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ABSTRACT

Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping)
information of buildings is highly needed for urban planning and management as well as other
applications such as city-scale building energy use modeling. Due to the limited availability of
socio-economic geospatial data, it is more challenging to map building functions than building
morphological information, especially over large areas. In this study, we proposed an inte-
grated framework to map building functions in 50 U.S. cities by integrating multi-source web-
based geospatial data. First, a web crawler was developed to extract Points of Interest (POls)
from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels
from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM
was used to identify residential buildings based on landscape features derived from Microsoft
building footprints. Third, the type ratio of POls and the area ratio of land use parcels were used
to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office).
The accuracy assessment indicates that the proposed framework performed well, with an
average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage
of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities
over the world. The data products generated from this study are of great use for quantitative
city-scale urban studies, such as building energy use modeling at the single building level over
large areas.
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1. Introduction information is to use physical features (e.g. spectrum,
texture, and geometry) extracted from remote sensing
data, including very high-resolution satellite imagery,
aerial imagery, and Laser-scanner data (LiDAR). With
large coverage and rich physical features, remote sen-
sing data can be used to extract building morphologi-
cal information over large-scale areas. For instance,
Microsoft Maps team (Anon 2018) produced high-
quality building footprint data in the United States,
Canada, Uganda, and Tanzania by applying deep
learning algorithms into Bing imagery. Li et al.
(2020) estimated building height in 500 m resolution
over the United States using Sentinel-1 synthetic aper-
ture radar data. However, remote sensing data lack

Buildings, the main venues of urban social and eco-
nomic activities, are the most important component
and the finest measurement unit for urban studies
(Hu, You, and Neumann 2003). Information on the
morphology (e.g. shape, size, and height) and function
(e.g. working, living, and shopping) of buildings is
highly needed for urban and regional planning as well
as other quantitative urban studies (Kunze and Hecht
2015). Building functions are shaped by the actual use of
inhabitants, and therefore they can be viewed as
a bridge, enabling researchers to monitor socioeco-
nomic space. For example, with the help of data on

building functions, we can investigate city-wide air
quality (Xu et al. 2021), public health (Kousa et al.
2002), energy consumption (Davila, Reinhart, and
Bemis 2016; Li et al. 2018), energy heat emission (Luo
et al. 2020), and disaster loss (Yeh, Loh, and Tsai 2006).

Considering the importance of building informa-
tion on urban studies, many efforts have been devoted
to mapping building footprints, heights, and func-
tions. One way to capture building morphological

information about the economic and social function
of buildings, limiting its ability to distinguish between
buildings with similar spatial forms, such as, hotel and
shopping mall.

To overcome the aforementioned limitations, social
sensing data (e.g. social media check-in records, taxi
trajectories, mobile phone calls, transit smart card
records) have been widely used to differentiate buildings
with different socio-economic functions (Arunplod et al.
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2017; Liu et al. 2018; Niu et al. 2017; Zhuo et al. 2019). The
information of building function can be derived by inte-
grating multi-source social sensing data created by indi-
viduals (Liu et al. 2015). For example, Niu et al. (2017)
integrated social media users’ real-time location records
and taxi trajectory data to identity buildings with shop-
ping, hotel, office, hospital and residential functions.
However, the high cost of collecting social sensing data
limits its potential to extract building functions over large
areas. Furthermore, the utilization of the shared local
governmental database, such as the accessor’s parcel
data, can provide valuable information of building func-
tions (Chen et al. 2020). However, in many regions,
especially in countries in the global south, access to such
database is severely limited or not available at all. Even in
regions where a shared local government database exists,
collecting this data proves to be a time-consuming and
labor-intensive process, as it involves accessing disparate
governmental databases specific to each city.
Consequently, there is an urgent need to develop
a transferable and integrated framework capable of effec-
tively addressing the lack of building function data over
large areas, while accommodating the data availability
challenges encountered in countries of the global south.

