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ABSTRACT

The Upper Jurassic Galice Formation, a
metasedimentary unit in the Western Klam-
ath Mountains, formed within an intra-arc
basin prior to and during the Nevadan orog-
eny. New detrital zircon U-Pb age analyses
(N =11; n =2792) yield maximum deposi-
tional ages (MDA) ranging from ca. 160 Ma
to 151 Ma, which span Oxfordian to Kim-
meridgian time and overlap Nevadan con-
tractional deformation that began by ca.
157 Ma. Zircon ages indicate a significant
North American continental provenance
component that is consistent with tectonic
models placing the Western Klamath terrane
on the continental margin in Late Jurassic
time. Hf isotopic analysis of Mesozoic de-
trital zircon (n = 603) from Galice samples
reveals wide-ranging e, values for Jurassic
and Triassic grains, many of which cannot
be explained by a proximal source in the
Klamath Mountains, thus indicating a com-
plex provenance. New U-Pb ages and Hf data
from Jurassic plutons within the Klamath
Mountains match some of the Galice Forma-
tion detrital zircon, but these data cannot ac-
count for the most non-radiogenic Jurassic
detrital grains. In fact, the in situ Cordilleran
arc record does not provide a clear match for
the wide-ranging isotopic signature of Trias-
sic and Jurassic grains. When compiled,
Galice samples indicate sources in the Sierra
Nevada pre-batholithic framework and ret-
roarc region, older Klamath terranes, and
possibly overlap strata from the Blue Moun-
tains and the Insular superterrane. Detrital
zircon age spectra from strata of the Upper
Jurassic Great Valley Group and Mariposa
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Formation contain similar age modes, which
suggests shared sediment sources. Inferred
Galice provenance within the Klamath
Mountains and more distal sources suggest
that the Galice basin received siliciclastic
turbidites fed by rivers that traversed the
Klamath-Sierran arc from headwaters in
the retroarc region. Thus, the Galice For-
mation contains a record of active Jurassic
magmatism in the continental arc, with sig-
nificant detrital input from continental sedi-
ment sources within and east of the active
arc. These westward-flowing river systems
remained active throughout the shift in Cor-
dilleran arc tectonics from a transtensional
system to the Nevadan contractional system,
which is characterized by sediment sourced
in uplifts within and east of the arc and the
thrusting of older Galice sediments beneath
older Klamath terranes to the east.

INTRODUCTION

The Late Jurassic was a time of tectonic tran-
sition in the North American Cordilleran orogen,
as the North American plate shifted northward
and increased in velocity (e.g., Seton et al.,
2012). However, agreement remains elusive
regarding the Late Jurassic tectonic evolution
of the Oregon—California, USA, segment of the
continental margin during the Nevadan orogeny.
Here, we use the term Nevadan orogeny to refer
to the relatively brief (ca. 157-145 Ma) defor-
mational event in the Klamath Mountains prov-
ince and Western Sierra Nevada metamorphic
province (e.g., Harper and Wright, 1984; Sch-
weickert et al., 1984; Harper et al., 1994; Sch-
weickert, 2015), rather than the longer period of
deformation (>20 m.y.) hypothesized by others
(e.g., Tobisch et al., 1987, 1989; Saleeby et al.,
1989; Hacker and Ernst, 1993).

Tectonic models for the Nevadan orogeny
range from double-sided subduction of an inter-
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vening oceanic plate that resulted in collision of
an east-facing island arc with the west-facing
continental margin arc (e.g., Schweickert and
Cowan, 1975; Ingersoll and Schweickert, 1986;
Ingersoll, 2008; Schweickert, 2015) to transten-
sional forearc and intra-arc extension, followed
by contraction along the continental margin
above east-directed subduction due to changes
in relative plate-motion vectors (e.g., Davis
et al., 1978; Saleeby, 1981; Burchfiel et al.,
1992; Harper et al., 1994) and possible Middle
Jurassic accretion and northward migration of
the Insular superterrane (Saleeby and Busby-
Spera, 1992; Saleeby and Dunne, 2015). Fur-
thermore, a global-scale tectonic model based
on geophysical interpretations postulates west-
directed subduction of the North American
plate beneath a stationary east-facing island
archipelago, which caused North America to
migrate westward until Late Jurassic—Creta-
ceous collision with the archipelago (Sigloch
and Mihalynuk, 2013, 2017, 2020; Clennett
et al., 2020).

The Upper Jurassic Galice Formation in
the Western Klamath Mountains province was
deposited prior to and during the Nevadan orog-
eny (Garcia, 1979, 1982; Wyld and Wright,
1988; Harper et al., 1994). These strata com-
prise the youngest rocks deformed during Late
Jurassic Nevadan deformation, so details of their
depositional age and sediment provenance can
inform proposed models of the Late Jurassic tec-
tonic evolution of this region. Here, we present
provenance interpretations to identify possible
source-to-sink transport pathways based on
new U-Pb detrital zircon ages (n = 2792) and
ey values (n = 603) from the Galice Formation.
We use these results to evaluate tectonic mod-
els of the Nevadan orogeny for development of
a paleogeographic reconstruction of the U.S.
segment of the Cordillera during Late Jurassic
time. Combined with new ey data from eight
Late Jurassic plutons of the Klamath Mountains,
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detrital zircon laser ablation—inductively coupled
plasma—mass spectrometry (LA-ICP-MS) U-Pb
age and ey data from 11 metasandstone samples
collected along 200 km of strike length permit
detailed characterization of the depositional age
and provenance of the upper turbiditic strata

within the Galice Formation.
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eastward (Fig. 1). The lithotectonic units gen-
erally decrease in age to the west and structur-
ally downward, with ages ranging from Neo-
proterozoic remnants in the Eastern Klamath
Mountains (Wallin et al., 1995; Mankinen et al.,
2002; Lindsley-Griffin et al., 2003, 2006; Grove
et al., 2008) to Upper Jurassic in the Western

Figure 1. (A) Map showing
present-day locations of the
Klamath Mountains prov-
ince and potential source re-
gions for the Galice Formation
(modified from Yonkee et al.,
2019; Balgord et al., 2021). (B)
Map of the Klamath terranes
and intrusive suites (adapted
from Irwin, 1994; Irwin and

Wooden, 1999; Snoke and
Barnes, 2006). Ear—Early;
Fm.—Formation; Jur.-K.—

Jurassic-Cretaceous; LFTB—
Luning-Fencemaker  Thrust
Belt; Mid.—Middle; NWCS—
Northwest Cascades system;
NV-UT—Nevada-Utah.



Klamath Mountains (Diller, 1903; Irwin, 1960,
1994). Although recent interpretation of mantle
tomography data suggests that amalgamation
of the Klamath terranes may have occurred sig-
nificantly west of the continental margin prior
to latest Jurassic to Cretaceous accretion (e.g.,
Sigloch and Mihalynuk, 2013, 2017; Clennett
et al., 2020), whole-rock Sr and Nd and U-Pb
detrital zircon results from the Western Klam-
ath terrane demonstrate connection to the North
American continent during Jurassic time (e.g.,
Frost et al., 2006; LaMaskin et al., 2022).

Irwin (1960) divided the Klamath Moun-
tains province into four lithotectonic units (his
“belts”), or tectonostratigraphic terranes in mod-
ern terminology. From east to west, the compos-
ite terranes are: Eastern Klamath, Central Meta-
morphic, Western Paleozoic and Triassic, and
Western Jurassic (Fig. 1). Below, we summarize
the major lithologies, depositional setting, and
published geochronology of the Klamath Moun-
tains province.

The Eastern Klamath composite terrane con-
sists of the Trinity, Yreka, and Redding subter-
ranes. The Trinity subterrane consists of Neo-
proterozoic to lower Paleozoic ultramafic rocks
intruded by mainly Silurian—Devonian gabbroic
plutons (e.g., Quick, 1981; Lindsley-Griffin,
1991; Lindsley-Griffin et al., 2008; Wallin et al.,
1995; Wallin and Metcalf, 1998). The Yreka
subterrane structurally overlies the Northeast-
ern Trinity terrane and consists of a sequence of
tectonically juxtaposed and disrupted units that
range in age from Neoproterozoic to Devonian
(Grove et al., 2008, and references therein). In
contrast, the Redding subterrane is a broadly
homoclinal-dipping sequence of volcanic and
sedimentary strata that overlie the Eastern Trin-
ity subterrane and range in age from Devonian
to Jurassic (e.g., Watkins, 1985, 1993; Renne
and Scott, 1988; Noble and Renne, 1990; Wallin
and Metcalf, 1998). Detrital zircon U-Pb, bio-
geographic data, and paleomagnetic data sug-
gest a Baltic rather than Laurentian origin for
Neoproterozoic through Paleozoic rocks of the
Eastern Klamath terranes (Wright and Wyld,
2006; Grove et al., 2008).

The Central Metamorphic terrane is in fault
contact beneath the Eastern Klamath terrane
along the Trinity fault and consists of the struc-
turally lower Salmon Formation and structurally
higher Grouse Ridge Formation (Davis, 1968;
Barrow and Metcalf, 2006). The Salmon Forma-
tion consists of amphibolitic metabasite, and the
Grouse Ridge Formation is primarily metasedi-
mentary, comprising calc-silicates and meta-
carbonates, with some metabasite (Holdaway,
1965; Peacock and Norris, 1989). Lanphere
et al. (1968) reported Devonian Rb/Sr whole-
rock ages for the Grouse Ridge Formation and
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a wide range of K-Ar ages for the Salmon and
Grouse Ridge formations. However, Barrow
and Metcalf (2006) determined Early Permian
40Ar/*Ar cooling ages (274 £ 2 Ma) on horn-
blende from the Salmon Formation.

The Western Paleozoic and Triassic (now
determined as Triassic—Jurassic; see below)
composite terrane occupies the central part of
the Klamath Mountains province (Fig. 1) and
structurally underlies the Central Metamorphic
terrane along the Siskiyou fault. It consists of
a stack of east-dipping, fault-bounded, Triassic
and Jurassic terranes. Structurally downward
(westward), these are the Stuart Fork Formation
(= Fort Jones terrane; Snoke and Barnes, 2006),
North Fork, Eastern Hayfork, Western Hayfork,
and Rattlesnake Creek terranes. The Stuart Fork
Formation is characterized by blueschist-facies
metasedimentary and metabasic rocks with
local eclogite blocks (Hotz et al., 1977; Goodge,
1990). K-Ar dating of white mica yielded Mid-
dle Triassic ages (Hotz et al., 1977). The North
Fork terrane is an assemblage of metabasites and
overlying clastic metasedimentary rocks that
typically display greenschist-facies assemblages
(Ando et al., 1983; Ernst, 1990, 1998; Scherer
and Ernst, 2008). U-Pb (zircon), “°Ar/*°Ar, and
fossil assemblages indicate depositional ages
from Permian to Middle Jurassic (Ando et al.,
1983; Irwin and Blome, 2004; Hacker et al.,
1993). Detrital zircon data indicate deposition of
metasandstone units in Early to Middle Jurassic
time, depending on whether or not two anoma-
lously young Middle Jurassic grains are included
in maximum depositional age considerations
(Scherer and Ernst, 2008).

