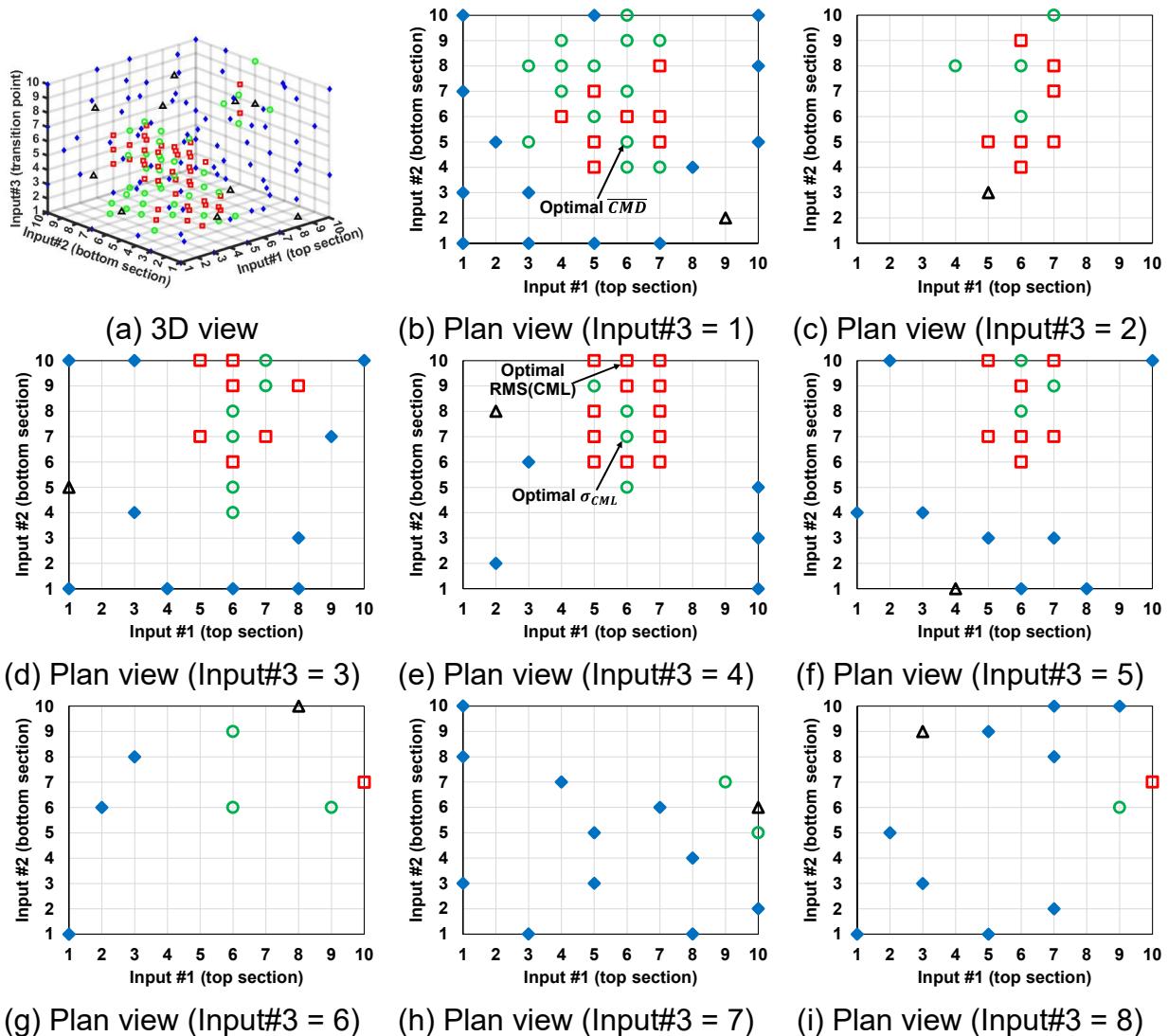


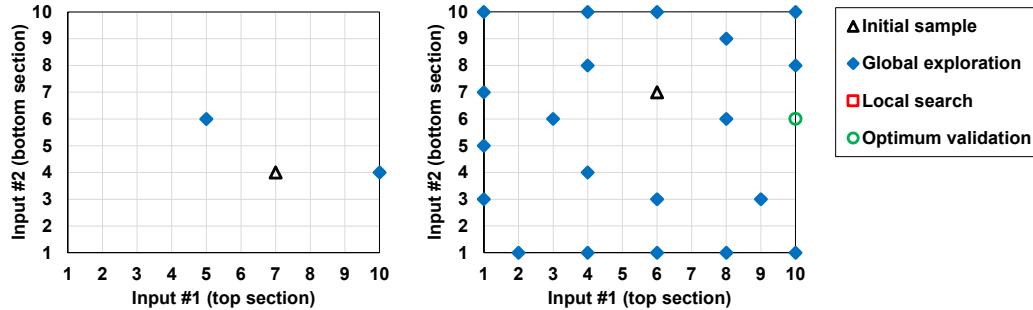
Fig. 18. Number of models tested each day.

707
708
709 **5.3 The inputs of initial and infilling samples**
710 The coordinates for the tested samples in the design space are presented in 3D
711 and 2D plots in Fig. 19. Symbols are used to differentiate among initial samples, global
712 exploration, optimum validation (Fig. 9 (a)), and local search (Fig. 9(b)). The optimal
713 candidates for \overline{CMD} , RMS_{CML} , and σ_{CML} are (6,5,1), (6,10,4), and (6,7,4), respectively.
714 Through the surrogate-based local search strategy, all samples are infilled within a 1.4-

715 unit distance around the optimal solutions. This local accuracy around optimal solutions
 716 can provide designers with more options without the concern of experimental
 717 uncertainties. In Fig. 19 (b)-(f), the success of the IIM&T technique realized through the
 718 sparsity level can be observed based on the fact that the samples for global exploration
 719 are shown to be well distributed and far from the local search areas even the outputs of
 720 the candidate tested in the wind tunnel were unknown.

721





(j) Plan view (Input#3 = 9) (k) Plan view (Input#3 = 10)

Fig. 19. The coordinates for the initial samples and infilled samples.

722

723 Fig. 20 shows the ratio a given infill function was called and the locations on the
 724 domain where the infilling was made. With the fixed ratio between the two infill goals, it
 725 can be seen that 51% (82 samples) of total infilled samples are used for global
 726 exploration (Goal 1). Considering the infilling location, 18%, 16%, and 4% of total infilled
 727 samples are on the faces, on the edges, and at vertices, respectively. The results show
 728 that 76% of the samples for global exploration are infilled on the boundaries of the
 729 design space. The high infill ratio on the boundaries is attributed to kriging being an
 730 interpolation regression approach. The predicted MSEs on the boundaries are normally
 731 larger than that of in the domain if the distance between collected data points are the
 732 same. This indicates the weakness of the MSE-based infilling alone if important regions
 733 are not only the boundaries of a design space. For Goal 2 (optimization), 26% (43
 734 samples) of total infilled samples are used for the surrogate-based local search and
 735 23% (38 samples) are used for optimum validation. The similar infilling ratios for the two
 736 situations implies the mobility of the optimal solutions as the surrogate model increases
 737 in accuracy and the effectiveness of the jump-out mechanism from a local optimum
 738 solution.

739

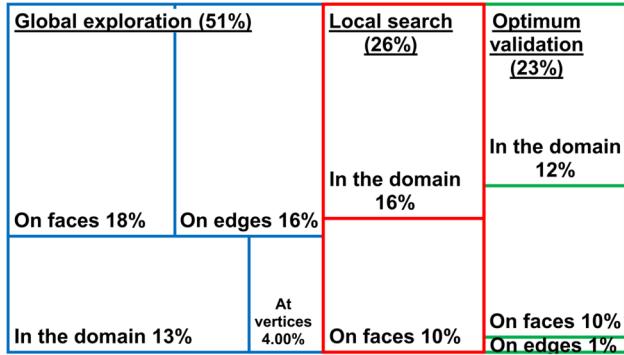


Fig. 20. The position for the infilled samples for different infill goals.

