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Abstract
This study proposes a surrogate-based cyber-physical aerodynamic shape
optimization (SB-CP-ASOQ) approach for high-rise buildings under wind loading. Three
components are developed in the SB-CP-ASO procedure: (1) an adaptive subtractive
manufacturing technique, (2) a high-throughput wind tunnel testing procedure, and (3) a
flexible infilling strategy. The downtime of the procedure is minimized through a parallel
manufacturing and testing (IIM&T) technique. An unexplored double-section setback
strategy with various cross-sections and transitions positions is used to demonstrate the
performance of the proposed procedure. A total of 173 physical specimens were
evaluated to reach the optimization convergence within the reserved testing window.
Further analysis of promising shapes considering multiple design wind speeds is
suggested to achieve target performance objectives at various hazard levels. Practical

information on setback and cross-section modification strategies is discussed based on
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the optimization results. In comparison with a square benchmark model, the roof drifts
for promising candidates with similar building volumes are reduced by more than 70% at
wind speeds higher than 50 m/s. This procedure is expected to provide an efficient
platform between owners, architects, and structural engineers to identify ideal
candidates within a defined design space for real-world applications of high-rise

buildings.

Keywords: Aerodynamic shape optimization, Surrogate modeling, Wind tunnel testing,

CNC manufacturing, Tall buildings, Aerodynamic strategies

List of acronyms and notations

ASO Aerodynamic shape optimization

BLWT Boundary layer wind tunnel

CAD Computer-aided design

CAM Computer-aided manufacturing

CFD Computational fluid dynamics

CNC Computer numerical control

CP-ASO Cyber-physical aerodynamic shape optimization
El Expected improved

FND Farthest neighbor distance

HFFB High-frequency force balance

KRL KUKA Robot Language

IM&T Parallel manufacturing and testing

MSE Mean square error

NHERI EF Natural Hazards Engineering Research Infrastructure Experimental Facility
NMFP Number of maximum feasible points

OTM Overturning moment

PSD Power spectral density

RPM Revolutions per minute

SB-ASO Surrogate-based aerodynamic shape optimization
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SB-CP-ASO  Surrogate-based cyber-physical aerodynamic shape optimization
SQ Square

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
UF University of Florida

CMD Mean along-wind base moment coefficient

RMS L Root mean square across-wind coefficient

OcmL Standard deviation across-wind coefficient

B The width of square section

Br Building width

d The depth of side protrusion

f1 Fundamental frequency

He Building height

w The width of side protrusion

& Damping ratio

1. Introduction

It is well recognized that aerodynamic modification is an effective strategy to
mitigate wind responses for high-rise buildings. The modification strategies can be
divided into two categories: (1) cross-section modification and (2) height modification.
The idea of cross-section modification is to alter flow characteristics, such as flow
separation, flow attachments, or vortex shedding frequencies, by changing side (Lu et
al., 2023) or corner geometries (Stathopoulos, 1985; Kwok et al., 1998; Kawai, 1998;
Tamura and Miyagi, 1999; Gu and Quan, 2004; Tse et al., 2009; Tanaka et al., 2012;
Carassale et al., 2014; Gu et al., 2020; Li et al., 2020). The concept of height
modification is to destroy the coherence of vortex shedding in the across-wind direction
by changing the cross-section at different elevations for a building. Methods include
twisting (Tanaka et al., 2012; Li et al., 2021) , tapering (Tanaka et al., 2012; Chen et al.,

2021; Li et al., 2022) , and setback (Kim and Kanda, 2010; Kim et al., 2011; Tanaka et
3
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al., 2012; Kim and Kanda, 2013). For the setback strategy, there is no study to
systematically compare the aerodynamic behavior of high-rise buildings with different
cross-sections at different elevations. For example, the ideal transition heights and ideal
cross-sections at different elevations to mitigate wind responses is not clear. Thus,
more information regarding on how to effectively utilize this strategy in real-world
applications is needed. Due to the larger design space, however, it may not be feasible
to find the answers using parametric study.

Instead, optimization is an efficient technique to seek ideal candidates in a large
design space for an unknown problem with predefined objectives and constraints using
limited resources. To find better solutions, potential candidates can be generated using
traditional optimization strategies, such as particle swarm algorithms or genetic
algorithms, and the outputs are evaluated immediately at each iteration until a stop
criterion is activated. Valid solutions are returned anytime along the iteration before the
results are converged. For problems that consist of continuous variables, such as shape
optimization, it is expected that there is a correlation in behavior between adjacent
solutions. This characteristic can be leveraged using the surrogate modeling technique
(Jones et al., 1998; Forrester and Keane, 2009; Ahmed et al., 2009) to predict the
behavior of the entire search space with limited data points. To increase the accuracy of
surrogate modeling, an adaptive infilling strategy based on the latest collected
information can be used to achieve the goal of optimization. This technique is called
surrogate-based (or model-based) optimization procedure. In comparison with the
traditional optimization strategies, this is a more efficient technique for problems with

large search space. The surrogate-based aerodynamic shape optimization (SB-ASO)
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procedure has been successfully applied to different wind-sensitive structures in civil
engineering, including bridge decks (Xu et al., 2020), large-span structures (Qiu et al.,
2022), low-rise buildings (Townsend et al., 2023), and high-rise buildings (Bernardini et
al., 2015; Elshaer et al., 2017; Ding and Kareem, 2018; Elshaer and Bitsuamlak, 2018;
Paul and Dalui, 2021; Wang et al., 2022; Wang et al., 2023) using computational fluid
dynamics (CFD) or offline wind tunnel testing data.

For high-rise buildings, however, CFD simulation is not able to accurately capture
the flow characteristics around a bluff body immersed in the boundary layer effects
(Bernardini et al., 2015), in particular when deviating from classical benchmark shapes.
According to ASCE 7-22, conducting wind tunnel testing is required to obtain the design
demands for tall buildings which are not with regular external shapes. Since uniqueness
is an important design objective, it is reasonable to say that wind tunnel testing is
needed for all high-rise buildings for real-world applications. However, there is currently
no study to integrate a SB-ASO procedure with physical testing, meaning that only
limited candidates are evaluated in the wind tunnel at the preliminary design stage.

Fig. 1 (a) shows an iterative traditional cyber-physical aerodynamic shape
optimization (CP-ASO) procedure, which involves three components: model
manufacturing, model testing, and an optimization algorithm. The cyber component can
be a traditional or surrogate-based optimization algorithm. In the iterative process, the
new data point for manufacturing and testing is unknown until the latest results are
obtained. This implies that model manufacturing plays a crucial role on the efficiency of
the entire procedure since the testing cannot be carried out until the model is produced,

which is a major difference for optimization problems using physical testing. The issue
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of manufacturing can be relieved if a new testing candidate can be rapidly changed via
adaptive mechanical devices, such as the height of parapet wall of a low-rise building
(Whiteman et al., 2018), the fundamental frequencies of a high-rise building
(Fernandez-Caban et al., 2020), and the angles of a fin system for a high-rise building
(Whiteman et al., 2022). However, only changes within the mechanical range of motion
can be achieved using mechatronic models, implying that the dimensionality/complexity

of the search space is limited due to physical constraints.

Iterative process

Manufacturing Testing Optimization

(a) Sequential procedure

Iterative process

Parallel Manufacturing & Testing Optimization

(b) The procedure with IIM&T proposed in this study

Fig. 1. Conceptual procedure for CP-ASO procedure

For SB-ASO, there are several types of surrogate models available in the
literature, including kriging, radial basis function, support vector regression, artificial
neural network, etc. Among these surrogate models, kriging is a Gaussian process

interpolation technique that can predict outputs based on the distances and variations
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between collected data points (Krige, 1951; Matheron, 1963; Sacks et al., 1989).
Although there are variations of kriging, ordinary kriging is the most common model type
used by several studies (e.g., Bernardini et al., 2015; Xu et al., 2020; Qiu et al. 2022)
because it is easy to select model parameters. In ordinary kriging, users only need to
determine the type of regression model and the range of the corresponding
hyperparameter.

In addition, kriging is able to provide the predicted mean square errors (MSES) in
the design space, which is a promising indicator for adaptive infilling since all collected
data points can be used for updating the surrogate model. An MSE-based infill strategy
can be used to increase the global accuracy of surrogate modeling by infilling new data
points with the largest predicted MSE. For optimization purposes, after an acceptable
level of global accuracy is achieved, the second stage is to infill/validate the predicted
optimum if it has not been collected. For an unexplored problem, however, it may not be
easy to evaluate the global accuracy of a surrogate, meaning that it is hard to define the
stop criterion for the MSE-based approach in the two-stage optimization process.
Exhaustive global exploration will waste resources, while insufficient global exploration
will result in becoming trapped at local optimal solutions. Since the surrogate model
continues to be updated in the second stage, it is also not clear how many points need
to be infilled for optimum validation (optimization) purpose. Other than the MSE, the
expected improved (El) is another popular infilling strategy to increase the local
accuracy of surrogate models by directly including the objective function when making

infilling decisions. However, this approach can easily get stuck at a local optimum if a
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certain level of global accuracy is not achieved (Forrester and Keane, 2009), meaning
that El is not a flexible approach for optimization.

Other than the robustness of the infilling strategy discussed above, there are
other considerations that need to be addressed when it comes to CP-ASO using the
surrogate model technique. First, in general, wind tunnel testing windows are reserved
in advance, meaning that the optimization process needs to converge within a fixed
time. Although a stop criterion based on time, such as total iteration, can be applied, it is
preferred to achieve a balance between global exploration of the search space and
convergence to the optimization results by fully utilizing the entire testing window (not to
stop too early). Second, the CP-ASO procedure is using a physical resource and may
be interrupted. The ability to return valid optimum solutions anytime along the iteration
process is preferred, which is not be able to achieve using either the MSE or El
strategies because data points are not infilled at predicted optima. Third, the results of
physical testing are nondeterministic. The infilling strategy must include features to
address experimental uncertainty and also flag potential outliers. With the
aforementioned considerations, there is a need to develop a tailored infilling strategy for
the CP-ASO procedure using the surrogate-based technique.