The Eastern and Western Hayfork terranes
were identified by Wright (1982) as two dis-
tinct parts of Irwin’s (1972) Hayfork terrane.
The Eastern Hayfork terrane is a variably chert—
argillite- and feldspathic wacke-matrix mélange
and broken formation (Irwin, 1972; Wright,
1982; Ernst et al., 2017) with blocks of chert,
limestone, metasandstone, metabasite, metagab-
bro, and metaserpentinite. Detrital zircons from
mélange matrix display sensitive high-resolution
ion microprobe-reverse geometry (SHRIMP-
RG) U-Pb ages ranging from late Archean to
Late Triassic (Ernst et al., 2017; Barnes et al.,
2021). These younger ages are consistent with
fossil ages of mainly Permian to Late Triassic
(Irwin, 1972; Irwin and Galanis, 1976; Stevens
et al., 1987). In contrast, detrital zircon assem-
blages from metasandstone blocks yield Protero-
zoic and Archean ages (Scherer et al., 2010).

The Western Hayfork terrane consists of arc-
related metasandstone and volcaniclastic rocks
with intercalated siliceous argillite (Wright,
1982; Wright and Fahan, 1988; Donato et al.,
1996; Barnes and Barnes, 2020). It rests with
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faulted depositional contact on the underlying
Rattlesnake Creek terrane (Wright and Fahan,
1988; Donato et al., 1996). “°Ar/*°Ar and K/
Ar dates from igneous hornblende of the West-
ern Hayfork terrane indicate deposition from
177 Ma to 168 Ma (Wright and Fahan, 1988;
Hacker et al., 1995; Donato et al., 1996); thus,
this terrane is best interpreted as a sedimen-
tary apron adjacent to the Middle Jurassic arc
(Barnes and Barnes, 2020).

The Rattlesnake Creek terrane forms the
depositional basement to the Western Hayfork
terrane and consists of block-on-block ophiol-
itic mélange (Irwin, 1972; Donato, 1987, 1989;
Wright and Wyld, 1994) that is locally overlain
by layered volcanic, volcaniclastic, and crystal-
lithic arenite strata that Wright and Wyld (1994)
termed the “cover sequence” (also see Gray,
1986). Scant fossil evidence from limestone and
radiolarian chert blocks indicates that deposition
of mélange blocks was as young as Late Triassic
to Early or possibly Middle Jurassic (Silberling
and Irwin, 1962; Irwin and Galanis, 1976; Irwin
etal., 1982, 1983, 1985; Irwin and Blome, 2004).
Wright and Wyld (1994) reported Late Triassic
to Early Jurassic ages (ca. 207-193 Ma) of plu-
tons that crosscut the cover sequence. However,
LaMaskin et al. (2022) reported detrital zircon
LA-ICP-MS U-Pb ages as young as Middle to
earliest Late Jurassic (ca. 170-161 Ma) from
cover-sequence samples.

The Western Jurassic terrane was subdivided
by Blake (1984) into subterranes; however,
Harper (2006) pointed out that the terrane con-
sists of two tectonic elements: the Rogue-Chetco
arc complex and the Josephine ophiolite. The
Josephine ophiolite is largely interpreted to have
resulted from suprasubduction-zone rifting from
164 Ma to 162 Ma (Harper, 1984; Harper et al.,
1994), whereas the Rogue-Chetco arc formed
outboard of the ophiolite. The Josephine ophio-
lite and volcanic strata of the Rogue Formation
are overlain by hemipelagic and flysch deposits
of the Galice Formation. Additional details about
development of the Western Jurassic terrane are
presented in the following sections.

Jurassic Tectonic Events

Jurassic tectonism in the Klamath Mountains
province involved late Early to early Middle
Jurassic contractional deformation (Siskiyou
orogeny; Coleman et al., 1988; Sullivan, 2009);
Middle Jurassic oblique, margin-parallel rifting;
and Late Jurassic shortening and marginal basin
collapse (Nevadan orogeny; after Coleman et al.,
1988; Harper et al., 1994). The Siskiyou orogeny
juxtaposed the Stuart Fork Formation, North Fork
terrane, Eastern Hayfork terrane, and composite
Rattlesnake Creek and Western Hayfork terrane



assemblage along a series of east-dipping thrust
faults (Fig. 1; e.g., Coleman et al., 1988; Wright
and Fahan, 1988; Barnes et al., 2006; Barnes
and Barnes, 2020). Timing of this contractional
event is constrained to ca. 170 Ma by the age of
the Ironside Mountain pluton (multi-grain ther-
mal ionization mass spectrometry [TIMS] U-Pb
age of zircon; Wright and Fahan, 1988), which
intrudes the Wilson Point thrust fault that juxta-
poses the Rattlesnake Creek/Western Hayfork
assemblage beneath the Eastern Hayfork terrane.

Following Siskiyou deformation, intra-arc rift-
ing ruptured the Rattlesnake Creek terrane and
resulted in the formation of the Josephine ophio-
lite 164-162 Ma (Harper et al., 1994; Wright
and Wyld, 1986). Evidence for rifting consists of
rift-edge assemblages on both the eastern (Snoke,
1977; Saleeby et al., 1982) and western (Yule
etal., 2006) sides of the Josephine ophiolite basin
(Fig. 1). Reconstructions of extension directions
and ophiolite pseudo-stratigraphy indicate north—
south extension (in present coordinates) along a
series of well-developed, en echelon spreading
ridges linked by long transform faults akin to the
Andaman Sea of the Northeastern Indian Ocean
(Harper, 1982; Harper et al., 1986; Yoshinobu
and Harper, 2004). At the same time, broadly
calc-alkaline arc magmatism was active to the
east and south of the Josephine basin (168—
156 Ma Wooley Creek suites; Wright and Fahan,
1988; Allen and Barnes, 2006) and more tholei-
itic magmatism to the northwest (166—157 Ma
Rogue-Chetco arc; Yule, 1996; this study).

Opening of the Josephine rift basin provided
accommodation space for deposition of hemi-
pelagic sediments and turbidites of the Galice
Formation and volcanogenic rocks of the Rogue
Formation beginning at ca. 162 Ma. However,
by 157-155 Ma (Harper et al., 1994; Dailey and
Barnes, 2020), under-thrusting of the Josephine-
Galice basin marked initiation of the Nevadan
orogeny (Blackwelder, 1914; see discussions in
Hacker et al., 1995; Snoke and Barnes, 20006;
Dickinson, 2008). Contractional deformation is
interpreted to have continued through ca. 150 Ma
(Saleeby and Harper, 1993; Harper et al., 1994),
with juxtaposition of the Rogue-Chetco arc (pos-
sibly including the distal interfingering Galice
Formation; e.g., Yule, 1996) and its basement
beneath the Josephine ophiolite + Galice assem-
blage, and of the Josephine ophiolite + Galice
assemblage beneath the Rattlesnake Creek and
overlying terranes along the Orleans thrust (Her-
shey, 1906, 1911; Harper et al., 1994).

Jurassic Magmatism in the Klamath
Mountains

Voluminous Middle Jurassic plutonism began
in the Southern Klamath Mountains province

Surpless et al.

with emplacement of the Ironside Mountain
batholith from ca. 170 Ma to 168 Ma (Fig. 1;
Wright and Fahan, 1988). This activity occurred
immediately after regional thrusting that placed
the Eastern Hayfork terrane and overlying units
above the Western Hayfork/Rattlesnake Creek
terranes along the east-dipping Wilson Point
thrust (Barnes et al., 2006). The two largest plu-
tons of the Ironside Mountain batholith (Ironside
and Wildwood; Fig. 1) consist primarily of quartz
monzodiorite to quartz monzonite characterized
by mafic assemblages of biotite + 2- or 3-pyrox-
ene or biotite—hornblende—pyroxene assem-
blages. These plutons display a K,O enrichment
trend unlike most younger Mesozoic plutons
in the Klamath Mountains province (Lanphere
et al., 1968; Charlton, 1979; Barnes et al., 2006),
and the most evolved rocks display the highest
Zr contents (>200 ppm; Barnes et al., 2006;
Angulo, 2022). Initial ey, and 8St/%Sr values
are approximately uniform at 5.2 and 0.7037,
respectively (Barnes et al., 2006). Two small
satellite plutons vary from olivine pyroxenite to
quartz diorite and are zircon-poor.

Starting at ca. 168 Ma and ending at ca.
156 Ma, arc plutonism shifted northward from
the Ironside Mountain batholith to the Central
and Northern Klamath Mountains province to
form the Wooley Creek suite (Fig. 1; Allen and
Barnes, 2006; Coint et al., 2013; Barnes et al.,
2021; this study). Wooley Creek suite plutons
are broadly calc-alkalic and display a wide range
of compositions, from olivine pyroxenite to two-
mica granite. Quartz diorite, tonalite, and grano-
diorite are the most common rock types. These
plutons display variable Sr, Nd, oxygen, and Hf
isotopic values, including the highest 6'%0 and
initial 87St/*Sr, and the lowest ey, of any Klam-
ath Mountain plutons, and in the Wooley Creek—
Slinkard system, a range of ey (zircon) values
from 13.3 to —3.1 (Barnes et al., 1990, 2021,
Allen and Barnes, 2006, and references therein).

West of the Josephine ophiolite, Middle to
Late Jurassic arc magmatism resulted in the
deposition of volcanic rocks and volcanogenic
sediments of the Rogue Formation (Garcia,
1979, 1982) and coeval gabbroic through
tonalitic plutons of the Chetco batholith (aka
Chetco complex, Illinois River gabbro; Jor-
genson, 1970; Yule, 1996; McLachlin, 2011).
Multi-grain TIMS U-Pb (zircon) ages of Chetco
plutonic rocks range from 166.6 2.2 Ma to
157.4 £+ 1.3 Ma (Yule, 1996; Yule et al., 2006).
Plutons of the Chetco batholith are mainly
mafic to intermediate in composition (olivine
gabbro to hornblende diorite) and display arc
tholeiite geochemical affinities with zirconium
contents <100 ppm (Yule, 1996; McLachlin,
2011; Weiss, 2014). The batholith also includes
smaller-volume tonalitic bodies.
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Plutonic activity resumed at ca. 150 Ma,
with emplacement of the Western Klamath plu-
tonic suite (Allen and Barnes, 2006). Western
Klamath plutonism spans 150-143 Ma and is
marked by plutons that intrude the Galice For-
mation (e.g., Summit Valley, Pony Peak, Bear
Peak, and the early stage of Grants Pass; Fig. 1;
Saleeby and Harper, 1993; Harper, 2006). The
Summit Valley and Pony Peak plutons intrude
the Orleans thrust (Harper, 2006, and references
therein). Western Klamath suite plutons range
from olivine pyroxenite to biotite—hornblende
tonalite, with one example of a potassic (mon-
zodioritic) unit in the Bear Mountain complex
(Snoke et al., 1981). Although this suite of plu-
tons encompasses the same SiO, range as the
Wooley Creek suite, it displays lower initial
87S1/%Sr and higher ey, than the Wooley Creek
suite (Allen and Barnes, 2006).

