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INTRODUCTION

David Tilman?3

Abstract

To determine which types of plant traits might better explain ecosystem functioning
and plant evolutionary histories, we compiled 42 traits for each of 15 perennial
species in a biodiversity experiment. We used every possible combination of three
traits to cluster species. Across these 11,480 combinations, clusters generated using
tissue %Ca, %N and %K best mapped onto phylogeny. Moreover, for the 15 best
combinations of three traits, 82% of traits were chemical, 16% morphological and
2% metabolic. The diversity-dependence of ecosystem productivity was better
explained by the %Ca, %N and %K clusters: compared to adding a new species
at random, adding a species from an absent cluster/clade better-explained gains
in productivity. Species number impacted productivity only when all clusters
were present. Our results suggest that tissue elemental chemistry might be more
phylogenetically conserved and more strongly related to ecosystem functioning
than commonly measured morphological and physiological traits, a possibility
that merits exploration.
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drive fluxes of matter and energy (Furey & Tilman, 2021;
Loreau, 2010; Roscher et al., 2004, 2012). Analyses of plant

Ecology is in the midst of a search for the plant traits
that best explain how and why species composition and
biodiversity influence ecosystem functioning (Chacén-
Labella et al., 2023; Diaz et al., 2016; Hagan et al., 2023;
Loreau, 2010; van der Plas et al., 2020, 2023; Walker
et al.,, 2022). Such traits might be based on important
aspects of plant physiology and morphology (Carmona
et al.,, 2021; Reich, 2014), the mechanisms controlling
competitive coexistence (Klausmeier et al., 2020; Kraft
etal., 2015; Lehman & Tilman, 2000), or the processes that

biodiversity experiments have suggested that greater plant
functional trait diversity may cause greater primary pro-
ductivity (Bongers et al., 2021; Clark et al., 2012; Roscher
et al., 2012; Tilman et al., 1997; Tilman & Fornara, 2009;
Weisser et al., 2017). However, it is not clear which func-
tional traits are most relevant (Chacon-Labella et al., 2023;
van der Plas et al., 2020; Walker et al., 2022). Other anal-
yses have suggested that phylogenetic diversity may be a
better predictor of ecosystem functioning than plant spe-
cies richness, perhaps because phylogeny may capture
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an ecologically relevant suite of as-yet undetermined or
difficult-to-measure underlying traits that promote niche
complementarity (Cadotte, 2017; Cadotte et al., 2009;
Huang et al., 2020). Moreover, a deeper understanding of
which traits are phylogenetically conserved (Cadotte, 2017,
Cavender-Bares et al., 2009; Davies et al., 2016; Flynn
et al., 2011; Srivastava et al., 2012; Steudel et al., 2016) may
help clarify why certain suites of competing species co-
exist locally and why biodiversity has ecological impacts
(Tilman et al., 2014).

Because local biodiversity requires multispecies coex-
istence, empirically determining which plant functional
traits are associated with coexistence, evolutionary
history and ecosystem functioning could offer signif-
icant insights into the traits, and theories, of greatest
ecological and evolutionary importance (Klausmeier
et al., 2020). For example, coexistence might be ex-
plained by seed traits and dispersal abilities (Sullivan
et al., 2018; Tilman, 1994), by how height and numerous
aspects of leaf physiology and morphology impact light
capture and competition (Reich, 2014; Westoby, 1998),
or by tradeoffs in plant defences and competitive abil-
ities (Holt & Bonsall, 2017). Other types of traits that
reflect chemical stoichiometric differences (Sterner &
Elser, 2002) or other plant chemical traits, including
plant secondary chemistry (Walker et al., 2022), might
also explain coexistence. In particular, all plants re-
quire and may compete for essential elements (Kaspari
& Powers, 2016; Penuelas et al., 2019; Salt et al., 2008;
Sterner & Elser, 2002; Tilman, 1982; Walker et al., 2022).

