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INTRODUCTION

Ecology is in the midst of a search for the plant traits 
that best explain how and why species composition and 
biodiversity influence ecosystem functioning (Chacón-
Labella et al., 2023; Díaz et al., 2016; Hagan et al., 2023; 
Loreau,  2010; van der Plas et al.,  2020, 2023; Walker 
et al.,  2022). Such traits might be based on important 
aspects of plant physiology and morphology (Carmona 
et al.,  2021; Reich,  2014), the mechanisms controlling 
competitive coexistence (Klausmeier et al.,  2020; Kraft 
et al., 2015; Lehman & Tilman, 2000), or the processes that 

drive fluxes of matter and energy (Furey & Tilman, 2021; 
Loreau, 2010; Roscher et al., 2004, 2012). Analyses of plant 
biodiversity experiments have suggested that greater plant 
functional trait diversity may cause greater primary pro-
ductivity (Bongers et al., 2021; Clark et al., 2012; Roscher 
et al., 2012; Tilman et al., 1997; Tilman & Fornara, 2009; 
Weisser et al., 2017). However, it is not clear which func-
tional traits are most relevant (Chacón-Labella et al., 2023; 
van der Plas et al., 2020; Walker et al., 2022). Other anal-
yses have suggested that phylogenetic diversity may be a 
better predictor of ecosystem functioning than plant spe-
cies richness, perhaps because phylogeny may capture 
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Abstract
To determine which types of plant traits might better explain ecosystem functioning 
and plant evolutionary histories, we compiled 42 traits for each of 15 perennial 
species in a biodiversity experiment. We used every possible combination of three 
traits to cluster species. Across these 11,480 combinations, clusters generated using 
tissue %Ca, %N and %K best mapped onto phylogeny. Moreover, for the 15 best 
combinations of three traits, 82% of traits were chemical, 16% morphological and 
2% metabolic. The diversity-dependence of ecosystem productivity was better 
explained by the %Ca, %N and %K clusters: compared to adding a new species 
at random, adding a species from an absent cluster/clade better-explained gains 
in productivity. Species number impacted productivity only when all clusters 
were present. Our results suggest that tissue elemental chemistry might be more 
phylogenetically conserved and more strongly related to ecosystem functioning 
than commonly measured morphological and physiological traits, a possibility 
that merits exploration.
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an ecologically relevant suite of as-yet undetermined or 
difficult-to-measure underlying traits that promote niche 
complementarity (Cadotte,  2017; Cadotte et al.,  2009; 
Huang et al., 2020). Moreover, a deeper understanding of 
which traits are phylogenetically conserved (Cadotte, 2017; 
Cavender-Bares et al.,  2009; Davies et al.,  2016; Flynn 
et al., 2011; Srivastava et al., 2012; Steudel et al., 2016) may 
help clarify why certain suites of competing species co-
exist locally and why biodiversity has ecological impacts 
(Tilman et al., 2014).

Because local biodiversity requires multispecies coex-
istence, empirically determining which plant functional 
traits are associated with coexistence, evolutionary 
history and ecosystem functioning could offer signif-
icant insights into the traits, and theories, of greatest 
ecological and evolutionary importance (Klausmeier 
et al.,  2020). For example, coexistence might be ex-
plained by seed traits and dispersal abilities (Sullivan 
et al., 2018; Tilman, 1994), by how height and numerous 
aspects of leaf physiology and morphology impact light 
capture and competition (Reich,  2014; Westoby,  1998), 
or by tradeoffs in plant defences and competitive abil-
ities (Holt & Bonsall,  2017). Other types of traits that 
reflect chemical stoichiometric differences (Sterner & 
Elser,  2002) or other plant chemical traits, including 
plant secondary chemistry (Walker et al., 2022), might 
also explain coexistence. In particular, all plants re-
quire and may compete for essential elements (Kaspari 
& Powers,  2016; Peñuelas et al.,  2019; Salt et al.,  2008; 
Sterner & Elser, 2002; Tilman, 1982; Walker et al., 2022).

