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Abstract—In order to achieve the dual goals of privacy
and learning across distributed data, Federated Learning (FL)
systems rely on frequent exchanges of large files (model updates)
between a set of clients and the server. As such FL systems
are exposed to, or indeed the cause of, congestion across a
wide set of network resources. Lossy compression can be used
to reduce the size of exchanged files and associated delays,
at the cost of adding noise to model updates. By judiciously
adapting clients’ compression to varying network congestion, an
FL application can reduce wall clock training time. To that end,
we propose a Network Adaptive Compression (NAC-FL) policy,
which dynamically varies the client’s lossy compression choices
to network congestion variations. We prove, under appropriate
assumptions, that NAC-FL is asymptotically optimal in terms
of directly minimizing the expected wall clock training time.
Further, we show via simulation that NAC-FL achieves robust
performance improvements with higher gains in settings with
positively correlated delays across time.

Index Terms—federated learning, rate adaptation, resilience

I. INTRODUCTION

Communication costs and delays of sending model updates
from clients to the server are a known bottleneck in training
Federated Learning (FL) systems [1]-[4]. Two common tech-
niques used to alleviate this issue are: 1) local computations
where clients perform several local steps before communicat-
ing with the server, and 2) (lossy) compression where clients
communicate quantized/compressed updates to the server. The
eventual end goal of these approaches is to minimize the wall
clock time for convergence of the training algorithm (hereon
referred to as FL algorithm) by reducing the amount of data
communicated from clients to the server.

To this end, several works have analyzed the relationship
between compression, local computations and the number
of rounds needed by FL algorithms to converge [S]-[12].
However, these works ignore the impact of changing network
congestion, both across clients and across time, on the wall
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clock time to converge. For instance, a client may choose
a high degree of compression when it sees high network
congestion, while a client seeing lower congestion may op-
portunistically choose not to compress as much. In this work,
we ask the following question: “Can we design a policy that
adapts the amount of compression across clients and time
according to changing network conditions in order to opti-
mize the wall clock time?” To answer this question, we first
characterize the impact that changing network congestion and
an adaptive compression policy have on the wall clock time.
Second, we propose the Network Adaptive Compression for
Federated Learning (NAC-FL) policy that judiciously chooses
compression levels based on network congestion to minimize
the wall clock time. Crucially, NAC-FL does not rely on the
prior knowledge of the distribution of network congestion.
Instead, it learns to optimize its compression decisions on-
the-fly based on the congestion seen by clients.

NAC-FL works in an opportunistic manner by adaptively
choosing high or low amounts of compression across clients
and across time based on low or high network congestion.
It further considers two effects that compression has on the
wall clock time. First, with increasing amount of compres-
sion, the FL algorithm would require more communication
rounds to converge, as the server receives “noisier”, and hence
inaccurate, model updates. Second, with higher degrees of
compression, the duration of each round would decrease as
a smaller model update is communicated. Since the wall
clock time is affected by both the number of rounds and
the duration of each round (it is effectively the product of
the two quantities), a policy for choosing compression levels
should consider these jointly. Fig. 1 provides an illustrative
visualization. Hence, NAC-FL aims to find the “sweet-spot”
compression levels over time varying network congestion.

Contributions. We propose a general framework to study how
to best adapt compression of client model updates. Assuming
a stationary Markov model for the underlying network conges-
tion state, we show that optimal policies are state dependent
and characterize the expected stopping time for convergence
to a predefined model accuracy.

This characterization provides the underlying insight for our
proposed NAC-FL policy. To our knowledge this is the first
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Fig. 1: Illustration of how compression level affects round
duration, number of rounds and wall clock time.

policy for compression that adapts to the stochastic variations
of the underlying network congestion process. Under appropri-
ate assumptions on the FL algorithm and underlying network
congestion and delays, we provide a proof of the asymptotic
optimality of NAC-FL in terms of minimizing the mean time
until the convergence criterion is met. To our knowledge this
is the first theoretical result of this type.

Finally we demonstrate via simulation the performance
gains and robustness of NAC-FL vs alternative fixed compres-
sion and/or fixed error per round policies. We explore a variety
of models for network congestion, finding that in particular
NAC-FL excels in the practically relevant setting where the
network sees positive correlations in the network congestion
accross time.

A. Related Work

Perhaps the most related papers to our work are [13]-[17]
which explored adaptive compression schemes for FL settings.
In [13]-[15] the authors propose adapting compression to
network congestion. In these works, the algorithm to select
compression has a per round budget, e.g., a budget on delay
(or compression error) per round, and possibly heterogeneous
compression levels are chosen across the clients based on the
current network congestion to minimize the compression error
(or delay) for the round. These works exploit the diversity of
network congestion across the clients, but not across time.
Meanwhile [16], [17] have observed that using a higher
amount of compression at the start and gradually reducing
compression through time may improve the wall clock time.
Our proposed policy is novel in that it learns how to best
exploit congestion variation across clients and across time to
optimize the wall clock time.

