
Impact of a mean field dynamo on neutron star mergers leading to magnetar remnants

Elias R. Most1, ∗

1TAPIR, Mailcode 350-17, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
(Dated: December 8, 2023)

We investigate the impact of a mean field model for the αΩ-dynamo potentially active in the post-merger
phase of a binary neutron star coalescence. We do so by deriving equations for ideal general relativistic magne-
tohydrodynamics (GRMHD) with an additional α−term, which closely resemble their Newtonian counterpart,
but remain compatible with standard numerical relativity simulations. We propose a heuristic dynamo closure
relation for the magnetorotational instability-driven turbulent dynamo in the outer layers of a differentially ro-
tating magnetar remnant and its accretion disk. As a first demonstration, we apply this framework to the early
stages of post-merger evolution (≲ 50ms). We demonstrate that depending on the efficacy of the dynamo
action, magnetically driven outflows can be present with their amount of baryon loading correlating with the
magnetic field amplification. These outflows can also contain precursor flaring episodes before settling into a
quasi-steady state. For the dynamo parameters explored in this work, we observe electromagnetic energy fluxes
of up to 1050 erg/s, although larger amplification parameters will likely lead to stronger fluxes. Our results are
consistent with the expectation that substantial dynamo amplification (either during or after the merger) may be
necessary for neutron-star remnants to power short gamma-ray bursts or precursors thereof.

I. INTRODUCTION

Neutron stars not only feature some of the most extreme
conditions for nuclear matter but can also contain some of the
strongest magnetic fields in the universe [1]. In the context of
neutron star mergers, magnetic fields are crucial for driving
electromagnetic counterparts such as kilonova afterglows [2]
and gamma-ray bursts [3], see also GRB170817A for a short-
duration gamma-ray burst jointly detected with a gravitational
wave event [4].

Based on long-term simulations of neutron star – black hole
coalescence [5–7], it has recently been suggested that while
long gamma-ray bursts may be powered by black hole disk
systems, short gamma-ray bursts may require the presence of
a magnetar engine [8]. However, the precise conditions and
timescales probed in the simulations underlying these conclu-
sions may sensitively depend on the magnetic field geometry
produced in the collisions [7, 9–12], with additional uncer-
tainties coming from pre-merger fields [11, 13] (see also Refs.
[14–17]).

Furthermore, the presence of a blue component in the elec-
tromagnetic afterglow of GRB170817A appears to require ad-
ditional magnetic and neutrino-driven mass ejection, likely to
originate from the surface of a hot hypermassive neutron star
(HMNS) formed in the merger [18–22]. Recent numerical
relativity simulations of this process seem to support this con-
clusion [23–25].

However, our understanding of the dynamics and evolution
of the magnetic field in such a magnetar merger remnant re-
mains incomplete. This is largely a result of underresolved dy-
namo physics during the merger [26, 27] and inside the post-
merger remnant [28, 29]. Although small-scale dynamo pro-
cesses at merger seem to be driven by Kelvin-Helmholtz in-
stabilities at the shearing interface layer between the two stars
[27], the effect of macroscopic amplification in the bulk of the
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star remains uncertain [30]. Similarly, additional processes
such as Rayleigh-Taylor instabilities on stellar surfaces may
contribute to the overall amplification [31]. Recently, very
high-resolution numerical relativity simulations of the post-
merger remnant have been reported to show the presence of
a magnetorotational instability [32] (MRI)-driven αΩ− dy-
namo [33], which may also depend on the chemical stratifica-
tion present in the remnant [34], see also [35]. Similar pro-
cesses may also operate in the accretion disk [36–38]. Clari-
fying the precise impact of such under-resolved processes on
the neutron star remnant will be central to our understanding
of whether magnetar engines formed in mergers can power
short gamma-ray bursts. This is particularly relevant, as the
neutrino-driven stellar winds may strongly baryon load the
outflows, potentially lowering possible bounds on the lumi-
nosity [19, 21, 39].

Incorporating under-resolved dynamo physics into neutron
star mergers is challenging. Previous effective numerical
models have resorted to simple exponential modifications of
the evolution equations [40, 41], or have made use of effective
Large-Eddy approaches [42, 43]. Others, inspired by studies
of accretion disk dynamos [44–46], have used effective mean
field models [47]. Here, we follow the latter approach but fo-
cus mainly on the ability of launching winds and jet-like out-
flows from the surface of the hypermassive neutron star. Due
to the natural shearing background present in the differentially
rotating remnant star [48, 49], one possibly active mechanism
for mean field amplification is the αΩ−dynamo [50, 51]. Re-
cent works have shown that the presence of such an effect
inside the outer layers of the neutron star can lead to mag-
netic field breakout and the launching of (intermittent) jet-like
outflows [33, 52].

Effective models including mean field α-terms in numeri-
cal simulations have been developed by various communities
for applications ranging from early universe cosmology
[53], galaxy dynamics [54], to supernovae [55] and compact
objects [44, 46, 47]. While most of these formulations
have considered Newtonian magnetohydrodynamics (MHD),
in which the inclusion of an effective electromotive force
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can be straightforward, the relativistic context poses extra
challenges. Previous approaches have chosen to include
effective α- and Hall terms in a dynamical Ohm’s law
[44, 47]. In the relativistic context, this requires the solution
of an additional evolution equation for the electric field,
which becomes numerically stiff in the perfectly conducting
limit, and requires implicit time stepping to be handled stably
[56, 57]. On the other hand, these approaches have been
demonstrated to have no well-posed initial value problem
[58]. Although from a physics point of view full dissipative
approaches might be more desirable [59, 60], the additional
computational overhead and the loss of robustness established
for GRMHD simulation [61], makes this less appealing,
especially when full nonideal effects are not required for the
numerical modeling.

Complementing these works, we here present a new formu-
lation to systematically incorporate the α− effect into numer-
ical general relativistic MHD simulations. Together with the
shear flow naturally present in the post-merger system, this
naturally enables a subgrid model for the αΩ-dynamo. While
the formulation is generic, we apply it here specifically to the
case of a post-merger magnetar remnant.

Our paper is structured as follows. In Sec. II we present the
general approach to modeling the α− effect, before introduc-
ing a generalization to the relativistic regime. We then discuss
a heuristic subgrid model, before outlining the particular steps
needed to incorporate them into a numerical relativity code. In
Sec. III, we present an initial assessment of this model in the
early post-merger phase of a magnetar remnant.

II. METHODS

In this work, we study the impact of a mean field dynamo
model on the evolution of a magnetar remnant formed in a
neutron star collision. To this end, we have implemented a
new approach to incorporating subgrid dynamo models, in
particular, the α−effect into non-resistive general-relativistic
magnetohydrodynamics (GRMHD) simulations. In the fol-
lowing, we will first describe a formulation of the α−effect
in Sec. II A, before providing details on the numerical imple-
mentation and simulation setup in Sec. II D.