It seems plausible that chemical traits might offer in-
sights into both plant competitive coexistence and plant 
evolutionary history (Broadley et al., 2003; Fernández-
Martínez et al., 2021; Neugebauer et al., 2018; Peñuelas 
et al., 2019; Walker et al., 2022; White et al., 2012). For 
example, differing requirements for elements such as N, 
P, K and Ca may allow competing plant species to coex-
ist (Tilman, 1982), and may cause tissue levels of certain 
elements such as Ca to be phylogenetically conserved 
within plant families (Bitomský et al.,  2023; Broadley 
et al., 2003; Mládková et al., 2018; Neugebauer et al., 2018; 
Sardans et al., 2021; White et al., 2012). From an ecosys-
tem perspective, because of plant–soil feedback effects, 
interspecific differences in plant elemental chemistry 
could alter the quantities and the stoichiometric ra-
tios of limiting elements in an ecosystem (Ehrenfeld 
et al.,  2005; Furey & Tilman,  2021; Hobbie,  2015; 
Jobbágy & Jackson, 2001; Reich et al., 2005; Sterner & 
Elser, 2002; Waring et al., 2015; Wedin & Tilman, 1990; 
Zinke,  1962). The resultant changes in the supply 
rates of limiting elements could increase primary pro-
ductivity, change outcomes of resource competition 
(Tilman,  1982; Wedin & Tilman,  1990) and shift eco-
system biogeochemistry (Chapin et al.,  1986; Kaspari 
& Powers,  2016; Vitousek & Reiners,  1975). For these 
reasons, expanding the commonly measured set of 

functional traits to include tissue chemical traits might 
provide novel insights (Fernández-Martínez,  2022; 
Walker et al., 2022).

The ecological importance of chemical elements 
such as nitrogen (N) and phosphorus (P) is well known 
(Chapin et al., 1986; Guiz et al., 2016, 2018; Sterner & 
Elser, 2002; Walker & Syers, 1976), but other elements 
may also be important (Kaspari & Powers, 2016). For 
example, boron (B) may be a limiting micronutrient 
for the tropical rainforest of Barro Colorado Island 
(Steidinger,  2015; Turner et al.,  2017), and is one of 
the more limiting micronutrients in many agricultural 
soils (Shorrocks, 1997). Tissue % Ca has been shown 
to differentiate some plant families, with % Ca being 
low in grasses (Poaceae) relative to other angiosperm 
families (Bitomský et al., 2023; Broadley et al., 2003; 
Mládková et al.,  2018; Neugebauer et al.,  2018). 
Furthermore tree species within Acer have higher % 
Ca than those within Pinus (Reich et al., 2005). Tissue 
% Ca also discriminated among the herbaceous plant 
families in the Park Grass Experiment at Rothamsted 
(White et al.,  2012). These findings suggest that the 
plant tissue levels of less commonly measured ele-
ments may capture axes of niche differentiation, may 
be phylogenetically conserved and may help explain 
why biodiversity impacts ecosystem functioning 
(Fernández-Martínez, 2022; Kaspari & Powers, 2016; 
Peñuelas et al.,  2019; Sardans et al.,  2021; Schaller 
et al., 2016; White et al., 2012).

Here we analyse a suite of 42 plant traits, including 
21 morphological traits (e.g. specific leaf area, height, 
seed mass, fine root density), six metabolic traits (e.g. 
leaf photosynthesis rate, leaf stomatal conductance, 
leaf delta 13C) and 15 chemical traits (concentrations 
of leaf N and concentrations of C, N, P, K, S, Ca, Mg, 
Fe, Mn, Zn, Cu, B, Al and Na in whole aboveground 
biomass) for each of the 15 perennial grassland plant 
species that survived in monocultures and coexisted 
in mixtures in a long-term grassland biodiversity 
experiment (Table  S1). To determine which of these 
42 traits were most informative (Table  S2), we used 
these species traits and the independently determined 
phylogeny of these species to explore the following 
questions:

1.	 What are the relative strengths of the phylogenetic 
signal of chemical traits versus morphological and 
metabolic traits for each trait on its own?

2.	 Which suites of three traits, one for each major clade, 
differentiate these plant species into functional trait 
clusters, and what is the correspondence between these 
clusters and the reported phylogeny of these species?

3.	 Do the clusters based on the set of three traits with 
highest congruency to the phylogeny have statistical 
power to explain the effect of biodiversity on ecosys-
tem primary productivity?
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M ATERI A L A N D M ETHODS

Study site

Our study was conducted in the Biodiversity II experi-
ment at the Cedar Creek Ecosystem Science Reserve in 
East Bethel. The soil of the site is sandy, low in organic 
matter, high in P, and low in N and K (Grigal, 1974). The 
experimental details are published (Tilman et al., 1997). 
In brief, the fully randomised experimental design con-
sists of 154 plots, with each 9 × 9 m plot seeded in spring 
1994 with 1, 2, 4, 8 or 16 perennial grassland herbaceous 
species, and with 32, 28, 29, 30 and 35 replicates of each 
diversity level respectively. The plant species composi-
tion of each plot is a separate random draw. Each plot 
is weeded to remove plant species not assigned in 1994.