This study proposes a surrogate-based cyber-physical aerodynamic shape
optimization (SB-CP-ASO) procedure for high-rise buildings. The procedure consists of
three components with techniques to overcome the aforementioned challenges, as
shown in Fig. 1 (b). In the physical part, an adaptive subtractive manufacturing
technique, which is able to produce complex external shapes for high-rise buildings, and

a high-throughput high-frequency force balance (HFFB) wind tunnel testing procedure



153 are developed at the University of Florida (UF) Boundary Layer Wind Tunnel (BLWT). In
154  the cyber part, a robust infilling strategy augmented with surrogate-based local search is
155 proposed to pursue a balance between global exploration and optimization. The infilling
156  strategy is able to: (1) return valid optimal solutions anytime in the iteration, (2) ensure
157 the local accuracy at promising regions, and (3) escape a local optimal solution. A

158 parallel manufacturing and testing (IIM&T) technique is realized by an indicator,

159  “sparsity level”, to integrate the three components together with the intention of

160  maximizing the throughput of the procedure. A double-section setback shape

161  optimization problem for high-rise buildings with three design variables is used to

162 demonstrate the robustness of the proposed procedure. Practical information is

163  provided regarding ideal transition position of the setback strategy with different cross-
164  sections.

165 This paper is organized as follows. Section 2 discusses some unique

166 considerations for shape optimization design of high-rise buildings. The three

167 components and IIM&T in the SB-CP-ASO procedure are introduced in Section 3. The
168 optimization problem and the setup of the SB-CP-ASO procedure are presented in

169  Section 4. The reliability of the three components and optimization results are discussed
170 in Section 5. The selection approach of promising candidates for high-rise buildings

171  considering multiple design wind speeds is presented in Section 6 with the conclusions
172  summarized in Section 7.

173

174 2. Background
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To conduct wind design for high-rise buildings, both the time and frequency
domain results are needed to calculate the structural responses (e.g., base overturning
moment, roof drift, and roof acceleration) under different wind speeds and wind angles
(ASCE 7-22, 2022). Due to the variation of power spectral density (PSD) responses in
the frequency domain results, the structural responses do not change linearly with wind
speed. When aerodynamic strategies are compared, the relative performance between
different candidates varies with the design wind speed (Lu et al., 2023). This indicates
that different cities will have different optimal solutions given the same optimization
problem. Additionally, a promising candidate is expected to achieve multiple
aerodynamic performance objectives, such as serviceability and survivability at different
hazard levels (Kareem, 1983; Irwin, 2009).

Due to the complex behavior mentioned above, it may not be practical to use the
structural response or frequency domain results as an objective function for the
optimization process. Thus, statistics from time domain results are used as objectives
functions to find optimal candidates for SB-ASO problems of high-rise buildings
(Bernardini et al., 2015; Elshaer et al., 2017; Ding and Kareem, 2018; Elshaer and
Bitsuamlak, 2018, Paul and Dalui, 2021). However, the link between structural
responses under different design wind speeds and the time domain results were not
addressed in the literature. The appropriateness of using time-domain statistics for
surrogate modeling and optimization in achieving excellent structural scale responses
for high-rise buildings is needed.

In addition to aerodynamic performance, other design considerations, such as

aesthetic appeal, building volume, and operation purposes, also influence the external
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shape of a high-rise building. Therefore, seeking a single solution with the best
aerodynamic performance is not enough for owners and architects at the preliminary
design stage. Instead, a group of candidates which can satisfy a defined threshold is
required for designers to have more freedoms to achieve different objectives, a practical
consideration of ASO procedure for high-rise building design.

This section discussed some unique aspects of optimization design for high-rise
buildings which are not addressed in the literature. A customized approach to identify a
set of ideal candidates under multiple design wind speeds for high-rise buildings will be

introduced along the optimization results in Section 6.

3. SB-CP-ASO procedure

The proposed SB-CP-ASO procedure is illustrated in Fig. 2 (a). The procedure
includes the following three components: (1) an adaptive milling manufacturing
procedure, discussed in Section 3-1, (2) a high-throughput wind tunnel testing
procedure, discussed in Section 3-2, and (3) a flexible infilling strategy, discussed in
Section 3-3. The procedure begins by selecting an initial set of samples within the
design space. The ideal number of initial samples is problem dependent. It can be
determined based on the number of models that can be evaluated in the testing window
or the number of feasible models in the search space. These samples are then
fabricated and evaluated in the wind tunnel. An initial kriging surrogate model is
constructed after the results of the initial samples are collected. From that point onward,
the kriging model is used as part of the infilling strategy to suggest the next sample to

manufacture and evaluate in the wind tunnel. After each testing, the kriging model is

11
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updated and the process repeats. The iterative process is continued until one of the two
established stop criteria for the infill strategy is activated. The first stop criterion is the
total allowable duration of the tests, a practical limitation for a shared resource such as
a wind tunnel. The second criterion is flexible and controlled by the optimization
strategy, which will be discussed later (Section 3.3.3). Ideally, the stop criterion is

activated by the optimization strategy, meaning the optimization results are converged.

I Initial sampling plan I
|«
e

[T cnewmig. [ ] [ |
¢ Analyze data (nth-1) I

[ ] HFFB [ ] y
¢ ] Construct/update
Infill surrogate models HFFB
I Analyze data I strategy (nt)

¢ I l Infill strategy l I
Construct/update
surrogate models I ] CNC Mfg. (n"*1) ] I

v I l

Stop NO
criteria?
J YES
ASO (end)

(a) The procedure for n" model (b) The concept of IM&T at nt" iteraiton
Fig. 2. SB-CP-ASO procedure.

As shown in Fig. 2(a), the efficiency of the procedure will be significant reduced if
the manufacturing and testing are in series for shape optimization problems with major
modifications. To address this issue, the IIM&T is proposed to let the three components
be conducted at the same time, as shown in Fig. 2 (b). It should be pointed out that Fig.
2 (a) and (b) do not conflict with each other, but are illustrated from different
perspectives, which are from the nt" model (Fig. 2 (a)) and n*" iteration (Fig. 2 (b)). The

concept of IIM&T is to manufacture the n"*' model based on the available information

12
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from cyber part (analyzing testing results, updating the surrogate model, and running
the infilling strategy) when the n" model is tested in the wind tunnel. At each iteration,
the downtime can be minimized if the summation of the time for cyber part and physical
manufacturing is shorter than the time for physical testing. More details regarding how

to realize this technique will be discussed in Section 3-3.

3.1 Adaptive subtractive manufacturing procedure

Milling (subtractive manufacturing) is a process to manufacture a target shape by
removing material from an initial workpiece. This manufacturing process can be
achieved using computer numerical control (CNC) technique in which the movement of
milling tools is operated via pre-programmed numerical control. Multi-axis industrial
robotic arms are recognized as a promising tool for CNC milling manufacturing because
of their high flexibility and large workspace. A 6-axis industrial robotic arm (KUKA model
KR 20 R1810-2) was used to manufacture different models for this study, as shown in
Fig. 3. A 3 hp 18,000 rpm ATI Model SC30 spindle with automatic tool changer was
installed on the robot to control various flat and ball end mills for CNC milling (see Fig. 3
(a)). A turntable 50 cm away from the base of the robot was installed to provide an
additional axis (7! axis) to increase the workspace of the system (see Fig. 3 (b) and
(c)). A 5C collet chuck was installed on the turntable to hold a model for CNC milling

(see Fig. 4 (a)).
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Fig. 3. Photographs for the ada(pt))t?ve CNC subtractive procedure.

Blocks of urethane foam material with a density of 96 kg/m?® and a hardness of 8
Shore D on the Durometer scale were used to fabricate the models for wind tunnel
testing. All model blanks began as a square prism 90 mm x 90 mm in plan and 405 mm
in height as shown in Fig. 4 (a). For a consistent base size for wind tunnel testing, all
models included a 5 mm thick, 90 mm x 90 mm square base. The top of this base was
set flush with the wind tunnel floor. A 25.4 mm outer diameter hollow aluminum rod with
3.175 mm wall thickness was inserted in the model to provide sufficient stiffness to
avoid interactions between the upper bound of the frequencies of interest and
specimen’s fundamental natural frequency under wind excitation. An 85 mm x 85 mm in
plan 10 mm thick 3D-printed collar was clamped to the aluminum rod and glued to the
bottom of the model to provide torsional resistance between the rod and the model. Fig.
4 (b) shows the aluminum rod with the plastic collar. The rod and collar are reusable for

a new foam blank.
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(a) Blank model in the 5C (b) Aluminum rod with (c) Plate it the notch.
collect chuck. plastic collar.
Fig. 4. Photographs of details for foam model.

The adaptive CNC subtractive manufacturing procedure is realized by a
remanufacturing technique to reuse previously tested foam models, saving time and
material. The procedure of the adaptive CNC manufacturing is illustrated in Fig. 5 (a).
On the software side, an algorithm was developed to select from among a set of
available, previously tested models. The previously tested models that the new target
model can nest into are considered. Milling volumes are calculated based on the
difference between the target model and the tested models. The zig-zag cutter path
strategy, equidistant parallel lines that fit within the milling volumes, is adopted in this
study to avoid redundant tool paths and to minimize manufacturing time. Parametric
design for different CNC coordinate milling paths is developed using C# scripts to
interface with computer-aided design/manufacturing (CAD/CAM) software Rhino6 and
Grasshopper. A plug-in KUKAprc is used to convert the tool paths into KUKA Robot
Language (KRL). If there is more than one feasible candidate, reusability and the

predicted manufacturing time are used as selection criteria to prioritize the models. If
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287 there are no suitable models available to reuse, a blank model (see Fig. 4 (a)) will be
288 used to make the target model. On the hardware side, a 1 cm long notch is included at
289 the end of all aluminum rods (see Fig. 4 (b)). A plate with the same notch, as shown in
290 Fig. 4 (c), was installed at the bottom of the 5C collet chuck to ensure that a previously
291  tested model can be reinstalled at the same elevation and orientation in the 5C chuck

292  for remanufacturing.