THE GALICE FORMATION

The Galice basin is interpreted to have formed
as a result of suprasubduction zone extension
that produced the 164-162 Ma Josephine ophio-
lite and was coeval with the Rogue-Chetco arc
(Harper, 1984; Harper and Wright, 1984; Harper
etal., 1994; MacDonald et al., 2006). The Galice
Formation was deposited on and interbed-
ded with Rogue volcanic rocks in the northern
Klamath Mountains, and the Josephine ophiolite
farther south (Figs. 1 and 2). Although primitive
boninitic lava compositions and the spatial dis-
tribution of the ophiolite across and trenchward
of the contemporaneous Wooley Creek mag-
matic suite is consistent with generation in a
forearc environment (Harper, 2003), a number
of authors suggest a backarc or intra-arc basin
setting (e.g., Snoke, 1977; Saleeby et al., 1982;
Harper et al., 1994; Yule et al., 2006).

The Galice Formation includes a lower hemi-
pelagic sequence, a middle transition zone, and
an upper turbidite sequence (Fig. 2; Pinto-Auso
and Harper, 1985; Harper, 1994; MacDon-
ald et al., 2006). The hemipelagic sequence is
~50 m thick, and at its base it is intercalated with
Josephine ophiolitic lavas (Harper, 1994; Mac-
Donald et al., 2006). The hemipelagic sequence
is mainly green to black slaty argillite and lesser
radiolarian chert, with components of volcanic
detritus (e.g., bipyramidal quartz; Pinto-Auso
and Harper, 1985; MacDonald et al., 2006; Pes-
sagno, 2006). Rare thin, graded sandstone beds
within the hemipelagic sequence are composi-
tionally similar to the upper turbidite sandstone,
and one shows evidence of scour into underly-
ing chert (MacDonald et al., 2006). Radiolarian
biostratigraphy from the hemipelagic sequence
indicates late Callovian to middle Oxfordian
depositional age (Pessagno et al., 1993; Pessa-
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gno, 2006), but the 162 Ma age of the underlying
Josephine ophiolite provides a maximum depo-
sitional age of the hemipelagic sequence, result-
ing in an age of ca. 162-154.8 Ma (time scale of
Gradstein et al., 2020). Correlation of radiolar-
ian tuffs within the hemipelagic sequence with
157 4 2 Ma volcanic rocks of the Rogue For-
mation (Saleeby, 1984) suggests that the upper-
most hemipelagic sequence is missing, which
may represent a disconformity (Pessagno and
Blome, 1990), or disrupted bedding due to nor-
mal faulting or submarine landsliding (Harper,
2006; MacDonald et al., 2006).

Where present, the hemipelagic sequence is
overlain by a transition zone consisting of ~55 m
of radiolarian-bearing argillite and minor sand-
stone (Fig. 2; Harper, 1994). MacDonald et al.
(2006) interpreted a gradational contact between
the hemipelagic sequence and the transition zone
that is characterized by an up-section increase in
sandstone beds and a decrease in the proportion
of radiolarians in argillites. The transition zone
is interpreted to have formed between 157 Ma
and 153 Ma, based on age constraints from the
hemipelagic sequence and reported detrital zir-
con ages of ca. 153 Ma from near the base of
the upper turbidite sequence (Miller et al., 2003;
MacDonald et al., 2006).

The transition zone is overlain by a thick
sequence of turbidites with feldspathic to lithic
wacke metasandstone and scant conglomer-
ate (Fig. 2; Snoke et al., 1977; Harper, 1984;
Wyld, 1985; MacDonald et al., 2006). In its
northern outcrop area, the Galice Formation
lacks the hemipelagic sequence and transition
zone, and consists of turbidites that interfinger
with volcanic members of the Rogue Formation
(Fig. 1; MacDonald et al., 2006). Slaty units
in the turbidites are typically thin, but reach at
least 20 m thick locally (Frost et al., 2006) and

contain trace fossils Chondrites, Cosmophorae,
and Spirophycus that indicate abyssal to bathyal
depths (MacDonald et al., 2006). Sandstone
units include mud rip-up clasts, partial Bouma
sequences, and scoured bases. Extensive defor-
mation of the turbidite sequence precludes accu-
rate determination of its thickness, but the unit
was likely several kilometers thick, given its sig-
nificant outcrop area (MacDonald et al., 2006).

The turbidite sequence contains the bivalve
Buchia concentrica (Sowerby), which indicates
late Oxfordian to middle Kimmeridgian deposi-
tional age (Imlay, 1952; Imlay et al., 1959). Two
sills intruding the turbidite sequence northeast
of Gasquet were dated by “°Ar/*°Ar on horn-
blende, yielding ages of 150.5 &+ 1.4 Ma and
146.2 + 1.0 Ma (1-sigma uncertainty; Harper
et al.,, 1994). The oldest pluton that intrudes
the roof thrust (Orleans thrust) in outcrop is
the 150 Ma Summit Valley pluton (multi-grain
TIMS age; Harper et al., 1994). However, gab-
bro-diorite of the Bear Mountain complex (150—
148 Ma; Snoke et al., 1981; Chamberlain et al.,
2006) intrudes a klippe of the Rattlesnake Creek
terrane (part of the eastern rift margin of the Jose-
phine ophiolite basin; Snoke et al., 1977, 1981)
that overlies the Galice Formation (Fig. 1). A 40
mgal positive gravity anomaly centered on the
Bear Mountain complex (Roberts et al., 1981;
Jachens et al., 1986) is best explained by the
Bear Mountain complex cutting the roof thrust.
Thus, according to biostratigraphy and known
crosscutting relationships, the age of Galice tur-
bidite deposition is constrained to between ca.
157 Ma and 150-148 Ma.

Deposition of the Galice Formation was
originally interpreted to precede contractional
deformation of the Nevadan orogeny (Diller,
1903). However, Harper et al. (1994) inferred
synorogenic deposition, because both roof
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under-thrusting of the Josephine ophiolite to the
west, with sediment derived from Middle Juras-
sic arc rocks and older units in the advancing
Orleans thrust sheet to the east.

Nevadan orogenesis resulted in the develop-
ment of slaty cleavage, folding, flattening of
sand and pebble grains, and stretching lineations
within the Galice Formation, with strain increas-
ing southward (Harper, 1984, 2006; Cashman,
1988; Jones, 1988). Metamorphic grade likewise
increases from prehnite-pumpellyite in the north
to lower greenschist facies to the south (Harper,
1984; Harper et al., 1988). Paleomagnetic data
suggest clockwise rotation of the Klamath Moun-
tains by as much as 100° (Bogen, 1986; Harper
and Park, 1986), which may have occurred as a
single block (Mankinen and Irwin, 1982; Bogen,
1986) or through oroclinal bending (Renne and
Scott, 1988; Saleeby and Harper, 1993). Mac-
Donald et al. (2006) assumed clockwise rotation
of 65°, which restores the trend of the Western
Klamath terrane to parallel the structural trend of
the Sierra Nevada foothills, which have not been
rotated (Bogen et al., 1985; Frei, 1986). Paleo-
flow was variably west-directed in the northern
Galice outcrop area and north-directed in the
Smith River drainage (modern coordinates;
Harper, 1984; Park-Jones, 1988; MacDonald
et al., 2006), which restore to south-directed and
west-directed, respectively, when corrected for
65° of rotation.

Galice turbidite detrital components are
mostly siliceous argillite, chert, plagioclase, and
volcanic rock fragments, and both monocrys-
talline and polycrystalline quartz (MacDonald
et al., 2006). MacDonald et al. (2006) noted
that detrital modes reported from the Galice
Formation are semiquantitative, given matrix
content upward of 20%, and often 30%, which
suggests abundant pseudomatrix resulting from
the alteration of original unstable lithic grains.
Nevertheless, Galice samples plot largely within



TABLE 1. SAMPLE LOCATIONS, NUMBER OF ANALYSES, AND MAXIMUM DEPOSITIONAL AGE RESULTS

Number of
U-Pb zircon

Maximum depositional age results

Number of
Zircon ey

Location

Sample

MLA
Age
1529+ 19

n

MSWD

YSP

Age
150.8 + 1.9

n
34

MSWD

YGC 20

Age
1517 £ 1.8

YGC 10
MSWD nt

Age
148.9 + 2.1

Age*

YSG
1476 + 5.4

Longitude
W) ages analyses

Latitude
(°N)

number

1529+ 2.2
153.1 +17
155.5 + 1.4
154.8 + 1.5
155.8 + 1.5
155.5 + 1.6
155.0 + 1.7
1570 + 1.7
1614 £ 1.6
1619+ 1.6

23
10
15
136
67
86
22
79
28
27
36

1.00
0.87
1.02
1.00
1.01
1.01
0.98
1.00
1.08
0.97
0.94

1515 +£2.2

153.1 £ 1.7
154.1 + 14
1541 £ 15
1542 £ 15
154.4 + 1.6
155.3 £ 1.7
1572 +1.7
160.0 + 1.8
160.1 + 1.6

15
15
109
53
69
24
68
26
25
31

123
1.43
1.02
0.80
0.82
0.84
1.16
0.66
0.72
0.70
0.74

152.7 £ 2.0
153.1 £ 17
153.7 + 1.4
153.8 + 1.5
153.7 + 15
154.6 + 1.6
154.8 + 1.4
156.9 + 1.6
159.7 + 1.5
159.7 £ 1.6

9

6

6
22
26
34
10
38
18
12
17

0.19
0.44
0.48
0.23
0.32
0.17
0.42
0.27
0.30
0.14
0.30

Note: Samples are stored in the Department of Geosciences, Trinity University. MSWD—mean square of weighted deviates; YCG—youngest cluster of grains; YSG—youngest single grain; MLA—maximum

likelihood age.