It seems plausible that chemical traits might offer in-
sights into both plant competitive coexistence and plant
evolutionary history (Broadley et al., 2003; Fernandez-
Martinez et al., 2021; Neugebauer et al., 2018; Pefiuelas
et al., 2019; Walker et al., 2022; White et al., 2012). For
example, differing requirements for elements such as N,
P, K and Ca may allow competing plant species to coex-
ist (Tilman, 1982), and may cause tissue levels of certain
elements such as Ca to be phylogenetically conserved
within plant families (Bitomsky et al., 2023; Broadley
etal.,2003; Mladkovaetal., 2018; Neugebaueretal., 2018;
Sardans et al., 2021; White et al., 2012). From an ecosys-
tem perspective, because of plant—soil feedback effects,
interspecific differences in plant elemental chemistry
could alter the quantities and the stoichiometric ra-
tios of limiting elements in an ecosystem (Ehrenfeld
et al., 2005; Furey & Tilman, 2021; Hobbie, 2015;
Jobbagy & Jackson, 2001; Reich et al., 2005; Sterner &
Elser, 2002; Waring et al., 2015; Wedin & Tilman, 1990;
Zinke, 1962). The resultant changes in the supply
rates of limiting elements could increase primary pro-
ductivity, change outcomes of resource competition
(Tilman, 1982; Wedin & Tilman, 1990) and shift eco-
system biogeochemistry (Chapin et al., 1986; Kaspari
& Powers, 2016; Vitousek & Reiners, 1975). For these
reasons, expanding the commonly measured set of

functional traits to include tissue chemical traits might
provide novel insights (Fernandez-Martinez, 2022;
Walker et al., 2022).

The ecological importance of chemical elements
such as nitrogen (N) and phosphorus (P) is well known
(Chapin et al., 1986; Guiz et al., 2016, 2018; Sterner &
Elser, 2002; Walker & Syers, 1976), but other elements
may also be important (Kaspari & Powers, 2016). For
example, boron (B) may be a limiting micronutrient
for the tropical rainforest of Barro Colorado Island
(Steidinger, 2015; Turner et al., 2017), and is one of
the more limiting micronutrients in many agricultural
soils (Shorrocks, 1997). Tissue % Ca has been shown
to differentiate some plant families, with % Ca being
low in grasses (Poaceae) relative to other angiosperm
families (Bitomsky et al., 2023; Broadley et al., 2003;
Mladkova et al.,, 2018; Neugebauer et al., 2018).
Furthermore tree species within Acer have higher %
Ca than those within Pinus (Reich et al., 2005). Tissue
% Ca also discriminated among the herbaceous plant
families in the Park Grass Experiment at Rothamsted
(White et al., 2012). These findings suggest that the
plant tissue levels of less commonly measured ele-
ments may capture axes of niche differentiation, may
be phylogenetically conserved and may help explain
why biodiversity impacts ecosystem functioning
(Fernandez-Martinez, 2022; Kaspari & Powers, 2016;
Penuelas et al., 2019; Sardans et al., 2021; Schaller
et al., 2016; White et al., 2012).

Here we analyse a suite of 42 plant traits, including
21 morphological traits (e.g. specific leaf area, height,
seed mass, fine root density), six metabolic traits (e.g.
leaf photosynthesis rate, leaf stomatal conductance,
leaf delta '*C) and 15 chemical traits (concentrations
of leaf N and concentrations of C, N, P, K, S, Ca, Mg,
Fe, Mn, Zn, Cu, B, Al and Na in whole aboveground
biomass) for each of the 15 perennial grassland plant
species that survived in monocultures and coexisted
in mixtures in a long-term grassland biodiversity
experiment (Table S1). To determine which of these
42 traits were most informative (Table S2), we used
these species traits and the independently determined
phylogeny of these species to explore the following
questions:

1. What are the relative strengths of the phylogenetic
signal of chemical traits versus morphological and
metabolic traits for each trait on its own?

2. Which suites of three traits, one for each major clade,
differentiate these plant species into functional trait
clusters, and what is the correspondence between these
clusters and the reported phylogeny of these species?

3. Do the clusters based on the set of three traits with
highest congruency to the phylogeny have statistical
power to explain the effect of biodiversity on ecosys-
tem primary productivity?
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MATERIAL AND METHODS
Study site

Our study was conducted in the Biodiversity I experi-
ment at the Cedar Creek Ecosystem Science Reserve in
East Bethel. The soil of the site is sandy, low in organic
matter, high in P, and low in N and K (Grigal, 1974). The
experimental details are published (Tilman et al., 1997).
In brief, the fully randomised experimental design con-
sists of 154 plots, with each 9x9m plot seeded in spring
1994 with 1, 2, 4, 8 or 16 perennial grassland herbaceous
species, and with 32, 28, 29, 30 and 35 replicates of each
diversity level respectively. The plant species composi-
tion of each plot is a separate random draw. Each plot
is weeded to remove plant species not assigned in 1994.

