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ABSTRACT
Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) 
information of buildings is highly needed for urban planning and management as well as other 
applications such as city-scale building energy use modeling. Due to the limited availability of 
socio-economic geospatial data, it is more challenging to map building functions than building 
morphological information, especially over large areas. In this study, we proposed an inte
grated framework to map building functions in 50 U.S. cities by integrating multi-source web- 
based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) 
from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels 
from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM 
was used to identify residential buildings based on landscape features derived from Microsoft 
building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used 
to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). 
The accuracy assessment indicates that the proposed framework performed well, with an 
average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage 
of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities 
over the world. The data products generated from this study are of great use for quantitative 
city-scale urban studies, such as building energy use modeling at the single building level over 
large areas.

ARTICLE HISTORY 
Received 29 December 2022  
Accepted 25 September 2023 

KEYWORDS 
Building functions; 
geospatial data; TripAdvisor; 
Google Static Maps

1. Introduction

Buildings, the main venues of urban social and eco
nomic activities, are the most important component 
and the finest measurement unit for urban studies 
(Hu, You, and Neumann 2003). Information on the 
morphology (e.g. shape, size, and height) and function 
(e.g. working, living, and shopping) of buildings is 
highly needed for urban and regional planning as well 
as other quantitative urban studies (Kunze and Hecht  
2015). Building functions are shaped by the actual use of 
inhabitants, and therefore they can be viewed as 
a bridge, enabling researchers to monitor socioeco
nomic space. For example, with the help of data on 
building functions, we can investigate city-wide air 
quality (Xu et al. 2021), public health (Kousa et al.  
2002), energy consumption (Davila, Reinhart, and 
Bemis 2016; Li et al. 2018), energy heat emission (Luo 
et al. 2020), and disaster loss (Yeh, Loh, and Tsai 2006).

Considering the importance of building informa
tion on urban studies, many efforts have been devoted 
to mapping building footprints, heights, and func
tions. One way to capture building morphological 

information is to use physical features (e.g. spectrum, 
texture, and geometry) extracted from remote sensing 
data, including very high-resolution satellite imagery, 
aerial imagery, and Laser-scanner data (LiDAR). With 
large coverage and rich physical features, remote sen
sing data can be used to extract building morphologi
cal information over large-scale areas. For instance, 
Microsoft Maps team (Anon 2018) produced high- 
quality building footprint data in the United States, 
Canada, Uganda, and Tanzania by applying deep 
learning algorithms into Bing imagery. Li et al. 
(2020) estimated building height in 500 m resolution 
over the United States using Sentinel-1 synthetic aper
ture radar data. However, remote sensing data lack 
information about the economic and social function 
of buildings, limiting its ability to distinguish between 
buildings with similar spatial forms, such as, hotel and 
shopping mall.

To overcome the aforementioned limitations, social 
sensing data (e.g. social media check-in records, taxi 
trajectories, mobile phone calls, transit smart card 
records) have been widely used to differentiate buildings 
with different socio-economic functions (Arunplod et al.  
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2017; Liu et al. 2018; Niu et al. 2017; Zhuo et al. 2019). The 
information of building function can be derived by inte
grating multi-source social sensing data created by indi
viduals (Liu et al. 2015). For example, Niu et al. (2017) 
integrated social media users’ real-time location records 
and taxi trajectory data to identity buildings with shop
ping, hotel, office, hospital and residential functions. 
However, the high cost of collecting social sensing data 
limits its potential to extract building functions over large 
areas. Furthermore, the utilization of the shared local 
governmental database, such as the accessor’s parcel 
data, can provide valuable information of building func
tions (Chen et al. 2020). However, in many regions, 
especially in countries in the global south, access to such 
database is severely limited or not available at all. Even in 
regions where a shared local government database exists, 
collecting this data proves to be a time-consuming and 
labor-intensive process, as it involves accessing disparate 
governmental databases specific to each city. 
Consequently, there is an urgent need to develop 
a transferable and integrated framework capable of effec
tively addressing the lack of building function data over 
large areas, while accommodating the data availability 
challenges encountered in countries of the global south.

In this study, TripAdvisor.com and Google Maps were 
chosen as two web platforms that can be used to map 
building functions over a large area based on their advan
tages. First, both of them contain the location and socio- 
economic function of buildings. TripAdvisor.com is an 
online travel company that contains the address of hotels, 
shops, and restaurants. Many studies have utilized web 
crawler tools to analyze users’ reviews and visualized 
geographical locations of restaurants and hotels to 
improve their business’ service and quality of products 
(Chang, Ku, and Chen 2019). Google Maps is a web 
mapping platform that provides locations of offices, hos
pitals, schools, etc. It offers a series of Application 
Programming Interfaces (APIs), allowing users to utilize 
Google Maps services and to conduct place information 
queries. Second, both of them operate across many coun
tries and update timely. TripAdvisor.com operates in 49 
countries and has 463 million average monthly unique 
visitors. Google Maps is used by over 1 billion people 
every month in 104 countries around the world.