Another line of work that aims to reduce the overall commu-
nication cost is client sampling [18]-[21], where at each round,
only a subset of the clients are chosen to participate. The
authors of [21] propose a client sampling and power control
policy that adapts to time varying channels of clients sharing
a single base station and optimizes a proxy for wall clock
time. Overall we veiw lossy compression and client sampling
as alternative approaches geared at addressing communication
bottlenecks. A study of how to jointly adapt lossy compression
and client sampling to changing network congestion is left for
future work.

B. Paper Organization

In Section II, we introduce our system model. In Section
III, we propose our NAC-FL algorithm for lossy compression
and under appropriate assumptions prove it is asymptotically
optimal. Section IV is devoted to exploring the method for
several problem instances and in particular for various models
for the underlying network congestion in terms of correlation
across clients and time. In Section V, we comment on the
practical aspects of estimating the file transfer delay of clients
when deploying NAC-FL. Finally, in Section VI, we close the
paper with some concluding remarks.

Due to space limitations, we state theoretical results without
proof in this paper. See the technical report [22] for all the
proofs.

Notation. Throughout this document, unless otherwise men-
tioned, quantities denoted with lowercase letters correspond
to constants, and uppercase letters correspond to random
variables. Bold symbols correspond to vectors, and regular
symbols indicate scalars. For example, x is a constant vector,
X is a random vector, x is a constant scalar, and X is a
random scalar/variable. Lowercase and uppercase forms of
the same letter correspond to constant and random variable
notions of the same quantity. A sequence indexed by n will be
denoted as (z™)p.

II. MODEL SETUP

In this paper, we focus on a federated architecture, where
a server aims to find a model that performs well with respect
to the data of a group of m clients, and in which nodes
exchange updates based on their local information with only
the server. More precisely, suppose the loss function associated
with client j is denoted by f;(w), where w represents the
weights of the model, e.g., the weights of a neural network.
The goal is to find the model that minimizes the average loss
across clients

flw) == 3 fi(w).

The FL algorithm proceeds in rounds. Each round consists
of two stages: (i) a local stage in which each client updates the
most recent model received from the server via gradient-based
updates based on its local data and (ii), an aggregation stage in
which the server updates the global model by aggregating the
local updates received from clients. We shall let w™ denote
the global model at the server at round n. Further, we let 7"
denote the total number of local steps (such as %radient steps)
that each client performs at round n, and let w; ™ denote the
resulting local model at node j.

In this paper, we are interested in the setting where each
client sends a compressed version g%j of its local model
w;n’" to the server using a lossy compression algorithm
(or, compressor) Q(-,-). The compressor accepts a vector
x and a parameter ¢ € [0, gmax] indicating the amount of
compression with the maximum value being g,ax, and outputs
X = Q(w,q) which is an approximation of @, but has a
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decreased file size as compared to . X is capitalized to
highlight that the compressor Q(-,-) may use randomness
in its compression. We shall denote by ¢;' the compression
parameter used by client j for round n, and denote by
q" 2 (q})7L; the vector of parameters used by the clients
in round n. After receiving updates from all the clients, the
server aggregates the compressed local models and produces
the next global model w"*!.

Given a target tolerance ¢ > 0, the goal of FL is to
generate a sequence of global models until on some round
r. a prespecified stopping criterion is first met, e.g., the
norm of the global loss function gradient is at most ¢, i.e.,
IV f(w")|| < e. Our goal is to find an adaptive compression
policy that dynamically adapts to the possibly time varying
network states such that the target accuracy is achieved with
a minimum overall wall clock time.

We formalize the overall wall clock time, denoted t.,
required to achieve the target accuracy as follows. The duration
d(7t™,q",c") of a round n depends on:

e 7", the number of local computations performed by
clients which we will assume to be the same across
clients;

e @", an m dimensional vector of clients’ compression
parameters ;

o c", the network state which models network congestion
and is assumed to be an element of a finite set C.

This allows some flexibility, e.g., the round’s duration may
depend on the max delay to deliver the model update from
clients to server, or the sum of the delays if clients share a
single resource in TDMA (Time Division Multiple Access)
fashion. The total wall clock time is then given by

te=>» d(r",q",c"). (1)
n=1

In our system model, the sequence of network states, (¢"),,
is assumed to be exogenous, i.e., not be controlled by the
server or the clients nor their choices of 77" and q" . The delays
associated with the server multicasting global models to clients
are assumed to be exogeneous i.e., can not be controlled by
the FL server/clients and are not compressed, whence are not
part of the model. Still, in this work, based on observing the
network state we will devise an approach to select the clients
compression parameters so as to minimize the wall clock
time. As discussed in Section V, in practice observation of
the network state may involve light weight in band estimation
by probing delays of message bits as they are delivered in a
given round.