Collection of trait data

Traits of the 15 plant species that persisted in the one-
species treatment (Table S1) were determined using bio-
mass collected in the plots and from data obtained from
the TRY trait database (Kattge et al., 2020) including the
following studies and databases (Abakumova et al., 2016;
Atkin et al., 1997, 2015; Bahn et al., 1999; Belluau &
Shipley, 2017, 2018; Bragazza, 2009; Byun et al., 2013;
Cadotte, 2017; Campbell et al., 2007; Ciocarlan, 2009;
Cornelissen, 1996; Cornwell et al., 2008, 2016; Craine
et al., 2005, 2009, 2011, 2012, 2013; Dalke et al., 2018;
de Vries & Bardgett, 2016; Diaz et al., 2004; Everwand
et al., 2014; Fitter & Peat, 1994; Fry et al., 2014; Garnier
etal., 2007; Gos et al., 2016; Green, 2002; Guy et al., 2013;
Han et al., 2005; Herz et al., 2017; Hickler, 1999;
Iversen et al., 2017, Kattge et al., 2009; Kew, 2014;
Kleyer et al., 2008; La Pierre & Smith, 2015; Laughlin
et al., 2010; Lhotsky et al., 2016; Lin et al., 2015; Louault
etal., 2005; Loveys et al., 2003; Maire et al., 2015; Meziane
& Shipley, 1999; Miller et al., 2018; Moles et al., 2004;
Onoda et al., 2011, 2017; Ordoiiez et al., 2010; Poorter
et al., 2009; Prentice et al., 2011; Quested et al., 2003;
Reich et al., 2008, 2009; Sandel et al., 2011; Schroeder-
Georgi et al., 2016; Schweingruber & Landolt, 2005;
Shipley, 2002; Shipley & Vu, 2002; Siefert, 2012; Siefert
et al., 2014; Smith & Dukes, 2017; Takkis, 2014; Tucker
et al., 2011; Vergutz et al., 2012; Walker, 2014; Wang
et al., 2017; Willis et al., 2010; Wright et al., 2004, 2017;
Wright & Sutton-Grier, 2012). We queried all possi-
ble traits within the TRY 5.0 database and use all nu-
meric traits with at least one measurement, with no trait
imputation, for each of the 15 species (Supplemental
Information S2).

We additionally used locally measured chemical,
leaf and morphological traits. Leaf and morphological
traits are described in Cadotte et al. (2009). There was
some overlap between the locally measured traits and
those pulled from the TRY repository, but the local

measurements were used as separate variables in case
they explained more variance. We additionally used local
aboveground tissue elemental concentrations (Al, B, C,
Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S, Zn) measured on
samples of each of the 15 species collected from a 0.10m
by 6m clipped strip of biomass from both 1-species and
16-species plots (further information in Supplemental
Information SI). Throughout the manuscript reference
to a single element refers to its % abundance by mass in
dry aboveground biomass. However, if a chemical trait is
prefixed with ‘leaf”, for example, leaf %N, this represents
the % N of dry leaves.

Analyses

All analyses were run using R version 4.2.1 (R core
Team 2022). Data processing and figure generation used
packages within tidyverse (Wickham, 2017). The analyses
are reproducible using a targets pipeline (Landau, 2021).

Phylogenetic signal

Based on the Leipzig catalogue of vascular plants
lcvplants (Freiberg et al.,, 2020), on the Angiosperm
Phylogeny Group et al. (2016), and using package taxize
(Chamberlain & Szdcs, 2013), the studied plant species
are in five plant families: Poaceae (6 species), Fabaceae
(4 species), Asteraceae (3 species), Lamiaceae (1 species)
and Apocynaceae (1 species) (Table S1). The latter three
families are all within a monophyletic clade, the Asterids.
The phylogeny therefore consists of three broad clades,
with Poaceae corresponding to the common grassland
functional group of grasses, Fabaceae to legumes and
Asterids to forbs. Analyses were initially run with a phy-
logenetic tree (Kothari et al., 2018) and then updated
using package V-phylomaker and found to be qualita-
tively consistent with V-Phylomaker (Jin & Qian, 2019).
We used the 42 traits in Table S2, each measured on each
of the species in Table SI, to test for a phylogenetic signal
using Blomberg's K (Blomberg et al., 2003), with pack-
age picante (Kembel et al., 2010). P-values were adjusted
using the false discovery rate correction (Benjamini &
Hochberg, 1995).