150.3 + 2.4
1512 £ 2.1
1513 £ 1.6
152.3 + 1.6
152.4 £ 15
153.2 + 17
153.8 £ 1.5
156.0 + 1.7
158.2 + 15
158.3 + 1.7

140.6 + 4.2
146.2 + 3.4
146.3+ 4.8
146.3+ 4.4
1455+ 4.2
150.4 + 3.0
150.9 + 2.6
150.5 + 3.6
154.9 + 3.4
149.7 + 3.8
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*All uncertainties are reported at 20, and weighted mean uncertainties include both analytical and systematic uncertainties.

tNumber of grains included in each weighted mean calculation.
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arc provenance fields on QFL and Q,FL, ter-
nary plots (Harper, 1980; Norman, 1984; Wyld,
1985; MacDonald et al., 2006). Heavy min-
eral assemblages include zircon, tourmaline,
apatite, biotite, muscovite, and Cr-spinel, and
less commonly garnet, epidote, staurolite, and
glaucophane. Volcanic-rich basal turbidites also
include clinopyroxene and hornblende (Snoke,
1972, 1977; Harper, 1980, 1984; Wyld, 1985;
MacDonald et al., 2006). Nd and Sr isotopic
data from Galice argillites and metagreywackes
indicate a significant continental isotopic signa-
ture, which suggests derivation from both arc
rocks and previously accreted Eastern Klamath
terranes and/or the North American continent
(Frost et al., 2006). Detrital zircon age spectra
published to date include one sample of primar-
ily Mesozoic ages with age modes of 153 Ma
and 227 Ma (Miller et al., 2003) and four sam-
ples (n = 341) with significant age modes at
158-157 Ma as well as abundant (15%-55%)
Precambrian zircon with characteristic North
American age modes (LaMaskin et al., 2022).

These compositional and age data suggest that
the Galice Formation was sourced by both an
active Mesozoic arc and continentally derived
sediment that was perhaps recycled through
previously accreted Klamath terranes and/or
sources farther east on the continent. MacDon-
ald et al. (2006) speculated that ca. 230-225 Ma
detrital zircon in the Galice Formation was
derived from the Pine Nut terrane and basal Lun-
ing assemblage of Western Nevada, which may
have been east of the Klamath Mountains dur-
ing Late Jurassic time (Wyld and Wright, 2001).
LaMaskin et al. (2022) concluded that Galice
sediment sources included previously accreted
terranes of the Klamath Mountains and Sierra
Nevada, recycled transcontinental sand, and pri-
mary and/or recycled sources in the Southwest-
ern United States. Our robust detrital zircon age
and ey, data set, systematically sampled along
200 km of strike-length in the Klamath Moun-
tains, combined with our new ey; data from
Klamath Mountains province Jurassic plutons
and an extensive compilation of published detri-
tal and igneous zircon age and ey data, permit
more detailed assessment of the depositional age
and provenance of Galice strata, which in turn
improve evaluation of tectonic models and Late
Jurassic paleogeography.

METHODS
Sampling Methods

We collected 11 metasandstone samples from
the siliciclastic turbidite section of the Galice

Formation along ~200 km of strike length
within the Klamath Mountains of California and
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Oregon (Fig. 1 and Table 1). Pervasive deforma-
tion and structural truncation precluded accurate
determination of the stratigraphic level within
the sections sampled. We collected samples with
fine- to medium-sand-sized grains and visible
quartz. Thin sections of each sample were manu-
factured at Texas Tech University and stained for
potassium feldspar.

Samples of the Chetco complex (= Illinois
River gabbro) and the marginal facies of the
Grants Pass pluton were collected by J.D. Yule
(Yule, 1996). Samples of the Grayback, Thomp-
son Ridge, and Ashland plutons were collected
by C.G. Barnes and R.F. Gribble (Gribble et al.,
1990; Barnes et al., 1995). Samples were col-
lected from homogeneous in situ bedrock out-
crops. See Text S1 in the Supplemental Material!
for sample locations.

U-Pb Analysis of Detrital Zircon

We followed standard mineral separation
methods to isolate zircon grains (e.g., DeGraaft-
Surpless et al., 2002; Fedo et al., 2003), with
slope Frantz current settings at 0.5 A, 0.8 A,
1.0 A, and 1.2 A to capture slightly magnetic,
metamict zircon or zircon with inclusions in
the final splits. The final zircon splits were sent
to the Arizona LaserChron Center for isotopic
analysis, where they were mounted in epoxy,
polished to expose crystal interiors, and docu-
mented with backscattered electron images to
guide spot selection in order to avoid cracks and
inclusions.

Laser ablation—multicollector—inductively
coupled plasma-mass spectrometry (LA-MC-
ICPMS) was used to analyze ~300 randomly
selected zircon grains per sample, or all zir-
con grains if the sample contained fewer than
300 (e.g., 21-GF-20 and 21-GF-27). We used a
30-pm-diameter spot and followed the analyti-
cal methods described in Pullen et al. (2018).
Isotopic data were reduced using AgeCalcML
version 1.42 (Sundell et al., 2021). Age data
were filtered to remove from further consider-
ation grains >500 Ma that were more than 20%
discordant or 5% reverse discordant and grains
<500 Ma with 2-sigma error ellipses that plot-
ted off concordia and/or exceeded 5% analyti-
cal uncertainty at 1 sigma. Grains younger than
1000 Ma are reported as 23¥U-2Pb ages, and

Supplemental Material. Supplemental Data
S1: Detrital zircon U-Pb age data and Hf data.
Supplemental Data S2: Pluton U-Pb age data and
Hf data. Supplemental Text S1: Pluton sample
descriptions, locations, weighted mean ages, and
Tera-Wasserburg concordia diagrams. Please visit
https://doi.org/10.1130/GSAB.S.23638383 to access
the supplemental material, and contact editing@
geosociety.org with any questions.
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grains older than 1000 Ma are reported as 2’Pb-
206pPh ages, following Gehrels et al. (2006; Table
S1). U-Pb age spectra are shown in histograms
and kernel density estimates (KDE), which show
the continuous relative probability of ages (plots
generated using IsoplotR; Vermeesch, 2018).

In addition to visual comparison of KDE
plots, we compare samples using nonmetric
multi-dimensional scaling (MDS), a technique
based on quantified pairwise comparisons of zir-
con ages in different samples (Vermeesch, 2013;
Wissink et al., 2018); we use the Kolmogorov-
Smirnov K-S statistic as the measure of dissimi-
larity in MDS comparisons. MDS describes the
variation between sample-age frequency distri-
butions by transforming pairwise similarities
among age distributions into 2-D or 3-D Carte-
sian coordinates, such that the distance between
samples represents the degree of dissimilarity
(Vermeesch, 2013; Saylor et al., 2018; Wissink
et al., 2018). Thus, the closer two samples are
in MDS space, the more similar their age distri-
butions are. Nonmetric MDS does not quantify
the dissimilarities between samples, but instead
approximates the relative ranks of the dissimilar-
ities; the goodness-of-fit of the MDS solution is
evaluated by the minimum stress parameter, with
values of <0.1 considered fair, < 0.05 good, and
<0.025 excellent (Vermeesch, 2013). MDS plots
and stress values were generated using DZmds
(Saylor et al., 2018).

Complex post-depositional deformation of
Galice strata precludes determining the strati-
graphic level of our samples to estimate their
true depositional age (TDA). However, because
the Galice Formation formed within an active
convergent margin system, the calculated maxi-
mum depositional age (MDA) determined from
the ages of the youngest zircon grains within
each sample is likely to be close to the TDA
because the time from crystallization to depo-
sition may be negligible (Cawood et al., 2012;
Coutts et al., 2019). Accurate determination of
MDA has become a controversial topic as the
use of detrital zircon MDAs has increased, with
various methods for calculating MDA proposed
(e.g., Dickinson and Gehrels, 2009; Spencer
et al., 2016; Coutts et al., 2019; Herriott et al.,
2019; Sharman and Malkowski, 2020; Ver-
meesch, 2021). We report the results of several
of the common methods used to calculate the
MDA: youngest single grain (YSG), weighted
mean of youngest cluster of at least three grains
that overlap at 1 sigma (Youngest Grain Cluster
[YGC] 10) or 2 sigma (YGC 20; Dickinson and
Gebhrels, 2009), the youngest statistical popu-
lation with a mean square weighted deviation
close to 1.00 (YSP; Coutts et al., 2019), and the
maximum likelihood age (MLA; Vermeesch,
2021; Table 1; Fig. 3). Following Coutts et al.
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(2019), the YGC 1o and YGC 20 methods limit
the sub-sample used to calculate the MDA by the
age of the youngest upper limit of uncertainty,
and means are weighted by date uncertainty. All
MDA ages are reported with 20 uncertainties,
and MDAs calculated from pooled analyses
include both analytical (internal) and systematic
(external) uncertainties; YSG ages include only
analytical uncertainty.

Some of our samples have negatively skewed
age populations in the youngest age peaks that
could indicate Pb-loss (e.g., Spencer et al.,
2016), and we cannot rule out Pb-loss in the
youngest single grains. We therefore removed
from MDA calculations any very young outli-
ers that plot away from the youngest cluster of
grains to avoid biasing MDA estimators (0—4
grains per sample; Fig. 3). All of our samples
have abundant near-depositional-age grains,
which increases the risk that MDAs determined
only from grains within the young tail of an age
distribution (e.g., YGC 1o and YGC 20) will
be younger than TDA because of the increased
effect of statistical outliers in these calculations
(Herriott et al., 2019). Therefore, we consider
YSP values to be the best determinants of MDA
in this study, although we acknowledge that the
YSP values may be older than the TDA values
if young grains did not experience Pb-loss. Fol-
lowing Herriott et al. (2019), we used the YSP to
represent coeval zircon crystallization, without
ascribing that crystallization to a singular geo-
logic event (e.g., volcanic eruption).

U-Pb Analysis of Igneous Zircon and
Titanite

Zircon from the Chetco complex and Wooley
Creek suite plutons was originally dated by
isotope dilution—thermal ionization mass spec-
trometry (ID-TIMS) on multi-grain aliquots of
individual size and magnetic fractions at the
California Institute of Technology (Yule, 1996).
Zircon and titanite from the Bear Mountain
complex were dated using ID-TIMS methods by
Chamberlain et al. (2006). Reported ages were
determined by a range of methods, including
single-crystal and multi-grain analyses, some of
which used titanite data. A summary of reported
ages is presented in Text S1, and the reader is
referred to Chamberlain et al. (2006) for further
details. Splits of these same zircon separates
were mounted in epoxy, imaged by cathodolu-
minescence at Texas Tech University, and ana-
lyzed for U-Pb by LA-MC-ICP-MS at the Uni-
versity of California, Santa Barbara. Details of
the analytical methods may be found in Barnes
etal. (2021). Sample descriptions, reported U-Pb
ages from Chamberlain et al. (2006) and Yule
(1996), and results of LA-MC-ICP-MS dat-
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ing (Tera-Wasserburg concordia diagrams and
weighted mean plots) are given in Text S1.