740

741

742 The sparsity level for different infill goals along the iteration process is shown in
 743 Fig. 21. The switch between the two infilling goals along the infilling process can be
 744 clearly seen. For global exploration, there are only 6 samples whose sparsity level is
 745 not 100%. This indicates that the samples are successfully infilled at spatially distributed
 746 coordinates to improve the global accuracy of surrogate modeling even without the
 747 results for the model tested in the wind tunnel. For optimization infilling, the sparsity
 748 levels decrease as the number of collected samples increases. Most of the infill
 749 candidates are used for optimization validation when the number of total samples is less
 750 than 35, meaning that the optimal solutions are not stable. After Iteration 60, more
 751 iterations are used for local search purpose, indicating that the local accuracy of
 752 promising regions is improving.

753

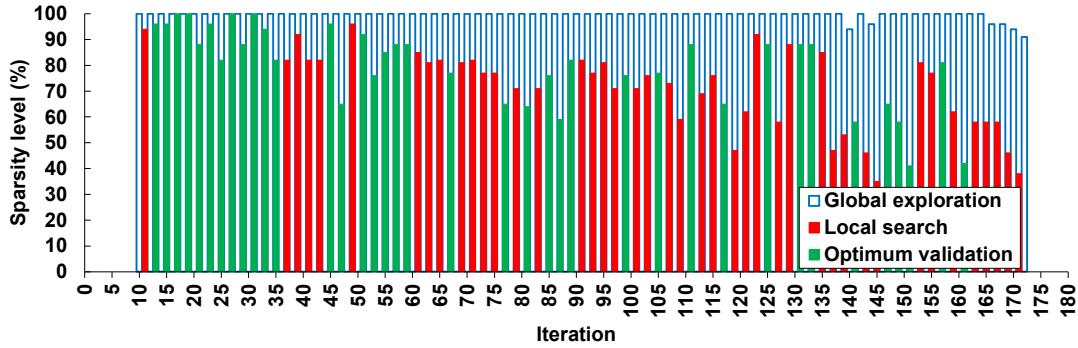


Fig. 21. Sparsity level at each iteration in the ASO procedure.

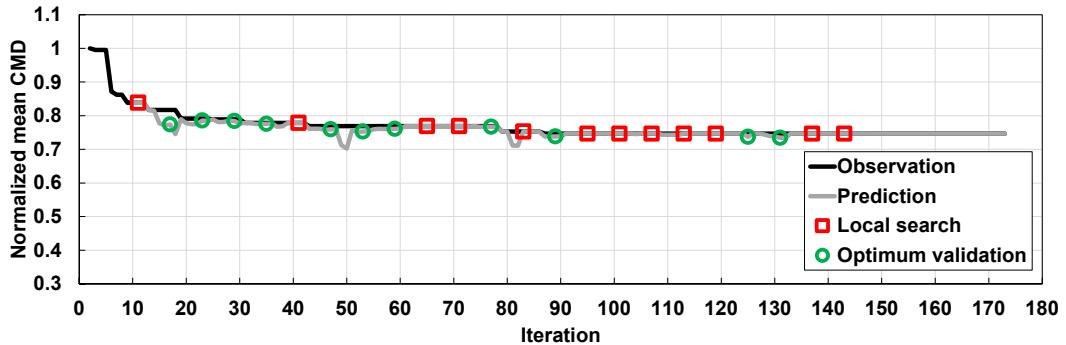
754

755 **5.4 Convergence history of objective functions**

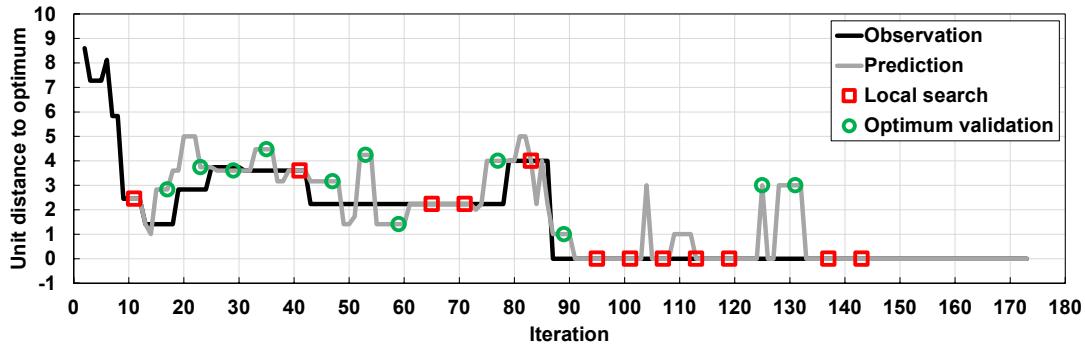
756 This subsection discusses the convergence history for the optimization objectives
 757 of \overline{CMD} (Fig. 22), RMS_{CML} (Fig. 23), and σ_{CML} (Fig. 24) along the iteration process. Fig.
 758 22 (a), Fig. 23 (a), and Fig. 24 (a) show the convergence history of outputs, which are
 759 normalized by the first initial sample (3,9,8). Fig. 22 (b), Fig. 23 (b), and Fig. 24 (b)
 760 indicate the Euclidean distance of inputs (coordinates) between the current best solution
 761 and the final optimal solution. The observation line tracks the cumulative optimal
 762 solution, and the prediction line indicates the real-time optimal prediction by the
 763 surrogate model. With different purposes in the optimization process, the samples
 764 (inputs and outputs) for optimum validation are the same as the prediction from the
 765 surrogate model (Fig. 9 (a)), and the samples for local search are the same as
 766 observation (Fig. 9 (b)). The detailed information on the optimization history, including
 767 the coordinates of the infilling samples for surrogate-based local search or optimal
 768 validation, and the normalized cumulative optimal solution, is summarized in Table A1
 769 (\overline{CMD}), Table A2 (RMS_{CML}), and Table A3 (σ_{CML}). As discussed in Section 3, the model
 770 (infilling sample) for n^{th+1} iteration is manufactured at n^{th} iteration and the outputs are
 771 obtained at n^{th+2} iteration in the IIM&T technique. In Table A1, for example, the model

772 (5,4,1) for local search purpose is manufactured at Iteration 11, tested in the wind tunnel
 773 at Iteration 12, and analyzed at Iteration 13. With the same concept in Fig. 22-24, the
 774 models are manufactured at iterations indicated by the points of local search and
 775 optimum validation, and the results are obtained after 2 iterations.

776

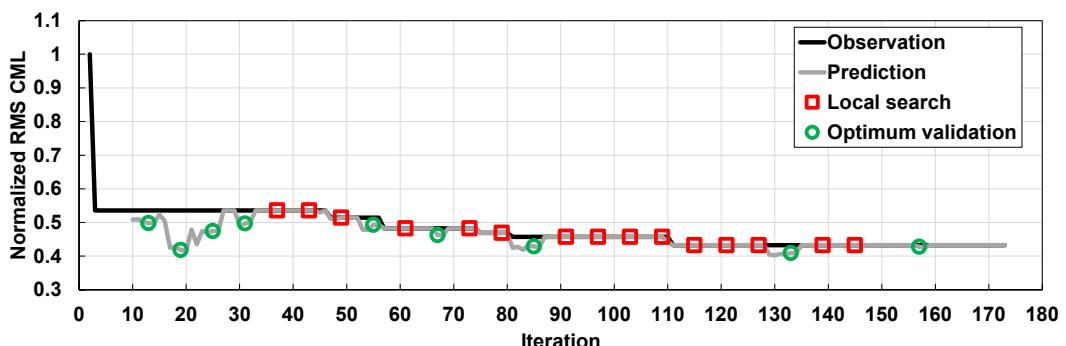


(a) Normalized \overline{CMD}

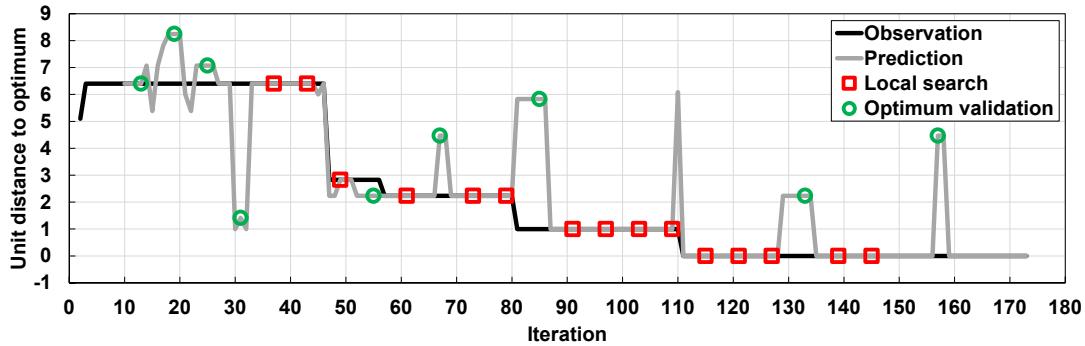


(b) The Euclidean distance between current optimum and final optimum
 Fig. 22. The convergence history for \overline{CMD} .