As the main theoretical framework for modeling the evo-
lution of stellar matter, we solve the Einstein-Maxwell-Fluid
system in a magnetohydrodynamic approximation [62]. More
specifically, we solve

Gµν = 8πTµν , (1)
∇µT

µν = 0 , (2)
∇µ

∗Fµν = 0 , (3)

where Gµν is the Einstein tensor, Fµν , and , ∗Fµν are the
Maxwell tensor and its dual. Introducing the fluid four-
velocity uµ, we can decompose the field strength tensor into

comoving electric, eµ, and magnetic, bµ, fields [63],

Fµν = uµeν − eµuν + εµνκλbκuλ , (4)
∗Fµν = uµbν − bµuν − εµνκλeκuλ . (5)

Here εµνκλ is the four-dimensional Levi-Civita tensor. We
further assume that the plasma dynamics are governed by a
perfect fluid described by its rest-mass density, ρ, total energy
density ϵ, and pressure P , in addition to its fluid four-velocity,
uµ. The combined system is described by the total energy-
momentum tensor

Tµν =
[︁
ϵ+ P + e2 + b2

]︁
uµuν +

[︃
P +

1

2

(︁
e2 + b2

)︁]︃
gµν

− bµbν − eµeν + eαbβuγ

[︁
uµεναβγ + uνεµαβγ

]︁
.

(6)

In order to evolve the system (1)-(3), we need to specify
closures for the pressure and electric field. For a non-resistive
plasma, we need not evolve the electric field independently.
In other words, we need to provide an equation of state, P =
P (ρ, ϵ, . . .), and a relation eµ = eµ (uµ, bµ, . . .) 1.

A. Subgrid dynamo physics

We now want to provide a brief summary of mean field dy-
namo theory. For further background, see, e.g., Ref. [67] for
a review. To better illustrate the approach taken here, we first
review a Newtonian formulation of the problem, before doing
the same in a fully covariant, general-relativistic context.

Consider the flat space evolution equation for the magnetic
field Bi,

∂tB
i + εijk∂jEk = 0 , (7)

where εijk is the Levi-Civita tensor. Consistent with the high
conductivity found inside neutron stars, we further assume the
ideal MHD limit Ei = −εijkv

jBk, where vk is the 3-fluid
velocity [68]. The main reasoning behind dynamo mean field
theory is to capture the effect of (small-scale) fluctuations op-
erating on top of a background mean field. To this end, one
may decompose the magnetic and velocity fields

Bi = B̄
i
+ δBi , (8)

vi = v̄i + δvi , (9)

into an averaged mean field Bi¯ , v̄i, and small fluctuations
δBi, δvi, such that on average

⟨︁
Bi

⟩︁
= B̄

i and
⟨︁
vi
⟩︁
= v̄i, re-

spectively. When evaluating the effective mean electric field,
in the same way, one finds that

Ē
i
= −εijkv̄jB̄k − ⟨δv × δB⟩i . (10)

1 We point out that alternatively, in a resistive approach, we could also solve
an evolution equation for the electric field Ei, which would couple to the
fluid via an Ohm’s law [44, 56, 57, 64, 65] However, here we consider the
perfectly conducting ideal-MHD limit appropriate for neutron star mergers
[66].
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Although individual fluctuations vanish, their second-order
correlation does not. In mean field dynamo theory, this system
is now closed by performing a first-order expansion of these
fluctuations in terms of the mean magnetic field [69],

⟨δv × δB⟩i ≈ αi
jB̄

j − βi
lε

ljk∂jB̄k , (11)

≈ αi
jB̄

j − βi
kJ

k , (12)

where we have introduced tensorial mean field dynamo coef-
ficients αi

j and βi
j . Indeed, for certain processes such as mag-

netorotational instability-driven dynamos, can be computed
from local simulations [70]. In the last line, we have used
that in the small velocity limit ∇ × B ≈ J, where J is the
electric current. In summary,

Ei = −εijkv̄
jB̄

k − αi
jB̄

j
+ βi

jJ
j , (13)

From Eq. (13) it is now apparent that β acts as an effective
anisotropic resistivity.

We now want to generalize the forgoing discussion to the
relativistic context. In doing so, we effectively have two op-
tions. We could consider fully covariant first-order perturba-
tion theory [71], or instead choose to generalize the Newto-
nian expressions (12) and (13), which we pursue. While our
approach is similar to the one put forward by Ref. [44] (see
also Ref. [47]), we will make further simplifications concern-
ing the resistive timescales of the plasma. These will allow
us to obtain equations that do not suffer from stiffness prob-
lems in the ideal MHD limit and do not require implicit time
stepping [72]. Our discussion begins with a dynamical Ohm’s
law inspired by relativistic 14-moment closure theory [60],
which we have supplemented with tensorial mean field dy-
namo terms αµ

ν and βµ
ν ,

τuν∇νJ
<µ> = −Jµ + η−1ēµ + αµ

ν b̄
ν − βµ

ν J
ν , (14)

where Jµ is the electric current, η the electric resistivity,
ēµ is the mean electric field and b̄

µ. We have also intro-
duced a collisionality timescale τ . These quantities are by
definition projected into the fluid frame dby means of the
mean four-velocity of the fluidelocity ūµ. This implies that
uµα

µ
ν = βµ

ν uµ = 0. In the following, we shall drop any
explicit notation of mean field quantities for improved read-
ability. We now make several assumptions, applicable to the
case of neutron star merger dynamics. Firstly, we assume that
the collision timescale, τ , associated with the mean-free path
of the system, is much shorter than large-scale variations of
the system [66]. In this limit, we may neglect the term on the
left-hand side in Eq. (14). We caution, however, that with-
out further simplifications concerning the resistivity, η, the
system would likely lose strong hyperbolicity [58], though in
practice numerical solutions of this system can still be found
[44, 56, 57, 65]. Alleviating this fact, and in line with the
almost perfect conductivity encountered in neutron star mat-
ter [66], we will now reduce the system to their non-resistive
limit, η → 0. To this end, we re-write

Jµ =

(︃
η−1

1+ β

)︃µ

ν

eν + α̃µ
ν b

ν , (15)

where α̃µ
ν = (1+ β)

−1 µ
λα

λ
ν . We can now see that the β ef-

fect creates an anisotropic conductivity (similar to the Hall
effect [68]). Indeed, such effects have been studied in the
context of shear-current dynamo amplification [73]. In this
work, we do not consider such effects and will only study
the limit where the mean field dynamo operates on timescales
much longer than the effective resistive timescale. In proceed-
ing along these lines, we now make the crucial assumption
that dynamo effects will always grow relative to the resistive
timescale. In other words, κ := −η |α| does not vanish in the
limit of zero resistivity. This is a well-justified assumption if
we consider modeling an ultimately kinematic dynamo, which
will operate on viscous scales larger than the resistive scale
[35]. This allows us to re-express the comoving electric field
as,

eµ = κµ
ν b

ν , (16)

where we have re-expressed κµ
ν := −ηαµ

ν . Eq. (16) is the
constitutive closure relation of our mean field dynamo model.
This lets us draw the important conclusion, for the approxi-
mations we make. Since we assume that we are essentially
always nonresistive, any nonideal dynamo growth of the mag-
netic field must come from a nonzero α-term, i.e. nonvanish-
ing components of κµ

ν . As we will see later on, making this
assumption allows us to use an ideal GRMHD code, with only
minor modifications.