Lu-Hf Analysis

Lu-Hf isotopic data were measured from 603
selected Triassic and Jurassic detrital zircon
grains from all 11 metasandstone samples. We
selected Mesozoic zircon grains that were large
enough to accommodate a 40-pm spot in addi-
tion to the spot used for the U-Pb analysis. We
followed the analytical methods described in
Gehrels and Pecha (2014), and used HfcalcML
to complete data reduction. We converted Lu-Hf
data to epsilon (¢) units, and removed from
further consideration any grains with 1-sigma
uncertainties of >2 epsilon units. For Triassic
and Jurassic zircon, g, values >9 are considered
juvenile or highly radiogenic, between 3 and 9
are moderately radiogenic, and <3 are consid-
ered to be evolved (Bahlburg et al., 2011; Geh-
rels and Pecha, 2014). We used Hf Plotter (Sun-
dell et al., 2019) to produce contour plots for the
new ey data from this study as well as compila-
tions of published data, and DZstats2D (Sundell
and Saylor, 2021) to generate MDS comparisons
of combined U-Pb age and g, zircon data.

Lu-Hf isotopes on plutonic zircons were
measured by LA-MC-ICP-MS at the University
of California, Santa Barbara (see Barnes et al.,
2021). Unlike samples from the Wooley Creek
batholith (Barnes et al., 2021), six of the nine
samples analyzed for this project yielded ey val-
ues higher than those of modern mid-oceanic-
ridge basalts. These samples were reanalyzed
using different standards (Table S2). This means
that for the three samples that were not reana-
lyzed, age and Hf isotope spots are coincident
and individual spot ages were used to calculate
enp Whereas for the remaining six samples, age
and Hf isotope spots are not coincident. In the
latter case, the weighted mean average of grains
whose 238U/2%Pb—207Pb/?05Pb ages are less than
10% discordant were used to calculate €.

RESULTS
Sandstone Petrography

Metasandstone samples are medium- to fine-
grained, and most display phyllitic to schistose
textures (Fig. 4). Metamorphic grade varies
from subgreenschist to greenschist, as indi-
cated by the presence of fine-grained biotite
and white mica. The least-deformed samples
display weak foliation and consist of variable
proportions of quartz, plagioclase, and volcanic
clasts & fossil fragments (e.g., 21-GF-20) = rip-
up clasts of very fine-grained sediment. With
increasing deformation and metamorphism, as
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Figure 3. Weighted mean plots for maximum depositional age (MDA) calculations of youngest statistical population (YSP). Light gray bars
represent grains excluded from the MDA calculation. Uncertainties are reported at 2¢ and include both analytical and systematic uncer-
tainties. MSWD—mean square of weighted deviates.

determined from the degree of fabric develop- abundance of “matrix” material increases. This ~ The increasing abundance of “matrix” with
ment and mineral assemblages, the proportions  “matrix” material consists of fine-grained white  deformation suggests that much of the “matrix”
of quartz and plagioclase vary slightly, but the mica + quartz + biotite + unidentified phases. is extensively metamorphosed and recrystal-
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; SD-18-
P A

Figure 4. Representative photomicrographs of each metasandstone sample, taken under cross-polarized light.

lized lithic fragments, i.e., pseudomatrix (Dick-
inson, 1970), rather than a primary mud matrix.
Because more than 20% of each sample is pseu-
domatrix, samples likely have more abundant
quartz and fewer lithic grains than their original
detrital composition, rendering quantitative point
counts inaccurate. Accessory minerals include
pyrite, hematite (oxidized pyrite?), tourmaline,

scant apatite, and zircon. None of the samples
contains alkali feldspar.

U-Pb Ages of Galice Formation Detrital
Zircon

The KDE plots for all samples are shown
stacked by MDA (YSP method), with oldest
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on the bottom (Fig. 5); MDAs range from
160.1 & 1.6 Ma to 150.8 £ 1.9 Ma. Because
the MDA is likely close to the true deposi-
tional age and the Galice Formation is too
complexly deformed to determine the relative
location of the samples in the stratigraphy, we
use MDA as a proxy for stratigraphic level. All
KDE plots show a significant Middle to Late



Jurassic age mode, with younging of the Late
Jurassic age mode corresponding to younger
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sample rather than a distinct age mode. Most
samples include abundant Paleozoic and Pre-
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Figure 5. Kernel density es-
timates (KDEs) of 11 Galice
Formation samples arranged
by decreasing maximum depo-
sitional age (MDA ; determined
using  youngest  statistical
population method) from bot-
tom to top. Mesozoic KDEs
(250-0 Ma) in the left column
were plotted with a kernel of 4
and a histogram width of 5; the
calculated MDA is indicated in
the upper left of each Mesozoic
age plot. Pre-Mesozoic KDEs
(3500-250 Ma) in the right col-
umn were plotted with a kernel
of 25 and a histogram width of
50. The number of grains and
percent of total sample is given
for each plot. Plots were gener-
ated with IsoplotR (Vermeesch,
2018).

U-Pb Ages of Klamath Pluton Zircon

MDAs, which is consistent with deposition
within an active convergent margin (Fig. 5;
Cawood et al., 2012). Most samples have
few to no Triassic and Early Jurassic grains,
with the exception of two samples (21-GF-
25 and 21-GF-27), which both include a sec-
ond Mesozoic age mode at ca. 199 Ma, and a
range of grains between 250 Ma and 230 Ma
in age. Sample GASD-18-09 also contains
Early Jurassic grains, but these form part of
a broader distribution of Jurassic grains in the

cambrian grains, although samples display
different age modes and different relative pro-
portions of similar age modes. The percentage
of grains that are Mesozoic in age varies sig-
nificantly between samples, from 25% to 90%
(Fig. 5). Overall, Galice Formation detrital
zircon age spectra display considerable sam-
ple-to-sample variability. MDS comparison
demonstrates minimal clustering of samples
and no systematic correlation between loca-
tion along strike and dissimilarity (Fig. 6).
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With the exception of sample AP-10, data
reported here represent new LA-MC-ICP-MS
analyses of zircon grains originally dated by
Yule (1996) and Chamberlain et al. (2006).
Redating of these samples was conducted as
part of our analyses of Hf isotopes. Analytical
data are included in Supplemental Data S2. All
results reported below are 2°Pb/>38U ages with
20 uncertainties. Comparisons of the original
results with our new LA-MC-ICP-MS ages are
provided in Text S1.
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Figure 6. Three-dimensional, nonmetric multi-dimensional scaling (MDS) plot of all Galice
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results in a stress value of 0.041 (good). Black arrows point to the nearest neighbor of each
sample, and dotted gray arrows point to the second nearest neighbor of each sample. Plot

was created using DZmds (Saylor et al., 2018).

Four samples from the Chetco complex were
dated. Sample IR-3 is a hornblende diorite. Fif-
teen concordant analyses yielded a weighted
mean age of 158.2 + 1.3 Ma (MSWD = 2.0).
Sample IR-4 is an agmatitic diorite from
which eight concordant grains gave an age of
163.2 + 2.0 Ma MSWD = 1.19). The remain-
ing zircons from this sample displayed dis-
cordance on either side of concordia curve.
Two tonalite bodies from the Chetco complex
were dated, IR-1 and DY-PP-64. Sample IR-1
displayed considerable reverse discordance,
but five concordant grains yielded an age of
159.3 £ 2.4 Ma (MSWD = 1.04). Fourteen
concordant zircons from DY-PP-64 yielded an
age of 158.4 £ 1.2 Ma (MSWD = 1.02).

Three samples from the Wooley Creek suite
(one sample each from the Grayback, Thomp-
son Ridge, and Ashland plutons) and one
sample from the Grants Pass pluton were ana-
lyzed. Thirteen grains from sample GBP-1688,
a hornblende diorite of the main stage of the

Grayback pluton (Barnes et al., 1995), yielded
an age of 161.9 & 1.8 Ma (MSWD = 1.6). Sev-
enteen concordant U-Pb dates of zircons from
Thompson Ridge pluton sample TR-4, a biotite—
hornblende—pyroxene gabbro, gave a weighted
mean age of 159.6 + 1.6 Ma (MSWD = 1.9).
Six concordant zircons from biotite-hornblende
quartz monzodiorite sample AP-79 from the
Ashland pluton (Gribble et al., 1990) yielded
a weighted mean average of 156.1 & 1.8 Ma
(MSWD = 0. 81). Sample AP10 is a foliated
hornblende diorite collected near the intrusive
contact between the Grants Pass pluton and the
andalusite slate of the Galice Formation. Twelve
concordant zircons from this sample yielded a
weighted mean average age of 148.1 = 1.2 Ma
(MSWD = 1.15).

Zircon from three samples from the Bear
Mountain complex (Snoke et al., 1981; Barnes
et al., 2006; Chamberlain et al., 2006) was
analyzed. Ten concordant grains from horn-
blende—pyroxene gabbro sample DP4-8 gave
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a weighted mean average age of 146.3 £ 1.3
(MSWD = 0.78). Five concordant grains from
biotite—pyroxene monzodiorite sample DP1-13
gave a weighted mean age of 151.6 &+ 2.3 Ma
(MSWD = 0.013). Ten concordant grains from
biotite—hornblende tonalite sample DP2-20,
which is intrusive into the Blue Ridge pluton
(part of the Bear Mountain complex), yielded
a weighted mean age of 147.8 £ 0.9 Ma
(MSWD = 0.78).

egr of Galice Formation Detrital Zircon

Lu-Hf isotopic analyses reveal a wide range
of ey values for 603 Mesozoic detrital zir-
con grains in the Galice Formation, with most
grains falling between +14 and —15 in all
samples (Fig. 7A). The majority of the grains
analyzed in all samples are Middle to Late
Jurassic (<174.7 Ma; n = 416; 69%), of which
36% are juvenile (ey; > 9), 36% are moderately
radiogenic (9 > ey; > 3), and 28% are evolved
(egs < 3). The remaining 31% (n = 187) of
grains analyzed are Triassic and Early Jurassic,
of which 26% are juvenile, 33% are moderately
radiogenic, and 42% are evolved.

eqyr of Klamath Plutons Zircon

The €y values of zircon from most Middle—
Late Jurassic plutons in the Klamath province
vary significantly (Fig. 7B). For example, ey
values in Chetco complex sample 91DY-PP-
64 range from +16.6 to +8.6 (Fig. 7B). Nev-
ertheless, averaged ey, values display distinct
differences on the basis of age and location in
the province. The four samples from the Chetco
complex have average € ranging from +17.4
to +13.0. In contrast, three samples from the
Wooley Creek suite (Grayback, Thomson Ridge,
and Ashland plutons) have average ey ranging
from +9.9 to +8.4. These values are consistent
with data from the Wooley Creek batholith and
Slinkard pluton, which range from +10.8 to
+2.0 in main-stage mafic—intermediate rocks
and are as low as —3.1 in granite (Barnes et al.,
2021). Gabbro and monzodiorite from the Bear
Mountain complex yield average ey values of
+11.2 and +11.5, respectively, and the tonalite
intrusive into the Blue Ridge pluton gives aver-
age ey of +10.5. The ey, value of the early-
stage sample of the Grants Pass pluton aver-
ages +10.9.