293
Clnfill strategy (start))
l What to
Zero improve?
mfg. devices
l Multi-
Generate objectives N
adaptive milling YES
oo ] .
l Global exploration | Switch objective |
Al N Change l
tested? angle strategy
l YES | |
end
C Infill strategy (end) )
(a) CNC procedure (b) HFFB testing procedure (c) Infilling strategy
Fig. 5. Procedures for tasks described in Section 3.
294

295 3.2 HFFB testing procedure and evaluation approach

296 A high-throughput HFFB BLWT testing procedure (Fig. 5 (b)) is established at the
297 UF NHERI EF (Natural Hazards Engineering Research Infrastructure Experimental

298 Facility) to accurately capture the base responses of different testing candidates with
299 complex external shapes. The base responses (e.g., overturning moments, OTM) can
300 be used to generate structural responses (e.g., roof drift) of interest (Tschanz and

301  Davenport, 1983; Zhou et al., 2003; Kwon et al., 2008). The Terraformer, an automated
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roughness grid composed of 1116 elements, was used to generate desired approach
flow conditions in the test section. More details of the UF BLWT can be found in
literature (Catarelli et al., 2020a; Catarelli et al., 2020b). In addition to approach flow
conditions, wind angle is another important testing condition for high-rise buildings
(ASCE 7-22, 2022). The desired wind directions were realized by an automatic turntable
in the wind tunnel. During testing, a TFIl cobra probe was installed at the model height
offset in the spanwise direction to capture the reference wind speed.

The high-throughput testing procedure is supported by a fast installation
mechanism for the models. The installation mechanism is shown in Fig. 6. A 5C collet
chuck, which is identical to the chuck for manufacturing, was installed on a six-axis load
cell (ATl Industrial Automation, Delta model) to hold the models as shown in Fig. 6 (a).
The load cell was used to measure the base reactions during HFFB BLWT testing. On
the wind tunnel floor, a wood panel with a 96 mm x 96 mm square opening was made to
fit the base (90 mm x 90 mm square) for all testing models. A 180 mm x 180 mm square
opening provides access to the collet chuck nut for changing models (see Fig. 6 (b)).
This panel was closed during testing (see Fig. 6 (c)). With this setup, the models can be
installed quickly and at a consistent elevation and orientation. As shown in Fig. 5 (b),
the load cell and cobra probe were zeroed after model installation and prior to engaging

the fans.
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(a) Close vie (b) Wood panel (c) During testing
Fig. 6. The setup of load cell and 5C collect chuck in the wind tunnel.

In this study, the time series results of base moments were used to assess the
aerodynamic performance for each model. As mentioned in Section 2, both the time
domain and frequency domain results in different wind angles are needed to generate
the structural responses for high-rise buildings. In the time domain, the non-dimensional
base coefficients (mean, root mean square, and standard deviation) for each wind angle
were calculated. The PSD curves for each wind angle were calculated from the
frequency domain responses. The statistical time domain responses and PSD
responses were enveloped across all wind angles to generate full-scale OTM responses
at different wind speeds assuming a Gaussian process. The structural responses were
calculated using a modal analysis procedure (Zhou et al., 2003; Kwon et al., 2008).
More details on this HFFB post-processing approach can be found in the literature (Lu

et al., 2023).

3.3 Infilling strategy
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For continuous problems, parameter discretization is a crucial step to achieve an
economical and effective optimization process. If the discretization interval is too large,
a critical design alternative might be missed. If the interval is too small, the results might
be insensitive to the incremental changes of inputs, leading to redundant samples and
wasted resources. For physical testing, furthermore, the difference in results between
neighboring samples may be dominated by experimental uncertainty rather than the
small interval of input parameters, complicating the optimization process and surrogate
modeling. Thus, appropriately selecting intervals for the design parameters is an
important step for the infilling strategy.

The flow chart of the infilling strategy is shown in Fig. 5 (c). There are two goals
for the infilling strategy: (Goal 1) improving the global accuracy of surrogate modeling,
and (Goal 2) seeking the optimum solution for an objection function. In this study wind,
tunnel testing controls the throughput, so only one data point is infilled at each iteration.
As mentioned in Section 1, it is not easy to evaluate the global accuracy for an
unexplored surrogate model problem. Instead of adopting a decoupled strategy where
the surrogate model is fully trained and then used to evaluate the optimal solution, a
switch between the two infilling goals along the SB-CP-ASO procedure is proposed in
this study. There are two benefits for the switch between the two infill goals. First, the
ASO procedure can return a set of valid optimum solutions anytime in the case that the
physical testing must be halted prematurely. Second, it naturally introduces a jump-out
mechanism into the optimization process.

The infill ratio and conditional operation between the two infill goals can be

defined by the user. A larger infill ratio on global exploration leads to a better
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understanding of the entire design space but more iterations will be needed to achieve
the convergence of the procedure. In contrast, if the infill ratio on optimization is higher,
the solution will converge more quickly, but the chance of getting stuck at a local
optimum is increased. The operator that selects between the two infill goals can be fixed
or evolve based on the iteration count or results themselves. In addition to single
objective, the procedure is also able to pursue multiple objectives in parallel as needed,
as shown in Fig. 5 (c). It is suggested to switch the optimization objectives in a fixed

sequence at each iteration.

3.3.1 Sparsity level for IIM&T

As shown in Fig. 2 (b), the idea of IIM&T is to manufacture the n"*' model when
the n™ model is tested in the wind tunnel. Since the output for the n" model is unknown,
the sparsity level is proposed in the infilling strategy to consider the position (input) in
the design space of the 15t to the n™*! previously tested models and the n'" model in the
wind tunnel. With parameter discretization, there are finite data points that can be
infilled in the design space. The sparsity level is defined as the ratio between the
number of uncollected points and the number of maximum feasible points (NMFP) that
can be infilled within the farthest neighbor distance (FND) for a point of interest. The

FND is defined as:

FND = /D * d? (1)
where D is the dimensionality of the problem and d is the normalized unit-distance in the

design space. The concept of sparsity level is illustrated in Fig. 7 using a 2D example.

The unit distance is 1 for both variables and the corresponding FND is 1.4-unit distance.
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382 For Point A, the NMFP is 8 and there are 7 uncollected points, which can be infilled
383  within the FND. The corresponding sparsity level for Point A is 87.5% (=7/8). The

384  sparsity levels for Point B and Point C are 67% (=2/3) and 60% (=3/5), respectively.
385 Because the sparsity level is normalized by the NMFP, it fairly evaluates points on the

386 vertexes, edges, and interior of the design space.

387
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Fig. 7. The concept of sparsity level.
388

389 3.3.2Infill Goal 1: Global exploration

390 For infill Goal 1, the predicted MSE (from kriging) and sparsity level (Section

391  3.3.1) are considered when selecting the infilling point. Both the collected information of
392 input and output is used to generate the predicted MSEs for all uncollected points

393 except for the model in the wind tunnel. The inputs for all tested models and the current
394  model in the wind tunnel are used to calculate the sparsity level. The technique for order
395  of preference by similarity to ideal solution (TOPSIS, (Hwang et al., 1981; Yoon, 1987,
396 Hwang et al., 1993)) is used to calculate the scores using the predicted MSE and

397  sparsity level for all candidate points (uncollected points excluding the model in the wind
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tunnel) at each iteration. The point with the highest score from the TOPSIS is selected
for the infilling point and manufacturing.

In general, the predicted MSEs are proportional to the distance between
predicted points and collected points. If collected points are sparse at a region, the
corresponding predicted MSEs for the uncollected points will be relatively high in the
region. Sparsity level is proposed to realize the IIM&T technique by compensating for
the unknown outputs of the model currently in the wind tunnel. If the sparsity level is not
adopted, the suggested infill point will cluster together with the model currently in the
wind tunnel due to the high predicted MSE, resulting in redundant exploration. On the
other hand, the sparsity level alone is insufficient because most uncollected points will
have the same sparsity score of 100%. To balance the two criteria, it is suggested to
use equal weight ratios for the sparsity level and the predicted MSE to ensure the

effectiveness of the IIM&T technique.

3.3.3 Infill Goal 2: optimization

The procedure of the infill strategy for optimization is illustrated in Fig. 8. The first
step is to determine the predicted optimal solution from the most up-to-date surrogate
model. There are only two situations for the predicted optimal solution as illustrated in
Fig. 9 using a 1D example. For Situation (a), the predicted optimum is better than the
best observation (see Fig. 9 (a)). Situation (a) represents that the predicted optimum
has not been collected. As mentioned in Section 1, wind tunnel testing is required when
evaluating wind loads high-rise buildings with irregular shapes. This implies that

promising aerodynamic shapes should be evaluated in the wind tunnel. By infilling a
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data point at the predicted optimum (“optimum validation” as shown in Fig. 8), the
concern of an inaccurate prediction is relieved. For Situation (b), the surrogate model’s
predicted optimum has already been gathered via wind tunnel testing (see Fig. 9 (b)).
For this situation, a surrogate-based local search strategy will be executed with infilling
to: (1) seek a better neighboring solution, and (2) ensure the local accuracy around the

predicted optimum.