B. 3+1 mean field dynamo equations

Having outlined the form of the above equations, we next
proceed to recast them into a form suitable for numerical inte-
gration. This is done in two steps. First, we will show that the
dynamo action (16) does not require us to evolve the electric
field itself, but rather will lead to ideal-MHD-like closure re-
lations. In the second step, we highlight modifications to the
GRMHD equations necessary to include these effects. In the
following, we adopt the ADM split of spacetime [74],

ds2 =
(︁
−α2 + βkβ

k
)︁
dt2 + 2βjdx

jdt+ γijdx
idxj , (17)

where α is the lapse function, βi the shift vector, and γij the
spatial metric.

While our dynamo closure (16) links comoving electric
and magnetic fields, we need to recover the electric, Eµ =
nνF

µν , and magnetic, Bµ = nν
∗Fµν , fields as seen by

a Eulerian observer corresponding to the space-time normal
nµ = (−α, 0, 0, 0). Using these definitions, we can compute

Bµ = Γbµ − uiB
iuµ + εµλν(3) uλκναb

α , (18)

where we have used that αb0 = uiB
i, as well as the dynamo

relation (16). We have also introduced the three-dimensional
Levi-Civita tensor embedded in a four-dimensional space,
εµνλ(3) = nκε

µκνλ, as well as the Lorentz factor, Γ = −nµu
µ.

It is also convenient to introduce the spatial velocity vµ =
(uµ − Γnµ) /Γ. Next, we need to solve this equation for bµ,
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so that we can express the comoving magnetic field in terms
of Bi,

bα =
1

Γ
(︂
δµα + εµλν(3) vλκνα

)︂∆µνBν , (19)

= bαideal − εαλν(3) vλκνµb
µ
ideal +O

(︂
|κ|2

)︂
, (20)

where bµideal = ∆µνBν/Γ is the comoving magnetic field in
ideal (non-resistive) GRMHD [62], and ∆µν = gµν+uµuν is
the fluid-frame projector. We point out that as a geometric se-
ries, Eq.(20) will converge as long as the dynamo timescales
are much longer than the resistive timescale, i.e., |κ| ≪ 1.
Furthermore, the expansion in |κ| fundamentally preserves co-
variance of the equations, but will make the solution inaccu-
rate should the dynamo begin to act on timescales comparable
to the resistive scale.

1. A pseudo-scalar dynamo model

While modeling specific dynamo processes, such as
those associated with the MRI, will require anisotropic dy-
namo coefficients [70, 75], incorporating anisotropic dynamo
terms will require more substantial modifications to existing
GRMHD codes, similar to using a fully resistive [44, 47, 56,
57], or a dissipative MHD code [76]. Circumventing these
challenges, in this first application of this model we will re-
strict ourselves to a simplified dynamo model commonly em-
ployed in cosmology [53], supernova [55], and relativistic
contexts [46]. For a (pseudo-)scalar α−effect, κµ

ν = κ∆µ
ν ,

the equations simplify considerably.
In the following, we, therefore, assume

eµ = κbµ . (21)

Using this definition, we can easily see that

Fµν = κ ∗Fµν + εµνκλbκuλ +O
(︁
κ2

)︁
, (22)

which leads to an electric field in the normal observer frame,

Ei =− εijkvjBk + κ
[︁(︁
1− v2

)︁
Bi +

(︁
vlB

l
)︁
vi
]︁

+O
(︁
κ2

)︁
, (23)

which we have expanded to leading order in κ. This expres-
sion is remarkably similar to the Newtonian limit given in Eq.
(13) (in the absence of a β-term), which it recovers in the
small velocity limit,

Ei =− εijkvjBk + κBi +O
(︁
κ2, κv2

)︁
. (24)

We point out that despite the apparent expansion in v2 both
expressions (24) and (23) are fully covariant, but correspond
to either the full or only partial first-order contribution in κ
in Eq. (20). For the background flows inside the hypermas-
sive neutron star remnants v ≲ 0.3, we likely do not expect
a large difference between the two approximations. For com-
pleteness, we opt to use Eq. (23) and

bi = biideal −
κ

Γ
εijkvjBk +O

(︁
κ2

)︁
. (25)

Similarly, the stress-energy tensor results in

Tµν =
[︁
ϵ+ P + b2

]︁
uµuν +

[︁
P + b2

]︁
gµν − bµbν

+O
(︁
κ2

)︁
, (26)

which is consistent with ideal GRMHD. In the scalar limit,
the comoving electric and magnetic fields always line up, so
that no effective heat flux contributions are present. This is
equivalent to stating that the presence of the scalar dynamo
terms does not induce a nonideal Poynting flux SEM

i , which
gets modified in the anisotropic case.

It is instructive to compare this formalism with previous ap-
proaches to modeling scalar α-dynamo effects in the GRMHD
literature [44, 46, 47]. Essentially, the starting point for these
formulations is a fully resistive description, where the dynamo
term is included as part of the Ohms law (14). The advan-
tage of such an approach is that the resistive timescale can
be explicitly fixed, allowing dynamo amplification (to all or-
ders in κ) to occur on fully controllable timescale, whereas
in our approach κ only fixes the ratio of the dynamo growth
time to (effectively) numerical resistivity. On the other hand,
our approach allows us to only minimally modify the ideal
GRMHD equations, while the resistive equations become stiff
in the perfectly conducting limit and require special numerical
treatment [56].

C. Subgrid model parameters

Having described the method, the final step in completing
this model is a specification of the dynamo closure parame-
ters. These will strongly depend on the microphysics that is
being modeled. In the case of relativistic accretion disks, the
capture of under-resolved MRI turbulence has been accom-
plished using different prescriptions [45, 46], which have been
tested against full three-dimensional resolved simulations, or
have been inspired by local shearing box calculations [70, 77].
Rather than relying on such calculations, which may not di-
rectly translate to the HMNS case, we take values inspired by
a recent very high-resolution simulation [33]. There it was
found that the outer (MRI unstable) layers of the neutron-star
remnant can drive a large-scale αΩ−dynamo [33]. These re-
sults further imply that

κHMNS ≃ 0.025− 0.035 , (27)

where we point out that κ is a pseudo-scalar and has dimen-
sions of a velocity, which we express relative to the speed
of light. We caution that in our case κ is defined with the
opposite sign and also includes an effective resistivity con-
tribution that we have absorbed into the above expression.
While κHMNS determines the growth rate of the αΩ−dynamo,
it does not restrict its saturation level. Physically, saturation
is expected to happen when the relevant reservoir of (largely
kinetic) energy is converted into magnetic energy. In the ab-
sence of this self-limiting feedback on the mean field dynamo
term when κ is prescribed, saturation has to be imposed man-
ually using different criteria.