777



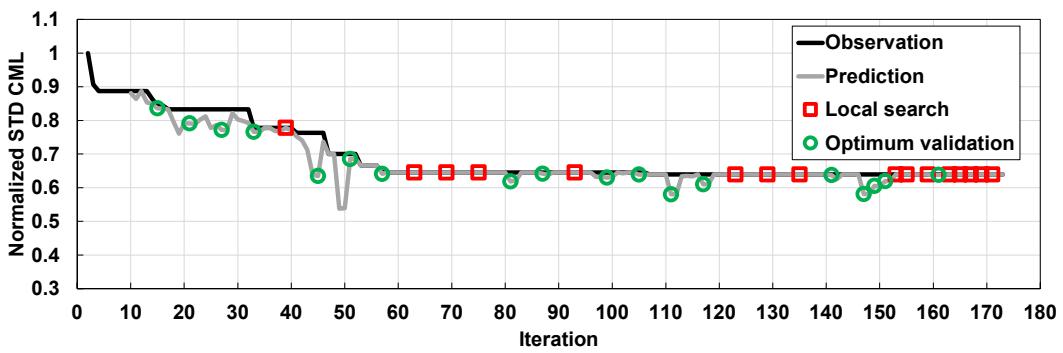
(a) Normalized RMS_{CML}



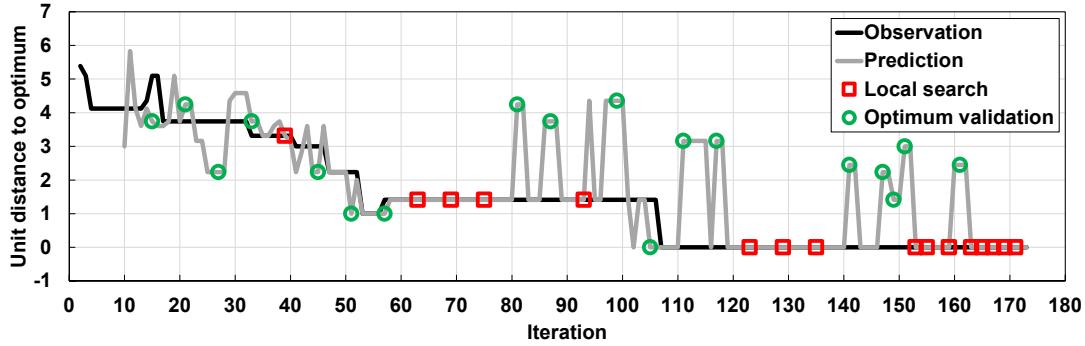
(b) The Euclidean distance between current optimum and final optimum

Fig. 23. The convergence history for RMS_{CML} .

778



(a) Normalized σ_{CML}



(b) The Euclidean distance between current optimum and final optimum

Fig. 24. The convergence history for σ_{CML} .

779 **5.4.1 Mean along-wind responses**

780 In Fig. 22, the optimum validation and surrogate-based local search for CMD are
 781 activated 11 and 12 times, respectively. By applying optimum validation, the predictions
 782 are proved to be only correct for 4 times. When the predictions are wrong, it can be
 783 observed that the predicted outputs are unconservative (see Fig. 22 (a)) and the

784 corresponding inputs (see Fig. 22 (b)) are several unit-distances away from the
785 cumulative optimal observation. The incorrect inputs will result in outputs which are not
786 only worse than predictions but also than the cumulative optimal observation. This is a
787 serious issue that should not be ignored for surrogate-based optimization studies,
788 especially for real-world applications using physical testing. By switching between the
789 two infilling goals, the issue is relieved immediately by conducting optimum validation
790 without wasting more samples based on the incorrect predictions. In addition, valid
791 optimal solutions are obtained anytime along the infilling process. In the end, the results
792 from prediction and observation converge in both the inputs and outputs.

793 In comparison with the initial solution, the output of the final optimal \overline{CMD} is
794 reduced by 25.4% and the input is moved by 8.6-unit distance. The optimal solutions
795 are improved 7 times (Iteration 13, 19, 25, 31, 43, 79, and 87) after collecting the results
796 of initial samples. It is worth repeating that corresponding points for local search and
797 optimum validation shown in Fig. 22 are manufactured at n-2 iterations. The 7
798 improvements are 4 times from optimum validation, 2 times from local search, and 1
799 time from other infilling purpose. This demonstrates that better solutions can come from
800 different sources, reducing the chance of getting stuck at a local optimum solution. For
801 optimum validation, the distances between the previous and improved solutions are
802 3.16-, 1.40-, 1.00-, and 2.24-unit distances at the iterations of 19, 25, 31, and 79,
803 respectively. For Iteration 19 and 79, the moving distances are larger than that of the
804 search bound (1.4-unit distance), showing the ability to find a better solution via the
805 jump-out mechanism. For surrogate-based local search, optimal solutions are improved
806 from 0.838 at (5,3,2) to 0.817 at (5,4,1) at Iteration 13, and from 0.778 at (4,8,1) to

807 0.769 at (5,7,1) at Iteration 43. The moving distances for the both improvements are all
808 1.4-unit distance, indicating the improved solutions are all led through the shortcut in the
809 local search bound. The final optimal solution of \overline{CMD} is at the coordinates of (6,5,1),
810 which is resulted from the optimal validation of RMS_{CML} (see Table A2), showing the
811 benefit of pursuing different objective functions in parallel. The optimization process for
812 \overline{CMD} halts at iteration of 145 because of the stop criterion for the local search strategy.
813

814 **5.4.2 RMS across-wind responses**

815 For RMS_{CML} , the local search and optimal validation are executed 15 times and 9
816 times, respectively, as shown in Fig. 23. The optimal solutions are improved 5 times
817 (Iteration 47, 57, 75, 81, and 111) in the infilling process. In comparison with the initial
818 solution, the output of the final optimal RMS_{CML} is reduced by 56.7% and the input is
819 moved by 5.1-unit distance. The results suggest that the setback strategy is more
820 effective in reducing across-wind responses than that of along-wind for high-rise
821 buildings. The benefit of conducting parallel optimization objectives can be observed
822 again at the iteration of 47, where the better solution is resulted from the optimum
823 validation of σ_{CML} (see Table A2 and A3). The responses are decreased from 0.536 to
824 0.514 with a moving distance of 6.7-unit from the coordinates of (10,6,7) to (6,8,2). The
825 need to apply optimal validation can be observed since the prediction of the surrogate
826 model is only correct 1 time at Iteration 57, where the normalized RMS_{CML} is decreased
827 from 0.514 at (6,8,2) to 0.482 at (6,8,3). When the kriging model makes incorrect
828 predictions (8 out of 9 times), the discrepancies of the inputs (see Fig. 23 (b)) are more
829 significant than that of \overline{CMD} . For example, the Euclidean distances between the

830 prediction and observation at the iterations of 31 and 85 are 6.4- and 5.4-unit distances,
831 respectively. In the 15 times of local search, the solutions are improved 3 times
832 (Iteration 75, 81, and 111). The moving distances are 1.4-unit at the iterations of 75 and
833 81. At iteration of 111, the solution moves from the coordinates of (6,10,3) to (6,10,4)
834 with a 1-unit distance, which is the final optimal solution for the objective of RMS_{CML} . At
835 iteration of 147, the optimization procedure for RMS_{CML} is stopped because of the stop
836 criterion of local search. The optimization process for RMS_{CML} is activated again at the
837 Iteration 157 due to the prediction of better solution at the coordinates of (6,6,6).
838 However, the prediction is proved to be wrong by conducting optimum validation at the
839 iteration of 159 and the stop criterion is triggered again for RMS_{CML} .