Collection of trait data

Traits of the 15 plant species that persisted in the one-
species treatment (Table S1) were determined using bio-
mass collected in the plots and from data obtained from 
the TRY trait database (Kattge et al., 2020) including the 
following studies and databases (Abakumova et al., 2016; 
Atkin et al.,  1997, 2015; Bahn et al.,  1999; Belluau & 
Shipley,  2017, 2018; Bragazza,  2009; Byun et al.,  2013; 
Cadotte,  2017; Campbell et al.,  2007; Ciocârlan,  2009; 
Cornelissen,  1996; Cornwell et al.,  2008, 2016; Craine 
et al.,  2005, 2009, 2011, 2012, 2013; Dalke et al.,  2018; 
de Vries & Bardgett, 2016; Díaz et al., 2004; Everwand 
et al., 2014; Fitter & Peat, 1994; Fry et al., 2014; Garnier 
et al., 2007; Gos et al., 2016; Green, 2002; Guy et al., 2013; 
Han et al.,  2005; Herz et al.,  2017; Hickler,  1999; 
Iversen et al.,  2017; Kattge et al.,  2009; Kew,  2014; 
Kleyer et al.,  2008; La Pierre & Smith,  2015; Laughlin 
et al., 2010; Lhotsky et al., 2016; Lin et al., 2015; Louault 
et al., 2005; Loveys et al., 2003; Maire et al., 2015; Meziane 
& Shipley,  1999; Miller et al.,  2018; Moles et al.,  2004; 
Onoda et al.,  2011, 2017; Ordoñez et al.,  2010; Poorter 
et al.,  2009; Prentice et al.,  2011; Quested et al.,  2003; 
Reich et al., 2008, 2009; Sandel et al., 2011; Schroeder-
Georgi et al.,  2016; Schweingruber & Landolt,  2005; 
Shipley, 2002; Shipley & Vu, 2002; Siefert, 2012; Siefert 
et al., 2014; Smith & Dukes, 2017; Takkis, 2014; Tucker 
et al.,  2011; Vergutz et al.,  2012; Walker,  2014; Wang 
et al., 2017; Willis et al., 2010; Wright et al., 2004, 2017; 
Wright & Sutton-Grier,  2012). We queried all possi-
ble traits within the TRY 5.0 database and use all nu-
meric traits with at least one measurement, with no trait 
imputation, for each of the 15 species (Supplemental 
Information S2).

We additionally used locally measured chemical, 
leaf and morphological traits. Leaf and morphological 
traits are described in Cadotte et al.  (2009). There was 
some overlap between the locally measured traits and 
those pulled from the TRY repository, but the local 

measurements were used as separate variables in case 
they explained more variance. We additionally used local 
aboveground tissue elemental concentrations (Al, B, C, 
Ca, Cu, Fe, K, Mg, Mn, N, Na, P, S, Zn) measured on 
samples of each of the 15 species collected from a 0.10 m 
by 6 m clipped strip of biomass from both 1-species and 
16-species plots (further information in Supplemental 
Information S1). Throughout the manuscript reference 
to a single element refers to its % abundance by mass in 
dry aboveground biomass. However, if a chemical trait is 
prefixed with ‘leaf’, for example, leaf %N, this represents 
the % N of dry leaves.

Analyses

All analyses were run using R version 4.2.1 (R core 
Team 2022). Data processing and figure generation used 
packages within tidyverse (Wickham, 2017). The analyses 
are reproducible using a targets pipeline (Landau, 2021).

Phylogenetic signal

Based on the Leipzig catalogue of vascular plants 
lcvplants (Freiberg et al.,  2020), on the Angiosperm 
Phylogeny Group et al. (2016), and using package taxize 
(Chamberlain & Szöcs, 2013), the studied plant species 
are in five plant families: Poaceae (6 species), Fabaceae 
(4 species), Asteraceae (3 species), Lamiaceae (1 species) 
and Apocynaceae (1 species) (Table S1). The latter three 
families are all within a monophyletic clade, the Asterids. 
The phylogeny therefore consists of three broad clades, 
with Poaceae corresponding to the common grassland 
functional group of grasses, Fabaceae to legumes and 
Asterids to forbs. Analyses were initially run with a phy-
logenetic tree (Kothari et al.,  2018) and then updated 
using package V-phylomaker and found to be qualita-
tively consistent with V-Phylomaker (Jin & Qian, 2019). 
We used the 42 traits in Table S2, each measured on each 
of the species in Table S1, to test for a phylogenetic signal 
using Blomberg's K (Blomberg et al., 2003), with pack-
age picante (Kembel et al., 2010). P-values were adjusted 
using the false discovery rate correction (Benjamini & 
Hochberg, 1995).