A policy for choosing compression parameters is called a
state dependent stationary policy if it can be expressed as a
function 7 of the current network state, i.e., g" = m(c") for
all rounds n € N. Such a policy will be referred to simply as
policy 7. Given a random sequence of network states, (C"),,,
let RT be the random variable denoting the minimum number
of rounds needed to converge to error tolerance ¢ under policy

7. Then, the corresponding wall clock time, denoted by T,
is expressed as,

RT
TF =Y d(r", = (C"),C").
n=1
III. NETWORK ADAPTIVE COMPRESSION FOR FEDERATED
LEARNING (NAC-FL)

Our approach to designing a policy to adapt clients’ com-
pression parameters centers on recognizing that the expected
wall clock time can be broken up into a product of the expected
number of rounds r needed to converge to an error tolerance
¢ and the average duration of each round d. We start by
characterizing the relationship between r., d, and the sequence
of selected quantization parameters (g™),, and network states
(¢"),, for a given FL algorithm.

Below we state an assumption relating r. to (g"),,. To that
end we introduce a strictly increasing, continuous and bounded
scalar function % : [0, gmax] — R of compression parameter
¢ and an associated vector function h. : [0, gmax]) <™ — R}
of a compression vector ¢ where h. ;(q) = ho(g;). We let
h_' denote the inverse of this vector function.

Assumption 1. For a given FL algorithm there exists a
strictly increasing, continuous and bounded function h.(q)
and norm ||-|| such that given a sequence of compression
parameters (q"),,, the FL algorithm has reached the desired
error tolerance € by round r if and only if,

1« N
r> =3 |k ()]
n=1

for some norm.

The above assumption implies that the expected number of
rounds can be written as the average of an increasing function
of the sequence of selected quantization parameters. Roughly
speaking, given a lossy compression policy that generates a
stationary parameter sequence (Q"),, whose marginal distri-
bution is the same as the random vector @, the above criterion
means that the expected number of rounds to converge to the
desired error tolerance is approximately E[||h. (Q)]|].

This is a general condition that is motivated by convergence
bounds of several FL algorithms with compression, including,
[5], [8], [11]. In particular in Appendix A, we illustrate this
motivation for an extension of the FedCOM algorithm [11],
when ¢ indicates the normalized-variance introduced by the
compressor, the scalar function is h.(¢) = O(y/q+ 1/¢) and
the norm is the Lo norm.

Assumption 2. For any sequence of compression parameters
(g™),, the minimum number of rounds r. needed to converge
to an error tolerance ¢ is such that r. = ©(1/poly(e)), where
poly(e) denotes a polynomial of e.

Assumption 2 is a natural assumption for gradient based
optimization algorithms. It requires the convergence guaran-
tees for the FL algorithm to be such that when we require a
more accurate solution, the number of required communication
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Fig. 2: Illustration of a round duration as a function of
compression parameter ¢ for a fixed local computation 7 and
network state c.

rounds grows. This argument indeed holds even for the settings
that we do not exchange compressed signals.

We also make the following additional assumption about
the round duration function.

Assumption 3. Given a network state c, number of local
computations T, and compression parameters q = h_ 1(1"),
the round duration d (7,q,¢c) = d (T, h;l(r)m) is bounded,
convex in T and decreasing in every coordinate of r.

In Assumption 3, the round duration being decreasing in
r is reasonable, since we expect more rounds as well as
smaller file sizes with higher compression. The convexity is
motivated by the notion that we use a “good compressor” as
illustrated next. Consulting Fig. 2, for any two parameters
q1,q2 and 0 < «a < 1, a new time-sharing compressor Q’
may be derived which outputs Q(x,q;) with probability «
and outputs Q(x, g2) with probability (1—c). This compressor
has expected round duration ad(7, g1, c¢) + (1 — a)d(7, g2, ¢).
And, in certain cases, its compression parameter is ¢, = aq;+
(1—a)g2 (such as when the stochastic quantizer parameterized
by its normalized variance [5] is used). If Q is a “good
compressor”, then its round duration, d(7,qa,c), should be
lower compared to that of the simple time-shared compressor,
ad(T,q1,¢) + (1 — a)d(T, g2, ¢) (considering h.(q) x ¢ for
simplicity).

Assumption 4. The sequence of network states (C™),, forms
an irreducible aperiodic stationary Markov Chain on a finite
state space C with invariant distribution (.

Assumption 4 is a natural assumption made to facilitate the
analysis of algorithms (see e.g., [23]).

A. Expected Wall Clock Time Formulation

Given the above mentioned assumptions, we are now ready
to introduce the proposed framework. We begin by showing
that we need only consider state dependent stationary policies
for choosing compression parameters when optimizing the
overall wall clock time.

Lemma 1. Under Assumptions 1-4 there exists a state depen-
dent stationary policy to select compression parameters which

is asymptotically optimal in terms of minimizing the wall clock
time to reach a desired error tolerance of € as € — 0.

The proof of Lemma 1 depends on two critical observations.
First, since by Assumption 2 the number of rounds needed
to converge grows large as ¢ — (0, one can expect the
empirical distribution of the network states modelled by the
finite state Markov Chain to concentrate around the invariant
prior to the stopping time. Second, due to the convexity of the
round duration function in Assumption 3, given a sequence
of network states there exists a state dependent stationary
policy that is near optimal and depends solely on the empirical
distribution of the sequence.

Here, we will focus on the setting where ¢ is small, hence by
Lemma 1, we only need to consider state dependent stationary
policies, g" = m(c™).