840

841 **5.4.3 STD across-wind responses**

842 For σ_{CML} , the local search and optimal validation are executed 16 times and 18
843 times, respectively, as shown in Fig. 24. In comparison with the initial solution, the
844 output of the final optimal is reduced by 36.1% and the input is moved by 5.4-unit
845 distance. The optimal solutions are improved 9 times (Iteration 14, 15, 17, 33, 41, 47,
846 53, 57, and 107) in the infilling process. In addition to local search and optimum
847 validation, the source of the improvements is also from global exploration, which is at
848 Iteration 14 by infilling a data point at the coordinates of (5,10,1). There are 3 times
849 (Iteration 14, 33, and 57) of improvements resulted from the optimization process of
850 RMS_{CML} , indicating the correlation between the RMS_{CML} and σ_{CML} in the across-wind
851 direction. The solution is improved 1 time by the local search at Iteration 41 with a
852 moving distance of 1.4-unit distance. For optimum validation, when kriging makes an

853 inaccurate prediction, the discrepancy of the inputs between the prediction and
854 observation should not be ignored. The mobility of the incorrect predictions for σ_{CML} is
855 more obvious than that of \overline{CMD} and RMS_{CML} . In the 18 times of optimum validation, the
856 solutions are improved 4 times at the iterations of 17, 47, 53, and 107 with the moving
857 distances of 2-, 2.44-, 1.4-, and 1.4-unit distance, respectively. The final optimal solution
858 is achieved at the iteration of 107. At the end of the infilling process, it can be observed
859 that the frequency of the optimization process for σ_{CML} is increased after the iteration of
860 147. The reason behind this is because the optimization procedures for \overline{CMD} and
861 RMS_{CML} are stopped. Thus, the infill pattern repeats every 2 iterations between global
862 exploration and optimization. At Iteration 173, the SB-CPASO procedure is stopped by
863 the local search criterion of σ_{CML} .

864

865 **5.5 Discussion**

866 The optimization results of the double-section setback problem for high-rise
867 buildings were discussed in this section. The reliability and efficiency of the
868 manufacturing and testing components in the SB-CP-ASO were demonstrated with
869 respect to model reusage and time. The effectiveness of the sparsity level was
870 discussed through sample distributions. The robustness of the infilling strategy was
871 evaluated through the convergence history of inputs and outputs for \overline{CMD} , RMS_{CML} , and
872 σ_{CML} . For optimization purpose, the source of improved solutions comes from optimum
873 validation, surrogate-based local search, or other infilling purposes (e.g., global
874 exploration). The multiple sources of improvements reduce the chance of getting stuck
875 at a local optimum.

876 A total of 173 samples/iterations were collected to reach the convergence criteria
877 for the three optimization objectives with a local search bound of 1.4-unit. With the
878 flexibility of the infilling strategy, the number of iterations can be reduced by the
879 following: (1) decreasing the number of optimization objectives, (2) increasing the
880 infilling ratio for the optimization goal, and (3) decreasing the radius of the local search
881 bound if a shorter testing window was reserved. Because this was a proof-of-concept
882 study, we selected three optimization objectives and a relaxed stopping criteria that
883 allowed for the generation of a large aerodynamic database. Considering the
884 diminishing returns after 60 iterations, an operator in a non-research setting may have
885 elected to stop the process earlier. It is worth emphasizing that the benefits of the
886 proposed infilling strategy, including (1) the validation optimum solution at any iteration,
887 (2) the jump-out mechanism from local optimum, and (3) the local accuracy at important
888 areas still exist with a shorter iteration process.

889 The size of design space (i.e., the number of parameters and their discretization)
890 needs to be appropriate for the anticipated number of BLWT experiments. In this case,
891 the design space has 1000 possibilities and the goal was to explore 10-20% through
892 experimentation. The area around the optimal solution could be explored more
893 thoroughly with a finer discretization at the cost of additional experimentation. However,
894 there is also a practical lower bound on what resolution will produce an aerodynamic
895 difference that is detectable above the experimental uncertainty.

896 **6. Selection of candidates with promising structural response for high-rise
897 buildings**

898 This section presents a comparison approach for candidates with promising
899 structural responses of high-rise buildings. The cumulative largest structural responses
900 (enveloped over all wind angles and considering all wind speeds up to the design wind
901 speed) was calculated for each of the 173 models obtained from Section 5. With this
902 data, a convergence history of the best structural scale response at the design wind
903 speed can be plotted versus iteration. More directly, the set of candidates which meet a
904 given response threshold can be extracted for further consideration beyond
905 aerodynamic performance. In addition to single design wind speed, it is suggested to
906 consider multiple design wind speeds for different objectives at various hazard levels.
907 Practical information of the double-section setback strategy is discussed based on the
908 features of the promising candidates. The justification of using time domain results as
909 the objective functions in the SB-CP-ASO procedure is discussed in the end.

910

911 **6.1 Single design wind speed**

912 Since aerodynamic strategies are more effective under high wind speeds for the
913 mitigation of survivability (Lu et al., 2023), the roof drift responses for wind speeds of 40
914 m/s, 50 m/s, and 60 m/s, are used for selecting candidates with promising aerodynamic
915 performance. The convergence history of the largest roof drift demands, all controlled
916 by the across-wind direction, for the three design wind speeds are presented in Fig. 25.
917 Note that responses do not necessarily monotonically increase with wind speed, so the
918 cumulative largest response up to the design wind speed is used. The roof drifts of the
919 benchmark model (SQ70, see Fig. 14 (c)) are also used for comparison. For the wind
920 speed of 40m/s, the roof drifts for the benchmark, initial solution, and final optimal

921 solution are 0.6%, 0.44%, and 0.29%, respectively. For 50m/s, these are 2.1%, 1.02%,
 922 and 0.51%, respectively. For 60m/s, they are 3.3%, 1.76%, and 0.63%, respectively.
 923 The greater reduction under the wind speeds of 50 m/s and 60 m/s suggests that the
 924 double-section setback strategy is more effective to mitigate roof drifts under higher
 925 wind speeds. The inputs of the final optima for the design wind speeds of 40 m/s, 50
 926 m/s, and 60 m/s are (6,7,5), (6,10,3), and (6,9,2), respectively, demonstrating different
 927 design wind speeds do not have the same optimal solution.

928

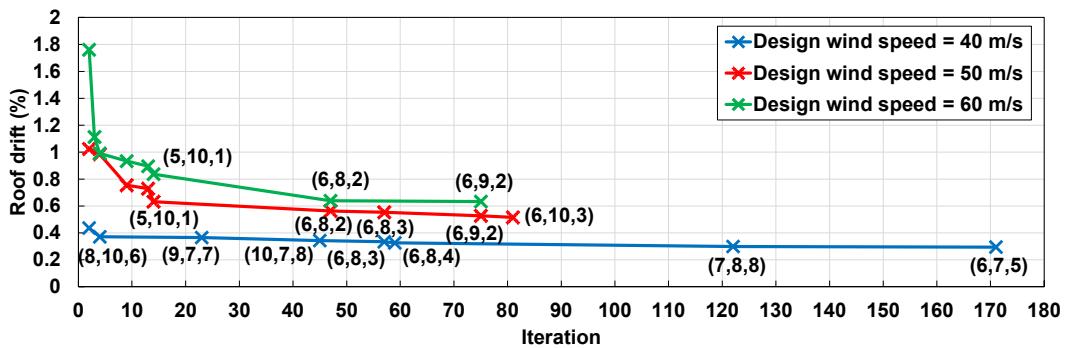


Fig. 25. The convergence history for roof drift demands with different design wind speeds.

929
 930 Although the reductions of roof drifts are significant in comparison with the
 931 benchmark and initial solutions, in Fig. 25, it can be observed that the improvements are
 932 saturated at some point in the optimization process. For the design wind speed of 50
 933 m/s, the improvements of roof drift demands are not significant after Iteration 47. By
 934 changing the external shapes from coordinates of (6,8,2), (6,8,3), (6,9,2), to (6,10,3),
 935 the roof drift demands are only improved by 5%. For 60 m/s, the roof drift demands are
 936 only improved by 1% after Iteration 47. Since the optimization process is continued until
 937 the stop criteria are triggered, there are other candidates (not pictured in Fig. 25) whose
 938 roof drift demands are similar but not better than that of the final optimal solutions.