Species clustering

Agglomerative hierarchical clustering
For each trait, the distribution of trait values across 
the 15 species was first normalised to have a multi-
species mean of 0 and a standard deviation of 1.0. 
The resultant trait values were used for clustering. 
Clustering used three traits to create a distance matrix 
using function cluster::daisy with the Euclidean dis-
tance (Maechler,  2021). The distance matrix was then 
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4  |      CHEMICAL TRAITS DEFINE

run through an agglomerative hierarchical clustering 
(AGNES) algorithm (cluster::agnes). Ward's method was 
used to minimise within-cluster variance (Legendre & 
Legendre, 2012). The clusters were converted to a den-
drogram using package dendextend.

Comparison of phylogeny with AGNES clustering
We calculated all possible three-way combinations of 
traits for the 42 traits (n = 11, 480). Each combination 
of three traits was then run through AGNES as previ-
ously described. Next, the phylogenetic tree for these 
same species was converted to a dendrogram object 
using package phylogram (Wilkinson & Davy,  2018). 
Each trait-based dendrogram was then compared to 
the phylogenetic tree dendrogram using the cophenetic 
correlation (dendextend::cor_cophenetic). Display of the 
functional trait dendrogram and the phylogenetic tree 
was done with dendextend::tanglegram.

Species trait volumes, clustering and relation to 
aboveground productivity

Trait volumes
For the three-way combination of traits with the high-
est cophenetic correlation of their trait-based cluster 
to the phylogeny, we used the package hypervolume 
(Blonder et al., 2014) to calculate and visualise the three-
dimensional trait volume occupied by the 15 species. 
Trait data for each species within each of the three trait 
clusters were used to estimate a volume for each of three 
groups, specifically a gaussian volume using a Silverman 
kernel bandwidth estimator. Intersection of the three 
volumes was tested using 50 bootstrapped volumes each 
with Sorensen's index reported. Further details are pro-
vided in Supplemental Information S3.

Relationship of trait clusters to aboveground biomass
Each plot was assigned a cluster richness value of 1, 
2 or 3 based on having been planted in 1994 with spe-
cies from one, two or three clades based on the experi-
mental design of Poaceae, Fabaceae or Asterids. For 
example, all monocultures had a cluster richness value 
of 1. A two-species plot with two-species in the same 
cluster also received a value of 1 whereas a two species 
plot with species from different clusters had a cluster 
richness value of 2. Two C3 grasses, Elymus canadensis 
and Agropyron smithii failed to persist in the experi-
ment and were not counted. However, a two-species 
plot (Plot 234) originally planted with Elymus canaden-
sis and Lupinus perennis consistently contained other 
grasses, despite weeding, and was given a cluster rich-
ness value of 2.

A linear regression was performed testing the depen-
dance of mean aboveground plot biomass from 2010 to 
2018 on a two-way interaction between the natural log 
of plant species number as a continuous variable and 

cluster richness as a categorical variable (further details 
in Supplemental Information S1).

Clustering and principal components

To visualise the variation in the traits of these species 
and to reduce dimensionality, we conducted two prin-
cipal component analyses (PCA) using function rda in 
package vegan on the scaled mean for each trait (Oksanen 
et al., 2022): one with the top three traits based on their 
cophenetic correlation, and one with all traits that had a 
significant phylogenetic signal.

RESU LTS

Testing the phylogenetic signal of 15 species' 
plant traits

For this set of 15 species, we found that 30 out of 42 
individual traits carried no significant phylogenetic 
signal (p > 0.05) (Table S3). Of the 12 traits that carried 
statistically significant phylogenetic information, eight 
traits were aboveground tissue chemical traits (%B, 
%C, %Ca, %N, %K, %Mg, %S) and leaf %N. Three 
morphological traits were significant (leaf shape (width 
to length ratio); leaf dry matter content (LDMC); leaf 
water), as was one metabolic trait, leaf delta 13C, which 
differentiates C4 versus C3 photosynthetic pathways. 
Among the 30 traits that did not differ from random 
variation were specific leaf area, leaf photosynthetic 
capacity, seed mass, plant height and fine root density 
(Table S3).

Which traits drive congruence of functional 
traits and phylogeny?

As the species in this experiment are drawn from three 
main clades, we sought to determine which combina-
tions of three traits better clustered these species accord-
ing to their phylogeny. Sets of three traits were chosen 
to seek a potential low-dimensional tradeoff surface that 
might also help explain ecological coexistence. We there-
fore tested the association between a functional trait 
dendrogram drawn from each set of three traits and the 
phylogenetic tree using the cophenetic correlation.