Species clustering

Agglomerative hierarchical clustering

For each trait, the distribution of trait values across
the 15 species was first normalised to have a multi-
species mean of 0 and a standard deviation of 1.0.
The resultant trait values were used for clustering.
Clustering used three traits to create a distance matrix
using function cluster::daisy with the Euclidean dis-
tance (Maechler, 2021). The distance matrix was then

ASUAOIT suowwo)) dANeaI) dqedrjdde oy Aq pauIdA0S 216 SI[ONIE Y 9N JO SA[NI J0J ATeIqI UI[UQ) AJ[IA\ UO (SUONIPUOD-PUL-SULIS}/ WO’ K[ 1M ATeIqI[oul[uo//:sdny) suonipuo)) pue sutd [, oy 23S [£202/L0/01] o Areiqr] suiuQ A[IM ‘79T 1919/ 111°01/10p/wod Ao[im Areiqrjaur[uo//:sdny woiy papeojumo( ‘0 ‘8¥7019%1



+ |

CHEMICAL TRAITS DEFINE

run through an agglomerative hierarchical clustering
(AGNEYS) algorithm (cluster::agnes). Ward's method was
used to minimise within-cluster variance (Legendre &
Legendre, 2012). The clusters were converted to a den-
drogram using package dendextend.

Comparison of phylogeny with AGNES clustering

We calculated all possible three-way combinations of
traits for the 42 traits (=11, 480). Each combination
of three traits was then run through AGNES as previ-
ously described. Next, the phylogenetic tree for these
same species was converted to a dendrogram object
using package phylogram (Wilkinson & Davy, 2018).
Each trait-based dendrogram was then compared to
the phylogenetic tree dendrogram using the cophenetic
correlation (dendextend.:cor_cophenetic). Display of the
functional trait dendrogram and the phylogenetic tree
was done with dendextend.:tanglegram.

Species trait volumes, clustering and relation to
aboveground productivity

Trait volumes

For the three-way combination of traits with the high-
est cophenetic correlation of their trait-based cluster
to the phylogeny, we used the package hypervolume
(Blonder et al., 2014) to calculate and visualise the three-
dimensional trait volume occupied by the 15 species.
Trait data for each species within each of the three trait
clusters were used to estimate a volume for each of three
groups, specifically a gaussian volume using a Silverman
kernel bandwidth estimator. Intersection of the three
volumes was tested using 50 bootstrapped volumes each
with Sorensen's index reported. Further details are pro-
vided in Supplemental Information S3.

Relationship of trait clusters to aboveground biomass
Each plot was assigned a cluster richness value of 1,
2 or 3 based on having been planted in 1994 with spe-
cies from one, two or three clades based on the experi-
mental design of Poaceae, Fabaceae or Asterids. For
example, all monocultures had a cluster richness value
of 1. A two-species plot with two-species in the same
cluster also received a value of 1 whereas a two species
plot with species from different clusters had a cluster
richness value of 2. Two C3 grasses, Elymus canadensis
and Agropyron smithii failed to persist in the experi-
ment and were not counted. However, a two-species
plot (Plot 234) originally planted with Elymus canaden-
sis and Lupinus perennis consistently contained other
grasses, despite weeding, and was given a cluster rich-
ness value of 2.

A linear regression was performed testing the depen-
dance of mean aboveground plot biomass from 2010 to
2018 on a two-way interaction between the natural log
of plant species number as a continuous variable and

cluster richness as a categorical variable (further details
in Supplemental Information SI).

Clustering and principal components

To visualise the variation in the traits of these species
and to reduce dimensionality, we conducted two prin-
cipal component analyses (PCA) using function rda in
package vegan on the scaled mean for each trait (Oksanen
et al., 2022): one with the top three traits based on their
cophenetic correlation, and one with all traits that had a
significant phylogenetic signal.

RESULTS

Testing the phylogenetic signal of 15 species'
plant traits

For this set of 15 species, we found that 30 out of 42
individual traits carried no significant phylogenetic
signal (p>0.05) (Table S3). Of the 12 traits that carried
statistically significant phylogenetic information, eight
traits were aboveground tissue chemical traits (%B,
%C, %Ca, %N, %K, %Mg, %S) and leaf %N. Three
morphological traits were significant (leaf shape (width
to length ratio); leaf dry matter content (LDMC); leaf
water), as was one metabolic trait, leaf delta B¢, which
differentiates C4 versus C3 photosynthetic pathways.
Among the 30 traits that did not differ from random
variation were specific leaf area, leaf photosynthetic
capacity, seed mass, plant height and fine root density
(Table S3).