Based on those two web platforms, an integrated 
framework was proposed to map building functions 
over 50 cities in the United States. First, we pro
posed two workflows to extract geospatial data 
including Points of Interest (POIs), roads, and 
land use parcels from Google Maps and 
TripAdvisor.com. Second, we identified residential 
buildings using an unsupervised machine learning 
algorithm. Third, we identified six non-residential 
functions using type ratio of POIs and area ratio of 
land use parcels. The remainder of this paper 
describes the study area, dataset used in this study 
(Section 2), the proposed workflow to collect 

geospatial data (Section 3.1), workflow to identify 
building functions (Section 3.2), and results 
(Section 4). After description, there is a discussion 
(Section 5) of results and conclusion (Section 6).

2. Study area and datasets

2.1. Study area

We selected 50 U.S. cities (Figure 1) to test the scal
ability of the proposed framework. Fifty U.S. cities 
were chosen based on two reasons. First, the selected 
cities had different sizes, from small (Decatur, 
Georgia), middle (Des Moines, IA) to large (Boston, 
MA). Second, the selected cities were at risk of being 
hit by natural disasters according to the frequency of 
weather hazards archived in the Storm Events 
Database from National Oceanic and Atmospheric 
Administration (NOAA) (NOAA 2021). The resultant 
building function maps in those cities are important in 
disaster management, for example, estimation of dis
aster loss and vulnerability to disaster.

2.2. Data

Main data used in this study include city boundary, 
building footprints, and Sentinel-1 building height 
datasets. We downloaded 50 city boundaries from 
OpenStreetMap (OSM) and extracted building foot
prints and building height within these city bound
aries. OSM is a volunteer geo-information project 
founded in 2004. Administrative boundaries in OSM 
were delineated by volunteers with reference data 
from state or county GIS websites. Building footprints 
were downloaded from Microsoft Maps (Anon 2018), 
a country wide open building footprints dataset that 
provide the location and geometry of individual build
ings across all 50 states of the United States. We 
employed these data as the fundamental mapping 
units within our framework to generate the resultant 
building function map. Furthermore, we leveraged 
these data to develop a series of metrics that effectively 
capture the shape, size, and uniformity of housing 
within each individual parcel. Building height was 
estimated at 500 m resolutions from Sentinel-1 data 
in 2015 using a method proposed by Li et al. (2020) 
and the global resultant data can be download from 
https://figshare.com/s/7f2b254ed18fac8eb7a0 (Zhou 
et al. 2022). First, a building height model was devel
oped using the reference height from LiDAR and dual- 
polarization information (i.e. VV [copolarization] and 
VH [cross-polarization]) at 500 m resolution. Second, 
three parameters in building height model were cali
brated through a cross-validation. The estimated 
building heights exhibits excellent performance in 
the United States, as indicated by a low Root Mean 
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Square Error (RMSE) of less than 0.50 m between the 
estimated urban built-up heights and the reference.

3. Methodology

We developed a framework to identify urban build
ing functions including residence, office, school, 
shop, hotel, restaurant, and hospital (Figure 2). It 
includes two workflows to collect geospatial data
sets and one workflow to identify building func
tions. More details are presented in the following 
sections.

3.1. Collection of web-based geospatial data

3.1.1. Web crawler
We designed a web crawler to automatically collect 
addresses of hotels, restaurants, and shops from web 
contents of TripAdvisor.com for each city and to con
vert these addresses to POIs using the geocoding tech
nique. POIs are points with longitude-latitude 
coordinate and specific building functions. Three web 
crawlers are included in Figure 3. First, we designed 
a web crawler to collect 50 U.S. cities’ Uniform 
Resource Locators (URLs) (e.g. https://www.tripadvi 
sor.com/Hotels-g32655-Los_Angeles_California-Hot 

Figure 1. The selected 50 study cities in the United States.

Figure 2. The overall framework of this study.
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els.html) from U.S. country’s URLs (e.g. https://www. 
tripadvisor.com/Hotels-g191-United_States-Hotels. 
html). Second, we designed a web crawler to collect all 
hotels’ URLs (e.g. https://www.tripadvisor.com/Hotel_ 
Review-g32655-d78682-Reviews-The_Garland-Los 
_Angeles_California.html) from each city’s URL. Third, 
we designed a web crawler to collect hotel addresses 
from each hotel’s URL. Finally, the geocoding technique 
was used to convert 9076 hotels, 107,935 restaurants, 
3827 shop addresses to POIs with corresponding build
ing functions.