5

In practice, we opt to limit

κ = κHMNS max
(︁
0,∆

[︁
ρ, b2, T, . . .

]︁)︁
, (28)

where ∆ is an indicator function for saturation, which is
reached for ∆ < 0. The formalism presented here will work
for every choice of ∆. For our specific application, we now
suggest a phenomenological model for the saturation function
∆ inspired by very high-resolution simulations [28]. When
using several prescriptions of ∆, we opt to use the maximum
expression Eq. (28) jointly over all them.

1. Magnetization-dependent saturation limit

Here we limit based on the strength of the generated
radial magnetic field Br. This is meaningful since
the αΩ− dynamo should generate a radial magnetic
field only up to a fraction of the toroidal field, Bϕ. If
Br ≳ Bϕ then the α-effect would continue to generate
more toroidal field via an α2Ω−dynamo, which is not
supported by global simulations [33]. We in turn adopt,

∆α2 = 1− 1

ω

Br

Bϕ
, (29)

where ω < 1 is the fraction of radial magnetic field.

2. Turbulent energy limit

In principle, the dynamo should be fueled by the avail-
able turbulent energy in the flow. Defining this number
is not trivial and has been extensively investigated in
the Newtonian large-eddy literature [78–81]. The major
challenge lies in defining what fraction of the turbulent
kinetic energy is available to be converted into magnetic
energy, as well as estimating the available turbulent ki-
netic energy in the first place.
Assuming that the driving and decay (to smaller scales)
of kinetic energy are in steady state, we can show that
the saturation-level magnetization σturb should be de-
termined by the turbulent kinetic energy. More specifi-
cally, we find that (see Appendix A),

σturb = ξℓ2turbσµνσ
µν , (30)

where ℓturb is an effective mixing length, ξ < 1 the
fraction of turbulent kinetic energy converted into mag-
netic energy, and σµν is the shear stress tensor. The dy-
namo should then saturate, when the turbulent energy
budget has been used up, i.e., when

∆turb = 1− σ

σturb
, (31)

where σ = b2/ρ is the magnetization. Local fluc-
tuations in these quantities sometimes lead to large
spurious values in individual grid cells. As a safety
measure, we decided to cap the reference magnetization
accordingly, i.e., enforce σturb < σmax ∼ 0.01.

3. Effective saturation closure

In practice, subgrid models may be useful in capturing
the effective mixing length of MRI-driven turbulence.
From a first-principles point of view, the turbulent mix-
ing length should be limited by the largest wavelength,
λMRI, of the poloidal MRI [82],

ℓMRI ≃ λMRI ∼
2πvzA
Ω

, (32)

where vzA is the Alfven speed in the poloidal direction.
However, this is not a robust criterion in low-resolution
simulations, since ℓMRI ∼ |bz|. In other words, if bz is
not fully developed in a low resolution simulations, the
mean field feedback (that may contribute to its devel-
opment) would not set in, self-limiting the applicability
of the mean field prescription. We therefore opt to not
use a magnetic field-dependent sub-grid model. Based
on very high-resolution simulations of a neutron-star
merger remnant [28], Ref. [83] has proposed a density-
dependent fit formula for ℓMRI, which is given by

ℓHMNS
MRI = max

(︂
0, ax exp

[︂
− |bx|5/2

]︂)︂
[m] , (33)

x = log10 (ρ/ρ∗) ,

where a = 22.31984, b = −0.4253832 and
ρ∗ = 1.966769 × 109 gcm−3 [83]. This pre-
scription matches λMRI in a certain density regime
but is independent of the local magnetic field in the
simulation (see Fig. 1). Therefore, we opt to use
ℓHMNS
MRI as the fiducial sub-grid model in this work.

Saturation limit: Finally, we need to quantify the
uncertainty factor ξ within the model. This is nec-
essary for a number of reasons. First, for algorith-
mic simplicity, we have assumed a steady state for
the turbulent kinetic energy, which is likely not true
and will depend on the effective scales probed by the
models (in our case the numerical grid scale). In-
deed, when considering large eddy simulations of post-
merger magneto-turbulence, the kinetic energy and es-
pecially the amount of turbulence seems to depend on
the numerical resolution [30, 42].
Secondly, the assumption of the turbulent mixing length
model, ℓturb, is a simplification based on the extrac-
tion of a viscous α-parameter from a single high reso-
lution simulation. While those effective scales should
be correlated, they do not necessarily need to coincide,
and may be different depending on the system param-
eters (equation of state, field topology, ...). Since these
uncertainties both enter quadratically in the saturation
value of the magnetization, they may lead to significant
under- or overestimations of the saturated state.
In the absence of a systematic high-resolution compar-
ison of such effective models, we opt to carry out a
very rough estimate of ξ by comparing our prediction
for the saturated field strength, bturb, due to turbulent
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FIG. 1. Turbulent mixing length, ℓturb, and corresponding satura-
tion value, σturb, of the magnetization σ in the nascent hypermas-
sive neutron star. The turbulent subgrid model highlights layers that
are unstable to the magneto-rotational instability. The meridional
plane is shown with contour levels of the rest-mass density (in units
of g/cm3) indicating the structure of the star. The αΩ−dynamo is
limited to the outer layers of the system.

amplification, with those observed in very high reso-
lutions simulations [27, 28, 33]. To aid this compar-
ison, we also compute the overall equipartition field
strength beq =

√
ρ, which may serve as an absolute

upper bound. The resulting outcome is shown in Fig.
2. We can see that in the outer MRI-unstable layers,
where the αΩ−dynamo is presumably active [33], the
equipartition field strength reaches beq ≃ 1016 G. Such
high fields seem indeed to be produced in Ref. [33]
(though not at lower resolution simulations using large-
eddy closures [30]). This is also consistent with the
launch of a relativistic outflow, which requires the rem-
nant to enter a magnetically dominated regime in the
outer layers [25, 33, 52].
Evaluating our estimate of dynamo saturation, we can
further see that for the background probed in the post-
merger remnant, bturb ≲ 0.1

√
ξbeq. This implies that

the dynamo model itself likely underproduces the nec-
essary magnetic field strengths, and can only jump start
the self-consistent evolution to higher field strengths via
magnetic winding [84]. This leads us to assume, that we
likely underestimate the amount of turbulent kinetic en-
ergy from the low resolution simulations. At the same
time, the use of ℓHMNS

MRI implies an implicit assumption
on the resolution used to compute it. In other words,
if the resolution was gradually increased the dynamo
model needs to gradually switch off, meaning that σturb

has to decrease with increasing resolution.
Consequently, we heuristically introduce a dependence
on the numerical grid resolution, ∆x, by assuming that

ℓturb ≃ ℓHMNS
MRI

(︃
∆x

12.5m

)︃
, (34)
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FIG. 2. Estimate of the upper limit of the magnetic field strength,
bturb, reached in equipartition with the turbulent kinetic energy,
stated relative to the total equipartition field, beq ∼ √

ρ, where ρ is
the rest-mass density. The factor ξ < 0 quantifies the fraction of tur-
bulent kinetic energy converted. Shown is the meridional plane with
contour levels of the rest-mass baryon density (in units of g/cm3)
indicating the structure of the star.

where the resolution reference scale is set by the resolu-
tion used in Ref. [28] from which the fit was obtained.
Overall, this leaves us with a prescription

σturb = ξ
(︁
ℓHMNS
MRI

)︁2 (︃ ∆x

12.5m

)︃2

σµνσ
µν . (35)

We caution that this estimate does not rely on first-
principles assumptions but mainly on conclusions
drawn from the few available high-resolution simula-
tions in the literature. Consequently, in this work we
focus on understanding the qualitative impact of such
a dynamo prescription, rather than quantitative aspects.
In particular, our simulations will focus on understand-
ing the role of ξ and the saturated state of the dynamo.