Which traits drive congruence of functional
traits and phylogeny?

As the species in this experiment are drawn from three
main clades, we sought to determine which combina-
tions of three traits better clustered these species accord-
ing to their phylogeny. Sets of three traits were chosen
to seek a potential low-dimensional tradeoff surface that
might also help explain ecological coexistence. We there-
fore tested the association between a functional trait
dendrogram drawn from each set of three traits and the
phylogenetic tree using the cophenetic correlation.

Out of the total of 11, 480 possible three-way combi-
nations of these 42 traits, the single best correlation be-
tween trait-based clusters and phylogeny occurred for a
set of three chemical traits, %Ca, %N and %K (Figure 1).
These three chemical traits divided the 15 plant species
into clusters and sub-clusters that were strongly congru-
ent to their phylogeny (Figure 1). The three trait-based
clusters correspond with the family Poaceae, the family
Fabaceae and the Asterids clade.
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FIGURE 1 Similarity between a dendrogram based on the

phylogenetic tree and a dendrogram based on algorithmic clustering
with tissue % Ca, K and N. This case shows the best fit out of all 11,
480 three-trait combinations tested. The Ca, K and N dendrogram
results from Ward's clustering algorithm on the Euclidean distance of
standardised mean trait values of % aboveground tissue Ca, K and N
for 15 species. ‘Cor’ represents the cophenetic correlation comparing
the two dendrograms. The first three letters of genus and the first
two letters of species denote the Latin binomial found in Table S1 for
Asterids (purple, n=5), Fabaceae (orange, n=4) and Poaceae (green,
n=0).

For the top 15 combinations of three traits based
on their cophenetic correlations (ranging from 0.934 to
0.883), 82% of the traits were chemical traits, 16% were
morphological and 2% were metabolic (Figure S1). For
the top 137 trait combinations, which have cophenetic
correlation greater than 0.8, chemical traits occurred
70.3% of the time compared to 24.1% for morphological
and 5.6% for metabolic traits. %B, %N, %Ca, %K and
then leaf shape occurred most frequently (Figure 2a,b).

The highest mean cophenetic correlation for each pos-
sible combination of the three types of traits also suggests
that chemical traits are of high importance for the co-
existing plants we studied. The top 3-trait combinations
for each single type of trait are: for just chemical traits,
a cophenetic correlation, r, of 0.93 (%Ca, %N and %K,
rank=1); for just morphological traits, r=0.78 (LDMC,
leaf shape and number of leaflets, rank=196); for just
metabolic traits r=0.35 (leaf delta 13C, leaf delta 15N
and stomata conductance per leaf mass, rank=4229).
For the best two-way combinations of types of traits,
chemical + morphological traits have r=0.91 (%Ca, %K
and number of leaflets, rank=3); for chemical + metabo-
lism traits, r=0.88 (%N, %K and leaf photosynthesis per
leaf mass, rank=15); and for metabolic + morphological
traits, r=0.69 (fine root tissue density, leaf photosyn-
thesis per leaf area and leaf shape, rank=690). For all

three trait types, which is a chemical + a metabolic + a
morphological trait, r=0.84 (%B, leaf delta 15N and leaf
water, rank=55).

%Ca %N and %K best separated the phyloge-
netic groups, because Poaceae had low %Ca whereas
Fabaceae and Asterids had high %Ca (Figure 2c);
Fabaceae had high %N, but low %K; while Asterids had
low %N, but high %K (Figure 2c). In addition, Poaceae
were in general lower in concentration of other essen-
tial elements (N, leaf N, K, Ca, Mg, S and B), with nar-
rower leaves with higher LDMC (Figure 2c¢). Within
Poaceae, leaf delta °C distinguished C4 grasses from
C3 grasses and other C3 species (Figure S3). Both
Fabaceae and the Asterids had relatively higher %B and
%Ca than grasses along with wider leaves (Figure 2c).
Asterids and Fabaceae were differentiated as Fabaceae
had higher %N and wider leaves and Asterids had
higher %K and %B (Figure 2c).