3.1.2. Map crawler
We developed a map crawler to automatically collect 
geospatial data including roads, land use parcels, and 
POIs using Google Maps Static APIs (Figure 4). The 
Maps Static APIs service can return Google static 
maps as an RGB image according to the defined 
zoom level, map style, image size, and coordinates of 
the central point. The map crawler includes four key 
components. First, a fishnet covering the whole city 
was generated using ArcPy provided by ArcGIS Pro 
2.7. One fishnet grid represents one RGB image 

Figure 3. An example of collecting a POI with the function of hotel using web crawlers.

Figure 4. An example of collecting land use parcels using map crawler. Meters/pixel for roads and land use parcels is 4.756 and for 
POIs is 0.597.

4 W. CHEN ET AL.

https://www.tripadvisor.com/Hotels-g32655-Los_Angeles_California-Hotels.html
https://www.tripadvisor.com/Hotels-g191-United_States-Hotels.html
https://www.tripadvisor.com/Hotels-g191-United_States-Hotels.html
https://www.tripadvisor.com/Hotels-g191-United_States-Hotels.html
https://www.tripadvisor.com/Hotel_Review-g32655-d78682-Reviews-The_Garland-Los_Angeles_California.html
https://www.tripadvisor.com/Hotel_Review-g32655-d78682-Reviews-The_Garland-Los_Angeles_California.html
https://www.tripadvisor.com/Hotel_Review-g32655-d78682-Reviews-The_Garland-Los_Angeles_California.html


requested from the Google Maps Static API. 
Therefore, the cell size of fishnet is meters/pixel multi
plied with the image size (640 � 640). Second, a static 
map of each grid was obtained using Google Maps 
Static API with coordinates of the central point of each 
grid, zoom level (15 for extraction of roads and land 
use parcels and 18 for extraction of POIs), and the 
customized map style. The map style customization 
options can be accessed through the “Map Styles” tab 
on the Google Maps Platform. In our map style, we 
assigned distinct colors to various types of POIs, such 
as hospitals, offices, schools, hotels, shops, and restau
rants, as well as different land use parcel types, includ
ing commercial corridors, open spaces, hospitals, and 
schools. The static map at zoom level of 18, incorpor
ating the customized map style, can be found in Figure 
S1(b). Third, we added the projection of for each RGB 
image by assigning upper-left corner coordinates of 
RGB image as upper-left corner coordinates of the 
corresponding fishnet grids as well as assigning reso
lution of RGB image as meter/pixel (a projected grid is 
depicted in Figure S1(c)). Fourth, the projected images 
were mosaicked and converted to polygons or points 
as land use parcels and POIs with specific socioeco
nomic functions (the resulting POIs are displayed in 
Figure S1(d)). The mosaic and conversion processes 

were effectively processed on high-performance com
puting cluster with sufficient processing power and 
memory capacity. Additionally, we employed parallel 
computing techniques to optimize the computational 
efficiency and reduce processing time.

3.2. Identification of building functions

We developed a workflow (Figure 5) to identify func
tions of building footprints by fusing the collected 
web-based geospatial data. It includes two key steps. 
First, we identified residential parcels based on build
ing footprint-derived landscape features and assigned 
buildings within the identified parcels as residential 
buildings. Second, we identified functions of non-resi
dential buildings by fusing the collected POIs and land 
use parcels.

3.2.1. Identification of residential building 
functions
We first calculated a set of building footprint-derived 
landscape metrics (Table 1) for each parcel. These 
parcels have relatively homogeneous socioeconomic 
functions (W. Chen et al. 2022; Liu and Long 2016; 
Yuan, Zheng, and Xie 2012; Zhang et al. 2017) and can 
be segmented by roads collected by the map crawler. 

Figure 5. The workflow to identify function of residential and non-residential buildings.

Table 1. Metrics of building footprints.
Metrics Definition

Area (A) The areal extent of a building polygon
Perimeter (P) The distance around a building polygon
Length (I) The length (I) and width (W) of the minimum bounding rectangle enclosing the building polygon
Width (W)
Elongatedness (ELG) ELG=I/W
Height 500 m building height raster
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Parcel-based summary statistics were generated by 
calculating a measure of central tendency (median) 
and variability (standard deviation) for each of the 
metrics. The former allows us to measure character
istics of the typical residential parcel, while the latter 
allows us to measure the uniformity of residential 
parcels. To ensure that the machine learning algo
rithm applied equal weight to each metric, we normal
ized each metric with a mean of zero and one standard 
deviation (Durst et al. 2021).