Lemma 2. Under Assumptions 1-4 and a fixed number of
local computations per round T, for every § > 0, there exists
an gy, > 0 such that, for all € < ey, and any state-dependent
stationary policy w, the expected wall clock time is bounded
as,
e E (7]

Efllhe (w(C))I[ E[d (r,7(C), C)]
where, C denotes a random variable whose distributions is |
(see Assumption 3).

Define,
ir £ E[||h. (w(C))|| E[d (, 7 (C), C)]. 3)

Due to Lemma 2, for small enough ¢, tT provides an accurate
approximation for E[T7]. Therefore, from here onwards, we
shall assume implicitly that that a small € is considered and
focus on finding a policy to optimize f;'.

Suppose the distribution of C is known. Then, one could
compute expected wall clock time as given in (3) for any
state dependent stationary policy 7. In this case, we could
determine an optimal policy 7v* by solving the optimization
problem,

<146, ()

t7 = E[|h: (=(C)IIE[d(r,7(C),C)], ¢4

min

TEQm|c|
where Q¢ is the set of all state-dependent stationary poli-
cies.

Alas, in practice, we often cannot directly solve the above
problem, as the distribution of C is unknown. Hence, below,
we propose a stochastic approximation like algorithm that
achieves the optimal wall clock time of 7* asymptotically.

B. The NAC-FL Algorithm

Our NAC-FL approach is inspired by the Frank-Wolfe Algo-
rithm [24]. We start by reformulating the optimization program
in (4). Denote by set V. all possible pairs of expectations
(fE k) d) ’

Ve = {(F,d) : 37 € Quey st 7o = E|he ((C))],

d=E[d(r,m(C),C)] .
®)
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Using the set V., and denoting H (r, d) £ rd, we may write
the optimization (4) characterizing the optimal policy 7* as
min{H (f.,d) : (f.,d) € V.}. (6)

Te,

In this case, from a point (77, d"), the Frank-Wolfe update
would be given as,

~ N T r
(7.,d) = argmin VH (fgd”) ( d) , )
(r,d)eVe
P = (1= B)PL + B,

d" = (1 - B)d" + Bd.

“ R N T
The gradient VH (7., d) is, VH(f.,d) = (d r> V.isa

set of feasible averages of 7. and d. Therefore, at round (n+1),
not all the pairs (r,d) € V. may be achievable. Hence, NAC-
FL approximates equation (7) as,

¢"*! = argmin #d (7,q,c") +d" [he (@) ®)
q
The NAC-FL policy is described in Algorithm 1. To retrieve

policy derived above, the tunable parameters (8,),, and « in
Algorithm 1 should be set to 5, = 8 and o = 1.

Algorithm 1: NAC-FL

Input : Initialization: ﬁgo), d© ; step size
schedule {$3,,}22 ;; parameter a.
1 for n =1,..., until termination do
2 Server observes network state ¢ ;
3 q" —
argmin ar" Vg (1, q,¢™) +d™V ||h. (q)];
q

o | ==Y 4 By e (@)
s | dn=(1-8,)d" N + Bud(r,q", ™)
6 end

Observe that since the estimates 77 and d™ will initially
change across rounds, NAC-FL may choose different compres-
sion parameters in two rounds for which the network was in
the same state, i.e., NAC-FL is not a state-dependent stationary
policy. Still, we will show NAC-FL is asymptotically near
optimal.

The following assumption is required to show the asymp-
totic optimality of NAC-FL. A state dependent stationary
policy 7 maps from a domain of finite size |C|, to a range
positive-real vectors of dimension m. Therefore, the policy
may be represented by a positive-real vector, 7, of dimension
m|C|. Further, a vector r™ may be obtained by applying
he(-) elementwise to the policy vector mr, r™ = h_(mx). This
representation is used in the following assumption.

Assumption 5. The objective function fg of the optimization
problem in (4) is a strictly quasiconvex function in T in the
following sense,

rE (VyedT) =0 = ¢Z1 (VZAT)r™ > 0. (9)

Assumption 5 ensures that there is a unique state dependent
stationary policy 7* which optimizes (4). We have observed
that the considered network model, compression model and
the ||h. (q)|| function associated with the FedCOM algorithm
indeed satisfy this assumption.

Next we shall establish an optimality property for NAC-
FL. To that end we shall consider executing NAC-FL without

termination with 3, = 3 for all n and let (Qg)n, R 5 and

ﬁg be the corresponding sequence of compression parameters
and the associated estimates.