4. Projected impact of the model
Finally, we estimate the impact of this model. We do
so by providing a back-of-the-envelope estimate for the
flows present in the HMNS. In general, we can esti-
mate the characteristic magnetization limit as σtarget ∼(︁
ℓ̄turb/L

)︁2
v̄2, where v̄ is the average velocity of the

turbulent flow, L the characteristic gradient scale, and
ℓ̄turb the average turbulent mixing scale.
Assuming that characteristically v̄ ∼ 0.1 inside the
merger remnant, we find

σtarget = 0.01

(︃
ℓturb
L

)︃2

. (36)

This simplified model for constant mixing length is
what we had previously explored in Ref. [52], demon-
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ative to the merger time tmer.

strating that this will lead to postmerger flaring and the
launch of a steady-state relativistic outflow.

D. Numerical implementation

We now want to provide a brief description of how to imple-
ment the dynamo-augmented GRMHD equations into a nu-
merical code. We will focus mainly on differences from stan-
dard GRMHD approaches and refer to the literature for further
details on numerical implementations of ideal GRMHD (e.g.,
Ref. [62]).

In our implementation, we solve the Maxwell equations by
evolving a covariant vector potential Aµ = Φnµ + Aµ, such
that Aµn

µ = 0, and Φ is the scalar potential [85]. Adoption
Lorenz gauge, ∇µAµ = 0, the evolution equations for the
Maxwell sector are then given by [86],

∂tAi =
α

u0
εijku

jBk − ακ
[︁(︁
1− v2

)︁
Bi +

(︁
viB

i
)︁
vi
]︁

− ∂i
(︁
αΦ− βjAj

)︁
. (37)

We solve the discrete form of Eq. (37) on a staggered mesh
[85], where the electric and magnetic fields are treated us-
ing high-resolution shock capture methods [87]. More pre-
cisely, we adopt the upwind constraint transport method of
Ref. [88], as implemented in the ECHO scheme [89]. An ex-
tension to non-ideal electric fields is straightforward [90]. No
other modifications of the Maxwell equations are necessary to
incorporate the scalar dynamo term, besides Eq. (25). On the
hydrodynamics side, the rescaling of the magnetic field needs
to be carried out following Eqs. (26) and (23).

One important aspect of the GRMHD equations in flux-
divergence form is the need to recover primitive variables

0 10 20 30 40 50
t− tmer [ms]

10−5

10−4

10−3

10−2

〈κ
〉

ξ = 0.04 ξ = 0.4 ξ = 4.0

FIG. 4. Density weighted average of the dynamo scalar κ as a func-
tion of the subgrid parameter ξ. Once the target magnetization is
reached the dynamo action switches off in most parts of the star and
its disk.

from a conserved state [91]. To use standard algorithms for
primitive recovery [92], it is necessary to decouple the direct
dependence of the dynamo coefficient κ onto the fluid state.
To this end, κ, cannot directly depend on the primitive vari-
ables (ρb, ϵ, uµ, bµ). Rather than specifying a closure relation
for κ = κ (ρb, bµ , . . .), we artificially introduce a rate equa-
tion, enforcing that κ relaxes to the desired closure relation
over a timescale τκ,

∇µ (κρu
µ) =

ρ

τκ
[κ (ρ, bµ, . . .)− κ] , (38)

which corresponds to a simple advection equation with a re-
laxation term. The relaxation time τκ is a free parameter,
which for simplicity we will choose to be a constant.

We stress that due to the approximate nature of the dynamo
closure relation the small time lag in relaxing to the desired
value will likely have only a negligible effect on the simu-
lation. At the same time, the ability to use extremely ro-
bust primitive recovery routines only available for the ideal
GRMHD system (see Ref. [57] for challenges in resistive
GRMHD versions) is crucial to successfully performing sim-
ulations of strongly magnetized flows when nuclear equations
of state are used [61].

E. Simulation setup

We solve the discrete form of the magnetohydrodynamics
sector using the Frankfurt/IllinoisGRMHD (FIL)
code [93, 94]. FIL utilizes the ECHO scheme [89], im-
plemented with a fourth-order accurate flux correction, fifth-
order WENO-Z reconstruction [95], and HLLE Riemann
solver [96]. Unlike previous GRMHD simulations with the
code [12, 93, 97], we have upgraded the conservative-to-
primitive inversion following the method of Kastaun et al.
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[92]. This method increases the overall accuracy of the code
in highly magnetized regions (see also [61]), and has allowed
us to study flaring and jet launching from neutron star merger
remnants [52]. FIL also implements its own fourth-order ac-
curate dynamical spacetime solver using the Z4c formulation
[98, 99]. FIL operates on top of the EinsteinToolkit
framework [100] and utilizes its moving-box mesh-refinement
infrastructure Carpet [101].

The initial data for the simulation is computed using the
FUKA code [102], which works on top of the Kadath frame-
work [103]. Differently from our previous work [52], we con-
sider a system with a long-lived remnant. We adopt the DD2
equation of state [104] with a total binary mass of 2.5M⊙,
leading to a stable remnant neutron star. In terms of the initial
mass ratio, we adopt q = 0.9. We initialize the magnetic field
inside the two stars using a dipole magnetic field, prescribing
the axisymmetric component of the vector potential in each
star, Aϕ = Abϖ

2 max (P − 0.04Pmax, 0)
2 [9], where ϖ is

the cylindrical radius, and Pmax is the maximum pressure in-
side each star. We choose Ab separately for each star, such
that the maximum value of the magnetic field inside each star
is Bmax ≈ 1015 G.

We set up the numerical grid as a set of seven nested grids,
which extend to an outer separation of about 6, 000 km. The
finest resolution has been chosen to be ∆x = 200m, which
increases by a factor of two on every succinct level. In a pre-
vious work, we have demonstrated the use of fully high-order
methods leads to a better capturing of the MRI in the disk at
lower resolutions [93]. On the other hand, properties such as
the time of jet launching and the amount of self-consistent
amplification may not be well captured compared to high-
resolution simulations [30]. However, the resolution consid-
ered here will be sufficient for a first assessment of difference
subgrid prescriptions for the αΩ-dynamo.