DISCUSSION
Depositional Age

Because we compare calculated geologi-
cal ages (MDAs) with the chronostratigraphic
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time scale to place our results in a larger tec-
tonic context, the selection of time scale is criti-
cal. The Geologic Time Scale 2020 (Gradstein
et al., 2020) includes revision of the Middle
and Late Jurassic stage boundaries by Hesselbo
et al. (2020), and these updates were incorpo-
rated in the International Chronostratigraphic
Chart v2022/10 (Cohen et al., 2013) at https://
stratigraphy.org. Bounding ages for the Oxford-
ian, Kimmeridgian, and Tithonian stages are
2.0-2.9 m.y. younger than on previous time
scales, and they are now calibrated to magne-
tostratigraphy (Hesselbo et al., 2020). The Geo-

logical Society of America Geologic Time Scale
v. 6.0 (Walker and Geissman, 2022) does not yet
reflect these updates, so we follow the Gradstein
et al. (2020) time scale herein.

Our detrital zircon MDA data suggest that tur-
bidite deposition began as early as ca. 160.1 Ma
during Oxfordian time and continued through
Kimmeridgian time, which is consistent with
Oxfordian to Kimmeridgian (Gradstein et al.,
2020) biostratigraphic age constraints on Galice
deposition based on the pelecypod Buchia con-
centrica (Imlay et al., 1959), and nearly synchro-
nous with the 150.5 £ 1.4 Ma sill in the hemipe-
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lagic sequence (Harper et al., 1994). In addition,
LaMaskin et al. (2022) report detrital zircon age
data from four Galice Formation turbidite sam-
ples. YSP MDA s calculated from their data fol-
lowing the same MDA methods used here result
in MDAs of 159.5-154.5 Ma, which is consis-
tent with our results. These depositional ages
document a 9 m.y. duration of turbidite deposi-
tion in the Galice basin and suggest either more
rapid deposition of the ca. 162-154.8 Ma under-
lying hemipelagic and transition zone strata or
diachronous onset of turbidite deposition across
the Galice basin. Furthermore, age constraints
on the formation of the Josephine ophiolite from
164 Mato 162 Ma, followed by deposition of the
overlying hemipelagic and transition zone from
ca. 162 Ma to 155(?) Ma, and the beginning of
turbidite deposition as early as ca. 160 Ma, sug-
gest that the possible disconformity at the top
of the hemipelagic sequence (see above; Pessa-
gno and Blome, 1990) may be a local feature,
and/or related to normal faulting or submarine
sliding (e.g., Harper, 2006) rather than a true
depositional hiatus. Our results show that depo-
sition of the upper turbidite sequence likely was
established by 160 Ma, during Oxfordian time
(ca. 161.5-154.8 Ma; Gradstein et al., 2020), if
not earlier.

Our results are consistent with interpretations
of the Galice Formation as a synorogenic deposit
(Harper et al., 1994; Hacker et al.,1995), with
deposition continuing even as older strata were
underthrust eastward beneath the Rattlesnake
Creek terrane during Nevadan orogenesis. Thus,
the youngest strata of the Galice Formation were
deposited after the initiation of thrusting along
the Orleans thrust and nearly synchronous with
crosscutting of that roof thrust by the 150 Ma
Summit Valley pluton (Harper, 2006) and the
150-148 Ma Bear Mountain complex (Snoke
et al., 1981; Chamberlain et al., 2006).

Provenance

Our Galice Formation detrital zircon age
results display considerable inter-sample vari-
ability and no discernable trends along almost
200 km of strike length (Fig. 6). In addition,
post-depositional deformation makes determin-
ing stratigraphic level and accurately correlating
among sample locations a challenge. To avoid
over-interpreting variability between individual
samples that may result from natural hydro-
dynamic sorting processes rather than distinct
provenance (Ibafiez-Mejia et al., 2018), and
lacking means to accurately correlate among
sample localities, we herein compile our samples
into one KDE (Fig. 8). The compiled Galice age
spectrum includes 50% Mesozoic grains, 10%
Paleozoic grains, and 40% Precambrian grains



156

300 n=1388; 50%
200

100
199 240

Number of Grains

o

T T 1
150 200 250

263 400-430

20 n=284: 10%
10
0 I T T T 1
200 300 400 500 600

Age (Ma)

Late Jurassic paleogeography of the U.S. Cordillera

150 n=1120; 40%
100

50 2680

0

T

T T T 1
0 1000 2000 3000 4000

Figure 8. Compiled kernel density estimates and histograms for all Galice Formation samples, separated into Mesozoic, Paleozoic, and
Precambrian age spectra. Plots were generated with IsoplotR (Vermeesch, 2018).

(Fig. 8). The Mesozoic age spectrum includes a
large Middle—Late Jurassic mode (ca. 156 Ma),
and smaller Early Jurassic (ca. 199 Ma) and Tri-
assic (ca. 240 Ma) modes (Fig. 8). The polymo-
dal Paleozoic age spectrum spans the entire era,
with age modes at ca. 263 Ma, 315 Ma, and 430—
400 Ma (Fig. 8). The polymodal Precambrian
age spectrum includes modes at ca. 607 Ma,
1200-980 Ma, 1435 Ma, 1850-1610 Ma, and
2680 Ma (Fig. 8). ey data from 603 Mesozoic
detrital zircon grains reveal a wide range of ey
values, from +16.9 to —26.2 (Fig. 7A). These
data suggest mixed provenance in an active Mid-
dle to Late Jurassic magmatic arc with abundant
input from Precambrian detrital zircon presum-
ably recycled from older sources.

To document the provenance of the Galice
Formation, we compare our Galice zircon age
and ey data with compilations of previously
published and new U-Pb age and ey; data for
rocks older than 148 Ma from potential sources
inthe U.S. Cordillera. Following LaMaskin et al.
(2022), our compilations present igneous spot
data wherever possible (i.e., for all data gener-
ated by SIMS) rather than interpreted intrusive
ages or ey values, to better match our detrital
zircon age distributions with similar distribu-
tions from plutonic sources. We acknowledge
that our data compilations are limited by sam-
pling density, sampling bias, and the availability
of published data, and may require revision as
more data become available. However, these
compilations represent known ages and ey
ranges within each of these source regions, and
are therefore useful for first-order provenance
comparisons with our compiled data from the
Galice Formation.

Plausible potential sediment sources for
the Galice Formation are shown in Figure 1A
and include, from north to south: (1) arc rocks
of the Northwest Cascades System and the
Methow Terrane in Washington State (Sauer
et al., 2017); (2) arc rocks and sedimentary
cover strata of the Blue Mountains province in

Oregon (Schwartz et al., 2011a, 2011b, 2014;
LaMaskin et al., 2011; Anderson, 2013; John-
son et al., 2015; Kurz et al., 2017 [whole-rock
eng data converted to zircon ey; values using
the terrestrial array equation of Vervoort et al.,
2011]); (3) arc rocks and older terranes within
the Klamath Mountains province (Wallin and
Metcalf, 1998; Gehrels and Miller, 2000; Wal-
lin et al., 2000; Allen and Barnes, 2006; Barnes
et al., 2006; Chamberlain et al., 2006; Johnson
and Barnes, 2006; Yule et al., 2006; Scherer and
Ernst, 2008; Scherer et al., 2010; Ernst et al.,
2017); (4) the Sierra Nevada arc and pre-batho-
lithic framework (Harding et al., 2000; Spur-
lin et al., 2000; Barth et al., 2011; Cecil et al.,
2012, 2018; Attia et al., 2018, 2020); (5) Sierra
Nevada retroarc plutons, Nevada—Utah backarc
basin, and passive margin strata (Darby et al.,
2000; Manuszak et al., 2000; Riley et al., 2000;
Workman, 2012; Gehrels and Pecha, 2014;
Colby, 2017; Holm-Denoma et al., 2017; Chap-
man et al., 2018); and (6) Jurassic Eolianites of
Nevada and Utah, USA (Dickinson and Geh-
rels, 2008, 2009). In addition, arc rocks and
older strata of the Insular superterrane (White
et al., 2016, and references therein; Alberts
et al., 2021, and references therein) represent a
potential source region if the Insular superter-
rane accreted to North America during Middle
Jurassic time at the approximate latitude of the
Klamath Mountains (e.g., Saleeby and Dunne,
2015) rather than remaining far offshore until
Cretaceous accretion (e.g., Balgord et al., 2021;
Tikoff et al., 2023).

Comparison of Pre-Mesozoic Age Spectra

We first compare pre-Mesozoic age spectra
(grains >250 Ma) of the Galice Formation with
compilations of potential source region data
(Fig. 9). A visual comparison of KDE plots sug-
gests that the Galice Formation is very similar
to the Sierra Nevada pre-batholithic framework,
Blue Mountains Overlap, and Jurassic Eolianites
(Fig. 9A). The older Klamath terranes that are
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most proximal to the Galice Formation do not
provide as good a match for Galice age spectra
because they include a large late Paleozoic mode
that is not well-represented in the Galice For-
mation and lack the 1200-980 Ma and 1435 Ma
modes that characterize the Galice samples
(Fig. 9A).

MDS analysis confirms the visual assess-
ment of KDEs (Fig. 9B). The Blue Mountains
Overlap and Sierra Nevada pre-batholithic
framework plot closest to the Galice Forma-
tion in MDS space, and the Jurassic Eolianites
plot very close to the Blue Mountains Overlap
(Fig. 9B). The MDS plot shows that the older
Klamath terranes plot farther from the Galice
Formation than either the Blue Mountains Over-
lap or Sierra Nevada pre-batholithic framework
sources, but also that the Galice Formation is the
closest neighbor of the older Klamath terranes
(Fig. 9B). The Nevada—Utah backarc basin and
passive margin region is most closely related to
the Sierra Nevada pre-batholithic framework,
but it lacks the prominent Paleozoic age modes
that characterize the Galice Formation and there-
fore plots farther away. The Insular superterrane
plots farthest from the Galice Formation, with
the older Klamath terranes identified as its near-
est neighbor (Fig. 9B).

These provenance comparisons indicate
that distal sources were important contributors
of pre-Mesozoic zircon to the Galice basin,
in addition to proximal sources in the older
Klamath terranes. Thus, the pre-Mesozoic age
spectrum compiled from the Galice Forma-
tion suggests mixed provenance in continen-
tal sources.