Theorem 1. Let ©* be the solution and ™ the minimum
of the optimization problem in (4). If Assumptions 1-5 hold,
then there exists a positive sequence (31)3°; with 3* — 0 as
1 — 00, such that for every p > 0, there exists a thereshold

nen(p) such that,
> p) =0,

Remark 1. A sketch of the proof of this result is included in
Appendix B, and the complete proof is in the technical report
[22]. This result should be interpreted with some subtlety.
Say the desired error-tolerance ¢ is very small such that the
number of rounds needed to converge under any compression
policy is such that v > ny,(p)/B. Then, based on Theorem
I, one can show that NAC-FL compression choices will be
near optimal after nup,(p)/B rounds. Thereafter since rc is
large, NAC-FL will make near optimal choices for long enough
leading to a near optimal expected wall clock time.

bgz - E[d (T7 ﬂ-*( )7 C)]

<Rgﬂi —E[|h. (w*<c>>m>

lim sup P
" n>n(p) /B

In applications that require a very low error-tolerance &, one
needs to run FL for a large number of rounds r.. Therefore,
while the wall clock time obtained by using NAC-FL may
be large in this setting, it is near-optimal compared to other
methods of choosing compression parameters, making the
asymptotic result relevant.

IV. SIMULATION

In this section, we present our simulation results. We begin
by describing additional model details used in our simulations.

A. Additional Model Details

1) Compression Model: We shall use the stochastic quan-
tizer in [5] which we will denote as Q,(-,b). The quantizer
has a parameter b € {1,...,32} corresponding to the number
of bits used to represent each co-ordinate, in addition to the
bit used to denote signs. When input a vector z, it outputs,

Qy(=,b) = ||zl sign(z)¢(, b) (10)

where sign(x) is the element-wise sign operator and where the
function {(x, b) uniformly quantizes each co-ordinate amongst
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26 — 1 levels between O and 1. That is, if z;/|z|, €

l I+1
2b_197 2b__

+1
Giw,b) = {2}’_1’

l
2619

1), then it is quantized as,

[z (2b _ 1) _ l,

2]l

with prob.

otherwise.

When x is quantized to b-bits per co-ordinate, its file size is
given by the function, s(b) = |||, (b + 1) + 32 bits. Here,
the zero-norm, ||x|,, gives the length of the vector, the 1
indicates the bit used to denote the sign, and the 32 bits are
for a floating point number denoting the norm, ||z|| . Finally,
if client j uses the parameter b;, then the vector of parameters
used by the clients is denoted as, b = (b;)7",.

2) Network Congestion Model: For purposes of evaluating
the performance of various algorithms over different types
of network congestion we propose the following general,
albeit idealized, model. We let C™ be a m dimensional
random vector denoting the Bit Transmission Delay (BTD)
for clients during round n. We further let C" = exp (Z")
i.e., coordinate-wise exponentiation of an m dimensional first
order autoregressive process given by (Z;);-, where Z, = 0,
where

Zn _ AZ(n—l) _1_-En7

Vn > 1, (11

where A is an m xm deterministic matrix, and E" ~ N (u, X))
are i.i.d., m dimensional normal random vectors. Different
correlations across time and clients may be modelled by
varying A, p and X. The marginal distributions of C™ are
thus log-normal but can be correlated in different ways based
on the underlying autoregressive process. In particular:

Homogeneous Independent: the parameters are set to A =
0, p=1and ¥ = o2I. This results in a process which
is independent and identically distributed across clients
and time.

Heterogeneous Independent: the parameters are set to A =
0, pi = 0 for ¢ € {1,...,5} and p; = 2 for i €
{6,...,10}, and ¥ = I. This results in a process which is
independent across clients and time, with the BTD being
lower for the first 5 clients compared to the rest.

Perfectly correlated: the parameters are set to A such that
A;j = = where a € (0,1), p = 0, and ¥ such that
¥, ; = 02 = 1. This results in a process where all clients
see the same positively correlated time-varying delays.

Partially correlated: the parameters are set to A such that
Ai_’j = 7%, pn = 0, and X such that Ei,i =1 and Ei,]‘ =
1/2 for i # j. This results in a process where delays are
positively correlated accross clients and time.

3) Model for Round Durations: We will model the du-
ration of a round as the maximum across clients’ delays,
ie., d(7,b,c) = max;[#T + ¢;s(b;)], where 0 represents the
compute time per local computation, and ¢;s(b;) the BTD of
client j times the size of the client j’s file capturing the time
taken to communicate its update. For simplicity we will set
0 =0.

4) Compression Level Choice Policies: We compare NAC-
FL to the following policies,

a) Fixed Bit: Here, a number b is fixed, and all the
clients use the stochastic quantizer Q,(x,b) from (10) with
the parameter b. We present results for b € {1,2,3}, as we
didn’t notice a performance improvement for larger parameters
in our experiments.

b) Fixed Error: This method was suggested in [13]
and is parameterized by a number q. At each round n, the
parameters b" of the stochastic quantizers are such that the
average normalized-variance ¢" £ 1/m " ; ¢; is smaller than
g, and the duration of the round d(7,¢",c™) is minimized.
We fix ¢ = 5.25 in all our experiments after finding it to be
performing well across different settings.

5) Machine Learning Model: We consider m = 10 clients.
We consider the MNIST dataset [25] which may be distributed
homogeneously or heterogeneously amongst the clients. Since
data is heterogeneous across clients in most FL applications,
we consider the heterogenous data case. That is, each client
has data corresponding to 1 unique label. The MNIST dataset
has 60,000 training samples, 10,000 test samples and 10 labels.
The clients and the server aim to train a fully connected neural
network with the architecture (784,250, 10) with the sigmoid
activation for the hidden layer. The learning rate is initialized
to no = 0.07, and is decayed by a factor 0.9 every 10 rounds.
The aggregation rate and local computations per round are
fixed throughout the training to v = 1 and 7 = 2 respectively.
As for the parameters of the NAC-FL policy, we set 3,, = %,
and a = 2.