Out of the total of 11, 480 possible three-way combi-
nations of these 42 traits, the single best correlation be-
tween trait-based clusters and phylogeny occurred for a 
set of three chemical traits, %Ca, %N and %K (Figure 1). 
These three chemical traits divided the 15 plant species 
into clusters and sub-clusters that were strongly congru-
ent to their phylogeny (Figure 1). The three trait-based 
clusters correspond with the family Poaceae, the family 
Fabaceae and the Asterids clade.
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      |  5FUREY and TILMAN

For the top 15 combinations of three traits based 
on their cophenetic correlations (ranging from 0.934 to 
0.883), 82% of the traits were chemical traits, 16% were 
morphological and 2% were metabolic (Figure S1). For 
the top 137 trait combinations, which have cophenetic 
correlation greater than 0.8, chemical traits occurred 
70.3% of the time compared to 24.1% for morphological 
and 5.6% for metabolic traits. %B, %N, %Ca, %K and 
then leaf shape occurred most frequently (Figure 2a,b).

The highest mean cophenetic correlation for each pos-
sible combination of the three types of traits also suggests 
that chemical traits are of high importance for the co-
existing plants we studied. The top 3-trait combinations 
for each single type of trait are: for just chemical traits, 
a cophenetic correlation, r, of 0.93 (%Ca, %N and %K, 
rank = 1); for just morphological traits, r = 0.78 (LDMC, 
leaf shape and number of leaflets, rank = 196); for just 
metabolic traits r = 0.35 (leaf delta 13C, leaf delta 15 N 
and stomata conductance per leaf mass, rank = 4229). 
For the best two-way combinations of types of traits, 
chemical + morphological traits have r = 0.91 (%Ca, %K 
and number of leaflets, rank = 3); for chemical + metabo-
lism traits, r = 0.88 (%N, %K and leaf photosynthesis per 
leaf mass, rank = 15); and for metabolic + morphological 
traits, r = 0.69 (fine root tissue density, leaf photosyn-
thesis per leaf area and leaf shape, rank = 690). For all 

three trait types, which is a chemical + a metabolic + a 
morphological trait, r = 0.84 (%B, leaf delta 15 N and leaf 
water, rank = 55).

%Ca %N and %K best separated the phyloge-
netic groups, because Poaceae had low %Ca whereas 
Fabaceae and Asterids had high %Ca (Figure  2c); 
Fabaceae had high %N, but low %K; while Asterids had 
low %N, but high %K (Figure 2c). In addition, Poaceae 
were in general lower in concentration of other essen-
tial elements (N, leaf N, K, Ca, Mg, S and B), with nar-
rower leaves with higher LDMC (Figure  2c). Within 
Poaceae, leaf delta 13C distinguished C4 grasses from 
C3 grasses and other C3 species (Figure  S3). Both 
Fabaceae and the Asterids had relatively higher %B and 
%Ca than grasses along with wider leaves (Figure 2c). 
Asterids and Fabaceae were differentiated as Fabaceae 
had higher %N and wider leaves and Asterids had 
higher %K and %B (Figure 2c).

Testing the dependance of aboveground biomass 
on trait-defined clusters

The three tissue-chemistry-based clusters (Figure  3a) 
each had distinct ecological impacts. Higher above-
ground productivity was associated more with adding 
a species from an absent cluster than randomly adding 
a new species (Figure 3a). A multiple regression demon-
strates a significant two-way interaction (p = 0.016) be-
tween the log of the number of planted species and the 
number of clusters planted in each plot (F5,148 = 46.18, 
R2 = 0.61) (Table S4). The interaction reveals that at low 
levels of species richness (1–4), increasing the number 
of distinct clusters explains more variance in above-
ground productivity than increasing the number of 
species when either just one or just two clusters were 
represented in a plot (Figure  3a). Although there is a 
well-known main effect of productivity increasing with 
species richness, this slope did not differ from zero 
when there was only one cluster present (slope = 3.77 
95% CI [−53.6, 61.1] (Figure  3a)). Similarly, the slope 
did not differ from zero when only two clusters were 
present (slope = −6.23 95% CI [−51.2, 38.7] (Figure 3a)). 
It was only when all three clusters were present that 
productivity positively depended on species richness 
(slope = 68.41 95% CI [35.5, 101.3]).