III. RESULTS

Here we present the results of our numerical tests of dif-
ferent subgrid models for the αΩ-dynamo. We focus on the
case of a long-lived magnetar remnant, where strong dynamo
amplification could be present [33], aiding the launching of
magnetically driven winds and jet-like outflows from the rem-
nant [23, 25, 52].

We summarize our discussion and motivation detailed in
Sec. II as follows: One of the main goals of this paper is an
initial investigation of the αΩ- mean field dynamo model pro-
posed in Sec. II. Although the growth rate we use is loosely
based on recent conditions inferred from high-resolution sim-
ulations [28, 33], saturation of the dynamo cannot be self-
consistently achieved in our model and needs to be prescribed.
One of the main features of the dynamo subgrid model is that
saturation is achieved once the available reservoir of turbu-
lent kinetic energy has been converted into magnetic energy.
In the case of the MRI this will happen only in regions of
radially outward decaying differential rotation, which only
cover the outermost layers of the star [48]. Within these re-
gions, in principle, the total available kinetic energy associ-
ated with the differential rotation can be converted. Within
the turbulence-inspired subgrid model we use, the saturation
uncertainty is prescribed by rescaling the target magnetization
using the parameter ξ. Barring the availability of a large set
of high-resolution simulations necessary for a thorough cal-
ibration of this parameter, here we investigate three differ-
ent choices, ξ = (0.04, 0.4, 4.0) corresponding to different
regimes produced in our standard-resolution simulations. In
this case our simulations should be regarded as complemen-
tary but not equal to recent high resolution works in the liter-
ature [29, 33, 42, 43].

We begin by discussing various properties of the evolution
of the system associated with the dynamo subgrid model. Our
discussion generally begins in the early post-merger phase,
when we activate the dynamo model. A general description
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FIG. 6. Magnetic energy ratio σ for a subset of fluid elements in the saturated state, which are denoted by their baryon densities ρ. Shown are
the three different dynamo efficacies, ξ. The green area shows the expected target magnetizations prescribed by the dynamo model.

of the pre-merger and post-merger evolution of such systems
can be found elsewhere (see, e.g., Refs. [1, 105] for recent
reviews).

A. Saturation of the αΩ-dynamo

Shortly after the merger, we turn on the sub-grid dynamo
model. The dynamo will be active in the outer layers of the
star and disk with the precise density dependence largely gov-
erned by Eq. (35). In the differentially rotating background
flow, the α−term will introduce an effective αΩ-dynamo.
This will lead to an initial rapid growth, particularly of the
poloidal magnetic field component, since the background field
is largely toroidal [30, 106]. Fig. 3 shows the evolution of the
magnetic energy for all three cases considered here. Depend-
ing on the parameter, ξ, corresponding to the fraction of con-
verted kinetic energy, the poloidal energy (dashed lines) is in-
deed undergoing an initial amplification phase. Afterward, the
poloidal energy saturates rapidly, but the toroidal field contin-
ues to grow. The growth is driven in the following way: In the
sheared background flow, the poloidal field is wound-up lead-
ing to linear magnetic field growth due to magnetic braking
[84]. At the same time, the mean field dynamo needs to sus-
tain the poloidal field. We can more quantitatively establish
this by comparing the magnetic field evolution with the duty
cycle of dynamo term, as expressed in a density-weighted av-
erage ⟨κ⟩ (Fig. 4). In fact, the main dynamo amplification is
turned off early, and all models reach a saturated dynamo state
between 10 − 15ms after the dynamo was activated. Indeed,
this is consistent with fixing the growth rate of the dynamo via
a globally constant κHMNS parameter, which only switches off
at saturation. We can see that coincident with the saturation of
the mean field dynamo, the magnetic-field amplification slows
down and at most follows a t2 relation consistent with mag-
netic braking, or it stops entirely. The saturation levels of the
magnetic energy are of the order of the fraction of converted

kinetic energy, although the fractions with ξ < 1 seem to ap-
proach a similar saturated state at late times, as a result of
subsequent self-consistent magnetic field evolution.

We can more quantitatively understand the saturation prop-
erties by considering the spatial distribution of the saturated
magnetization inside the neutron-star remnant (Fig. 5). We
can see that in the saturated state large regions close to the
surface of the star and disk have undergone dynamo ampli-
fication. Further self-consistent magnetic field evolution has
then taken over and has managed to amplify the field beyond
the prescribed saturation level, typically by about an order of
magnitude. We find that the local field strength close to the
surface of the star can reach b ∼ 1015 G for weak amplifica-
tion, and exceed 1016 G for strong amplification. Within our
discussion about expected saturated field strength (Fig. 2),
these levels are higher than what the prescribed mean field
dynamo can achieve on its own, given the imposed saturation
bound. This is fully consistent with subsequent amplification
being active by means of winding. The major difference be-
tween the simulation with varying subgrid parameter is the
presence of substantial amplification in the disk region, at dis-
tances 20− 30 km from the origin. Here, in the case of weak
dynamo driving, no substantial amplification is active. In the
other cases, additional amplification is present, enhancing the
magnetic field strength in the disk. Since winding would be
active in either case, it seems likely that additional amplifica-
tion has aided the growth (and numerical capture) of the MRI
in these regions (see also [93, 107]). In the strongest magnetic
field case, this leads to a clear breakout of the field not only
from the stellar surface but also from the disk region, inject-
ing substantial fields of 1015 G there. We can quantify this
more explicitly by comparing the injection of field with the
dynamo subgrid model to the actual magnetizations reached
in the remnant. In Fig. 6 we do so, showing the distribution
of the magnetization of fluid cells from the remnant as a func-
tion of density. We can clearly see the dynamo injection range
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FIG. 8. Flares emitted prior to launching a sustained magnetically
driven outflow. Several flares are intermittently launched, which are
traced by using the entropy s per baryon. The magnetic field struc-
ture is shown in cyan. Different times t reflect the different time of
magnetic field breakout from the star. Shown are configuration for
medium and high values of the dynamo amplification parameter ξ.

acting on densities between 109 − 1013 g/cm3. In the inter-
mediate and strong amplification case, we can see that magne-
tization cascades to lower densities, driving amplifications in
layers with densities < 109 g/cm3. To sustain amplification
in those regions, significant mixing of matter in denser layers
with low density layers needs to happen. This may be associ-
ated with spiral winds injecting magnetized material into the
disk [108, 109]. This leads us to speculate that dynamo am-
plification in intermediate layers of the star may qualitatively
affect the outcome of a neutron star merger simulation.