939 These candidates should not be ignored for optimization problems of high-rise buildings
940 since a set of candidates which can satisfy a defined threshold is needed for designers
941 to achieve other objectives beyond aerodynamic performance (see the discussion in
942 Section 2). With the convergence history of the response of interest, the threshold can
943 be determined based on the saturation responses (in the absence of other guidance). In
944 this study, the roof drift demands of 0.4%, 0.60%, and 0.75% are taken as the
945 thresholds for the design wind speeds of 40 m/s, 50 m/s, and 60 m/s, respectively. In
946 comparison with the benchmark model, the reductions of the thresholds of roof drift for
947 the wind speeds of 40 m/s, 50 m/s, and 60 m/s are 34%, 72%, and 78%, respectively.
948 For single design wind speed, there are 33 candidates, 13 candidates, and 12
949 candidates whose roof drift demands are below the thresholds of 40 m/s, 50 m/s, and
950 60 m/s, respectively.

951

952 **6.2 Multiple design wind speeds**

953 Fig. 26 presents promising candidates which can satisfy the defined thresholds
954 for multiple design wind speeds (40 m/s, 50 m/s, and 60 m/s). The roof drifts for the
955 minimum (1,1,1) and max (10,10,10) models in the design space are also included for
956 comparison. The need to consider the cumulative largest response can be observed
957 from the minimum model. The peak roof drift for (1,1,1) is 1.8% occurred at the wind
958 speed of 45 m/s. If cumulative largest response up to the design wind speed is not
959 considered, the roof drift for wind speeds higher than 45 m/s will be lower than 1.8%
960 (e.g., 1.4% at the wind speed of 60 m/s), leading to unconservative design. The reason
961 behind the non-monotonic increase in structural response is from variation of PSD

962 responses caused by vortex shedding. The peak of PSD curves (or Strouhal number)
 963 occurs at different reduced frequencies for models with different external shapes. On
 964 the other hand, in comparison with (10,10,10), the results indicate that (1,1,1) is more
 965 promising for a single design wind speed at 60 m/s but is not as attractive for wind
 966 speeds lower than 53 m/s. This demonstrates again that optimal solutions vary with
 967 design wind speeds and hazard levels.

968

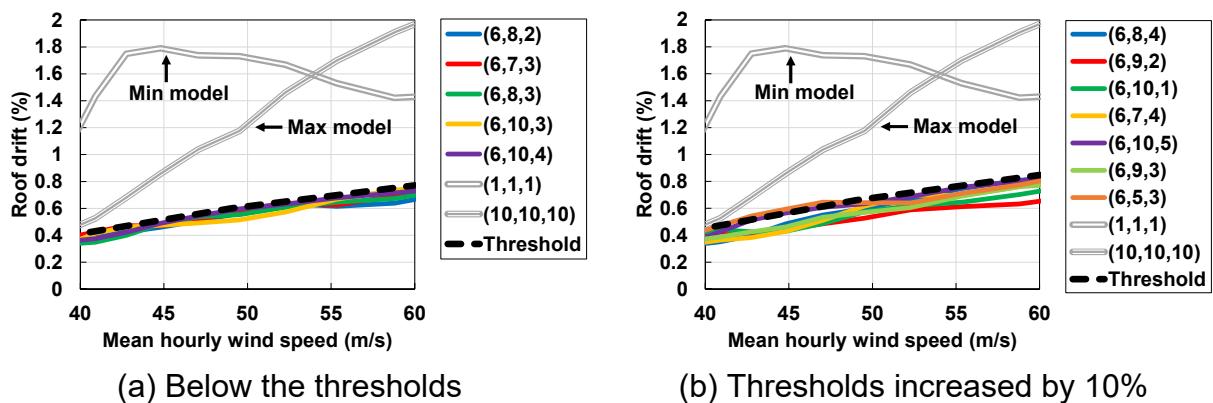


Fig. 26. The roof drift demands for promising candidates considering multiple design wind speeds.

969

970 In line with performance-based design, the concept of multiple design wind
 971 speeds is suggested to select promising candidates which can achieve different
 972 thresholds at various wind speeds. In Fig. 26 (a), the thresholds for the three wind
 973 speeds are the same as discussed earlier. There are 5 promising candidates whose
 974 roof drift demands are below the thresholds. The photographs for the 5 promising
 975 candidates are presented in Fig. 27. The model volumes for the 5 promising candidates
 976 and the benchmark model are presented in Fig. 28. As mentioned in Section 4, the
 977 minimum and maximum model volumes in the optimization problem are 1397 cm² and
 978 2930 cm², respectively. The building volumes for ideal candidates vary from 1938 cm² to

979 2230 cm², which do not occur at the extreme model volumes and are similar to the
980 benchmark model (1960 cm²). The results indicate that similar promising aerodynamic
981 performance can be achieved with different building volumes. Also, the double-section
982 setback strategy is a feasible option to significantly mitigate wind responses without the
983 loss of building volume in comparison with the benchmark model.

984

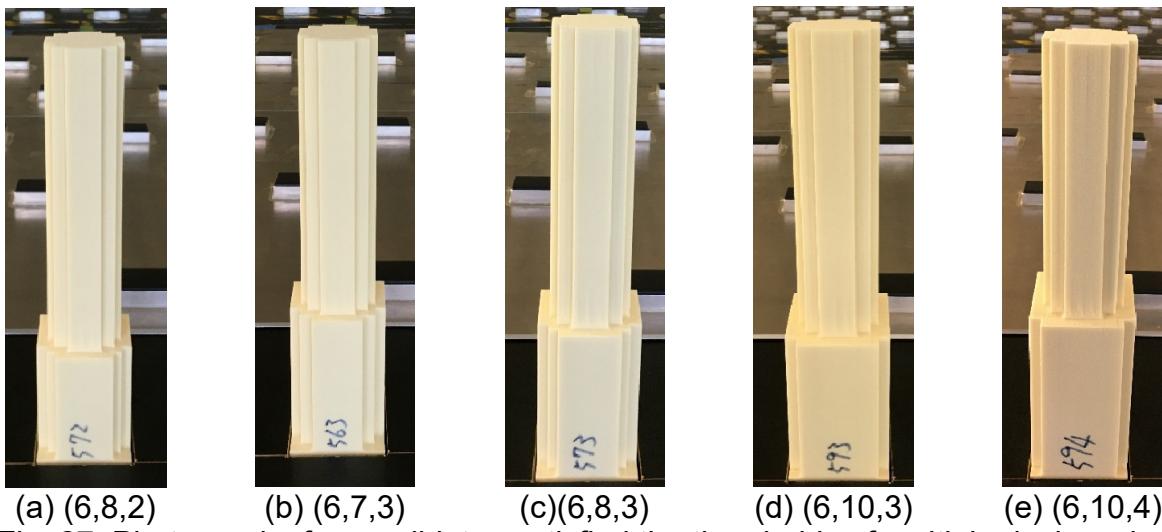


Fig. 27. Photographs for candidates satisfied the thresholds of multiple design wind speeds.

985

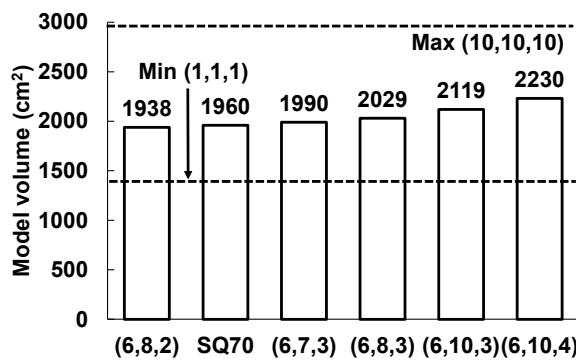


Fig. 28. Building volumes for the benchmark model (SQ70) and the candidates satisfied the thresholds of multiple design wind speeds.

986

987

988 In Fig. 26 (a) and Fig. 27, it can be observed that the 5 promising candidates are
989 not intuitive but share consistent features. First, the inputs of the top section (input#1)
990 are all the same, which is SQ56-7-31 (see Fig. 12, Option 6). The corresponding width
991 ratio of the side protrusion is 55%. This indicates that a side protrusion with 55% width
992 ratio and 12.5% depth ratio is a promising cross-section to reduce wind responses at
993 higher part of high-rise buildings. The consistent results suggest that the 6 mm gap
994 between options for the top section is large enough so that the results are not
995 influenced by the uncertainties in the wind tunnel testing. Second, the ideal options for
996 the bottom section (input#2) and transition positions (input#3) are within a bound. For
997 the bottom section (Fig. 13), the ideal range is from Option 7 (SQ70-10-47) to Option 10
998 (SQ70-10-70). The corresponding width ratio is from 67% to 100%. The lower bound for
999 the width of side protrusion for the bottom section (SQ-10-47) is still wider than that of
1000 the top section (SQ-56-7-31). For the transition position (Table 1), the ideal option
1001 varies from Option 2 (27.5% of model height) to Option 4 (42.5% of model height). The
1002 results suggest that the bottom section is less sensitive to the aerodynamic
1003 performance when the transition position is between 27.5% to 42.5% of the model
1004 height. The reason behind this is attributed to the boundary layer effects, where mean
1005 wind speed increases with elevation. In other words, the major aerodynamic responses,
1006 generated based on OTM, are not produced by the bottom section. Regarding the
1007 bound of the transient position, the results indicate the need to use sufficient length for
1008 both sections to destroy the coherence of vortex shedding effects at different elevations
1009 for the setback strategy.