Examination of the trait volumes, which were gener-
ated using replicate samples of tissue %N, %K and %Ca 
(Supplemental Information S3), shows that Poaceae 
were distinct from the other groups with the greatest 
distance from their centroids (Poaceae to Asterids 1.39, 
or Poaceae to Fabaceae 1.43 vs. Fabaceae to Asterids 
1.14) and with no detectable overlap of their estimated 
trait volumes (Poaceae to Asterids: Sorensen 95% CI 
[0.0, 0.046], p = 0.65; Poaceae to Fabaceae: Sorensen 
95% CI [0.00, 0.0018], p = 0.83). Asterids and Fabaceae 
were statistically distinct but do overlap (Sorensen 95% 

F I G U R E  1   Similarity between a dendrogram based on the 
phylogenetic tree and a dendrogram based on algorithmic clustering 
with tissue % Ca, K and N. This case shows the best fit out of all 11, 
480 three-trait combinations tested. The Ca, K and N dendrogram 
results from Ward's clustering algorithm on the Euclidean distance of 
standardised mean trait values of % aboveground tissue Ca, K and N 
for 15 species. ‘Cor’ represents the cophenetic correlation comparing 
the two dendrograms. The first three letters of genus and the first 
two letters of species denote the Latin binomial found in Table S1 for 
Asterids (purple, n = 5), Fabaceae (orange, n = 4) and Poaceae (green, 
n = 6).
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6  |      CHEMICAL TRAITS DEFINE

CI [0.04, 0.27], p = 0.59) because the high %N content 
of Asclepias tuberosa which makes it be closer to the 
Fabaceae. Examining both panels of Figure 3 in tan-
dem, we can see that as the cluster richness of a plot 
increases from one to two to three clusters present, the 
traits of the community span a greater volume of the 
three-dimensional trait space. Note the distinctness of 
each cluster, and how any single cluster alone occupies 
a much smaller volume of trait space than when two 
or three clusters are present (Poaceae volume = 0.37, 
Fabaceae volume = 1.9, Asterids volume = 4.7; total vol-
ume of three clusters = 6.99). Plots with two, three or 
four species from the same cluster occupy a smaller 
volume of trait space than when these species are from 
two or three different clusters. Consistent with this ef-
fect, the analysis in Figure  3 shows that productivity 
increases as a function of cluster richness. Indeed, it is 
only when all three clusters are present that increases 
in the number of plant species is associated with higher 
productivity (Figure 3a).

Within cluster variation and axes of trait 
coordination

To explore a higher-dimensional trait space that is evi-
dent once all three clusters were present (Figure 3a), 
we use PCA on the mean trait values for the 15 spe-
cies using all 12 traits that had a phylogenetic sig-
nal (Table  S3) and compare it to a similar PCA that 
used just tissue %Ca, %N and %K. The latter PCA 
reveals a first axis showing Poaceae being low in Ca, 
N and K and Asterids and Fabaceae relatively higher 
in those elements (Figure  4a). The second axis sepa-
rates Asterids and Fabaceae, with Asterids higher in 
%K and Fabaceae higher in %N (Figure 4a). For the 
12-trait PCA, which used tissue %B, %Ca, %C, %K, 
%Mg, %N, LDMC, leaf shape, leaf water, leaf delta 
13C, leaf %N, %N and %S (Table S3), the first princi-
pal component separated the Poaceae from the non-
grasses (Figure  4b) based on Poaceae being higher 
in LDMC and leaf delta 13C (C4 grasses) and having 

F I G U R E  2   (a) Percentage of occurrence for each trait and sub-panel (b) each trait category on average across all functional trait 
dendrograms with a cophenetic correlation greater than 0.8 (n = 137 out of 11, 480 total; top 1% of fits) to the genetic phylogeny for 15 species. 
Three categories are presented as chemical (grey), metabolic (mustard) and morphological (blue). n.b. traits with a per cent occurrence <1% 
are not shown to improve readability (c) Mean ± 1 SE for standardised trait values for each of 12 traits. All traits had a significant phylogenetic 
signal (Table S3). Each mean represents values for Asterids (purple, n = 5), Fabaceae (orange, n = 4), and Poaceae (green, n = 6) for species in 
Table S1.
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      |  7FUREY and TILMAN

narrower leaves (leaf shape), and lower %B, %Ca, %K, 
leaf water, %Mg, leaf %N, %N and %S (Figure  4b). 
The second principal component splits the Fabaceae 
and Asterids with the Asterids being relatively higher 
in %B, %K, %Mg and leaf water content and lower in 
LDMC and Fabaceae higher in %C, leaf %N, %N and 
%S (Figure 4b).