Optimization
strategy (start)

Update predicted
optimum using
surrogate model

A

Optimum

YES validation

Increase
search
bound?

Optimization Activate
strategy (end) stop criterion

Fig. 8. Selecting an infill point based on optimization.
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Fig. 9. The two situations for optimization infilling

The idea of the surrogate-based local search is to infill an uncollected data point
with the largest predicted MSE within a defined search bound, as shown in Fig. 10. The
search bound is centered on the predicted optimum/best observation (e.g., Point A
(3,3), see Fig. 10). The radius of the search bound ranges from the discrete distance of
1-unit distance to the FND of the search space (e.g., 1.4-unit distance for 2D problem),
which is related to the convergence speed of the optimization process. With parameter
discretization, the numbers of points that can be infilled in Fig. 10 for 1-unit and 1.4-unit
distance are 4 points and 8 points, respectively. For a large search bound (e.g., 1.4-unit
distance), although there are more data points (8 points) that need to be infilled to reach
convergence, the chance to achieve a better solution using fewer overall iterations
increases. The reason behind this is because the uncollected points (Point (2,2), Point
(2,4), Point (4,2), and Point (4,4)) with the greatest distance from the center of the
search bound have a higher chance to be infilled first due to the larger predicted MSE. If
a better solution occurs at one of these points, several intermediate iterations can be
avoided in comparison with using 1-unit distance as the search bound. Since the
optimum prediction is updated at every iteration, the center of the search bound might
move along the iteration. If the predicted optimum/best observation remains the same
and all points within the search bound are all collected, then that objective is considered

converged.
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Fig. 10. The concept of surrogate-based local search

In general, the ideal size of the local search bound is problem-dependent.
Instead of a fixed local search bound, an adaptive local search bound along the iteration
process is proposed in this study. A small local search bound can be taken as a starting
point. For single-objective case, if the results are converged early in the reserved testing
window, the procedure can be continued by increasing the size of the local search
bound. If the local search bound is full and not increased, the stop criterion of the
optimization process will be activated (see Fig. 8). With the adaptive search strategy,
the entire testing window is expected to be fully utilized since stop criterion is controlled
by users.

For the multi-objective case, each objective is fit using its own independent
surrogate model. As a new point is infilled, all surrogate models are updated in parallel.
In other words, infilling for one objective will improve the surrogate modeling of all
objectives at that infill point. By doing this, seeking a better optimal solution for one
objective can benefit to the global accuracy or the optimal solutions for other objectives.

If an objective is converged, then either: (1) the search bound can be increased for the
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objective, or (2) the algorithm can switch to another optimization objective at this
iteration (see Fig. 8). Note that it is possible to discover a better solution from the jump-
out mechanism, even for objectives that had been considered converged. For this
reason, it is suggested to increase the search bounds for different objectives at the

same time.

3.3.4 Summary of infilling strategy

As mentioned in Section 1, the issues of the two-stage infilling strategy of MSE
and optimal validation are (1) not easy to define a stop criterion between the two
strategies, and (2) easy to get trapped at a local optimal solution with insufficient global
exploration. By switching the two infilling strategies, the first issue disappears and the
second issue is partially resolved. In addition to find a better solution, the surrogate-
based local search algorithm is able to further relieve the second issue by improving the
local accuracy of promising region when the surrogate model suggests the same
optimal solution. The benefits of improving local accuracy are to (1) find similar
promising solutions within the search bound, which provide important information for
architectural considerations (see Section 2), and (2) eliminate the concerns of
uncertainties from physical testing based on the trends of the results in the local search
bound. The two benefits cannot be achieved using the global exploration goal, meaning
that the proposed surrogate-based local search optimization procedure is a practical

step for SB-CP-ASO problems of high-rise buildings.

4. Optimization problem and the setup of the SB-CP-ASO procedure
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A double-section setback building with three design variables is selected as an
example to demonstrate the robustness of the proposed ASO procedure. The elevation
view of the problem is presented in Fig. 11(a). The total model height is fixed at 40 cm.
Input#1 and Input#2 are the widths of side protrusions on the top and bottom sections,
respectively (Fig. 11(b)). Input#3 is the transition position between the two sections. The
top and bottom sections can each independently be described by the designation SQ B-
d-w, as shown in Fig. 11 (b), where SQ represents the square section, B is the
dimension of the square, d is the depth of side protrusion, and w is the width of side
protrusion. B and d are fixed for each of the two sections, resulting in one parameter w
for each section. In this study, the depth ratio is defined as the ratio between d and B

and the width ratio is defined as the ratio between w and B.

5cm
1 1
A
{212 (2 ]ld
1 c 1 c
El 1 T 11~
O 1,
Sl ! o |
1 H O < R
- B
| £ i
:[Scm
Coord. (Input#1, Input#2, Input#3) SQ B-d-w
(a) Elevation view (b) Cross-section (¢)(1,1,1)  (d)(10,10,10)

Fig. 11. lllustration of the optimization problem with 3 inputs.

The design space is discretized into 10 options for each input. Discrete options
for Input#1 and Input#2 are shown in Fig. 12 and Fig. 13, respectively. The depth ratios,

which are fixed, for the top and bottom sections are 12.5% (7 mm) and 14.3% (10 mm),
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respectively. The width ratios, which are the design variable for both sections, vary from
0% to 100%. The smallest intervals of side protrusion width for the top and bottom
sections are 6 mm and 8 mm, respectively, which are equivalent to a 10% modification
ratio with respect to the square section. Based on the literature (Stathopoulos, 1985;
Kwok et al., 1998; Kawai, 1998; Tamura and Miyagi, 1999; Gu and Quan, 2004; Tse et
al., 2009; Tanaka et al., 2012; Carassale et al., 2014; Gu et al., 2020; Li et al., 2020; Lu
et al., 2023), these intervals are sufficient to produce different aerodynamic responses
(i.e., detectable above experimental uncertainty). It can be observed that the top section
can always nest into the bottom section, ensuring that any combination of the two
features will result in a realistic building. Table 1 lists the transition positions for Input#3
with an interval of 30 mm (7.5% of model height). The lowest and highest transition
positions are 80 mm (20% of model height) and 350 mm (87.5% of model height),

respectively from the ground.

7| 7! 7z 7
[z ! 7 Z E % E %
4] 144} 277} 22
SQ56-0-0 (1) SQ56-7-6 (2) SQ56-7-12 (3) SQ56-7-19 (4) SQ56-7-25 (5)

[ANNNNNNNNNNY
[ANNNNNNNNNNY

V777777277
7
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R/ horririristi

SQ56-7-31(6) | SQ56-7-37(7) | SQ56-7-44(8) | SQ56-7-50(9) | SQ56-7-56 (10)

Fig. 12. Plan view and detail for the top section (Input#1). The numbers in the
parentheses indicate the corresponding coordinates in the optimization problem.
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Fig. 13. Plan view and detail for the bottom section (Input#2). The numbers in the
parentheses indicate the corresponding coordinates in the optimization problem.

Table 1. The transition positions for input#3.

Option Transition height (mm) Percentage of bottom section
(%)
1 80 20%
2 110 27.5%
3 140 35%
4 170 42.5%
5 200 50%
6 230 57.5%
7 260 65%
8 290 72.5%
9 320 80%
10 350 87.5%

With the selected parameter discretization, there are 1000 feasible candidates,
which cannot feasibly be explored using an exhaustive search approach through wind
tunnel testing. Each candidate can be represented using coordinates (Input#1, Input#2,
Input#3) with a range of [1,10] in the search space. Among the candidates, the max
(10,10,10) and minimum (1,1,1) building volumes are 2930 cm? and 1397 cm?,
respectively (see Fig. 11 (c) and (d)). A prismatic square model (70 mm x 70 mm,
SQ70) with a volume of 1960 cm?, which is in the middle of the search space, is taken

as the benchmark to validate the wind tunnel testing conditions and to demonstrate the
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benefits of the setback strategy. Although the range of the building volume is significant
in the design space, the solutions with ideal aerodynamic performance are not expected
to occur at the extreme model volumes. In addition, as mentioned in Section 2, there
are other factors need to take into consideration when it comes to design a high-rise
building, such as operation purpose, construction cost, and return on investment, etc.
The aerodynamic performance of the models with extreme building volumes can
provide useful references for designers to evaluate optimal candidates in the preliminary

design stage.

4.1 The setup of the adaptive subtractive manufacturing procedure

As mentioned in Section 3, previously tested models will be reused in the ASO
procedure to the extent possible to save material cost and manufacturing time. There
were 50 pairs of rods and collars (see Fig. 4 (b)) created to support a maximum of 50
models at the same time in the lab. A maximum of 40 tested models were preserved for
reuse alongside ten blanks. If there were more than 40 tested models, some of the
models were abandoned based on their remaining usefulness to make new blank
models (see Fig. 4 (a)). Ten new blank models were prepared in advance each day in

case a target model cannot nest into any of the preserved models.