Testing the dependance of aboveground biomass
on trait-defined clusters

The three tissue-chemistry-based clusters (Figure 3a)
each had distinct ecological impacts. Higher above-
ground productivity was associated more with adding
a species from an absent cluster than randomly adding
a new species (Figure 3a). A multiple regression demon-
strates a significant two-way interaction (p=0.016) be-
tween the log of the number of planted species and the
number of clusters planted in each plot (F,,;=46.18,
R?=0.61) (Table S4). The interaction reveals that at low
levels of species richness (1-4), increasing the number
of distinct clusters explains more variance in above-
ground productivity than increasing the number of
species when either just one or just two clusters were
represented in a plot (Figure 3a). Although there is a
well-known main effect of productivity increasing with
species richness, this slope did not differ from zero
when there was only one cluster present (slope=3.77
95% CI [-53.6, 61.1] (Figure 3a)). Similarly, the slope
did not differ from zero when only two clusters were
present (slope=—6.23 95% CI [-51.2, 38.7] (Figure 3a)).
It was only when all three clusters were present that
productivity positively depended on species richness
(slope=68.41 95% CI [35.5, 101.3]).

Examination of the trait volumes, which were gener-
ated using replicate samples of tissue %N, %K and %Ca
(Supplemental Information S3), shows that Poaceae
were distinct from the other groups with the greatest
distance from their centroids (Poaceae to Asterids 1.39,
or Poaceae to Fabaceae 1.43 vs. Fabaceae to Asterids
1.14) and with no detectable overlap of their estimated
trait volumes (Poaceae to Asterids: Sorensen 95% CI
[0.0, 0.046], p=0.65; Poaceae to Fabaceae: Sorensen
95% CI [0.00, 0.0018], p=0.83). Asterids and Fabaceae
were statistically distinct but do overlap (Sorensen 95%
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Three categories are presented as chemical (grey), metabolic (mustard) and morphological (blue). n.b. traits with a per cent occurrence <1%
are not shown to improve readability (c) Mean+1 SE for standardised trait values for each of 12 traits. All traits had a significant phylogenetic
signal (Table S3). Each mean represents values for Asterids (purple, n=35), Fabaceae (orange, n=4), and Poaceae (green, n=6) for species in

Table S1.

CI [0.04, 0.27], p=0.59) because the high %N content
of Asclepias tuberosa which makes it be closer to the
Fabaceae. Examining both panels of Figure 3 in tan-
dem, we can see that as the cluster richness of a plot
increases from one to two to three clusters present, the
traits of the community span a greater volume of the
three-dimensional trait space. Note the distinctness of
each cluster, and how any single cluster alone occupies
a much smaller volume of trait space than when two
or three clusters are present (Poaceae volume=0.37,
Fabaceae volume=1.9, Asterids volume=4.7; total vol-
ume of three clusters=6.99). Plots with two, three or
four species from the same cluster occupy a smaller
volume of trait space than when these species are from
two or three different clusters. Consistent with this ef-
fect, the analysis in Figure 3 shows that productivity
increases as a function of cluster richness. Indeed, it is
only when all three clusters are present that increases
in the number of plant species is associated with higher
productivity (Figure 3a).

Within cluster variation and axes of trait
coordination

To explore a higher-dimensional trait space that is evi-
dent once all three clusters were present (Figure 3a),
we use PCA on the mean trait values for the 15 spe-
cies using all 12 traits that had a phylogenetic sig-
nal (Table S3) and compare it to a similar PCA that
used just tissue %Ca, %N and %K. The latter PCA
reveals a first axis showing Poaceae being low in Ca,
N and K and Asterids and Fabaceae relatively higher
in those elements (Figure 4a). The second axis sepa-
rates Asterids and Fabaceae, with Asterids higher in
%K and Fabaceae higher in %N (Figure 4a). For the
12-trait PCA, which used tissue %B, %Ca, %C, %K,
%Mg, %N, LDMC, leaf shape, leaf water, leaf delta
13C, leaf %N, %N and %S (Table S3), the first princi-
pal component separated the Poaceae from the non-
grasses (Figure 4b) based on Poaceae being higher
in LDMC and leaf delta *C (C4 grasses) and having
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FIGURE 3 (a) Mean aboveground biomass (gm™?) versus the
natural log of the number of planted species. Each jittered point
represents the mean aboveground biomass of a given plot from 2010
to 2018 (n=154 plots). Each point is coloured based on the number
of clusters present in a given plot, with 1 being red circles, 2 being
blue squares and 3 being green diamonds. The mean plot biomass
+1 SE for plots with a given value is displayed with a black outline
and error bar for each associated value of plant species diversity,
that is, the number of species planted in a plot. The solid line + a
dashed line represents fitted values from a two-way interaction in
a linear regression between the log,(Number of Species) x cluster
richness (p=0.016). (b) The mean % whole aboveground percentage
of calcium, nitrogen and potassium for 15 species. Each point

is coloured as to whether it is within Poaceae (green), Fabaceae
(orange) or the Asterids (purple). The cloud of smaller points
surrounding the larger spheres represents an estimated gaussian
probability volume using replicated values for all species in each
cluster (Poaceae n=43; Asterids n=35; Fabaceae n=30).