DISCUSSION

Our analyses show that species-specific plant chemical 
traits, particularly aboveground tissue concentrations of 
N, Ca, K and B, clustered species into groups highly con-
sistent with their phylogeny. These three functional and 
phylogenetic clusters were also important determinants 
of ecosystem productivity in these grasslands. Our com-
parisons suggest that plant chemical traits were at least 
as important, and potentially more important, than com-
monly measured morphological and physiological traits 
in describing the phylogeny of these species and the pro-
ductivity of the plot-scale ecosystems that contain various 
combinations of these species (Fernández-Martínez, 2022; 

F I G U R E  3   (a) Mean aboveground biomass (g m−2) versus the 
natural log of the number of planted species. Each jittered point 
represents the mean aboveground biomass of a given plot from 2010 
to 2018 (n = 154 plots). Each point is coloured based on the number 
of clusters present in a given plot, with 1 being red circles, 2 being 
blue squares and 3 being green diamonds. The mean plot biomass 
±1 SE for plots with a given value is displayed with a black outline 
and error bar for each associated value of plant species diversity, 
that is, the number of species planted in a plot. The solid line ± a 
dashed line represents fitted values from a two-way interaction in 
a linear regression between the loge(Number of Species) × cluster 
richness (p = 0.016). (b) The mean % whole aboveground percentage 
of calcium, nitrogen and potassium for 15 species. Each point 
is coloured as to whether it is within Poaceae (green), Fabaceae 
(orange) or the Asterids (purple). The cloud of smaller points 
surrounding the larger spheres represents an estimated gaussian 
probability volume using replicated values for all species in each 
cluster (Poaceae n = 43; Asterids n = 35; Fabaceae n = 30).

F I G U R E  4   Each panel shows results of a principal component 
analysis (PCA) using standardised mean trait values for the 15 
species. Each biplot is scaled symmetrically where each point is the 
mean value of a species, with a 95% ellipsoid shown for Asterids, 
Fabaceae and Poaceae. Panel (a) shows a PCA based solely on 
aboveground tissue %Ca, %N and %K. Panel (b) shows loadings for 
all 12 significant traits (see Table S3): % aboveground %B, %Ca, %C, 
%K, %Mg, leaf %N, %N and %S, leaf dry matter content (LDMC), 
leaf shape, leaf water, leaf delta 13C.
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8  |      CHEMICAL TRAITS DEFINE

Kaspari & Powers,  2016; Peñuelas et al.,  2019; Sardans 
et al., 2021; Walker et al., 2022). Our results suggest that 
chemical trait differences among these grassland species 
within Poaceae, Fabaceae, and the Asterids may quan-
tify phylogenetically conserved axes of niche differentia-
tion between these three clades that might structure their 
local competitive coexistence. If so, we wonder if such tis-
sue chemical differences, and their potential impacts on 
competitive coexistence, might be a more general feature 
of these and other plant taxonomic groups and if so, if 
these chemical trait differences might have persisted dur-
ing their radiations (Broadley et al.,  2004; Neugebauer 
et al.,  2018). Because phylogenetic clusters drawn from 
chemical traits align with known ecological functional 
groups, our results help explain the reported ecological 
effects of phylogenetic diversity (Cadotte,  2017; Cadotte 
et al., 2009; Cavender-Bares et al., 2021; Davies et al., 2016; 
Flynn et al.,  2011; Schweiger et al.,  2018; Srivastava 
et al., 2012; Steudel et al., 2016).

Cadotte et al. (2009) predicted that phylogenetic dis-
tance was an important axis of diversity that could ex-
plain ecosystem functioning because it captures traits 
that might not be measured in a given study, but were 
still important as latent variables. Here expanding on the 
common set of functional traits by using a wide-array of 
chemical, metabolic and morphological traits, we found 
that it was a combination of chemical traits (Fernández-
Martínez,  2022), that best mapped onto phylogenetic 
distances. For this reason, increasing species richness in 
this experiment increases both functional and phyloge-
netic space (Liu et al., 2015).

The three-dimensional trait space defined by the tis-
sue % Ca, % K and % N for the 15 species illuminates 
plausible multidimensional tradeoffs between the three 
phylogenetic clusters (Figure  3b), which correspond 
with traditional grassland functional groups of grasses, 
legumes and forbs (Tilman,  2001). These trait differ-
ences are reminiscent of Hutchinsonian niche hyper-
volumes (Blonder,  2018; Clark et al.,  2018; Holt,  2009; 
Hutchinson, 1957; Schweiger et al., 2018), with Poaceae, 
Fabaceae and the Asterids occupying distinct regions 
of trait space (Figures  3b and 4a). Perhaps lower tis-
sue concentration of each element in a plant species 
may be indicative of a lower R* for that nutrient (sensu 
Tilman,  1982) and thus greater competitive ability for 
that element (except, of course, for N in Fabaceae). If so, 
chemical trait differences might be a useful proxy to help 
explain competitive tradeoffs that lead to coexistence 
(Klausmeier et al., 2020; Kraft et al., 2015; Tilman, 1982).