4.2 The setup of the HFFB procedure
4.2.1 Wind angle
Wind angle is another parameter that needs to be evaluated for wind design

since the critical response can occur at any wind direction for high-rise buildings with
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554  different aerodynamic shapes (Lu et al., 2023). In theory, wind angle could be an input
555 to the surrogate model, such as the literature using CFD simulation (Elshaer et al.,

556  2017; Elshaer and Bitsuamlak, 2018), implying that there is no need to test all wind
557 angles for a given shape. However, such an approach will lead to several problems for
558 SB-CP-ASO procedure. First, models with the same shape may need to be retested at
559 different times for different wind angles. Since it is impractical and impossible to

560 preserve all models with limited space and resources, the same model may need to be
561 remanufactured several times. Second, the demand of accuracy for surrogate modeling
562 is increased since the objective function is pursuing the best performing model from the
563  worst performing wind angle. Third, there is a fixed time to setup a model before data
564  collection no matter how many wind angles are evaluated, including model installation,
565 zeroing measurement devices, and initializing fan speeds (see Fig. 5 (b)). If the same
566 model is tested at different times, the time to collect data will be significantly reduced.
567 For the aforementioned reasons, wind angle is taken as a testing condition and
568 not as an input in the SB-CP-ASO procedure. An additional benéefit to testing all wind
569 angles is that the trend of the responses across different wind angles can be used to
570 evaluate whether a response is an outlier or not (i.e., the responses should not differ
571  significantly from the responses at adjacent wind angles) since the results of wind

572  tunnel testing are nondeterministic. Note that the pros and cons of taking wind angle as
573 atesting condition mentioned above do not apply for studies using CFD simulation,
574  another critical difference between SB-ASO and SB-CP-ASO procedures.

575

576 4.2.2 Testing conditions

31



o7 7

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

Since all models are doubly-symmetric, a total of 10 wind angles from 0° to 45° at
5-degree increments was used as a testing condition. To simulate the boundary layer
effects, a suburban terrain condition with power-law index of 0.22 was generated in the
test section with a length scale ratio of 1:750. The mean wind speed at model height
was 9.8 m/s with a fan speed of 750 RPM (revolutions per minute). The approach flow
conditions were evaluated in the longitudinal direction including: (1) mean wind speed
profiles, (2) turbulence intensity profiles, and (3) PSD at the model height. More details
of the approach flow conditions can be found in the literature (Lu et al., 2023). In
addition, the aerodynamic performance of the benchmark model, SQ70, was evaluated
in the testing condition before exploring the optimization problem using the SB-CP-ASO
procedure. By doing this, the testing setup, including measurement devices, approach
flow conditions, and model orientations can be validated with benchmark data.

To calculate the structural responses, the structural properties assumed for this
study are summarized in Table 2. The full-scale building height and width were 300 m
and 52.5 m, respectively. The fundamental frequency was assumed to be 0.1 Hz with a
damping ratio of 1%. The building density was assumed as 200 kg/m3. Linear mode

shapes in the along and across wind direction were considered.

Table 2. Structural properties.

Parameters Value
Building height, Hx 300 m
Building width, By 52.5m

Fundamental frequency, f; 0.1 Hz
Damping ratio, ¢ 0.01
Mass per unit volume 200 kg/m?

4.2.3 Aerodynamic response of the benchmark model
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Fig. 14 (a) shows the variation of base moment coefficients for the benchmark
model (SQ70) under different wind angles. The peak CMD (mean along-wind base
moment coefficient) is 0.64 at the wind angle of 40°, and the peak o, (standard
deviation across-wind coefficient) is 0.15 at the wind angle of 0°. Fig. 14 (b) shows the
PSD responses for the benchmark model in the across-wind direction under different
wind angles. The responses are mainly dominated by the wind angle of 0° with the
Strouhal number of 0.1. As wind angles larger than 20°, the amplification effects are
negligible in comparison with the wind angle of 0°. Both the time and frequency domain
results are consistent with the literature (Tamura and Miyagi, 1999; Tanaka et al., 2012;
Carassale et al., 2014; Lu et al., 2023). Fig. 14 (c) shows the peak roof drift demands
for the benchmark model for wind speeds of 40 m/s to 60 m/s. The drifts are controlled
by the across-wind direction. The roof drift demands are larger than 2% and 3% at the
wind speeds of 48 m/s and 53 m/s, respectively, suggesting the need to suppress wind

responses through aerodynamic modification strategies.

£ 07 ‘ -#-Mean CMD -o-STD CML‘
30
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Wind Angle (degree)

(a) Base moment coefficients
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Fig. 14. Wind tunnel testing results for the benchmark model

4.3 The setup of the infilling strategy

Based on the available BLWT testing window and the expected throughput of the
SB-CP-ASO procedure, the first stop criterion was set as 200 iterations (specimens).
Ten initial samples were selected using the Latin Hypercube Sampling technique
(McKay et al., 1979). Three optimization objectives, mean along-wind coefficient (CMD),
RMS across-wind coefficient (RMS.,,; ), and standard deviation across-wind coefficient
(ocp1), were pursued in parallel in the optimization process. The CMD, RMS,,,, and
ocuy refer to the maximum values across all wind angles. An independent ordinary
kriging model using the Gaussian regression approach was generated for each of the
objective functions using the ooDACE (Couckuyt et al., 2014) toolbox in MATLAB. As a

proof-of-concept study, three objectives were selected to demonstrate that multiple
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objectives can be pursued in parallel. Note that when infilling for one of the three
objectives, the accuracy of the surrogate model for all three objectives is improved.
Alternatively, because o), is critical to the wind response of tall buildings, it could have
been pursued in isolation.

A fixed, equal ratio was used to alternate between infill goals of global
exploration (Goal 1) and optimization (Goal 2). For global accuracy infilling, TOPSIS
weights were selected as 0.5 for the sparsity level and 0.167 each for the predicted
MSEs of the three optimization objectives. For optimization infilling, a fixed-sequence for
the three objective functions was adopted, essentially converging them in parallel. With
the three design variables (3D problem), the available search distances are 1-unit, 1.4-
unit, and 1.7 unit- distances. The initial local search bound for the three objectives was
select as 1.4-unit distance with the intention to demonstrate that a better solution can be
achieved through a shortcut path. With two alternating infill goals and three alternating
objectives, the infill pattern repeats every six iterations. If one objective is converged
(the search bound is full), the optimization infilling will focus on other objectives instead
(e.g., infill pattern repeats every four iterations). The local search bounds for the three
objectives will be increased to 1.7 unit-distance at the same time until the optimal

solutions are all converged if there is enough testing time remaining.

5. The optimization results of the SB-CP-ASO procedure
This section discusses the optimization results of the double-section setback
problem through the SB-CP-ASO procedure. A total of 173 models were evaluated in 11

workdays. The three optimization objectives all converged with a search bound of 1.4-
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unit distance. The reliability and the throughput of the adaptive subtractive
manufacturing and HFFB testing procedures are discussed in Sections 5.1 and 5.2,
respectively. The robustness of the infilling strategy is discussed in Sections 5.3 and 5.4
with respect to the input of samples and the convergence history of the three objective

functions. A brief summary of the SB-CP-ASO procedure is presented in Section 5.5.

5.1 Evaluation of the adaptive subtractive manufacturing procedure

The reliability of the proposed adaptive subtractive manufacturing technique
(introduced in Section 3.1) integrated into the SB-CP-ASO procedure is discussed in
this subsection. The discussion includes model reusage, manufacturing time, and

downtime in the iteration process.

5.1.1 Remanufacturing technique

Through the remanufacturing technique, 68 individual models were used to
create the 173 models, indicating 60% foam material was saved. Fig. 15 shows the
photos of preserved models at different days in the SB-CP-ASO procedure (note the
models are displayed on foam stands of different heights). Fig. 16 shows the number of
times the 68 individual models were reused. The individual models were reused an

average of 2.54 times with a minimum of zero (not reused) and maximum of four.
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Fig. 15. Photographs of blank models and tested models.
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Fig. 16. Number of reused times for tested models.

5.1.2 Manufacturing time and downtime

Fig. 17 (a) shows the manufacturing time for the infilled samples along the
iteration process (after collecting the results of initial samples). With the help of the
adaptive milling procedure, the average manufacturing time for the 163 infilled
candidates was 10 mins, which is considered as very fast for shape optimization
problems with major modification strategy. The wind tunnel downtime for each iteration
in the SB-CP-ASO procedure is presented in Fig. 17 (b). It can be seen that there is no
downtime for 126 samples and the average downtime is 45 secs in the entire
procedure. The downtime is defined as the time between the end of data collection for

the previous model and the start of installation of the next model in the wind tunnel. The
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681 negligible downtime demonstrates the efficiency of the SB -ASO procedure is not
682 influenced by model manufacturing, which is a critical challenge for SB-CP-ASO

683 problems resolved by using the IIM&T technique.
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(a) Manufacturing time (b) Downtime
Fig. 17. The manufacturing time and downtime at each iteration in the ASO
procedure.
685
686 The success of the IIM&T technique is attributed to the fast manufacturing time

687 (10 mins on average, see Fig. 17 (a)), which is less than half of the HFFB testing

688 procedure (25 mins on average, discussed later). It is worth repeating that the

689 manufacturing process is preceded by analyzing wind tunnel results, updating the

690 surrogate models, running the infill strategy, and generating an adaptive milling strategy
691 (see Fig. 2 (b)), which adds approximately 10 minutes to the actual manufacturing time.
692 If the IM&T was not adopted, the downtime for each iteration would be around 20 mins
693 at each iteration, meaning that half of the entire testing window was not be used for data
694  collection.

695

696 5.2 The throughput of the HFFB procedure
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Fig. 18 shows the number of samples tested each day. On the first day, only
seven models were evaluated due to apparatus installation for the HFFB testing. On the
last day, only 5 models were evaluated because of the stop criteria of objective
functions. On average, 17 models were evaluated each day from Day 2 to Day 10.
Since the downtime was negligible (see Section 5.1), the entire reserved testing window
was used for HFFB testing. The average testing time for one model under 10 wind
angles, including model un/installation, zeroing measurement devices, and reaching
desired approaching flow conditions, was 25 mins for the procedure presented in Fig. 5

(b). This is considered as a high-throughput HFFB BLWT testing procedure.
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Fig. 18. Number of models tested each day.

5.3 The inputs of initial and infilling samples

The coordinates for the tested samples in the design space are presented in 3D
and 2D plots in Fig. 19. Symbols are used to differentiate among initial samples, global
exploration, optimum validation (Fig. 9 (a)), and local search (Fig. 9(b)). The optimal
candidates for CMD, RMS.;;,, and oy, are (6,5,1), (6,10,4), and (6,7,4), respectively.