We then applied the OneClassSVM algorithm to par
cels with the number of buildings in the parcel (Numb) 
larger than the threshold and classified them into resi
dential or non-residential parcels. OneClassSVM, an 
unsupervised outlier detection algorithm, was chosen to 
classify residential and non-residential (outliers) parcels 
because of the unequal distribution of binary classes 
(80% of residential vs. 20% of non-residential). The 
threshold of Numb was used to obtain higher classifica
tion accuracy because we found that there were distinct 
differences between binary classes in the parcel larger 
than a threshold. For example, when the threshold is 24 
(Figure 6(b)), the difference between binary classes was 
more distinct compared to the threshold is 1 
(Figure 6(a)).

The optimal threshold of Numb can be determined 
for different cities by following a three-step process. In 
Figure 6(c), the upper, middle, and bottom portions 
respectively provide examples for each step, allowing us 
to gain insights into the determination of the optimal 
threshold. First, the density curve of Numb was gener
ated using probability density function (Equation (1)) 
for Numb in each city dataset. Second, the cumulative 
density curve (Equation (2)) of Numb was obtained by 
integrating the probability density function. Third, as 
shown in the bottom portion of Figure 6(c), 
a consistently error rate below 10% was achieved for 
the four cities we examined when the value of Numb 

was approximately at the turning point of cumulative 
density curve. This error rate is calculated as the ratio 
between the number of non-residential buildings in 
residential parcels and the total number of non- 
residential buildings. Therefore, the turning point of 
cumulative density curve was determined as the thresh
old of Numb. Using a Cartesian plane, we determined 
the turning point on the cumulative density curve by 
calculating the shortest distance between the curve’s 
points and the line connecting the cumulative prob
ability for minimum and maximum values of Numb. 

P a< x< bð Þ ¼ ò
b

a
f xð Þdx (1) 

F xð Þ ¼ P X � xð Þ ¼ ò
x

�1
f tð Þdt; for all xPR (2) 

Let x be the continuous random variable with the 
probability density function f . The probability is cal
culated by finding the area under its curve and the 
X-axis within the lower limit (a) and upper limit (b). 
The cumulative distribution function F is found by 
integrating the f .

3.2.2. Identification of non-residential building 
functions
We utilized area percentage and type ratio to identify 
non-residential building functions. First, the building 
footprint layer was intersected with the land use parcel 
layer, and the intersected area percentage was calcu
lated. If the intersected area percentage was larger than 
50%, building footprints were assigned with land use 
parcel type. Second, the building footprint layer was 
intersected with the POIs layer and the intersected 
POIs were used to calculate type ratio (Equation (3)) 
(Chen et al. 2020) to determine the POI type that can 
be appended to buildings. This ratio was calculated as 

Figure 6. Normalized parcel-based building footprint metrics in Greeley, CO when Numb larger than 1 (a) and 20 (b). The 
determined Numbthreshold of four example cities based on their different density curves (c).
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the percentage of POI types among the total number 
of POIs in the building’s buffer region. The radius of 
the building’s buffer is the half of the Euclidean dis
tance between this building and its nearest building 
because a POI is not likely to be shared by two build
ings. Type ratio was calculated for POIs with the major 
functions (i.e. hospital, school, and hotel) in each 
building buffer. The function with the maximum 
type ratio was appended to building footprints. 

TRi ¼
ni

Nj
�100% (3) 

where TRi is the type ratio of POI function i; ni is the 
number of POIs with function i; and Nj is the total 
number of POIs in the building’s buffer region j.

3.3. Accuracy assessment

We collected POIs and land use parcels from OSM in 
50 U.S. cities to evaluate results of the geospatial data 
collection from the web-based platform. We generated 
500 m × 500 m grids to calculate POIs density in each 
city for data from OSM and Google Maps and pro
duced building function density map (i.e. total floor 
areas in 500 m grid) for four socioeconomic functions 
(i.e. commercial, office, institutional, and residential 
types). We calculated the area of land use parcels 
within the city boundary for school, hospital, commer
cial corridors, and open space from OSM and Google 
Maps.

Boston, MA, a metropolitan city in the northeast
ern coastal area and Des Moines, IA, a medium-sized 
city in the middle west were selected to evaluate the 
performance of the proposed framework in detail. We 
collected assessor’s parcels in Boston and Des Moines 
from the Boston government online data portal (Anon  
2017) and the Polk County Assessor Database (Anon  
2019) to identify the functions of reference building 
footprints. Approximately 5% of building footprints in 
Boston and Des Moines were not mapped by our 
framework. In Des Moines, the unclassified building 
footprints consisted of mobile homes (43%), multi- 
functional buildings (28%), and industrial structures 
(10%). Meanwhile, in Boston, the unclassified building 
footprints included other exempt buildings (33%), 
multi-functional buildings (32%), and industrial struc
tures (21%). For the 95% of building footprints that 
were successfully mapped by our framework, we col
lected a total of 10,000 reference building footprints in 
a stratified manner to evaluate the performance of 
building function identification. The numbers of 

reference buildings in Boston and Des Moines were 
listed in Table 2. These 10,000 reference buildings 
were sampled to conduct accuracy assessment 1000 
times. Confusion matrices, overall accuracy, 
Producer’s Accuracy (PA), User’s Accuracy (UA), 
and kappa coefficient were calculated in each accuracy 
assessment.