narrower leaves (leaf shape), and lower %B, %Ca, %K,
leaf water, %Mg, leaf %N, %N and %S (Figure 4b).
The second principal component splits the Fabaceae
and Asterids with the Asterids being relatively higher
in %B, %K, %Mg and leaf water content and lower in
LDMC and Fabaceae higher in %C, leaf %N, %N and
%S (Figure 4b).

-2 -1 0 1

FIGURE 4 Each panel shows results of a principal component
analysis (PCA) using standardised mean trait values for the 15
species. Each biplot is scaled symmetrically where each point is the
mean value of a species, with a 95% ellipsoid shown for Asterids,
Fabaceae and Poaceae. Panel (a) shows a PCA based solely on
aboveground tissue %Ca, %N and %K. Panel (b) shows loadings for
all 12 significant traits (see Table S3): % aboveground %B, %Ca, %C,
%K, %Mg, leaf %N, %N and %S, leaf dry matter content (LDMC),
leaf shape, leaf water, leaf delta Bc.

DISCUSSION

Our analyses show that species-specific plant chemical
traits, particularly aboveground tissue concentrations of
N, Ca, K and B, clustered species into groups highly con-
sistent with their phylogeny. These three functional and
phylogenetic clusters were also important determinants
of ecosystem productivity in these grasslands. Our com-
parisons suggest that plant chemical traits were at least
as important, and potentially more important, than com-
monly measured morphological and physiological traits
in describing the phylogeny of these species and the pro-
ductivity of the plot-scale ecosystems that contain various
combinations of these species (Fernandez-Martinez, 2022;
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Kaspari & Powers, 2016; Penuelas et al., 2019; Sardans
et al., 2021; Walker et al., 2022). Our results suggest that
chemical trait differences among these grassland species
within Poaceae, Fabaceae, and the Asterids may quan-
tify phylogenetically conserved axes of niche differentia-
tion between these three clades that might structure their
local competitive coexistence. If so, we wonder if such tis-
sue chemical differences, and their potential impacts on
competitive coexistence, might be a more general feature
of these and other plant taxonomic groups and if so, if
these chemical trait differences might have persisted dur-
ing their radiations (Broadley et al., 2004; Neugebauer
et al., 2018). Because phylogenetic clusters drawn from
chemical traits align with known ecological functional
groups, our results help explain the reported ecological
effects of phylogenetic diversity (Cadotte, 2017; Cadotte
et al., 2009; Cavender-Bares et al., 2021; Davies et al., 2016;
Flynn et al.,, 2011; Schweiger et al., 2018; Srivastava
et al., 2012; Steudel et al., 2016).

Cadotte et al. (2009) predicted that phylogenetic dis-
tance was an important axis of diversity that could ex-
plain ecosystem functioning because it captures traits
that might not be measured in a given study, but were
still important as latent variables. Here expanding on the
common set of functional traits by using a wide-array of
chemical, metabolic and morphological traits, we found
that it was a combination of chemical traits (Fernandez-
Martinez, 2022), that best mapped onto phylogenetic
distances. For this reason, increasing species richness in
this experiment increases both functional and phyloge-
netic space (Liu et al., 2015).

The three-dimensional trait space defined by the tis-
sue % Ca, % K and % N for the 15 species illuminates
plausible multidimensional tradeoffs between the three
phylogenetic clusters (Figure 3b), which correspond
with traditional grassland functional groups of grasses,
legumes and forbs (Tilman, 2001). These trait differ-
ences are reminiscent of Hutchinsonian niche hyper-
volumes (Blonder, 2018; Clark et al., 2018; Holt, 2009;
Hutchinson, 1957; Schweiger et al., 2018), with Poaceae,
Fabaceae and the Asterids occupying distinct regions
of trait space (Figures 3b and 4a). Perhaps lower tis-
sue concentration of each element in a plant species
may be indicative of a lower R* for that nutrient (sensu
Tilman, 1982) and thus greater competitive ability for
that element (except, of course, for N in Fabaceae). If so,
chemical trait differences might be a useful proxy to help
explain competitive tradeoffs that lead to coexistence
(Klausmeier et al., 2020; Kraft et al., 2015; Tilman, 1982).