1010 The thresholds for multiple design wind speeds can be loosened if it is needed.
1011 By increasing the thresholds by 10% for the three wind speeds, 7 more candidates are
1012 obtained as shown in Fig. 26 (b). It can be observed that the inputs for the top section is
1013 consistent and the ranges of the bottom section and the transition position are
1014 increased. It should be emphasized that the candidates with similar promising
1015 responses presented in Fig. 26 are all collected observations, which can be used for
1016 discussion between owners, architects, and structural engineers in real-world
1017 applications without concerns about accuracy.

1018 It is worthing noting that wind mitigation is decoupled from the early design stage
1019 of high-rise buildings for current design practice in the industry (Moorjani et al., 2021).
1020 Any changes on building shape or structural properties later in the design stage can be
1021 very expensive, time consuming, or even impossible. By applying the SB-CP-ASO
1022 procedure, a comprehensive optimization search can be carried out at the early design
1023 to avoid the aforementioned dilemma. Other design objectives, such as aesthetic
1024 appeal, building volume, and operation purposes, beyond aerodynamic performance
1025 can be applied to select the solutions obtained from the SB-CP-ASO, leading to a more
1026 efficient and economical design process. Additionally, solutions that are not selected
1027 become valuable candidates for future projects, building a large aerodynamic database.

1028 Regarding the appropriateness of the objective functions pursued in the SB-CP-
1029 ASO procedure, it can be observed that the optimal solutions for RMS_{CML} (6, 10, 4) and
1030 σ_{CML} (6, 7, 4) in the time domain (discussed in Section 5) are included in Fig. 26. The
1031 results demonstrate that the time domain statistics with dynamic components in the
1032 across-wind direction are appropriate objective functions to find candidates with

1033 promising structural responses at multiple design wind speeds. This also implies that
1034 the number of iterations can be reduced by removing the objective function of \overline{CMD} , if a
1035 shorter wind tunnel testing window was reserved for the SB-CP-ASO procedure.

1036

1037 **7. Conclusions**

1038 This study proposes a surrogate-based cyber-physical aerodynamic shape
1039 optimization (SB-CP-ASO) procedure for high-rise buildings under wind loading. The
1040 procedure consists of (1) an adaptive subtractive manufacturing technique, (2) a high-
1041 throughput high-frequency base balance (HFFB) wind tunnel testing, and (3) a highly
1042 flexible infilling strategy. A parallel manufacturing and testing (PMT) technique is
1043 realized through an indicator, sparsity level, to ensure the efficiency of the SB-CP-ASO
1044 procedure. An unexplored double-section setback strategy with different cross-sections
1045 and transitions positions is used to demonstrate the performance of the three
1046 components in the procedure. Three objective functions in time domain were pursued in
1047 parallel in the online optimization process. A total of 173 samples were evaluated in 11
1048 workdays and ended by the stop criteria for optimization convergence. As a proof-of-
1049 concept study, three objective functions and a relaxed stopping criteria were used,
1050 allowing for the generation of a large aerodynamic database.

1051 The manufacturing speed and testing throughput were discussed. For the infilling
1052 strategy, a switch with a user-defined ratio between global exploration and optimization
1053 is suggested to (1) provide valid optimal solutions anytime along the iteration, and (2)
1054 build a jump-out mechanism from local optimum solution. In the optimization process,
1055 the infilling strategy is able to pursue multiple objective functions in parallel. A

1056 surrogate-based local search strategy with user-defined search bound is developed in
1057 the optimization process to (1) provide a flexible stop criterion controlled by users, (2)
1058 enhance the optimization performance, and (3) improve the local accuracy at promising
1059 regions, which can eliminate the concern of experimental uncertainties and provide
1060 more options for designers with considerations beyond aerodynamic behavior. Based
1061 on limited testing time, the convergence speed of the infilling process can be increased
1062 by adjusting (1) the infilling ratio between global exploration and optimization, (2) the
1063 number of objective functions, and (3) the radius of the local search bound without the
1064 loss of the aforementioned features.

1065 The consideration of multiple design wind speeds is suggested to select
1066 promising candidates with structural responses below defined thresholds. Based on the
1067 convergence history of roof drift, the thresholds for wind speeds of 40 m/s, 50 m/s, and
1068 60 m/s are 34%, 72%, and 78% lower than that of the benchmark model, indicating the
1069 effectiveness of the double-section setback strategy for high-rise buildings. The inputs
1070 for the promising candidates share consistent trends. For the top section, the same 55%
1071 width ratio of the side protrusion (SQ-56-7-31) is suggested for all ideal candidates. For
1072 the bottom section, the ideal option varies between 67% (SQ70-10-47) to 100% (SQ70-
1073 10-70) width ratios of the side protrusion. To effectively disturb the coherence of vortex
1074 shedding in the across-wind direction, the ideal transition position varies from 27.5% to
1075 42.5% of the entire height.

1076 This study presents comprehensive details regarding how to integrate CNC
1077 manufacturing, wind tunnel testing, and adaptive surrogate modeling technique in an
1078 online optimization problem with practical considerations to select promising candidates

1079 for high-rise buildings. The procedure is expected to provide an efficient platform
1080 between owners, architects, and structural engineers to find promising candidates within
1081 a design space for real-world applications. In addition, the three components developed
1082 in this study can be individually applied to different fields with further applications.

1083

1084 **CRediT authorship contribution statement**

1085 Wei-Ting Lu: Conceptualization, Methodology, Investigation, Data Curation,
1086 Visualization, Validation, Writing - Original Draft. Brian M. Phillips: Conceptualization,
1087 Methodology, Project administration, Supervision, Validation, Writing - Review &
1088 Editing. Zhaoshuo Jiang: Conceptualization, Project administration, Writing - Review &
1089 Editing

1090

1091

1092 **Declaration of competing interest**

1093 The authors declare that they have no known competing financial interests or personal
1094 relationships that could have appeared to influence the work reported in this paper.

1095

1096 **Acknowledgments**

1097 This material is based upon work supported by the National Science Foundation (NSF)
1098 under Grants No. 2028762 & 2028647. Any opinions, findings, and conclusions or
1099 recommendations expressed in this material are those of the authors and do not
1100 necessarily reflect the views of NSF. The authors also acknowledge the NSF NHERI
1101 awardee that contributed to the research results reported within this paper under Grant

1102 No. 2037725: Natural Hazards Engineering Research Infrastructure: Experimental
 1103 Facility with Boundary Layer Wind Tunnel 2021-2025 and Grant No. 2022469: Natural
 1104 Hazards Engineering Research Infrastructure: Cyberinfrastructure (DesignSafe) 2020-
 1105 2025.

1106

1107 **Appendix A. Detailed converged history of objective functions**

1108

1109 **Table A1. Detailed convergence history of \overline{CMD} .**

Iteration	Updated optimum	Infilling sample		
	Observation	Sample	Local search	Optimal validation
2	1.00	(3,9,8)	-	-
3	0.995	(10,6,7)	-	-
6	0.871	(7,4,9)	-	-
7	0.862	(2,8,4)	-	-
9	0.838	(5,3,2)	-	-
11	-	-	(5,4,1)	-
13*	0.817	(5,4,1)	-	-
17	-	-	-	(4,7,1)
19**	0.791	(4,7,1)	-	-
23	-	-	-	(4,8,2)
25**	0.789	(4,8,2)	-	-
29	-	-	-	(4,8,1)
31**	0.778	(4,8,1)	-	-
35	-	-	-	(4,9,1)
41	-	-	(5,7,1)	-
43*	0.769	(5,7,1)	-	-
47	-	-	-	(5,8,1)
53	-	-	-	(3,8,1)
59	-	-	-	(5,6,1)
65	-	-	(6,6,1)	-
71	-	-	(4,6,1)	-
77	-	-	-	(6,9,1)
79**	0.753	(6,9,1)	-	-
83	-	-	(7,8,1)	-
87^	0.746	(6,5,1)	-	-
89	-	-	-	(6,4,1)
95	-	-	(7,5,2)	-
101	-	-	(7,6,1)	-
107	-	-	(5,5,2)	-
113	-	-	(6,4,2)	-
119	-	-	(7,5,1)	-
125	-	-	-	(3,5,1)
131	-	-	-	(6,5,4)
137	-	-	(5,5,1)	-
143	-	-	(6,5,2)	-

1110
 1111 “*” denotes the improved solution is resulted from local search
 1112 “**” denotes the improved solution is resulted from optimal validation
 1113 “^” denotes the improved solution is resulted from global exploration or other objective
 1114 function

1115
1116
1117 Table A2. Detailed convergence history of RMS_{CML} .