Comparison of Mesozoic U-Pb Age and ey
Data

We combine zircon U-Pb age and gy data
of Mesozoic grains to further assess poten-
tial source regions, because the Mesozoic arc
extended the length of the Cordillera and there-
fore age alone is nondiagnostic. We present
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compiled zircon age and ey data for Mesozoic
igneous rocks in the potential source regions,
including our new Hf data from Jurassic plutons
in the Klamath Mountains (Fig. 10A), and use
MDS to compare these compilations with data
from the Galice Formation (Fig. 10B). gy data
compilations are shown as shaded fields that
represent 95% of the compiled data, and we
consider all of the Galice ¢y, data in aggregate
(Fig. 10A). We note that the density of published
ey data varies significantly by location, with the
Sierra Nevada better characterized than other
possible source regions; therefore, as more data
become available, the relationship between these
potential source regions and the Galice Forma-
tion may need to be reconsidered.

Arc sources north of the Galice Formation in
the Northwest Cascades System, Methow Ter-
rane, and the Blue Mountains, as well as the
proximal Klamath arc, lack evolved zircon and
therefore cannot fully account for the Galice
Formation ey, signature. However, the juvenile
Middle-Late Jurassic zircon in the Klamath
and Blue Mountains arcs matches the cluster of
juvenile zircon grains in the Galice Formation
(Fig. 7), and these proximal arcs likely repre-
sent a component of the sediment sources of
the Galice basin. These three potential sources
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plot as a cluster in MDS space, with the Blue
Mountains and Klamath arcs plotting nearly on
top of one another, which suggests identical arc
eyr signatures for Middle-Late Jurassic plutons
in these two regions (Figs. 10B—10E).

The Sierra Nevada arc can account for some
of the Middle-Late Jurassic juvenile grains,
although not the highest gy, values, as well
as many of the evolved grains of Triassic,
Early Jurassic, and Middle-Late Jurassic age
(Fig. 10A). The Sierra Nevada retroarc plutons
lack abundant juvenile grains but can partially
account for the most evolved Middle-Late
Jurassic grains in the Galice Formation. How-
ever, unlike the Sierra Nevada arc and retroarc
sources, the Insular superterrane source region
can account for much of the € data from the
Galice Formation and plots as the nearest neigh-
bor of the Galice Formation in MDS space
(Figs. 10B-10E). As noted above, the Insular
superterrane is not a good match for pre-Meso-
zoic detrital zircon ages in the Galice Forma-
tion, but we acknowledge the possibility that
the Insular superterrane was part of the mixed
provenance of the Galice Formation. In that case,
the Paleozoic grains that characterize the pre-
Mesozoic age spectrum of the Insular superter-
rane were diluted in relative abundance, as other
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sources contributed more abundant Proterozoic
detrital zircon to the Galice basin. In any case, a
few of the Galice Mesozoic zircon grains are not
accounted for by the combination of the Klam-
ath arc, Sierran arc, Sierran retroarc, and Insular
superterrane, which suggests that the data rep-
resenting each source is incomplete and/or our
potential sources are not comprehensive.

Overall Provenance

Taken together, pre-Mesozoic zircon age
and Mesozoic zircon gy, comparisons suggest
likely sources of pre-Mesozoic zircon in the
Sierra Nevada pre-batholithic framework, Blue
Mountains Overlap, older Klamath terranes,
and possibly Jurassic Eolianites, and sources
of Mesozoic zircon in the Blue Mountains,
Klamath, and Sierran arcs, and perhaps retro-
arc plutons. However, in the Blue Mountains
province, LaMaskin et al. (2015) used detrital
zircon age data to revise the Middle Jurassic
depositional age of the fluvial to marine Coon
Hollow Formation to Late Jurassic, recogniz-
ing that Middle Jurassic corals were transported
into the younger Coon Hollow Formation dur-
ing deposition that occurred from 160 Ma to
150 Ma. Thus, Middle Jurassic strata of the
Blue Mountains Overlap may have been sub-
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it lacks abundant Proterozoic grains (Fig. 9),
the Insular superterrane arc is a close match
for the arc-derived grains of the Galice Forma-
tion (Fig. 10) and may have been an additional
source of sediment.
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Figure 10. (A) Plots of ey versus age for
Mesozoic detrital zircon from the Galice
Formation (Fm; top) and for potential arc
sources (data sources are given in the text).
Data are contoured at 95%; the 95% con-
tour for the Galice Formation is overlain
as a dashed line on each of the potential
arc sources. Plots were generated using Hf-
Plotter (Sundell et al., 2019). (B-E) Two-di-
mensional multidimensional scaling (MDS)
comparisons of zircon age and ey, for the
Galice Formation and potential sources
shown in panel A. Black arrows indicate
nearest neighbor of each region. Plots were
made using DZstats2D (Sundell and Say-
lor, 2021). (B) Likeness comparison using
kernel density estimates (KDEs) with set
bandwidths of 4 (x axis) and 1 (y axis). (C)
Similarity comparison using KDEs with
set bandwidths of 4 (x axis) and 1 (y axis).
(D) Kolmogorov-Smirnov (K-S) maximum
D-value difference using cumulative distri-
bution functions (CDFs). (E) Kuiper Test V
value using CDFs. NWCS—Northwest Cas-
cades system.

Tectonic Model

Our provenance interpretations for the Galice
Formation have implications for Late Jurassic
tectonics in the U.S. segment of the North Amer-
ican Cordillera. We reconstructed Late Jurassic
paleogeography by restoring Cenozoic exten-
sion in the Basin and Range (following Wyld
et al., 2006); Cretaceous dextral displacement
within the Sierra Nevada arc, Western Nevada,
and Western Idaho (e.g., Wyld and Wright,
2001); clockwise rotation of the Blue Mountains
province (Wilson and Cox, 1980; Housen and
Dorsey, 2005); and clockwise rotation (Bogen,
1986; Harper and Park, 1986) and post-Jurassic
westward motion of the Klamath Mountains
(Wyld and Wright, 2001; Ernst, 2013). Although
our data do not require it, we show the Insular
superterrane located offshore of North America
and north of the Klamath Mountains province
in Late Jurassic time, following the model of
Saleeby and Dunne (2015). East of the Cordil-
leran arc, late-phase deformation in the Eastern
Luning-Fencemaker thrust belt during Middle
to Late Jurassic time led to uplift and erosion
of Triassic backarc basin strata (Oldow, 1983;
Wyld, 2002; LaMaskin et al., 2011). The result-
ing Late Jurassic paleogeography (Fig. 11) is
similar to the restorations of Saleeby and Dunne
(2015), Yonkee and Weil (2015), and Balgord
et al. (2021).

Changing plate motions during Late Jurassic
time led to increased contractional deforma-
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leran system in the Western United States illustrates inferred provenance of the Galice For-
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tion in the region as well as probable sinistral
transpression, as North American plate motion
shifted from west to northwest and plate veloc-
ity increased (e.g., Seton et al., 2012; Saleeby
and Dunne, 2015). This contractional deforma-
tion marked the beginning of Nevadan orogen-
esis in the Klamath province. Closure of the
Galice basin began by ca. 155 Ma (Harper and
Wright, 1984; Harper et al., 1994), and perhaps
as early as 157 Ma (Dailey and Barnes, 2020),
as rocks of the Galice/Josephine assemblage
and perhaps the outer Condrey Mountain Schist
(Saleeby and Harper, 1993) were thrust beneath
inboard terranes along the Orleans thrust, even
while younger Galice strata continued to be
deposited (Harper et al., 1994; this study). To the
west—northwest of the Galice basin, arc activity
continued in the Rogue-Chetco complex until
157 Ma, and then these rocks and their basement
assemblage were thrust beneath the Galice/Jose-
phine assemblage along the Madstone Cabin
thrust (Harper et al., 1996). In addition, Saleeby
and Dunne (2015) suggested that sinistral
motion associated with increased northwestward
motion of the North American plate during this

time brought the Insular superterrane to a posi-
tion north of the Klamath Mountains province
and west of the Blue Mountains province and
Northwest Cascades system (Fig. 11).

The abundance of pre-Mesozoic zircon
derived from sources in the Sierran arc pre-
batholithic framework and Sierran retroarc
regions suggests that sediment transport systems
crossed the Cordilleran magmatic arc through-
out Late Jurassic time. Thus, during Oxfordian—
Kimmeridgian time, fluvial systems with head-
waters well into the Sierran retroarc (e.g., the
Luning-Fencemaker thrust belt) may have tra-
versed the Klamath-Sierran arc, delivering sedi-
ment into the shallow marine system, with tur-
bidity flows funneled down submarine canyons
into the bathyal to abyssal Galice basin (Fig. 11).
Although active arc volcanoes may have been
emergent (Young, 1978; Garcia, 1979, 1982),
the older Klamath terranes east of the Galice
basin and the Blue Mountains province may
have been at least partially submerged, perhaps
maintaining some of the interconnected marine
system across the Klamath-Sierran arc that char-
acterized the Middle Jurassic (Attia et al., 2021),

Geological Society of America Bulletin

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/doi/10.1130/B36810.1/5939770/b36810.pdf
bv auest

with deposition of the Coon Hollow Formation
overlapping some older Blue Mountains prov-
ince rocks during Late Jurassic time (LaMaskin
et al., 2015). Mesozoic arc magmatism within
the proximal Klamath terranes, Sierra Nevada
arc, and possibly the Insular superterrane may
have contributed Triassic, Early, and Middle—
Late Jurassic zircon with wide-ranging ey; val-
ues. Uplift of the Klamath Mountains province
terranes and the embedded Wooley Creek suite
arc system east of the Galice basin during Neva-
dan orogenesis, as well as arc activity in the
Rogue-Chetco complex, likely contributed to
Late Jurassic arc-derived zircon with abundant
juvenile ey values in the Galice basin.

Coeval Basin Comparison

Our tectonic model for Late Jurassic time
postulates fluvial systems with headwaters east
of the Klamath-Sierran arc that transported sedi-
ment westward into the forearc region during
Oxfordian—Kimmeridgian time (Fig. 11). Our
model predicts that Oxfordian—Kimmeridgian
strata west of the Sierran arc share provenance
with the Galice Formation, while forearc strata
north of the Klamath Mountains, in the Blue
Mountains and Northwest Cascades System and
Methow Terrane, have distinct provenance.