We measure the performance of the global model using the
following,

a) Training Loss: The training loss of the global model
is the empirical cross entropy loss across the entire set of
training samples.

b) Test Accuracy: The test accuracy is measured over all
the test samples. Here, in some experiments, we run 20 simu-
lations with different random seeds, and report the mean, 90th
percentile and 10th percentile times to reach a test accuracy
of 90%. The 90th and 10th percentile scores are reported to
capture the variation in performance across the 20 simulations.
We also report a gain metric, which is sample mean of the
time gained to reach 90% accuracy by NAC-FI compared to a
another policy reported in percentage. For instance, let x;, y;
be the times under NAC-FL and another policy for a random

seed 4, then the gain is 100 * (Z?il yi s — 1) /20.

B. Simulation Results

1) Homogeneous Independent BTD: We simulated over
o2 € {1,2,3} in order to study the change in performance
over increasing variance. We observe that in all the cases,
NAC-FL and the Fixed Error policy have very similar perfor-
mance across all the considered statistics. This is because the
Fixed Error policy was designed to operate well in the i.i.d.,
network delay case. However, both NAC-FL and Fixed Error
policy perform better than all the Fixed Bit policies according
to all the statistics across all the considered parameters. More-
over, we observed that the gap in the performance to Fixed
Bit policies increased with increasing variance. For instance,
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the gain of the best Fixed Bit policy increased from 145%
to 250% when the variance was increased from 1 to 3, while
the gain of the worst fixed bit policy increased from 314% to
881%. This is as expected because both NAC-FL and Fixed
Error policy adapt to the heterogenous delay of clients at any
given time. Surprisingly, NAC-FL lagged behind Fixed Error
policy in some metrics, but it performed better in terms of the
gain metric in all the 3 cases, with the gain over Fixed Error
policy ranging from 1% to 8%.

o2 1 bit 2 bits | 3 bits | Fixed Error | NAC-FL
Mean | 6.31 3.82 4.15 1.58 1.60
1 90th 6.95 4.72 5.00 1.86 2.05
10th 5.63 3.20 338 1.20 1.14
Gain 314% | 145% | 168% | 3% -
Mean | 54.8 32.5 349 12.5 12.2
9 90th 70.6 447 43.1 19.0 20.8
10th 425 19.2 21.0 6.26 5.82
Gain 522% | 216% | 240% | 8% -
Mean | 799 430 458 165 168
3 90th 1430 752 665 318 320
10th 418 157 148 46.2 57.9
Gain 881% | 270% | 250% | 1% -

TABLE I: Performance comparison of policies with homoge-
neous independent BTD in terms of the mean, 90th percentile
and 10th percentile times to reach 90% test accuracy under
the different policies, and their average sample-path gain
compared to NAC-FL. All the numbers represented are in 107
seconds.

2) Heterogeneous Independent BTD: We considered this
case since the first 5 clients would have consistently worse
delay, NAC-FL and the Fixed Error policy would consis-
tently compress the updates of those clients heavily. Since
the data distribution is heterogeneous, it may be possible
heavy compression of updates from specific clients throughout
the training may hurt the performance. On the other hand,
the Fixed Bit policies use the same amount of compression
across all clients equally irrespective of their delays. Still, we
observed that NAC-FL and the Fixed Error policy perform
better than the Fixed Bit policies as can be seen in Table
II. In fact, performance in terms of the gain metric is very
comparable to the i.i.d., network delay case with 02 = 1 in
Table I.

1 bit 2 bits | 3 bits | Fixed Error | NAC-FL
Mean | 9.49 5.85 6.46 2.49 2.48
90th 11.5 7.16 8.09 3.48 3.54
10th 8.30 437 4.98 1.74 1.54
Gain 319% | 146% | 173% | 4% -

TABLE II: Performance comparison of policies with heteroge-
nous independent BTD. The numbers shown are the mean,
90th percentile and 10th percentile times to reach 90% test
accuracy under the different policies, and their average sample-
path gain compared to NAC-FL. All the numbers represented
are in 10® seconds.

3) Perfectly Correlated BTD: We will demonstrate that
NAC-FL performs better than Fixed Error and Fixed Bit
policies under increasing correlated delay across time since

they are not designed to optimize the wall clock time under
this case.