In this study, TripAdvisor.com and Google Maps were
chosen as two web platforms that can be used to map
building functions over a large area based on their advan-
tages. First, both of them contain the location and socio-
economic function of buildings. TripAdvisor.com is an
online travel company that contains the address of hotels,
shops, and restaurants. Many studies have utilized web
crawler tools to analyze users’ reviews and visualized
geographical locations of restaurants and hotels to
improve their business’ service and quality of products
(Chang, Ku, and Chen 2019). Google Maps is a web
mapping platform that provides locations of offices, hos-
pitals, schools, etc. It offers a series of Application
Programming Interfaces (APIs), allowing users to utilize
Google Maps services and to conduct place information
queries. Second, both of them operate across many coun-
tries and update timely. TripAdvisor.com operates in 49
countries and has 463 million average monthly unique
visitors. Google Maps is used by over 1 billion people
every month in 104 countries around the world.

Based on those two web platforms, an integrated
framework was proposed to map building functions
over 50 cities in the United States. First, we pro-
posed two workflows to extract geospatial data
including Points of Interest (POIs), roads, and
land wuse parcels from Google Maps and
TripAdvisor.com. Second, we identified residential
buildings using an unsupervised machine learning
algorithm. Third, we identified six non-residential
functions using type ratio of POIs and area ratio of
land use parcels. The remainder of this paper
describes the study area, dataset used in this study
(Section 2), the proposed workflow to collect

geospatial data (Section 3.1), workflow to identify
building functions (Section 3.2), and results
(Section 4). After description, there is a discussion
(Section 5) of results and conclusion (Section 6).

2. Study area and datasets
2.1. Study area

We selected 50 U.S. cities (Figure 1) to test the scal-
ability of the proposed framework. Fifty U.S. cities
were chosen based on two reasons. First, the selected
cities had different sizes, from small (Decatur,
Georgia), middle (Des Moines, IA) to large (Boston,
MA). Second, the selected cities were at risk of being
hit by natural disasters according to the frequency of
weather hazards archived in the Storm Events
Database from National Oceanic and Atmospheric
Administration (NOAA) (NOAA 2021). The resultant
building function maps in those cities are important in
disaster management, for example, estimation of dis-
aster loss and vulnerability to disaster.

2.2. Data

Main data used in this study include city boundary,
building footprints, and Sentinel-1 building height
datasets. We downloaded 50 city boundaries from
OpenStreetMap (OSM) and extracted building foot-
prints and building height within these city bound-
aries. OSM is a volunteer geo-information project
founded in 2004. Administrative boundaries in OSM
were delineated by volunteers with reference data
from state or county GIS websites. Building footprints
were downloaded from Microsoft Maps (Anon 2018),
a country wide open building footprints dataset that
provide the location and geometry of individual build-
ings across all 50 states of the United States. We
employed these data as the fundamental mapping
units within our framework to generate the resultant
building function map. Furthermore, we leveraged
these data to develop a series of metrics that effectively
capture the shape, size, and uniformity of housing
within each individual parcel. Building height was
estimated at 500 m resolutions from Sentinel-1 data
in 2015 using a method proposed by Li et al. (2020)
and the global resultant data can be download from
https://figshare.com/s/7f2b254ed18fac8eb7a0 (Zhou
et al. 2022). First, a building height model was devel-
oped using the reference height from LiDAR and dual-
polarization information (i.e. VV [copolarization] and
VH [cross-polarization]) at 500 m resolution. Second,
three parameters in building height model were cali-
brated through a cross-validation. The estimated
building heights exhibits excellent performance in
the United States, as indicated by a low Root Mean
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Figure 1. The selected 50 study cities in the United States.

Square Error (RMSE) of less than 0.50 m between the
estimated urban built-up heights and the reference.

3. Methodology

We developed a framework to identify urban build-
ing functions including residence, office, school,
shop, hotel, restaurant, and hospital (Figure 2). It
includes two workflows to collect geospatial data-
sets and one workflow to identify building func-
tions. More details are presented in the following
sections.
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3.1. Collection of web-based geospatial data

3.1.1. Web crawler

We designed a web crawler to automatically collect
addresses of hotels, restaurants, and shops from web
contents of TripAdvisor.com for each city and to con-
vert these addresses to POIs using the geocoding tech-
nique. POIs are points with longitude-latitude
coordinate and specific building functions. Three web
crawlers are included in Figure 3. First, we designed
a web crawler to collect 50 U.S. cities’ Uniform
Resource Locators (URLs) (e.g. https://www.tripadvi
sor.com/Hotels-g32655-Los_Angeles_California-Hot
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Figure 2. The overall framework of this study.
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Figure 3. An example of collecting a POl with the function of hotel using web crawlers.

els.html) from U.S. country’s URLs (e.g. https://www.
tripadvisor.com/Hotels-g191-United_States-Hotels.
html). Second, we designed a web crawler to collect all
hotels’ URLs (e.g. https://www.tripadvisor.com/Hotel
Review-g32655-d78682-Reviews-The_Garland-Los
_Angeles_California.html) from each city’s URL. Third,
we designed a web crawler to collect hotel addresses
from each hotel’s URL. Finally, the geocoding technique
was used to convert 9076 hotels, 107,935 restaurants,
3827 shop addresses to POIs with corresponding build-
ing functions.