4. Results

4.1. Accuracy of building function identification

The accuracy assessment indicates that our framework 
performed well in identifying building functions 
(Figure 7). In Des Moines and Boston, the average 
overall accuracy achieved was 93.9% and 93.4%, 
respectively, accompanied by an average kappa coeffi
cient of 0.62 and 0.63 (Figure 7(c)). As a dominant 
function, residential function donmonstrated remark
able accuracies, exhibiting both UA and PA values 
greater than 0.9 (Figure 7(a,b)). Within the category 
of non-residential functions, our framework show
cased exceptional performance in accurately classify
ing schools, achieving an average UA and PA 
exceeding 0.7. This successful identification of schools 
is visually depicted in Figure S2(b-d). However, when 
it came to classifying offices, our framework demon
strated relatively lower performance, with average UA 
and PA hovering around 0.5 and 0.6, repectively. As 
illustrated in Figure S2(c), several buildings were clas
sified as shops and restaurants in our framework, 
whereas they were labeled as offices in the reference 
map. Furthermore, the restaurant function demon
strated a notable PA of approximately 0.75, but 
a comparatively lower UA of around 0.6. Conversely, 
shops demonstrated a remarkable UA of approxi
mately 0.7, but a significantly lower PA of around 
0.4, suggesting that our framework faced challenges 
in identifying some buildings with the shop function. 
For example, in the upper area of Figure S2(d), our 
framework failed to identify several buildings with 
shop functions. In terms of hospitals and hotels, our 
framework showed better performance in Des Moines 
compared to Boston. Especailly for hotels, we achieved 
an impressive performance in Des Moines, with an 
average PA of 0.68 and UA of 0.75.

4.2. Evaluation of data collection workflow

Compared to POIs from OSM, POIs from Google 
Maps in 50 cities had larger coverage and higher 
density (Figure 8), which can largely benefit building 

Table 2. Sample size for seven building functions in representative cities of Boston and Des Moines.
Function Residence Office Shop Hotel Hospital School Restaurant

Boston 9000 440 320 20 40 130 50
Des Moines 9000 455 350 15 20 90 70
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function mapping. We collected a total of over 
120,000 POIs via web crawler and a total of 550,000 
POIs via map crawler. As Figure 8 shows, POIs from 
Google Maps were obviously denser than those from 
OSM in large, middle, and small size cities. The 
difference of POI density between Google Maps and 

OSM was small in central business districts of large 
cities. In middle and small size cities, POIs collected 
from Google Maps were distributed around the 
whole city but those from OSM were only distributed 
in the city center, especially in Des Moines and Rapid 
City.

Figure 7. The evaluation of building function maps in Boston, MA and Des Moines, IA including producer accuracy (a), user 
accuracy (b), and kappa coefficient (c).

Figure 8. The spatial pattern of POIs density (i.e. the number of POIs in 500 m grids) collected from Google Maps (left) and OSM 
(right) in large (a), middle (b), and small (c) size cities.
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Compared to land use parcels from OSM, land use 
parcels from Google Maps performs better in identify
ing commercial corridors (Figure 9(d)). The total area 
of school parcels from OSM was larger than that of 
Google Maps in big cities, such as Chicago and 
Houston. In addition, the total area of hospital parcels 
from OSM was slightly larger than Google Maps in big 
cities, such as Dayton and New York. There are two 

reasons leading to smaller areas of land use parcels 
from Google Maps than OSM. First, as shown in the 
top of Figure 9(e,f), school and hospital parcels in 
Google Maps were split by roads with a smaller extent. 
Second, some school and hospital buildings were not 
represented by parcels in Google Maps because they 
only had single buildings in them and these buildings 
were represented by POIs (Figure 9(e,f) bottom).

Figure 9. The areas comparison of land use parcels from Google Maps and OSM in (a) school, (b) commercial corridors, (c) hospital, 
(d) open space. Chicago, IL and Dayton, OH were two cities with the largest area difference of school parcels (e) and hospital 
parcels (f) from OSM and Google Maps.