To study the variation of network delay across rounds,
consider the marginal auto-regressive process of 1 client which
may be represented by the following scalar autoregressive
process,

7" =d ZzD 4+ B (12)

where E™ ~ N(0,1). We define metric called asymptotic
variance, denoted o2, which is designed to capture the
variance, and long and short term correlations of a random pro-

9 a5 E[(20++2")? .
cess, 02, £ lim,, ;o ————————. For the autoregressive

process in (12), it may be conqputed to be, 02, = 1/(1—a’)%

Table III shows the performance of the different policies un-
der varying asymptotic variance of the marginals. We observe
that in addition to beating the baseline fixed bit policies on all
the metrics, the NAC-FL performs better than the Fixed Error
policy in most metrics as well. Considering the gain metric,
we observe gain of 13% over the Fixed Error policy for low
asymptotic variance of 02, = 1.56, and is as large as 27%
for higher asymptotic variance of 02, = 4. Notably, in terms
of the 10th percentile time to reach 90% accuracy, the Fixed
Error policy required 40%, 23% and 32% more time compared
to NAC-FL in the 02.=1.56, 4 and 16 cases respectively.

a2, 1 bit 2 bits | 3 bits | Fixed Error | NAC-FL
Mean | 5.14 3.04 3.47 2.21 2.11
156 90th 5.94 3.65 4.43 2.66 332
' 10th 3.88 2.38 2.18 1.43 1.02
Gain 191% | 58% 75% 13% -
Mean | 5.82 3.49 4.03 2.47 2.23
4 90th 743 477 6.28 3.94 4.00
10th 3.88 2.22 1.98 1.21 0.981
Gain | 252% | 82% 107% | 27%
Mean | 8.42 5.19 6.15 3.75 3.36
16 90th 12.8 10.3 134 7.94 7.2
10th 4.34 1.40 1.67 1.15 0.87
Gain | 316% | 72% 98% 21% -

TABLE III: Performance comparison of policies with perfectly
correlated BTD in terms of the mean, 90th percentile and 10th
percentile times to reach 90% test accuracy under the different
policies, and their average sample-path gain compared to
NAC-FL. All the numbers represented are in 107 seconds.

4) Partially Correlated BTD: In Table 1V, we show results
for the partially correlated BTD case with asymptotic variance
o2 = 4. We consider this case to demonstrate that NAC-FL
is effective with positive (but, not 100%) correlation across
clients as well. Indeed, we observe NAC-FL performing better
compared to all the other policies across all the considered
metrics, with a gain of 10% over the Fixed Error policy, and
129% over the best fixed bit policy. Notably, in terms of the
10th percentile and 90th percentile metrics, NAC-FL outper-
formed Fixed Error policy by 30% and 15% respectively.

Figure 3 contains sample path plots of Training Loss and
Accuracy vs Wall Clock Time for the independent homo-
geneous (02 = 2), heterogeneous and perfectly correlated
(6%, = 4) BTD cases. Both accuracy and loss plots for
NAC-FL and Fixed Error are overlapping in the independent
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1 bit 2 bits | 3 bits | Fixed Error | NAC-FL
Mean | 13.6 8.33 9.51 4.22 3.83
90th 159 10.5 13.9 6.24 5.46
10th 9.51 5.47 5.80 2.64 2.02
Gain 307% | 129% | 159% | 10% -

TABLE IV: Performance comparison of policies with partially
correlated BTD in terms of the mean, 90th percentile and 10th
percentile times to reach 90% test accuracy under the different
policies, and their average sample-path gain compared to
NAC-FL. All the numbers represented are in 107 seconds.

homogeneous and heterogeneous BTD cases, as expected.
However, in the perfectly correlated BTD case, NAC-FL
dominates the performance of Fixed Error policy.

In summary, we observe that NAC-FL’s performance is
robust under a range of network models considered. NAC-FL
vastly outperformed the baseline Fixed Bit policies in all the
network models. The performance of NAC-FL was observed to
be similar to that of Fixed Error policy in the independent BTD
setting, albeit, it outperformed Fixed Error policy in terms of
the gain metric under all the network models. Notably, the
gap between NAC-FL and Fixed Error policy was observed
to be noticeably high in the perfectly and paritally correlated
BTD settings, where NAC-FL was able to adapt to positive
correlations of BTD across time, whereas Fixed Error could
not.

V. NAC-FL IN PRACTICE

In this section we briefly comment on some practical aspects
underlying estimating model update delays. This involves
estimating the network’s current average BTD to each client. A
simple approach to doing so is to observe that for the stochastic
quantizer described in Section IV-A1l, clients always send the
vector of signs of their updates, no matter what are the bits
per coordinate that will be chosen. So, as the clients send
their signs, the server may probe the delay characteristics to
estimate the BTD of clients without having to request vacuous
(non update related) bits to do so. It may then use these
estimates to perform the optimization in (8) for the round.

VI. CONCLUSION

Due to their distributed character FL algorithms are exposed
to congestion across a potentially large number of network
resources, whence one might say they are exposed to network
congestion and variability at scale. Building adaptive algo-
rithms that minimize the impact of time varying congestion
across clients presents a significant challenge, particularly
when the aim is to directly optimize the expected wall clock
time. NAC-FL exemplifies a new class of robust algorithms to
optimally adapt clients’ lossy compression. This paper further
provides the technical roadmap to formalizing and showing
asymptotic optimality for such algorithms.