Because theory suggests that niche differences may ex-
plain coexistence and that coexistence can underpin ove-
ryielding (Lehman & Tilman, 2000; Vandermeer, 1989), 
our analyses suggest that increasing species richness 
with species from distinct functional and phylogenetic 
clusters may help explain the positive effect of plant bio-
diversity on productivity (Reich et al., 2012). No single 
species, or group of functionally similar species, is likely 

able to drive the full suite of biogeochemical processes 
that cause an ecosystem to accumulate higher amounts 
of all the essential elements that underpin soil fertility 
and primary productivity (Crocker & Major, 1955; Furey 
& Tilman, 2021; Hobbie, 2015; Jenny, 1958; Tansley, 1935; 
Vitousek & Reiners, 1975; Zinke, 1962).

A growing body of evidence suggests the ecological 
importance of interspecific differences in plant chemical 
traits, including both elemental concentration and sec-
ondary metabolites (Aerts & Chapin III, 2000; Bitomský 
et al., 2023; Fernández-Martínez et al., 2021; Kaspari & 
Powers, 2016; Mládková et al., 2018; Peñuelas et al., 2019; 
Reich et al., 2005; Walker et al., 2022; White et al., 2012). 
The full elemental composition of a plant species has 
been called its elementome or ionome and is thought to 
be related to competitive abilities for different nutrients 
and to function as a biogeochemical niche (Peñuelas 
et al., 2019; Salt et al.,  2008). For example, in the Park 
Grass Experiment, such chemical differences were as-
sociated with plant species abundances and presumed 
competitive abilities that led to coexistence or displace-
ment in response to different patterns of fertilisation 
(Lawes et al., 1882; Tilman, 1982; White et al., 2012). In 
addition, while beyond the scope of our data, the con-
sideration of plant secondary metabolites, for example, 
the metabolome (Raguso et al., 2015; Walker et al., 2022), 
may further help to differentiate the trait space eluci-
dating within clade/functional group differences. For 
example, secondary metabolites within genus Asclepias 
help define both its clade and its functional responses to 
herbivory (Agrawal et al., 2009). Further studies might 
benefit from examination of herbivore-relevant chemi-
cal elements such as Si (de Tombeur et al., 2023; Schaller 
et al.,  2016) and Na (Borer et al.,  2019; Kaspari & 
Welti, 2023). We believe that our general approach may 
be insightful in many kinds of ecosystems, but our pre-
cise results are of greatest relevance to our experiment, 
which has low levels of soil N and K, and high levels of 
soil P (Grigal, 1974), and no large herbivores.

In total, plant chemical traits, specifically tissue ele-
mental concentrations of potentially limiting nutrients, 
were significantly associated with plant phylogeny and 
ecosystem productivity in our grassland study. While 
our small number of species limits any broad evolution-
ary arguments, we demonstrate that both functional and 
phylogenetic differences underpinning ecosystem func-
tioning can be described using tissue % Ca, N, K and B 
(Fernández-Martínez,  2022). These findings lead us to 
wonder the extent to which plant species in tropical, tem-
perate and boreal forests, deserts and other grasslands 
might be similarly differentiated (Bitomský et al., 2023; 
Fernández-Martínez et al.,  2021; Kaspari et al.,  2021; 
Mládková et al., 2018; Neugebauer et al., 2020; Sardans 
et al., 2015, 2021; White et al., 2012). Might plant tissue 
ratios beyond solely N and P, but including K, Ca and/or 
B and Si be as insightful in terrestrial ecosystems as have 
been Redfield (1934) C:N:P ratios in aquatic ecosystems? 
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      |  9FUREY and TILMAN

If so, it would be interesting to know the ecological con-
sequences of how chemical traits, plant stoichiometry 
and secondary metabolites covary along known tradeoff 
axes of leaf and whole plant physiology (e.g. Carmona 
et al., 2021; Raguso et al., 2015; Reich, 2014; Sterner & 
Elser,  2002; Walker et al.,  2022). More studies will be 
needed to determine if, in general, plant chemical traits 
may be more likely to be phylogenetically conserved 
than other types of traits and if they capture functional 
clusters important for understanding how biodiversity 
regulates ecosystem processes. Our results suggest that 
plant chemical traits merit more attention than they have 
received to date and may illuminate recent debates in 
the literature on the merits of functional traits in driv-
ing ecosystem functioning (Chacón-Labella et al., 2023; 
Hagan et al., 2023; van der Plas et al., 2020, 2023).
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