Iteration	Updated optimum		Infilling sample	
	Observation	Sample	Local search	Optimal validation
2	1.000	(3,9,8)	-	-
3	0.536	(10,6,7)	-	-
13	-	-	-	(9,6,8)
19	-	-	-	(10,6,10)
25	-	-	-	(10,5,7)
31	-	-	-	(7,10,3)
37	-	-	(10,7,6)	-
43	-	-	(10,7,8)	-
47^	0.514	(6,8,2)	-	-
49	-	-	(7,7,2)	-
55	-	-	-	(6,8,3)
57**	0.482	(6,8,3)	-	-
61	-	-	(7,8,4)	-
67	-	-	-	(6,6,2)
73	-	-	(6,9,2)	-
75*	0.469	(6,9,2)	-	-
79	-	-	(6,10,3)	-
81*	0.457	(6,10,3)	-	-
85	-	-	-	(6,5,1)
91	-	-	(5,10,4)	-
97	-	-	(5,10,3)	-
103	-	-	(7,10,4)	-
109	-	-	(6,10,4)	-
111*	0.433	(6,10,4)	-	-
115	-	-	(5,10,5)	-
121	-	-	(7,9,4)	-
127	-	-	(6,9,5)	-
133	-	-	-	(6,9,6)
139	-	-	(7,10,5)	-
145	-	-	(6,9,3)	-
157	-	-	-	(6,6,6)

1118
 1119 “*” denotes the improved solution is resulted from local search
 1120 “**” denotes the improved solution is resulted from optimal validation
 1121 “^” denotes the improved solution is resulted from global exploration or other objective
 1122 function

1123
1124
1125 Table A3. Detailed convergence history of σ_{CML} .

Iteration	Updated optimum		Infilling sample	
	Observation	Sample	Local search	Optimal validation
2	1.000	(3,9,8)	-	-

3	0.907	(10,6,7)	-	-
4	0.887	(8,10,6)	-	-
14^	0.864	(5,10,1)	-	-
15^	0.844	(9,6,8)	-	(9,6,6)
17**	0.833	(9,6,6)	-	-
21	-	-	-	(9,7,7)
27	-	-	-	(5,9,4)
33^	0.778	(7,10,3)	-	(7,10,2)
39	-	-	(8,9,3)	-
41*	0.763	(8,9,3)	-	-
45	-	-	-	(6,8,2)
47**	0.700	(6,8,2)	-	-
51	-	-	-	(6,7,3)
53**	0.666	(6,7,3)	-	-
57^	0.645	(6,8,3)	-	(6,8,4)
63	-	-	(5,7,3)	-
69	-	-	(6,9,4)	-
75	-	-	(7,8,2)	-
81	-	-	-	(6,10,1)
87	-	-	-	(7,9,1)
93	-	-	(5,8,4)	-
99	-	-	-	(7,4,1)
105	-	-	-	(6,7,4)
107**	0.639	(6,7,4)	-	-
111	-	-	-	(6,4,3)
117	-	-	-	(6,10,5)
123	-	-	(7,6,4)	-
129	-	-	(5,6,4)	-
135	-	-	(7,7,5)	-
141	-	-	-	(7,9,5)
147	-	-	-	(6,5,3)
149	-	-	-	(6,8,5)
151	-	-	-	(6,7,1)
153	-	-	(5,7,5)	-
155	-	-	(6,6,5)	-
159	-	-	(7,7,3)	-
161	-	-	-	(7,9,3)
163	-	-	(6,6,4)	-
165	-	-	(5,7,4)	-
167	-	-	(7,7,4)	-
169	-	-	(6,7,5)	-
171	-	-	(6,6,3)	-

1126

1127 “**” denotes the improved solution is resulted from local search

1128 “***” denotes the improved solution is resulted from optimal validation

1129 “^” denotes the improved solution is resulted from global exploration or other objective

1130 function

1131

1132 **References**

1133 Ahmed, M.Y.M., Qin, N., 2009. Surrogate-based aerodynamic design optimization: use
 1134 of surrogates in aerodynamic design optimization. The 13th International

1135 Conference on Aerospace Science and Aviation Technology. Military Technical
1136 College, Kobry Elkobbah, Cairo, Egypt.

1137 ASCE 7-22, 2022. Minimum design loads and associated criteria for buildings and other
1138 structures. American Society of Civil Engineers, Reston, VA.

1139 Bernardini, E., Spence, S.M.J., Wei, D., Kareem, A., 2015. Aerodynamic shape
1140 optimization of civil structures: A CFD-enabled Kriging-based approach. *Journal of Wind Engineering and Industrial Aerodynamics*. 144, 154-164.

1141 Carassale, L., Freda, A., Marre-Brunenghi, M., 2014. Experimental investigation on the
1142 aerodynamic behavior of square cylinders with rounded corners. *Journal of Fluids and Structures*. 44, 195–204.

1143 Catarelli, R.A., Fernández-Cabán, P.L., Masters, F.J., Bridge, J.A., Gurley, K.R.,
1144 Matyas, C.J., 2020a. Automated terrain generation for precise atmospheric
1145 boundary layer simulation in the wind tunnel. *Journal of Wind Engineering and
1146 Industrial Aerodynamics*. 207, 104276.

1147 Catarelli, R.A., Fernández-Cabán, P.L., Phillips, B.M., Bridge, J.A., Masters, F.J.,
1148 Gurley, K.R., and Prevatt, D.O., 2020b. Automation and new capabilities in the
1149 University of Florida NHERI boundary layer wind tunnel. *Frontiers in Built
1150 Environment*. 6.

1151 Chen, Z., Huang, H., Xu, Y., Tse, K.T., Kim, B., Wang, Y., 2021. Unsteady
1152 aerodynamics on a tapered prism under forced excitation. *Engineering
1153 Structures*. 240, 112387.

1154 Couckuyt, I., Dhaene, T., Demeester, P., 2014. ooDace Toolbox: a flexible object-
1155 oriented kriging implementation. *Journal of Machine Learning Research*. 15,
1156 3183-3186.

1157 Ding, F., Kareem, A., 2018. A multi-fidelity shape optimization via surrogate modeling
1158 for civil structures. *Journal of Wind Engineering and Industrial Aerodynamics*.
1159 178, 49-56.

1160 Elshaer, A., Bitsuamlak, G., 2018. Multiobjective aerodynamic optimization of tall
1161 building openings for wind-induced load reduction. *Journal of Structural
1162 Engineering*. 144(10), 04018198.

1163 Elshaer, A., Bitsuamlak, G., Damatty, A.E., 2017. Enhancing wind performance of tall
1164 buildings using corner aerodynamic optimization. *Engineering Structures*. 136,
1165 133-148.

1166 Fernández-Cabán, P.L., Whiteman, M.L., Phillips, B.M., Masters, F.J., Davis, J.R.,
1167 Bridge, J.A., 2020. Cyber-physical design and optimization of tall building
1168 dynamics using aeroelastic wind tunnel modeling. *Journal of Wind Engineering
1169 and Industrial Aerodynamics*. 198, 104092.

1170 Forrester, A.I.J., Keane A.J., 2009. Recent advances in surrogate-based optimization.
1171 *Progress in Aerospace Sciences*. 45(1–3), 50–79.

1172 Gu, M., Quan, Y., 2004. Across-wind loads of typical tall buildings. *Journal of Wind
1173 Engineering and Industrial Aerodynamics*. 92 (13), 1147–1165.