APPENDIX A
FEDERATED LEARNING WITH ADAPTIVE COMPRESSION
(FLAC)

In this section, we consider a variant of the FedCOM
algorithm [11], called FedCOM-V. FedCOM is based on
fixing a quantization parameter throughout the run of the
FL algorithm. On the other hand, FedCOM-V allows for an
arbitrary sequence of quantization parameters (g"),,, in order
to account for adaptive compression policies such as NAC-FL
(see Algorithm 2).

Algorithm 2: FedCOM-V
Input

: number of local computations schedule
(Tn)oo 1. local learning rate schedule
(n) oo, adaptively chosen global
learning rate schedule (v,,) -, adaptively
chosen number of rounds r, initial global
model w?.

Result: w"*!: Final model

forn=1,...,r do

for each client j € [m] do

Set wjl-""’ =w";

fora=1,...,7, do

Sample a minibatch Z7"" and compute
g 2Vt 2"

a+ln _ a,n ~a,mn,
j =wW; Ty

[T R SR

6 w
7 end

8 Device sends

~no n _ . Tntln
9g; = Q(w" —w;

the server;

)/, q) back to

9 end

10 | Server computes, g5 = = >0 G5; ;

1 Server computes w"t! = w" fnn%gg and
broadcasts to all devices;

12 end

We make the following standard assumptions to analyze the
convergence of FedCOM-V.

Assumption 6 (Smoothness and Lower Boundedness). The
objective function f(-) is differentiable and L-smooth. That
is, |[Vf(x)=Vf(y)| < Llx—yl, for every z,y € R%
Moreover, the optimal value of f is lower bounded, f* =
min,, f(w) > —oc.

Assumption 7 (Bounded Variance). For all clients j and
rounds n and local step a, an independent mini-batch Z;""
is sampled, and an unbiased stochastic gradient g;‘” =
V f(w; ZJ"”) is computed. Also, the variance is bounded by

a constant 02, E [Hf}jn -Vf (’wjn) HQ} <02

Assumption 8 (Compression Model). The output of the
compressor Q(x,q) is an unbiased estimator of x, i.e.,
E[Q(xz,q)|lx] = =, and, its variance is bounded as,
E[|Q(@,q) — 2| |a] < ¢ ||
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Fig. 3: Plots of Training Loss and Test Accuracy vs Wall Clock time on different network models. Figures (a) and (d) correspond
to homogeneous independent BTD case (02 = 2), Figures (b) and (e) correspond to the heterogeneous independent BTD case,
and Figures (c) and (f) correspond to the perfectly correlated BTD case (Ug<> =4).

We denote the average normalized-variance used at round
n by ¢" % Z;":l ¢;- The following Theorem states the
relationship between (¢"), € and ..

Theorem 2. Let Algorithm 2 be run with a sequence of com-
pressors such that the average normalized-variance at round
n is Q". Further, assume that the sequence (Q") forms a
stationary process with the stationary distribution represented
by a random variable Q. To obtain E[|V f(w)|’] < &, we
can choose,

E[vVQ+1]

£

re = O [ log(1/e) Tn =0 (n).

The upper bound on 7. in Theorem 2 provides a justification
for Assumption 1 with h.(¢) = O(y/q+1). Here, 7, is a
function of n, but for the purposes of NAC-FL we may use the
average of 71 to 7,._ in the expression of the duration function.
One may obtain a similar expression for other popular FL
algorithms [5], [8].

APPENDIX B
PROOF SKETCH OF THEOREM 1

We will use the following proposition without proof.
Proposition 1: Under Assumption 5, the update in (7) has a

).

unique fixed point (7., d) € V. such that,

()

(7,d) = argmin  VH
(r,d)eVe

T

d

Define, z(™ = (#{"d™)T, and let z(s) = z*") for B —
0, which is often called the fluid limit. It can be shown [23]
that the estimates of NAC-FL follow,

v(s) = argmin VH (z(s)) v, @(s)=v(s) — x(s).
VeV.
Denote, G(z) = minyey. VH(x)" (v — x). Since, VH is
a continuous function of &, G(x) may be shown to be a
continuous function of = as well.

Due to Prop. 1, there exists a unique x* € V. such
that G(z*) = 0. Moreover, due to strict quasiconvexity
(Assumption 5), * is the minimizer of H. For all other
x € V., we show,

Claim 1: for all w > 0, there exists a 6 > 0 such that if
|l —x*|| > w, then G(x) < —4.

We prove this claim using contradiction. Suppose there
exists an w > 0 such that for all 6 > 0, there exists an
x with ||z —x*|| > w and G(x) > —4. Since, G(x) is a
continuous function, taking limit 4 — 0, we obtain an & with
|l —x*|| > w and G(x) = 0. This contradicts Prop. 1.

Now given Claim 1, we prove the main result again by
contradiction. Consider some w > 0. Let § > 0 be its
associated constant according to Claim 1. Then, as a contra-
diction, assume that ||z(s) — x*|| > w for all s € R,. Since,
dH(z(s)) = G(z(s)) < —d, we may show in this case that
H(xz(s)) — —oo as s — oco. This is a contradiction H is a
positive function. Since this is true for every w, and H() is
continuous, we may prove that x(s) — x* as s — oo.
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