Figure 10. The comparison of (a) shop, (b) hotel, and (c) restaurant POIs derived from Google Maps and TripAdvisor.
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The total number of POIs derived from Google 
Static Maps exceeded those from TripAdvisor, parti
cularly in the case of shop POIs. As shown in 
Figure 10(a), the disparity in the number of shop 
POIs between Google Static Maps and TripAdvisor 
exceeds 10,000 in major metropolitan cities such as 
New York, Houston, and Los Angeles. This distinc
tion is reasonable since the shops gathered by 
TripAdvisor predominantly consist of appealing 
establishments that cater to travelers such as shop
ping malls, antique stores, and street markets, while 
the shops derived from Google Static Maps predomi
nantly comprise various stores that are part of our 
daily lives, such as grocery stores, small retail shops, 
and drugstores. However, TripAdvisor has demon
strated an advantage in acquiring restaurant POIs in 
major metropolitan cities and hotel POIs in small 
cities (Figure 10(b,c)). For instance, in cities such as 
Los Angeles, Houston, and Chicago, the number of 
restaurant POIs derived from TripAdvisor exceeded 
those from Google Maps by over 2000. In cities such 

as Rochester, Fergus Falls, and Greensburg, the num
ber of hotel POIs derived from TripAdvisor slightly 
exceeded those from Google Maps.

4.3. Urban building function maps

The spatial patterns of buildings with different 
functions can be captured by the generated urban 
building function maps and have similar spatial 
patterns with reference data. The density of residen
tial buildings identified by our maps shows a similar 
spatial pattern with the reference data. Figure 11d 
shows that the densest residential buildings areas 
with total floor areas larger than 2.7 × 104 were 
mainly distributed in southeastern Boston and 
northern Des Moines. In addition, both our map 
and reference map revealed the spotty pattern of 
institutional buildings (i.e. hospitals and schools). 
Figure 11c shows that hospitals and schools with 
total floor areas larger than 0.9 × 104 were clustered 
together and sparsely distributed across the city. 

Figure 11. The total floor areas of buildings in 500 m ⅹ 500 m grids for (a) commercial, (b) office, (c) institutional, and (d) 
residential types in Des Moines, IA (upper) and Boston, MA (bottom).
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The density of office and commercial types 
(Figure 11(a,b)) was slightly different with reference 
maps, especially in Boston. The reason is that res
taurants and shops with high PA but low UA were 
easy to be misclassified as offices, leading to lower 
density of commercial types and higher density of 
office types.

5. Discussion

5.1. Uniqueness of the proposed methodology

This study aims to identify non-residential building 
functions on a large scale through an integration of 
the data obtained from open-source web platforms. 
The use of TripAdvisor.com, a life-service website, pro
viding not only reviews and rates for hotels, shops, and 
restaurants but also their detailed addresses. Employing 
a combination of geocoding technique and web crawler 
workflow, these text-based addresses can be converted 
into POIs, enabling the inference of building functions. 
Similarly, other life-service websites, such as Realtor. 
com can be leveraged to extract POIs with residential 
functions using a comparable approach. Another valu
able resource is Google Maps, a popular web mapping 
platform, which offers static map images encompassing 
various features such as POIs, land use parcels, and 
building footprints. By implementing a map crawler 
workflow, it becomes possible to convert the image- 
based information into geospatial data, facilitating the 
inference of building functions. This methodology can 
be extended to extract additional data from Google 
static maps, including bus stations, road networks, 
and parking lots, among other features.

This study also aims to identify residential building 
functions on a large scale through building footprint- 
derived landscape metrics. First, we use a dataset of 
building footprints developed by Microsoft to measure 
the size, placement, and uniformity of housing. These 
comprehensive Microsoft data cover the entire nation, 
making them a potential data source for future expan
sion into a nationwide study. Second, we investigated 
suitable machine learning algorithm according to the 
characteristics of the residential parcels, such as 
unequal distribution of binary classes and optimal 
threshold of Numb. By capturing how these building 
footprint-derived metrics varies within each parcel, we 
used the OneClassSVM algorithm and self-adaptive 
Numb to successfully distinguish between residential 
and non-residential parcels.

5.2. Practical applications of the proposed 
methodology

5.2.1. Workflows for web-based data collection
Our workflows for web-based data collection are 
highly adaptable with relatively low cost, enabling 

execution with multiple iterations to maintain up-to- 
date building function maps. Among Google Maps 
APIs (e.g. street view, place detailed, and maps static 
APIs), Google Maps Static API was the most cost- and 
computation-effective one. Specifically, compared to 
28,000 free monthly downloads for Google static street 
view APIs that many urban studies utilized (Richards 
and Wang 2020; Zeng et al. 2018), Google Maps Static 
APIs can have requested for free up to 100,000 down
loads per month. In addition, although both Google 
places detailed and Maps Static APIs had 100,000 free 
monthly downloads, one Google places detailed API 
request can only be used to obtain information of one 
POI. By using our workflow of data collection, one 
Google Maps Static API request can be used to obtain 
the location and type of many POIs. Therefore, by 
utilizing a web crawler on TripAdvisor.com at no 
cost and employing a map crawler on the Google 
Maps Static API at a low cost, we have the capability 
to collect current POIs and land use parcels on an 
annual basis. These collected data sets are then used 
to update the building functions for existing buildings, 
ensuring our building function maps up to date.