Through the surrogate-based local search strategy, all samples are infilled within a 1.4-
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unit distance around the optimal solutions. This local accuracy around optimal solutions
can provide designers with more options without the concern of experimental

uncertainties. In Fig. 19 (b)-(f), the success of the IIM&T technique realized through the
sparsity level can be observed based on the fact that the samples for global exploration
are shown to be well distributed and far from the local search areas even the outputs of

the candidate tested in the wind tunnel were unknown.

10 O 10 ©
_g o o O § 9 (u]
2, k7] o O O (u] o 8 o o O
£ @ @
] g 76 o o o g 7 =]
5 o6 0O o 0O 0o s 6 (o]
i 85| e o0 op O ¢ 85 ooo
] ~ 4 o/o o e N 4 o
© 3+ H*
E £330 *optimaemn 53 i
g_ _g_ 2 ptima A g_ 2
1 L 2 & & 1
1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10
Input #1 (top section) Input #1 (top section)
(a) 3D view (b) Plan view (Input#3 = 1) (c) Plan view (Input#3 = 2)
10 \ 4 8-8-0© 10 - 888 10 \ 4 8o B8
_ —_ Optimal —_
5 9 O o 0O 5 9 RMS(CMLf O O O 5 9 o o
G 8 o e8| A o oo G 8 o
g 7 0O o o 2 g 7 0o po 0O 2 7 O 00
s 6 u] o 6 2 o/0 O o 6 u]
é 54 o §, 5 Optimal O'L-MLO * § 5
~ 4 * (o} ~ 4 ~ 40 L 2
3 3* 3*
5 3 L 4 s 3 1 4 s 3 L 4 *
22 22| o 22
1 & & & 1 1 A g g
1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10
Input #1 (top section) Input #1 (top section) Input #1 (top section)
(d) Plan view (Input#3 = 3) (e) Plan view (Input#3 = 4) (f) Plan view (Input#3 = 5)
10 A 10 10 L L
go o go g0 & e
o 8 L 4 c 8¢ o 8 L 4
Q Q Q
2 7 u} g 7 L 4 o g 7 u}
o6 L 4 o (o] s 6 L 2 s 6 (o]
§, 5 é 5 L 2 D é 5 L 2
o~ 4 o 4 L 2 o 4
3 3* 3*
s 3 s 39 ¢ s 3 L 2
22 g2 ¢ £2 .
1 1 L 4 L 4 1 g
1.2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10
Input #1 (top section) Input #1 (top section) Input #1 (top section)

(g) Plan view (Input#3 = 6) (h) Plan view (Input#3 = 7) (i) Plan view (Input#3 = 8)

40



722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

10 10 & L 4 Alnitial |

*g 9 —g 9 * nitial sample
S 8 S 8 * ® # Global exploration
@ @
g 7 g [ ¢ A OLocal search
o 6 * c 6 L 4 L 4 (0]
s s O Optimum validation
85 85¢ P
~ 4 A 2 ~ 4 *
e £
s 3 s 3¢ * L 2
g2 g2

1 1T—0—06—0—0—9

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Input #1 (top section) Input #1 (top section)

(j) Plan view (Input#3 = 9) (k) Plan view (Input#3 = 10)
Fig. 19. The coordinates for the initial samples and infilled samples.

Fig. 20 shows the ratio a given infill function was called and the locations on the
domain where the infilling was made. With the fixed ratio between the two infill goals, it
can be seen that 51% (82 samples) of total infilled samples are used for global
exploration (Goal 1). Considering the infilling location, 18%, 16%, and 4% of total infilled
samples are on the faces, on the edges, and at vertices, respectively. The results show
that 76% of the samples for global exploration are infilled on the boundaries of the
design space. The high infill ratio on the boundaries is attributed to kriging being an
interpolation regression approach. The predicted MSEs on the boundaries are normally
larger than that of in the domain if the distance between collected data points are the
same. This indicates the weakness of the MSE-based infilling alone if important regions
are not only the boundaries of a design space. For Goal 2 (optimization), 26% (43
samples) of total infilled samples are used for the surrogate-based local search and
23% (38 samples) are used for optimum validation. The similar infilling ratios for the two
situations implies the mobility of the optimal solutions as the surrogate model increases
in accuracy and the effectiveness of the jump-out mechanism from a local optimum

solution.
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Fig. 20. The position for the infilled samples for different infill goals.

The sparsity level for different infill goals along the iteration process is shown in
Fig. 21. The switch between the two infilling goals along the infilling process can be
clearly seen. For global exploration, there are only 6 samples whose sparsity level is
not 100%. This indicates that the samples are successfully infilled at spatially distributed
coordinates to improve the global accuracy of surrogate modeling even without the
results for the model tested in the wind tunnel. For optimization infilling, the sparsity
levels decrease as the number of collected samples increases. Most of the infill
candidates are used for optimization validation when the number of total samples is less
than 35, meaning that the optimal solutions are not stable. After Iteration 60, more
iterations are used for local search purpose, indicating that the local accuracy of

promising regions is improving.
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Fig. 21. Sparsity level at each iteration in the ASO procedure.

5.4 Convergence history of objective functions

This subsection discusses the convergence history for the optimization objectives
of CMD (Fig. 22), RMS¢,;. (Fig. 23), and oy, (Fig. 24) along the iteration process. Fig.
22 (a), Fig. 23 (a), and Fig. 24 (a) show the convergence history of outputs, which are
normalized by the first initial sample (3,9,8). Fig. 22 (b), Fig. 23 (b), and Fig. 24 (b)
indicate the Euclidean distance of inputs (coordinates) between the current best solution
and the final optimal solution. The observation line tracks the cumulative optimal
solution, and the prediction line indicates the real-time optimal prediction by the
surrogate model. With different purposes in the optimization process, the samples
(inputs and outputs) for optimum validation are the same as the prediction from the
surrogate model (Fig. 9 (a)), and the samples for local search are the same as
observation (Fig. 9 (b)). The detailed information on the optimization history, including
the coordinates of the infilling samples for surrogate-based local search or optimal
validation, and the normalized cumulative optimal solution, is summarized in Table A1
(CMD), Table A2 (RMS,,;.), and Table A3 (0., ). As discussed in Section 3, the model
(infilling sample) for n"*titeration is manufactured at nt iteration and the outputs are

obtained at nt"*? iteration in the IIM&T technique. In Table A1, for example, the model

43



772

773

774

775

776

7

(5,4,1) for local search purpose is manufactured at Iteration 11, tested in the wind tunnel
at lteration 12, and analyzed at Iteration 13. With the same concept in Fig. 22-24, the
models are manufactured at iterations indicated by the points of local search and

optimum validation, and the results are obtained after 2 iterations.
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Fig. 24. The convergence history for oy, .

5.4.1 Mean along-wind responses

In Fig. 22, the optimum validation and surrogate-based local search for CMD are

activated 11 and 12 times, respectively. By applying optimum validation, the predictions

are proved to be only correct for 4 times. When the predictions are wrong, it can be

observed that the predicted outputs are unconservative (see Fig. 22 (a)) and the
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corresponding inputs (see Fig. 22 (b)) are several unit-distances away from the
cumulative optimal observation. The incorrect inputs will result in outputs which are not
only worse than predictions but also than the cumulative optimal observation. This is a
serious issue that should not be ignored for surrogate-based optimization studies,
especially for real-world applications using physical testing. By switching between the
two infilling goals, the issue is relieved immediately by conducting optimum validation
without wasting more samples based on the incorrect predictions. In addition, valid
optimal solutions are obtained anytime along the infilling process. In the end, the results
from prediction and observation converge in both the inputs and outputs.

In comparison with the initial solution, the output of the final optimal CMD is
reduced by 25.4% and the input is moved by 8.6-unit distance. The optimal solutions
are improved 7 times (lteration 13, 19, 25, 31, 43, 79, and 87) after collecting the results
of initial samples. It is worth repeating that corresponding points for local search and
optimum validation shown in Fig. 22 are manufactured at n-2 iterations. The 7
improvements are 4 times from optimum validation, 2 times from local search, and 1
time from other infilling purpose. This demonstrates that better solutions can come from
different sources, reducing the chance of getting stuck at a local optimum solution. For
optimum validation, the distances between the previous and improved solutions are
3.16-, 1.40-, 1.00-, and 2.24-unit distances at the iterations of 19, 25, 31, and 79,
respectively. For lteration 19 and 79, the moving distances are larger than that of the
search bound (1.4-unit distance), showing the ability to find a better solution via the
jump-out mechanism. For surrogate-based local search, optimal solutions are improved

from 0.838 at (5,3,2) to 0.817 at (5,4,1) at lteration 13, and from 0.778 at (4,8,1) to
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0.769 at (5,7,1) at lteration 43. The moving distances for the both improvements are all
1.4-unit distance, indicating the improved solutions are all led through the shortcut in the
local search bound. The final optimal solution of CMD is at the coordinates of (6,5,1),
which is resulted from the optimal validation of RMS,,,, (see Table A2), showing the
benefit of pursuing different objective functions in parallel. The optimization process for

CMD halts at iteration of 145 because of the stop criterion for the local search strategy.