B. Breakout of the magnetic field and flaring emission

Two of our models (ξ = 0.4, 4.0) feature break-out of the
magnetic field and the launching of a mildly relativistic mag-
netically driven outflow. In the following, we will provide a
brief description of this launching mechanism, and also de-
scribe the emission of flares which could power precursors to
short gamma-ray bursts [52].
We begin by illustrating the breakout mechanism using the
highest dynamo amplification case, ξ = 4.0. After an ini-
tial amplification of the magnetic field due to the mean field
dynamo, the toroidal field gets significantly amplified due to
magnetic braking [84]. At some point, the magnetic pres-
sure in the toroidal field is substantial to make field lines rise
magneto-bouyantly by means of a Parker instability [110].
See also Ref. [111] and [52] for simulations of the Parker
instability in isolated and remnant neutron stars. In Fig. 7,
we show that for our present simulations the initially con-
fined magnetic field will magneto-bouyantly rise, emerging
as closed loops connected to different points at the surface
of the star. This can most easily be seen in terms of the en-
tropy s tracing out these magnetically dominated flux tubes
(left panel). Differential rotation of the star will further in-
flate these loops. After a relative twist of about 180◦, the base
field lines of the flare will reconnect, leading to the ejection of
post-merger flares [52]. This observed mechanism is overall
very similar to the reported phenomenology in simulations of
magnetar giant flares [112–114], and precursor flares from in
the inspiral of a neutron star binary [17, 115, 116]. While this
process could in principle also driven by chemical gradients,
these parts of the remnant are stable against convection con-
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sistent with recent finidings of stable stratification inside the
remnant [34].
In our present simulations, we observe about three flaring
events. We show the large-scale morphology of these flares
in Fig. 8. We find that the emission of flares in both cases is
intermittent, and their strength depends on the dynamo action.
We will discuss this in more detail in Sec. III C.

After launching of initial flares, these are immediately
followed by an intermittent magnetically dominated outflow,
leading to an initial collimation of the polar magnetic field
(middle panel, Fig. 7). This collimation resembles a magnetic
tower configuration [117] (see also Refs. [118, 119] for a dis-
cussion in the neutron star context). Eventually, this outflow
relaxes to a steady state (see Fig. 12), whose properties we
discuss further in Sec. III C. While initially the polar outflows
are magnetically dominated, the increase in mass ejection rate
leads to a reduction of the magnetization making the outflow
at late times less magnetized. This effect of baryon loading
polar outflows is consistent with previous simulations of
proto-neutron stars [39], and will eventually lead to a decline
in the electromagnetic Poynting flux observed in this system
(Fig. 11), see also Ref. [21]. We stress that this effect could
be further enhanced if neutrino absorption was included in
our simulations [24].

C. Magnetically driven winds and outflows

Shortly after the initial break-out of the magnetic field from
the magnetar remnant, a quasi-steady magnetically driven po-
lar outflow begins to develop. Such an outflow may be crucial
in order to explain a neutron-poor component of the kilonova
afterglow [21, 23–25]. In addition, the outflow may carry sub-

stantial electromagnetic (Poynting) flux, making it potentially
relevant in the context of short gamma-ray burst production
[25, 33, 52].
In the following, we want to provide a brief description of the
polar outflow properties and their dependence on the dynamo
parameter.

We begin by discussing the overall baryon loading and en-
ergetic properties of the outflow, such as the terminal Lorentz
factor, Γ∞(Fig. 9). We can estimate the terminal velocity
Γ∞v∞ using the conservation of Bernoulli’s constant hut,
where h is the specific enthalpy, which serves as an upper
bound on ut ≃ Γ if fully converted into a kinetic energy at
large distances. Overall, we therefore set Γ∞ ≃ −hut, and
observe that the outflow will likely only reach mildly rela-
tivistic velocities Γ∞v∞ ≃ 0.5. We caution that this picture
may in principle get modified by additional neutrino energy
deposition in the ejecta, e.g., due to pair annihilation [120–
123]. The full details of this process, as well as the interplay
with the expected concurrent increase in baryon loading of
the outflow will sensitively depend on the method to model
neutrino radiation [24, 124]. Within the approximations made
in this work, we can also clearly see that the Lorentz factor
as well as the amount of collimation of the outflow depends
sensitively on the employed dynamo amplification. For the
weakest dynamo amplification case (ξ = 0.04) we observe no
collimated polar outflow and only very low density winds with
velocities v∞ ≲ 0.1. For medium amplification (ξ = 0.4),
we do find a collimated outflow after t ≃ 40ms with ve-
locities v∞ ≳ 0.2. In the case of the highest amplification
(ξ = 4.0), we do observe the strongest outflow reaching ve-
locities of v∞ = 0.4. Comparing this with the magnetization,
we realize that these polar winds are always strongly baryon
loaded, i.e., have σ < 1. This is consistent with the reduc-
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tion of the terminal ejecta velocity [39], however, the details
may strongly depend on the amount of dynamo amplification
and could probably be higher than what we investigate here
[25, 33].
That said, if we in addition consider the Poynting flux from
the system (Fig. 11), we do find that the highest amplification
case (ξ = 4.0) does reach substantial electromagnetic (Poynt-
ing) fluxes, LEM, reaching a quasi-steady state in excess of
LEM ≃ 1050 erg/s. Such a value is below those found by
Ref. [33] using ab-initio high-resolution simulations of this
process, which claim the strong presence of an αΩ−dynamo.
For less efficient amplification values, we find that the lumi-
nosity is roughly consistent with LEM < 1047 erg/s, even
when a collimated outflow is present. We caution that for
larger value of ξ we may likely observe a larger amplifica-
tion, although the energy budget of the remnant in the outer
layers would likely need to be modified compared to what our
standard resolution simulations are able to produce.

We can also quantify the nuclear composition of the out-
flow. We do so by tracking the electron fraction at large dis-
tances. Previous numerical studies have suggested that mag-
netically driven polar outflows may be required to provide ad-
ditional protons necessary to match observed kilonova after-
glows [23–25], (but see also, e.g., Ref. [125], for disk mod-
els). In Fig. 9, we depict the nuclear composition in terms
of the proton fraction Ye. We can see that the low magnetiza-
tion case (ξ = 0.04) does not feature any enhancement of Ye.
On the other hand the cases that do feature break-out of the
field drive midly relativistic outflows, and especially the sim-
ulation with ξ = 4.0 features substantial proton-rich winds
coming from the star, albeit with only very mildly relativistic
velocities.
We can also provide a more quantitative assessment of the
properties of these outflows. In Fig. 10, we show the com-
positional and entropy properties of the flows. We confirm
the presence of a second peak around Ye ∼ 0.25 in ad-
dition to the bulk of the dynamical ejecta, which are very
neutron rich Ye < 0.1. Similarly, the ejecta have signifi-
cantly higher entropy when the dynamo action leads to the
launching of mildly relativistic mass ejection. These results

are roughly consistent with previous studies that only used
neutrino cooling [23], but are lower than what would be ex-
pected for polar outflows when neutrino absorption was in-
cluded [24, 39]. We can finally comment on the mass flux
of the ejecta Ṁ ej ( Fig. 12). After the dynamical ejecta have
propagated out (t > tmer+30ms), we can see the presence of
a sustained outflow for dynamo parameters supporting mag-
netically driven polar outflows. In the case of strong ampli-
fication (ξ = 4.0), we find a sustained quasi-steady outflow
rate, which is slightly lower than the dynamical mass ejection
rate, Ṁ ej ≈ 10−2(10−4)M⊙/s for the dynamo parameters
ξ = 4.0(0.4). This steady-state outflow rate is in good agree-
ment with recent simulations in full numerical relativity [25].
Our results then indicate that – if these rates were sustained
– strong dynamo amplification in the surface layer of the star
may be needed to drive sustained outflows. It is important
to mention that the main purpose of these simulations is to
perform a first evaluation of the αΩ− subgrid dynamo model
presented in Sec. II. We therefore consider only short simu-
lations t ≲ 50ms, over which secular mass ejection driven
largely by the disk has not yet fully set in. However, secular
mass ejection is likely to dominate the total amount of ejecta
[105]. In the case of a purely viscously driven evolution, mass
ejection from the star has been shown to be variable at late
times [19, 126].