Our workflows for web-based data collection were 
replicable across geographies, which can support geos
patial data-driven urban studies over large areas. Web- 
based mapping platforms are ideal data sources for 
geospatial data-driven urban studies with its copious
ness, large area coverage and reliability (Chao et al.  
2018; Wang, Li, and Shi 2017). With the help of the 
map crawler, important map elements such as build
ing footprints, roads, parks, and bus stops in Google 
Maps can be retrieved by assigning them with differ
ent RGB codes in map styles, providing useful geos
patial datasets for urban sustainable studies at a large 
scale. For example, compared to OSM road networks, 
road polygons with width and types (i.e. highway, 
arterial, drivable local, and trail traffic) can be col
lected by the map crawler, supporting the quantifica
tion of pedestrian exposure to traffic particulate 
matter (Qiu et al. 2017). Bus stops and parks collected 
by the map crawler can be used to assess the equitable 
availability of public open space (Timperio et al. 2007) 
and optimize public transportation systems for 
increasing accessibility of urban green space (Chen 
and Chang 2015).

5.2.2. Web-based building function mapping
Our framework exhibits high transferability to other 
cities due to its ease of execution and the utilization of 
data sources with worldwide coverage. Google Static 
Maps offer almost complete coverage around the 
world, even cities located in the southern hemisphere 
of the globe (e.g. Rustenburg in South Africa, Rocha in 
Uruguay). TripAdvisor.com, as the largest travel site 
in the world operating in 26 countries, can provide 
travel-related POIs (i.e. shops, restaurants, and hotels) 
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in tourist cities around the world. To meet the demand 
for mobile navigation and life services in daily life, 
geospatial data from web mapping platforms need to 
be frequently updated (Chen et al. 2020). In addition, 
with the goal to increase the coverage of building 
footprint data available to public, Microsoft have 
recently released building footprints in South 
America, Africa, and Australia. Our framework incor
porates straightforward geospatial analysis and 
machine learning algorithms, allowing for easy execu
tion. As the data resources receive updates, our frame
work enables the identification of building functions 
for new structures and the updating of building func
tions for existing ones through multiple iterations.

Our framework can contribute to quantitative 
urban studies, especially on a large scale. For example, 
bottom-up urban building energy use or heat emission 
models (Y. Chen et al. 2022; Li et al. 2017) need 
detailed building information such as size, height, 
and function to estimate spatial and temporal patterns 
of energy consumptions or heat emissions at a fine 
scale. Considering the existing large scale building 
footprint (Anon 2018) and height (Li et al. 2020) 
datasets, large scale building function maps can con
tribute to quantifying large-scale building energy uses 
or heat emissions. Therefore, our building function 
maps have potential to pave a way for urban building 
energy modeling to investigate urban building energy 
uses and heat emissions under different climate back
grounds, offering support for government policy mak
ing and sustainable city development planning.

5.3. Legal regulations on web crawler technology

In this study, we have used two ways to retrieve data 
from web-based platforms. One approach was to uti
lize the Maps Static APIs, which are provided by 
Google to establish a connection with their Google 
Maps service. The Google Maps API operates on 
a pay-as-you-go pricing structure, offering a monthly 
$200 USD credit for each billing account within the 
Google Maps platform. The $200 USD credit enables 
us to perform up to 100,000 requests to the Maps 
Static API or 50,000 requests to the Geocoding API. 
In this study, we used a total of $800 USD free credit 
over a span of four months, which enabled us to 
conduct 121,631 requests to the Geocoding API, 
809,090 Maps Static API requests at the zoom level 
of 18, and 97,501 Maps Static API requests at the zoom 
level of 15. Providing APIs has become a common 
practice among various web mapping platforms, 
including Baidu Maps, MapQuest, and Bing Maps, 
etc., enabling users to connect with their mapping 
services. Therefore, the proposed map crawler proves 
to be practical and effective, as long as the web map
ping platforms maintain their current method of data 
sharing through APIs.