5.4.2 RMS across-wind responses

For RMS.,,;, the local search and optimal validation are executed 15 times and 9
times, respectively, as shown in Fig. 23. The optimal solutions are improved 5 times
(Iteration 47, 57, 75, 81, and 111) in the infilling process. In comparison with the initial
solution, the output of the final optimal RMS,,, is reduced by 56.7% and the input is
moved by 5.1-unit distance. The results suggest that the setback strategy is more
effective in reducing across-wind responses than that of along-wind for high-rise
buildings. The benefit of conducting parallel optimization objectives can be observed
again at the iteration of 47, where the better solution is resulted from the optimum
validation of o), (see Table A2 and A3). The responses are decreased from 0.536 to
0.514 with a moving distance of 6.7-unit from the coordinates of (10,6,7) to (6,8,2). The
need to apply optimal validation can be observed since the prediction of the surrogate
model is only correct 1 time at Iteration 57, where the normalized RMS,,,is decreased
from 0.514 at (6,8,2) to 0.482 at (6,8,3). When the kriging model makes incorrect
predictions (8 out of 9 times), the discrepancies of the inputs (see Fig. 23 (b)) are more

significant than that of CMD. For example, the Euclidean distances between the
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prediction and observation at the iterations of 31 and 85 are 6.4- and 5.4-unit distances,
respectively. In the 15 times of local search, the solutions are improved 3 times
(Iteration 75, 81, and 111). The moving distances are 1.4-unit at the iterations of 75 and
81. At iteration of 111, the solution moves from the coordinates of (6,10,3) to (6,10,4)
with a 1-unit distance, which is the final optimal solution for the objective of RMS,,; . At
iteration of 147, the optimization procedure for RMS.,,;, is stopped because of the stop
criterion of local search. The optimization process for RMS.,,, is activated again at the
Iteration 157 due to the prediction of better solution at the coordinates of (6,6,6).
However, the prediction is proved to be wrong by conducting optimum validation at the

iteration of 159 and the stop criterion is triggered again for RMS.;..

5.4.3 STD across-wind responses

For o¢)., the local search and optimal validation are executed 16 times and 18
times, respectively, as shown in Fig. 24. In comparison with the initial solution, the
output of the final optimal is reduced by 36.1% and the input is moved by 5.4-unit
distance. The optimal solutions are improved 9 times (lteration 14, 15, 17, 33, 41, 47,
53, 57, and 107) in the infilling process. In addition to local search and optimum
validation, the source of the improvements is also from global exploration, which is at
Iteration 14 by infilling a data point at the coordinates of (5,10,1). There are 3 times
(Iteration 14, 33, and 57) of improvements resulted from the optimization process of
RMS.y,., indicating the correlation between the RMS,,;, and o, in the across-wind
direction. The solution is improved 1 time by the local search at Iteration 41 with a

moving distance of 1.4-unit distance. For optimum validation, when kriging makes an
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inaccurate prediction, the discrepancy of the inputs between the prediction and
observation should not be ignored. The mobility of the incorrect predictions for o, is
more obvious than that of CMD and RMS,,,, . In the 18 times of optimum validation, the
solutions are improved 4 times at the iterations of 17, 47, 53, and 107 with the moving
distances of 2-, 2.44-, 1.4-, and 1.4-unit distance, respectively. The final optimal solution
is achieved at the iteration of 107. At the end of the infilling process, it can be observed
that the frequency of the optimization process for o, is increased after the iteration of
147. The reason behind this is because the optimization procedures for CMD and
RMS,, are stopped. Thus, the infill pattern repeats every 2 iterations between global
exploration and optimization. At Iteration 173, the SB-CPASO procedure is stopped by

the local search criterion of gy, .

5.5 Discussion

The optimization results of the double-section setback problem for high-rise
buildings were discussed in this section. The reliability and efficiency of the
manufacturing and testing components in the SB-CP-ASO were demonstrated with
respect to model reusage and time. The effectiveness of the sparsity level was
discussed through sample distributions. The robustness of the infilling strategy was
evaluated through the convergence history of inputs and outputs for CMD , RMS,,,, and
ocymy- For optimization purpose, the source of improved solutions comes from optimum
validation, surrogate-based local search, or other infilling purposes (e.g., global
exploration). The multiple sources of improvements reduce the chance of getting stuck

at a local optimum.
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A total of 173 samples/iterations were collected to reach the convergence criteria
for the three optimization objectives with a local search bound of 1.4-unit. With the
flexibility of the infilling strategy, the number of iterations can be reduced by the
following: (1) decreasing the number of optimization objectives, (2) increasing the
infilling ratio for the optimization goal, and (3) decreasing the radius of the local search
bound if a shorter testing window was reserved. Because this was a proof-of-concept
study, we selected three optimization objectives and a relaxed stopping criteria that
allowed for the generation of a large aerodynamic database. Considering the
diminishing returns after 60 iterations, an operator in a non-research setting may have
elected to stop the process earlier. It is worth emphasizing that the benefits of the
proposed infilling strategy, including (1) the validation optimum solution at any iteration,
(2) the jump-out mechanism from local optimum, and (3) the local accuracy at important
areas still exist with a shorter iteration process.

The size of design space (i.e., the number of parameters and their discretization)
needs to be appropriate for the anticipated number of BLWT experiments. In this case,
the design space has 1000 possibilities and the goal was to explore 10-20% through
experimentation. The area around the optimal solution could be explored more
thoroughly with a finer discretization at the cost of additional experimentation. However,
there is also a practical lower bound on what resolution will produce an aerodynamic
difference that is detectable above the experimental uncertainty.

6. Selection of candidates with promising structural response for high-rise

buildings
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This section presents a comparison approach for candidates with promising
structural responses of high-rise buildings. The cumulative largest structural responses
(enveloped over all wind angles and considering all wind speeds up to the design wind
speed) was calculated for each of the 173 models obtained from Section 5. With this
data, a convergence history of the best structural scale response at the design wind
speed can be plotted versus iteration. More directly, the set of candidates which meet a
given response threshold can be extracted for further consideration beyond
aerodynamic performance. In addition to single design wind speed, it is suggested to
consider multiple design wind speeds for different objectives at various hazard levels.
Practical information of the double-section setback strategy is discussed based on the
features of the promising candidates. The justification of using time domain results as

the objective functions in the SB-CP-ASO procedure is discussed in the end.

6.1 Single design wind speed

Since aerodynamic strategies are more effective under high wind speeds for the
mitigation of survivability (Lu et al., 2023), the roof drift responses for wind speeds of 40
m/s, 50 m/s, and 60 m/s, are used for selecting candidates with promising aerodynamic
performance. The convergence history of the largest roof drift demands, all controlled
by the across-wind direction, for the three design wind speeds are presented in Fig. 25.
Note that responses do not necessarily monotonically increase with wind speed, so the
cumulative largest response up to the design wind speed is used. The roof drifts of the
benchmark model (SQ70, see Fig. 14 (c)) are also used for comparison. For the wind

speed of 40m/s, the roof drifts for the benchmark, initial solution, and final optimal
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solution are 0.6%, 0.44%, and 0.29%, respectively. For 50m/s, these are 2.1%, 1.02%,
and 0.51%, respectively. For 60m/s, they are 3.3%, 1.76%, and 0.63%, respectively.
The greater reduction under the wind speeds of 50 m/s and 60 m/s suggests that the
double-section setback strategy is more effective to mitigate roof drifts under higher
wind speeds. The inputs of the final optima for the design wind speeds of 40 m/s, 50
m/s, and 60 m/s are (6,7,5), (6,10,3), and (6,9,2), respectively, demonstrating different

design wind speeds do not have the same optimal solution.
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Fig. 25. The convergence history for roof drift demands with different design wind
speeds.

Although the reductions of roof drifts are significant in comparison with the
benchmark and initial solutions, in Fig. 25, it can be observed that the improvements are
saturated at some point in the optimization process. For the design wind speed of 50
m/s, the improvements of roof drift demands are not significant after Iteration 47. By
changing the external shapes from coordinates of (6,8,2), (6,8,3), (6,9,2), to (6,10,3),
the roof drift demands are only improved by 5%. For 60 m/s, the roof drift demands are
only improved by 1% after lteration 47. Since the optimization process is continued until
the stop criteria are triggered, there are other candidates (not pictured in Fig. 25) whose

roof drift demands are similar but not better than that of the final optimal solutions.
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These candidates should not be ignored for optimization problems of high-rise buildings
since a set of candidates which can satisfy a defined threshold is needed for designers
to achieve other objectives beyond aerodynamic performance (see the discussion in
Section 2). With the convergence history of the response of interest, the threshold can
be determined based on the saturation responses (in the absence of other guidance). In
this study, the roof drift demands of 0.4%, 0.60%, and 0.75% are taken as the
thresholds for the design wind speeds of 40 m/s, 50 m/s, and 60 m/s, respectively. In
comparison with the benchmark model, the reductions of the thresholds of roof drift for
the wind speeds of 40 m/s, 50 m/s, and 60 m/s are 34%, 72%, and 78%, respectively.
For single design wind speed, there are 33 candidates, 13 candidates, and 12
candidates whose roof drift demands are below the thresholds of 40 m/s, 50 m/s, and

60 m/s, respectively.

6.2 Multiple design wind speeds

Fig. 26 presents promising candidates which can satisfy the defined thresholds
for multiple design wind speeds (40 m/s, 50 m/s, and 60 m/s). The roof drifts for the
minimum (1,1,1) and max (10,10,10) models in the design space are also included for
comparison. The need to consider the cumulative largest response can be observed
from the minimum model. The peak roof drift for (1,1,1) is 1.8% occurred at the wind
speed of 45 m/s. If cumulative largest response up to the design wind speed is not
considered, the roof drift for wind speeds higher than 45 m/s will be lower than 1.8%
(e.g., 1.4% at the wind speed of 60 m/s), leading to unconservative design. The reason

behind the non-monotonic increase in structural response is from variation of PSD
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responses caused by vortex shedding. The peak of PSD curves (or Strouhal number)
occurs at different reduced frequencies for models with different external shapes. On
the other hand, in comparison with (10,10,10), the results indicate that (1,1,1) is more
promising for a single design wind speed at 60 m/s but is not as attractive for wind
speeds lower than 53 m/s. This demonstrates again that optimal solutions vary with

design wind speeds and hazard levels.