Because theory suggests that niche differences may ex-
plain coexistence and that coexistence can underpin ove-
ryielding (Lehman & Tilman, 2000; Vandermeer, 1989),
our analyses suggest that increasing species richness
with species from distinct functional and phylogenetic
clusters may help explain the positive effect of plant bio-
diversity on productivity (Reich et al., 2012). No single
species, or group of functionally similar species, is likely

able to drive the full suite of biogeochemical processes
that cause an ecosystem to accumulate higher amounts
of all the essential elements that underpin soil fertility
and primary productivity (Crocker & Major, 1955; Furey
& Tilman, 2021; Hobbie, 2015; Jenny, 1958; Tansley, 1935;
Vitousek & Reiners, 1975; Zinke, 1962).

A growing body of evidence suggests the ecological
importance of interspecific differences in plant chemical
traits, including both elemental concentration and sec-
ondary metabolites (Aerts & Chapin I1I, 2000; Bitomsky
et al., 2023; Fernandez-Martinez et al., 2021; Kaspari &
Powers, 2016; Mladkova et al., 2018; Peniuelas et al., 2019;
Reich et al., 2005; Walker et al., 2022; White et al., 2012).
The full elemental composition of a plant species has
been called its elementome or ionome and is thought to
be related to competitive abilities for different nutrients
and to function as a biogeochemical niche (Pefiuelas
et al., 2019; Salt et al., 2008). For example, in the Park
Grass Experiment, such chemical differences were as-
sociated with plant species abundances and presumed
competitive abilities that led to coexistence or displace-
ment in response to different patterns of fertilisation
(Lawes et al., 1882; Tilman, 1982; White et al., 2012). In
addition, while beyond the scope of our data, the con-
sideration of plant secondary metabolites, for example,
the metabolome (Raguso et al., 2015; Walker et al., 2022),
may further help to differentiate the trait space eluci-
dating within clade/functional group differences. For
example, secondary metabolites within genus Asclepias
help define both its clade and its functional responses to
herbivory (Agrawal et al., 2009). Further studies might
benefit from examination of herbivore-relevant chemi-
cal elements such as Si (de Tombeur et al., 2023; Schaller
et al.,, 2016) and Na (Borer et al., 2019; Kaspari &
Welti, 2023). We believe that our general approach may
be insightful in many kinds of ecosystems, but our pre-
cise results are of greatest relevance to our experiment,
which has low levels of soil N and K, and high levels of
soil P (Grigal, 1974), and no large herbivores.

In total, plant chemical traits, specifically tissue ele-
mental concentrations of potentially limiting nutrients,
were significantly associated with plant phylogeny and
ecosystem productivity in our grassland study. While
our small number of species limits any broad evolution-
ary arguments, we demonstrate that both functional and
phylogenetic differences underpinning ecosystem func-
tioning can be described using tissue % Ca, N, K and B
(Fernandez-Martinez, 2022). These findings lead us to
wonder the extent to which plant species in tropical, tem-
perate and boreal forests, deserts and other grasslands
might be similarly differentiated (Bitomsky et al., 2023;
Fernandez-Martinez et al., 2021; Kaspari et al., 2021;
Miladkova et al., 2018; Neugebauer et al., 2020; Sardans
et al., 2015, 2021; White et al., 2012). Might plant tissue
ratios beyond solely N and P, but including K, Ca and/or
B and Si be as insightful in terrestrial ecosystems as have
been Redfield (1934) C:N:P ratios in aquatic ecosystems?
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If so, it would be interesting to know the ecological con-
sequences of how chemical traits, plant stoichiometry
and secondary metabolites covary along known tradeoff
axes of leaf and whole plant physiology (e.g. Carmona
et al., 2021; Raguso et al., 2015; Reich, 2014; Sterner &
Elser, 2002; Walker et al., 2022). More studies will be
needed to determine if, in general, plant chemical traits
may be more likely to be phylogenetically conserved
than other types of traits and if they capture functional
clusters important for understanding how biodiversity
regulates ecosystem processes. Our results suggest that
plant chemical traits merit more attention than they have
received to date and may illuminate recent debates in
the literature on the merits of functional traits in driv-
ing ecosystem functioning (Chacén-Labella et al., 2023;
Hagan et al., 2023; van der Plas et al., 2020, 2023).
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