Furthermore, there exists publicly accessible data 
on the internet that has not been structured for direct 
downloading or is inaccessible through an API. To 
obtain this content, it is necessary to scrape it from 
websites using programming code, as it is accessible 
and viewable within web browsers. Therefore, specia
lized packages such as “Beautiful Soup” and “Scrapy” 
offer effective solutions in this regard. On 
17 April 2019, the European Union introduced 
a legal framework for Text and Data Mining (TDM) 
on copyright and related rights in the Digital Single 
Market (DSM Directive) (Egger, Kroner, and Stöckl  
2022). The DSM Directive grants TDM an exception 
in regard to reproductions and extractions made by 
research organizations and cultural heritage institu
tions in order to carry out, for the purposes of scien
tific research to which lawful access is acknowledged. 
Thus, the proposed web crawler designed to extract 
publicly displayed addresses from TripAdvisor.com is 
exclusively intended for scientific research purposes. 
To date, TripAdvisor.com has been a valuable source 
for conducting big data analysis, as numerous 
researchers have utilized its extensive information on 
online review ratings to understand customer beha
viors (Khorsand, Rafiee, and Kayvanfar 2020; Mariani, 
Borghi, and Laker 2023; O’connor 2008). By imple
menting our proposed web crawler, TripAdvisor.com 
will become an invaluable resource for inferring build
ing functions.

APIs and web scraping are two standard methods 
to collect data from websites but the preference leans 
toward utilizing APIs. The operation of APIs is typi
cally governed by the terms and conditions outlined 
by the provider. This framework ensures that the like
lihood of encountering legal complications is mini
mized if we remain in alignment with these terms 
and guidelines. In contrast, web scraping necessitates 
strict adherence to data privacy regulations stipulated 
by commercial entities to maintain the legality. Krotov 
and Silva (2018) have generated a list of inquiries to 
assess whether web scraping projects can potentially 
result in lawsuits or ethical controversies, serving as 
a valuable resource for gauging the likelihood of law
suits or ethical disputes arising from such projects. 
The inquiry list includes the following important 
questions: does “terms of use” of the websites explicitly 
forbid web crawling? Could crawling and scraping 
potentially result in substantial damage to the website? 
Additionally, does the acquisition of data from the 
website have the potential to undermine personal 
privacy?

5.4. Future work

This study opens future research avenues of mapping 
multi-function buildings and building functions with 
limited geospatial data. First, the proposed framework 
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only identified single function of buildings, resulting in 
its low performance on correctly classifying offices. In 
cases where a building encompasses multiple POIs, our 
framework determines the building’s function based on 
the majority function among the POIs. Leveraging 
Google Street View images holds great promise in iden
tifying buildings with multiple functions, as these images 
offer building profile pictures captured from diverse 
fields-of-view (Li, Zhang, and Li 2017). The profile 
view of street-level images can be effectively utilized to 
assess the socio-economic functions of an individual 
building across various aspects, such as discerning 
a restaurant on the left side and an office on the right 
side, as well as vertical levels, such as identifying 
a restaurant at the ground level and offices on the 
upper levels.

Second, the proposed framework could perform 
better in industrialized nations because cities in these 
nations tend to have abundant geospatial data in web- 
based platforms (Anguelov et al. 2010). Although data 
in Google Maps and TripAdvisor.com exist in the 
southern hemisphere of the globe (e.g. São Paulo in 
Brazil and Kampala in Africa), the coverage is less 
dense in those areas compared to industrialized 
nations (Anguelov et al. 2010). Therefore, the pro
posed framework with low density of geospatial data 
may have limited ability to identify building functions 
in the Global South. However, before the global cover
age of Google Maps and TripAdvisor databases 
expanded to developing nations (Richards and Wang  
2020), auxiliary datasets (e.g. remote sensing observa
tions) could be used to improve building function 
mapping, especially in the Global South.

6. Conclusion

Building function map can provide an important 
source of data for characterizing human activities 
in the complex urban environment. Although 
social sensing-based methods are capable of identi
fying detailed building functions such as hospitals 
and schools for a large area, collecting social sen
sing datasets is expensive and difficult. In this 
paper, we present a framework for mapping build
ing functions based on web-based geospatial data
sets and implemented this framework in 50  
U.S. cities with different sizes. Additionally, we 
allocated approximately one week of computing 
time on a server equipped with 50 threads for the 
purpose of web-based data collection and the con
struction of function identification (https:// 
researchit.las.iastate.edu). The accuracy assessment 
indicates that the proposed framework performed 
well with average overall accuracies of 93.9% and 
93.4% and average kappa coefficients of 0.62 and 
0.63 in Des Moines and Boston, respectively. The 
mapped building functions can contribute to 

quantitative urban modeling studies, such as city- 
scale building energy modeling. In addition, the 
proposed workflows for web-based data collection 
have potential to support a variety of urban envir
onmental studies, such as evaluation of urban 
green space availability and pedestrian exposure 
to traffic particulate matter. Considering that the 
Google Maps and TripAdvisor.com did not have 
residential POIs and had limited spatial coverage in 
the Global South, future research can focus on 
improving accuracy of building function mapping 
by identifying multi-function buildings and build
ing functions in the southern hemisphere of the 
globe.
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