2 2
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(a) Below the thresholds (b) Thresholds increased by 10%
Fig. 26. The roof drift demands for promising candidates considering multiple design
wind speeds.

In line with performance-based design, the concept of multiple design wind
speeds is suggested to select promising candidates which can achieve different
thresholds at various wind speeds. In Fig. 26 (a), the thresholds for the three wind
speeds are the same as discussed earlier. There are 5 promising candidates whose
roof drift demands are below the thresholds. The photographs for the 5 promising
candidates are presented in Fig. 27. The model volumes for the 5 promising candidates
and the benchmark model are presented in Fig. 28. As mentioned in Section 4, the
minimum and maximum model volumes in the optimization problem are 1397 cm? and

2930 cm?, respectively. The building volumes for ideal candidates vary from 1938 cm? to
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2230 cm?, which do not occur at the extreme model volumes and are similar to the
benchmark model (1960 cm?). The results indicate that similar promising aerodynamic
performance can be achieved with different building volumes. Also, the double-section
setback strategy is a feasible option to significantly mitigate wind responses without the

loss of building volume in comparison with the benchmark model.

(a) (6,8,2) (b) (6,7.,3) (c)(6,8,3) (d) (6,10,3) (e) (6,10,4)
Fig. 27. Photographs for candidates satisfied the thresholds of multiple design wind
speeds.
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Fig. 28. Building volumes for the benchmark model (SQ70) and the candidates
satisfied the thresholds of multiple design wind speeds.
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In Fig. 26 (a) and Fig. 27, it can be observed that the 5 promising candidates are
not intuitive but share consistent features. First, the inputs of the top section (input#1)
are all the same, which is SQ56-7-31 (see Fig. 12, Option 6). The corresponding width
ratio of the side protrusion is 55%. This indicates that a side protrusion with 55% width
ratio and 12.5% depth ratio is a promising cross-section to reduce wind responses at
higher part of high-rise buildings. The consistent results suggest that the 6 mm gap
between options for the top section is large enough so that the results are not
influenced by the uncertainties in the wind tunnel testing. Second, the ideal options for
the bottom section (input#2) and transition positions (input#3) are within a bound. For
the bottom section (Fig. 13), the ideal range is from Option 7 (SQ70-10-47) to Option 10
(SQ70-10-70). The corresponding width ratio is from 67% to 100%. The lower bound for
the width of side protrusion for the bottom section (SQ-10-47) is still wider than that of
the top section (SQ-56-7-31). For the transition position (Table 1), the ideal option
varies from Option 2 (27.5% of model height) to Option 4 (42.5% of model height). The
results suggest that the bottom section is less sensitive to the aerodynamic
performance when the transition position is between 27.5% to 42.5% of the model
height. The reason behind this is attributed to the boundary layer effects, where mean
wind speed increases with elevation. In other words, the major aerodynamic responses,
generated based on OTM, are not produced by the bottom section. Regarding the
bound of the transient position, the results indicate the need to use sufficient length for
both sections to destroy the coherence of vortex shedding effects at different elevations

for the setback strategy.
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The thresholds for multiple design wind speeds can be loosened if it is needed.
By increasing the thresholds by 10% for the three wind speeds, 7 more candidates are
obtained as shown in Fig. 26 (b). It can be observed that the inputs for the top section is
consistent and the ranges of the bottom section and the transition position are
increased. It should be emphasized that the candidates with similar promising
responses presented in Fig. 26 are all collected observations, which can be used for
discussion between owners, architects, and structural engineers in real-world
applications without concerns about accuracy.

It is worthing noting that wind mitigation is decoupled from the early design stage
of high-rise buildings for current design practice in the industry (Moorjani et al., 2021).
Any changes on building shape or structural properties later in the design stage can be
very expensive, time consuming, or even impossible. By applying the SB-CP-ASO
procedure, a comprehensive optimization search can be carried out at the early design
to avoid the aforementioned dilemma. Other design objectives, such as aesthetic
appeal, building volume, and operation purposes, beyond aerodynamic performance
can be applied to select the solutions obtained from the SB-CP-ASO, leading to a more
efficient and economical design process. Additionally, solutions that are not selected
become valuable candidates for future projects, building a large aerodynamic database.

Regarding the appropriateness of the objective functions pursued in the SB-CP-
ASO procedure, it can be observed that the optimal solutions for RMS.,,; (6, 10, 4) and
ocymy (6, 7, 4) in the time domain (discussed in Section 5) are included in Fig. 26. The
results demonstrate that the time domain statistics with dynamic components in the

across-wind direction are appropriate objective functions to find candidates with
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promising structural responses at multiple design wind speeds. This also implies that
the number of iterations can be reduced by removing the objective function of CMD, if a

shorter wind tunnel testing window was reserved for the SB-CP-ASO procedure.

7. Conclusions

This study proposes a surrogate-based cyber-physical aerodynamic shape
optimization (SB-CP-ASO) procedure for high-rise buildings under wind loading. The
procedure consists of (1) an adaptive subtractive manufacturing technique, (2) a high-
throughput high-frequency base balance (HFFB) wind tunnel testing, and (3) a highly
flexible infilling strategy. A parallel manufacturing and testing (IIM&T) technique is
realized through an indicator, sparsity level, to ensure the efficiency of the SB-CP-ASO
procedure. An unexplored double-section setback strategy with different cross-sections
and transitions positions is used to demonstrate the performance of the three
components in the procedure. Three objective functions in time domain were pursued in
parallel in the online optimization process. A total of 173 samples were evaluated in 11
workdays and ended by the stop criteria for optimization convergence. As a proof-of-
concept study, three objective functions and a relaxed stopping criteria were used,
allowing for the generation of a large aerodynamic database.

The manufacturing speed and testing throughput were discussed. For the infilling
strategy, a switch with a user-defined ratio between global exploration and optimization
is suggested to (1) provide valid optimal solutions anytime along the iteration, and (2)
build a jump-out mechanism from local optimum solution. In the optimization process,

the infilling strategy is able to pursue multiple objective functions in parallel. A
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surrogate-based local search strategy with user-defined search bound is developed in
the optimization process to (1) provide a flexible stop criterion controlled by users, (2)
enhance the optimization performance, and (3) improve the local accuracy at promising
regions, which can eliminate the concern of experimental uncertainties and provide
more options for designers with considerations beyond aerodynamic behavior. Based
on limited testing time, the convergence speed of the infilling process can be increased
by adjusting (1) the infilling ratio between global exploration and optimization, (2) the
number of objective functions, and (3) the radius of the local search bound without the
loss of the aforementioned features.

The consideration of multiple design wind speeds is suggested to select
promising candidates with structural responses below defined thresholds. Based on the
convergence history of roof drift, the thresholds for wind speeds of 40 m/s, 50 m/s, and
60 m/s are 34%, 72%, and 78% lower than that of the benchmark model, indicating the
effectiveness of the double-section setback strategy for high-rise buildings. The inputs
for the promising candidates share consistent trends. For the top section, the same 55%
width ratio of the side protrusion (SQ-56-7-31) is suggested for all ideal candidates. For
the bottom section, the ideal option varies between 67% (SQ70-10-47) to 100% (SQ70-
10-70) width ratios of the side protrusion. To effectively disturb the coherence of vortex
shedding in the across-wind direction, the ideal transition position varies from 27.5% to
42.5% of the entire height.

This study presents comprehensive details regarding how to integrate CNC
manufacturing, wind tunnel testing, and adaptive surrogate modeling technique in an

online optimization problem with practical considerations to select promising candidates

59



1079 for high-rise buildings. The procedure is expected to provide an efficient platform

1080 between owners, architects, and structural engineers to find promising candidates within
1081 a design space for real-world applications. In addition, the three components developed
1082 in this study can be individually applied to different fields with further applications.
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Appendix A. Detailed converged history of objective functions

Table A1. Detailed convergence history of CMD.
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1111
1112
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1115
1116
1117

1118
1119
1120
1121
1122
1123
1124
1125

T30

denotes the improved solution is resulted from local search

“** denotes the improved solution is resulted from optimal validation
“N denotes the improved solution is resulted from global exploration or other objective

function
Table A2. Detailed convergence history of RMS ;.
lteration Updated optimum Infilling sample
Observation Sample Local search Optimal validation
2 1.000 (3,9,8) - -
3 0.536 (10,6,7) - -
13 - - - (9,6,8)
19 - - - (10,6,10)
25 - - - (10,5,7)
31 - - - (7,10,3)
37 - - (10,7,6) -
43 - - (10,7,8) -
477 0.514 (6,8,2) - -
49 - - (7,7,2) -
55 - - - (6,8,3)
57+ 0.482 (6,8,3) - -
61 - - (7,8,4) -
67 - - - (6,6,2)
73 - - (6,9,2) -
75* 0.469 (6,9,2) - -
79 - - (6,10,3) -
81* 0.457 (6,10,3) - -
85 - - - (6,5,1)
91 - - (5,10,4) -
97 - - (5,10,3) -
103 - - (7,10,4) -
109 - - (6,10,4) -
111* 0.433 (6,10,4) - -
115 - - (5,10,5)
121 - - (7,9,4) -
127 - - (6,9,5) -
133 - - - (6,9,6)
139 - - (7,10,5) -
145 - - (6,9,3) -
157 - - - (6,6,6)

“** denotes the improved solution is resulted from local search
denotes the improved solution is resulted from optimal validation

1T 2 3

“N denotes the improved solution is resulted from global exploration or other objective

function
Table A3. Detailed convergence history of o¢y; .
lteration Updated optimum Infilling sample
Observation Sample Local search Optimal validation
2 1.000 (3,9,8) -
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