IV. CONCLUSIONS

We have investigated the impact of an αΩ-dynamo in a
magnetar remnant formed in a binary neutron star merger.
This was done using a new approach to the α−dynamo mean
field equations in GRMHD, which resembles the Newtonian
formulation of the equations. Based on heuristically mo-
tivated closure relations for an MRI-unstable layer in the
HMNS, we have performed several simulations varying the
degree of dynamo saturation in the star. We find that for strong
amplification in excess of a magnetization σ ≳ 10−3, mag-
netic winding will generate strong toroidal fields, leading to
an eventual magneto-bouyant break out of the field lines from
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FIG. 11. Electromagnetic (Poynting) flux, LEM, measured at r =
236 km from the remnant. Different curves correspond to the differ-
ent dynamo parameters ξ. All times t are stated relative to the merger
time tmer.

the star by means of a Parker instability [28, 110]. This is con-
sistent with previous work [25, 33, 52] showing that these field
lines will then rearrange into a magnetic tower configuration
[117], which may power intermittent outflows [33]. We find
that in the case of sufficient dynamo amplification, these will
be preceded by a short period of flares [52], which may be able
to power a short gamma-ray burst precursor [8]. Crucially, we
find that for strong amplification the Poynting flux can reach
L ≃ 1050 erg/s, while for a weaker dynamo strength it will
never exceed 1047 erg/s. Higher dynamo amplification than
considered in this work would likely drive stronger Poynting
fluxes. Similarly, we find that the terminal Lorentz factor of
the magnetically driven winds as well as the degree of proton-
richness of the outflows correlate strongly with the dynamo
amplification. We caution that the results may be strongly
affected by the degree of baryon loading, which in our simu-
lations will be underestimated due to the lack of neutrino ab-
sorption in the simulation [39, 124]. Clarifying this point will
require simulations using full neutrino transport of the post-
merger remnant [24, 34].
Overall, the picture we find for strong dynamo amplification,
however, appears qualitatively consistent with recent works
in the literature [23–25], even though our electromagnetic
fluxes appear to be lower. To fully determine the realis-
tic amount of dynamo amplification as well as performing a
calibration of the subgrid model proposed here will require
high-resolution simulations able to self-consistently capture
the precise amount of amplification present in the system
[30, 33, 97]. This leads us to conclude in line with recent very
high-resolution simulations of the αΩ−dynamo, that strong
magnetic field amplification in the outer layers of the star may
be an important ingredient for our understanding of whether
magnetar remnants can power gamma-ray bursts.
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FIG. 12. Mass ejection flux Ṁej. Launching of magnetically-driven
polar outflows leads to a small increase in ejection, and quasi-steady
flux at late times, t, relative to the time of merger tmer. Different
colors correspond to different dynamo parameters ξ.
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Appendix A: Turbulent kinetic energy estimate

Here we want to provide some details on the turbulent ki-
netic energy saturation criterion used in Sec. II C. Specifi-
cally, we adopt the approach of Refs. [78–81] to model a
proxy for the turbulent kinetic energy in the implicit large
eddy paradigm, i.e., without including explicit viscous and
resistive scales. Rather than adopting a full closure model
[131, 132], our aim is to provide a simple way of incorporat-
ing a mean field dynamo effect, which does not compromise
the stability of current GRMHD codes [61, 92]. As a start-
ing point, we assume that the turbulent energy in the implicit
large-eddy approach can be related to the square of the shear
tensor, σµν [78]. Using the formalism of dissipative hydro-
dynamics [133], one can write the entropy current for a flow
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exhibiting shear stresses and resistive dissipation, as

∇µ (ρsu
µ) =

2ρν

T
σαβσ

αβ +
1

T
jκeκ , (A1)

where T is the fluid temperature, and the terms on the
right correspond to viscous and resistive heating, respectively.
Here, jκ are the electric current and σαβ is the covariant
shear tensor. While viscous stresses vanish for a perfect
fluid, we can easily clarify that the dynamo model proposed
here does not contribute to entropy production at the expan-
sion order considered. For simplicity we assume eµ ∼ ηjµ,
where η is the effective (numerical resisitvity). Since then
jκeκ ∼ κ2ηb2,the entropy density s is conserved up to the
validity of our dynamo approximation,

∇µ (ρsu
µ) = 0 +O

(︁
κ2

)︁
. (A2)

In line with Refs. [78, 79], we now need to identify an effec-
tive turbulent kinetic energy, εturb associated with the turbu-
lent kinetic energy budget available. Due to the similarities
of the Newtonian equations with Eq. (A1), we heuristically
propose

∇µ

(︂ρεturb
T

uµ
)︂
=

2ρνturb
T

σαβσ
αβ − 1

Tτturb
ρεturb +O

(︁
κ2

)︁
.

(A3)

Note that εturb is not conserved and decays on a timescale,
τturb, consistent with the effective turbulent energy cascade.
In turn, τturb is a new free parameter of this system.

In practice, on macroscopic (slow) timescales the system
will likely approach a steady state equilibrium, between driv-
ing and decay of turbulence. In this case, the system relaxes
such that ∇µ (ρεturb/T ) ≃ 0. This leads to a steady state
turbulent kinetic energy

εturb = 2νturbσαβτturbσ
αβ . (A4)

For the application considered here, we can correlate the tur-
bulent viscosity νturb with a mixing length, ℓturb [83, 134].
On dimensional grounds we may write νturb = ℓturbcflow,
where cflow ≃ cs is the characteristic speed of the medium
corresponding to the sound speed, cs, in hydrodynamic tur-
bulence, or to the Alfven speed vA for Alfvenic turbulence.
Due to the steady state approximation, we further make
the assumption that the turbulent decay timescale τturb ≃
ℓturb/cflow.

Following Ref. [79], we now assume that the turbulently
driven dynamo action is quenched, when the magnetic energy
density εmag = 1

2b
2 reaches a critical fraction ξturb < 1 of

the turbulent energy budget, ρεturb. Put differently, saturation
should set in when a target magnetization σturb = 2ξturbεturb
is reached. In summary, this leads to an effective magnetiza-
tion set by turbulence as

σturb = ξℓ2turbσαβσ
αβ , (A5)

where for convenience we have absorbed the remaining con-
stant numerical prefactor into ξ.
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