1174 Gu, M., Wang, X., Quan, Y., 2020. Wind tunnel test study on effects of chamfered
1175 corners on the aerodynamic characteristics of 2D rectangular prisms. *Journal of
1176 Wind Engineering and Industrial Aerodynamics*. 204, 104305.

1177 Hwang, C.L., Lai, Y.J., Liu, T.Y., 1993. A new approach for multiple objective decision
1178 making. *Computers and Operational Research*. 20 (8), 889–899.

1179

1180

1181 Hwang, C.L., Yoon K., 1981. Multiple attribute decision making: methods and
1182 applications: a state-of-the-art survey. New York: Springer-Verlag.

1183 Irwin, P.A., 2009. Wind engineering challenges of the new generation of super-tall
1184 buildings. *Journal of Wind Engineering and Industrial Aerodynamics*. 97(7-8),
1185 328–334.

1186 Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive
1187 black-box functions. *Journal of Global Optimization*. 13(4), 455–492.

1188 Kareem, A., 1983. Mitigation of wind induced motion of tall buildings. *Journal of Wind*
1189 *Engineering and Industrial Aerodynamics*. 11(1-3) 273–284.

1190 Kawai, H., 1998. Effect of corner modifications on aeroelastic instabilities of tall
1191 buildings. *Journal of Wind Engineering and Industrial Aerodynamics*. 74-76, 719–
1192 729.

1193 Kim, Y., Kanda, J., 2010. Characteristics of aerodynamic forces and pressures on
1194 square plan buildings with height variations. *Journal of Wind Engineering and*
1195 *Industrial Aerodynamics*. 98 (8–9), 449–465.

1196 Kim, Y., Kanda, J., 2013. Wind pressures on tapered and set-back tall buildings. *Journal*
1197 *of Fluids and Structures*. 39, 306–321.

1198 Kim, Y., Kanda, J., Tamura, Y., 2011. Wind-induced coupled motion of tall buildings with
1199 varying square plan with height. *Journal of Wind Engineering and Industrial*
1200 *Aerodynamics*. 99 (5), 638–650.

1201 Krige, D.G., 1951. A statistical approach to some basic mine valuations problems on the
1202 Witwatersrand. *Journal of The Chemical Metallurgical and Mining Society of*
1203 *South Africa*. 52(6):119–139.

1204 Kwok, K.C.S., Wilhelm, P.A., Wilkie, B.G., 1988. Effect of edge configuration on wind-
1205 induced responses of tall buildings. *Engineering Structures*. 10(2), 135-140.

1206 Kwon, D.K., Kijewski, T., Kareem, A., 2008. E-analysis of high-rise buildings subjected
1207 to wind loads. *Journal of Structural Engineering*. 134(7), 1139–1153.

1208 Li, Y., Li, C., Li, Q.S., Song, Q., Huang, X., Li, Y.G., 2020. Aerodynamic performance of
1209 CAARC standard tall building model by various corner chamfers. *Journal of Wind*
1210 *Engineering and Industrial Aerodynamics*. 202, 104197.

1211 Li, Y., Song, Q., Li, C., Huang, X., Zhang, Y., 2022. Reduction of wind loads on
1212 rectangular tall buildings with different taper ratios. *Journal of Building*
1213 *Engineering*. 45, 103588.

1214 Li, Y.G., Yan, J.H., Li, Y., Xiao, C.X., Ma, J.X., 2021. Wind tunnel study of wind effects
1215 on 90° helical and square tall buildings: A comparative study. *Journal of Building*
1216 *Engineering*. 42, 103068.

1217 Lu, W.T., Phillips, B.M., Jiang, Z., 2023. Effects of side and corner modification on the
1218 aerodynamic behavior of high-rise buildings considering serviceability and
1219 survivability. *Journal of Wind Engineering and Industrial Aerodynamics*. 233,
1220 105324.

1221 Matheron, G., 1963. Principles of geostatistics. *Economic Geology*. 58(8), 1246–1266.

1222 McKay, M.D., Bechman, R.J., Conover, W.J., 1979. A comparison of three methods for
1223 selecting values of input variables in the analysis of output from a computer
1224 code. *Technometrics*. 21(2), 239–245.

1225 Moorjani, R. R., Lombardo, F.T., Devin, A.F., Young, B.S., Baker, W.F., Ray, S.D.,
1226 2021. Influence of vented floors on the across-wind response of tall buildings.
1227 *Journal of Wind Engineering and Industrial Aerodynamics*. 209, 104480.

1228 Paul, R., Dalui, S.K., 2021. Optimization of alongwind and crosswind force coefficients
1229 on a tall building with horizontal limbs using surrogate modeling. *The Structural
1230 Design of Tall and Special Buildings*. 30(4), e1830.

1231 Qiu, Y., Yu, R., San, B., Li, J., 2022. Aerodynamic shape optimization of large-span coal
1232 sheds for wind-induced effect mitigation using surrogate models. *Engineering
1233 Structures*. 253, 113818.

1234 Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and Analysis of
1235 Computer Experiments. *Statistical Science*. 4(4), 409-423.

1236 Stathopoulos, T., 1985. Wind environmental conditions around tall buildings with
1237 chamfered corners. *Journal of Wind Engineering and Industrial Aerodynamics*.
1238 21, 71-87.

1239 Tamura, T., Miyagi, T., 1999. The effect of turbulence on aerodynamic forces on a
1240 square cylinder with various corner shapes. *Journal of Wind Engineering and
1241 Industrial Aerodynamics*. 83, 135–145.

1242 Tanaka, H., Tamura, Y., Otake, K., Nakai, M., Kim, Y.C., 2012. Experimental
1243 investigation of aerodynamic forces and wind pressures acting on tall buildings
1244 with various unconventional configurations. *Journal of Wind Engineering and
1245 Industrial Aerodynamics*. 107–108, 179–191.

1246 Townsend, J.F., Wang, J., Teschner, T.R., Xu, G., 2023. Towards an optimized design
1247 for an elevated cyclonic home using numerical simulations and active learning
1248 framework. *Journal of Wind Engineering and Industrial Aerodynamics*. 239,
1249 105445.

1250 Tschanz, T., Davenport, A.G., 1983. The base balance technique for the determination
1251 of dynamic wind loads. *Journal of Wind Engineering and Industrial
1252 Aerodynamics*. 13 (1-3), 429–439.

1253 Tse, K.T., Hitchcock, P.A., Kwok, K.C., Thepmongkorn, S., Chan, C.M., 2009.
1254 Economic perspectives of aerodynamic treatments of square tall buildings.
1255 *Journal of Wind Engineering and Industrial Aerodynamics*. 97 (9–10), 455–467.

1256 Wang, Z., Zheng, C., Mulyanto, J.A., Wu, Y., 2022. Aerodynamic Shape Optimization of
1257 a Square Cylinder with Multi-Parameter Corner Recession Modifications.
1258 *Atmosphere*. 13, 1782.

1259 Wang, Z., Mulyanto, J.A., Zheng, C., Wu, Y., 2023. Research on a surrogate model
1260 updating-based efficient multi-objective optimization framework for supertall
1261 buildings. *Journal of Building Engineering*. 45, 106702.

1262 Whiteman, M.L., Fernández-Cabán, P.L., Phillips, B.M., Masters, F.J., Bridge, J.A.,
1263 Davis, J.R., 2018. Multi-objective optimal design of a building envelope and
1264 structural system using cyber-physical modeling in a wind tunnel. *Frontiers in
1265 Built Environment*. 22.

1266 Whiteman, M.L., Fernández-Cabán, P.L., Phillips, B.M., Masters, F.J., Davis, J.R.,
1267 Bridge, J.A., 2022. Cyber-physical aerodynamic shape optimization of a tall
1268 building in a wind tunnel using an active fin system. *Journal of Wind Engineering
1269 and Industrial Aerodynamics*. 220, 104835.

1270 Xu, G., Kareem, A., Shen, L., 2020. Surrogate modeling with sequential updating:
1271 applications to bridge deck–wave and bridge deck–wind interactions. *Journal of*
1272 *Computing in Civil Engineering*. 34(4), 04020023.

1273 Yoon, K., 1987. A reconciliation among discrete compromise situations. *The Journal of*
1274 *the Operational Research Society*. 38 (3), 277–286.

1275 Zhou, Y., Kijewski, T., Kareem, A., 2003. Aerodynamic loads on tall buildings:
1276 interactive database. *Journal of Structural Engineering*. 129(3), 394-404.

1277