The Mariposa Formation crops out in the
Western Sierra Nevada foothills region (Fig. 11)
and has been correlated with the Galice Forma-
tion by numerous authors (e.g., Diller, 1907;
Taliaferro, 1942; Imlay, 1952; Irwin, 2003;
Snow and Scherer, 2006; Ernst et al., 2008;
Ernst, 2013). Like the Galice Formation, the
Mariposa Formation has been recrystallized to
subgreenschist grade (Snow and Ernst, 2008),
but protolith lithologies and sedimentary struc-
tures remain recognizable. Bogen (1984) docu-
mented sole markings, mudstone rip-up clasts,
conglomerate lenses, and partial to nearly com-
plete Bouma sequences in sandstone beds with
consistent southeasterly flow directions (modern
coordinates) in the southern outcrop area. Snow
and Ernst (2008) reported SHRIMP-RG detrital
zircon ages from five samples, which all con-
tain Early to Late Jurassic zircon and abundant
pre-Mesozoic zircon (Fig. 12A). The youngest
10 detrital zircon grains from a composite of
all five samples yield a weighted mean age of
152.1 £ 1.1 Ma, and individual reported MDAs
range from 155 Ma to 151 Ma (Snow and Ernst,
2008), which suggests Kimmeridgian deposition
(time scale of Gradstein et al., 2020).

The Great Valley forearc basin developed in
latest Jurassic time between the Franciscan sub-
duction zone to the west and the Sierra Nevada
magmatic arc to the east (e.g., Dickinson,
1995). Recent detrital zircon results from the
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basal Great Valley Group confirm Late Jurassic
deposition for limited regions, with much of the
mapped Upper Jurassic strata deposited in Early
Cretaceous time (Surpless et al., 2006; Orme and
Surpless, 2019), and suggest that transtension
within the forearc region resulted in isolated,
fault-bounded depocenters during latest Jurassic
time. Accordingly, we limit our detrital zircon
age compilation to only samples of the Great
Valley Group that have Kimmeridgian MDAs
(Fig. 12A; time scale of Gradstein et al., 2020;
Surpless et al., 2006; Orme and Surpless, 2019).

In the Blue Mountains Province, LaMaskin
et al. (2015) presented detrital zircon age data
from the fluvial to marine Coon Hollow For-
mation. Based on similarities in depositional
age, lithology, and limited provenance data,
LaMaskin et al. (2015) suggested that the
Coon Hollow Formation and Galice Formation
were part of the same belt of suprasubduction-
zone extensional back-arc basins during Late
Jurassic time.

Farther north, Late Jurassic sedimentary units
include the Lower Newby Group (Twisp For-
mation) of the Southern Methow subterrane in
North-Central Washington (Sauer et al., 2017)
and sedimentary units within the fault-bounded
nappes of the Northwest Cascades System. These
include the Fidalgo complex, Lummi Formation,
Constitution Formation, and Easton Metamor-
phic suite, which each have nearly unimodal,
Mesozoic detrital zircon age spectra (Brown and
Gehrels, 2007), and the Yellow Aster complex,
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with Paleozoic and Precambrian detrital zircon
age spectra (Brown and Gehrels, 2007). Here,
we compare the pre-Mesozoic detrital zircon
age spectra of the Galice Formation with ages
compiled from Late Jurassic units of the North-
west Cascades System (Yellow Aster complex;
Brown and Gehrels, 2007) and the Methow Ter-
rane (Twisp Formation; Sauer et al., 2017).

Visual comparison of KDE plots of pre-Meso-
zoic detrital zircon suggests that the Galice and
Mariposa formations share very similar prov-
enance, as does the basal Great Valley Group
(Fig. 12A). In contrast, the samples compiled
from the Coon Hollow Formation, Northwest
Cascades System, and Methow Terrane look very
different from any other samples (Fig. 12A). In
MDS space, the Galice and Mariposa forma-
tions plot nearly on top of one another, with
the basal Great Valley Group in close proximity
(Fig. 12B). Samples compiled from the North-
west Cascades System, Methow Terrane, and
the Coon Hollow Formation plot much farther
away from any other samples, which reflects
their distinctive detrital zircon age distributions
(Fig. 12B). Taken together, detrital zircon age
comparisons from coeval strata are consistent
with our proposed tectonic model for the Late
Jurassic margin.

Implications for Late Jurassic Tectonics

One aspect of long-standing debate about
the tectonic development of the Mesozoic con-
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vergent margin of North America focuses on
whether much of Western North America is the
product of west-dipping, intraoceanic subduc-
tion during Jurassic—Cretaceous time (Johnston,
2001, 2008; Hildebrand, 2009, 2013, 2015;
Sigloch and Mihalynuk, 2013, 2017; Spen-
cer et al., 2019; Clennett et al., 2020), or east-
dipping subduction of oceanic plates beneath
Western North America (e.g., Monger and Price,
1979; Burchfiel et al., 1992; Dickinson, 2008;
Ingersoll, 2008; Saleeby and Dunne, 2015;
Boschman et al., 2018; Pavlis et al., 2019). For
example, Sigloch and Mihalynuk (2013, 2017)
and Clennett et al. (2020) interpret seismically
imaged, linear features that now reside in the
lower mantle beneath Eastern North America
and the Atlantic Ocean as near-vertical slab
walls associated with subduction at stationary,
intraoceanic trenches that were located far west
of Jurassic North America. In this interpretation,
the Western Klamath terranes formed above an
east-facing subduction zone and are considered
exotic to North America and were later accreted
to North America as the westward-migrating
continent overrode the oceanic trench and col-
lided with the archipelago during the opening of
the Atlantic Ocean (e.g., Sigloch and Mihalynuk,
2017). In contrast, endemic models postulate that
long-standing east-dipping subduction beneath
the continental margin produced the outboard
arcs and associated terranes, and therefore these
endemic terranes should be clearly linked to the
continent (e.g., Gray, 1986; LaMaskin et al.,



2022). Based on their interpretations of Galice
Formation and Rattlesnake Creek Terrane detri-
tal zircon provenance, LaMaskin et al. (2022)
argued an endemic origin for these outboard ter-
ranes. Our provenance results expand this ini-
tial data set and confirm that Galice Formation
provenance was linked to the North American
continent throughout deposition. Furthermore,
we document the development of a composite
marginal basin system that included the Galice
and Mariposa formations and the basal Great
Valley Group and place this basin system within
a Late Jurassic tectonic reconstruction.

Deposition of the Galice Formation occurred
during the Late Jurassic transition from transten-
sional to contractional (transpressional?) tecton-
ics in the U.S. Cordillera (Harper et al., 1986,
1994; Saleeby, 1992; Saleeby and Dunne, 2015).
Our results document abundant detrital zircon
derived from sources within the retroarc region,
in addition to magmatic arc sources. Furthermore,
our data demonstrate that pre-Mesozoic detrital
zircon in the Galice Formation apparently was
not derived from older Klamath terranes or the
Blue Mountains province (Fig. 9). These results
suggest that the Klamath Mountains province,
Blue Mountains, and the Western Sierra Nevada
had muted topography and/or were covered by a
Mesozoic volcanic carapace that was relatively
zircon-poor. In the Blue Mountains, LaMaskin
et al. (2015) document deposition of the trans-
gressive, fluvial to deep-marine Coon Hollow
Formation during a period of trench retreat at
ca. 160-150 Ma, which suggests that the Blue
Mountains Province was the locus of deposition
during this time. In their stratigraphic overview
of the Mesozoic Sierra Nevada, Attia et al. (2021,
and references therein) documented deep-marine
sedimentation in the Southern Sierra Nevada and
Northern and Central Western metamorphic belt
through ca. 157 Ma and 152 Ma, respectively,
and shallow-marine deposition in the Eastern
Sierra Nevada through ca. 148 Ma. Furthermore,
Attia et al. (2021) inferred the presence of an
integrated marine depositional system across the
entire Sierra Nevada by Middle Jurassic time,
which suggests that the arc only later became
emergent through differential uplift related to
Late Jurassic contraction.

We suggest that fluvial systems with headwa-
ters in the retroarc region traversed the Klamath-
Sierran arc, transporting detritus from both the
retroarc region and the pre-batholithic frame-
work of the Eastern and Central Sierra Nevada
into deep-marine systems in the Galice basin.
With changing plate kinematics during Late
Jurassic time, west-directed transport systems
continued to traverse the rising arc, even as the
emergent arc provided abundant sediment to
the forearc.

Surpless et al.

Possible Implications for Middle Jurassic
Tectonics

The Middle Jurassic Siskiyou orogeny in the
Klamath Mountains province involved amal-
gamation of terranes that constitute the West-
ern Paleozoic and Triassic belt, and accretion
of these terranes to inboard components of the
Klamath province (Coleman et al., 1988). A
possible explanation for the cause of Siskiyou
contractional deformation is Middle Jurassic
collision of the Insular superterrane, as proposed
by Saleeby and Busby-Spera (1992) and further
developed by Saleeby and Dunne (2015). Fol-
lowing Saleeby and Dunne (2015), our preferred
tectonic model places the Insular superterrane
north of the Galice Formation in Late Jurassic
time, with Galice sediment derived in part from
Insular superterrane sources. We note that our
provenance data do not require Insular superter-
rane sources, and that others have proposed that
the Insular superterrane was offshore at this time
(e.g., Balgord et al., 2021; Tikoff et al., 2023).
However, the timing of Siskiyou orogenesis
agrees with the Middle Jurassic timing of col-
lision proposed by Saleeby and Dunne (2015),
who attributed the subsequent transition from
contraction to extension as resulting from a late
Middle Jurassic shift of the Euler pole as the
Insular superterrane migrated north.

CONCLUSIONS

Our Galice Formation provenance results
indicate that deposition of Galice Formation
turbidites began during early Oxfordian time
and continued well into Kimmeridgian time
(ICS time scale) even as older deposits were
underthrust along east-dipping faults. Further-
more, our results suggest that contraction asso-
ciated with Nevadan orogenesis increased local
topography, resulting in detrital zircon derived
from proximal sources within the Klamath arc
and possibly the nearby Insular arc, even as the
basin continued to receive detritus from sources
in the backarc region. Although our data do not
require it, our results are consistent with Middle
Jurassic accretion of the Insular superterrane
and a hypothesized latest Jurassic position of the
Insular superterrane just north of the Klamath
Mountains province.

Our detrital zircon MDA calculations docu-
ment Galice deposition as late as 150.8 Ma,
well into Kimmeridgian time. We describe the
provenance of Galice strata that is linked to arc
and retroarc sources as the continental margin
shifted from transtensional to contractional.
Finally, we infer sediment transport pathways
that traversed the arc from the retroarc region
to deliver sediment to the forearc, even as the
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arc gained topographic relief during contraction
associated with Nevadan orogenesis. Galice
Formation provenance matches well with coeval
strata in the basal Great Valley Group and the
Mariposa Formation in the Western Sierran foot-
hills, which is consistent with the development
of integrated westward drainage systems into the
forearc region of the Oregon—California segment
of the North American continental margin dur-
ing latest Jurassic time.
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