3.1.2. Map crawler

We developed a map crawler to automatically collect
geospatial data including roads, land use parcels, and
POIs using Google Maps Static APIs (Figure 4). The
Maps Static APIs service can return Google static
maps as an RGB image according to the defined
zoom level, map style, image size, and coordinates of
the central point. The map crawler includes four key
components. First, a fishnet covering the whole city
was generated using ArcPy provided by ArcGIS Pro
2.7. One fishnet grid represents one RGB image

Step 1. Generate . - Step 2. o)
Grids (X2ly2) Get Static Maps e
—_ 2 Sem—————— 7
Cell Size : Center, size, (X1,Y1) Map Style
- =meter/pix*640 + + o+ zoom, APT key v
: L XLYD | 2
- k: - Hospital:|255 0 0
Road: 2552550
COMM: 0255 059 School: 0 0 255
" ’ Open Space: [0 255 255
Attribute dbf Shapefile Resolution=meter/pix Pen. Sp
ID  Function (X2,Y2) columns=640
1 Hospital Step 4.
Mosaic Step 3. £
2 COMM ‘ losaic S Stq? 3 :\(ld
Images @ Projection
3 School ——& : b
r . é
M\ 4
L\

Figure 4. An example of collecting land use parcels using map crawler. Meters/pixel for roads and land use parcels is 4.756 and for

POls is 0.597.
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requested from the Google Maps Static API.
Therefore, the cell size of fishnet is meters/pixel multi-
plied with the image size (640 x 640). Second, a static
map of each grid was obtained using Google Maps
Static API with coordinates of the central point of each
grid, zoom level (15 for extraction of roads and land
use parcels and 18 for extraction of POls), and the
customized map style. The map style customization
options can be accessed through the “Map Styles” tab
on the Google Maps Platform. In our map style, we
assigned distinct colors to various types of POIs, such
as hospitals, offices, schools, hotels, shops, and restau-
rants, as well as different land use parcel types, includ-
ing commercial corridors, open spaces, hospitals, and
schools. The static map at zoom level of 18, incorpor-
ating the customized map style, can be found in Figure
S1(b). Third, we added the projection of for each RGB
image by assigning upper-left corner coordinates of
RGB image as upper-left corner coordinates of the
corresponding fishnet grids as well as assigning reso-
lution of RGB image as meter/pixel (a projected grid is
depicted in Figure S1(c)). Fourth, the projected images
were mosaicked and converted to polygons or points
as land use parcels and POIs with specific socioeco-
nomic functions (the resulting POIs are displayed in
Figure S1(d)). The mosaic and conversion processes

Identify residential buildings }

|
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Map crawler
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were effectively processed on high-performance com-
puting cluster with sufficient processing power and
memory capacity. Additionally, we employed parallel
computing techniques to optimize the computational
efficiency and reduce processing time.

3.2. Identification of building functions

We developed a workflow (Figure 5) to identify func-
tions of building footprints by fusing the collected
web-based geospatial data. It includes two key steps.
First, we identified residential parcels based on build-
ing footprint-derived landscape features and assigned
buildings within the identified parcels as residential
buildings. Second, we identified functions of non-resi-
dential buildings by fusing the collected POIs and land
use parcels.

3.2.1. Identification of residential building
functions

We first calculated a set of building footprint-derived
landscape metrics (Table 1) for each parcel. These
parcels have relatively homogeneous socioeconomic
functions (W. Chen et al. 2022; Liu and Long 2016;
Yuan, Zheng, and Xie 2012; Zhang et al. 2017) and can
be segmented by roads collected by the map crawler.

Identify non-residential buildings
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Figure 5. The workflow to identify function of residential and non-residential buildings.

Table 1. Metrics of building footprints.

Metrics Definition

Area (A) The areal extent of a building polygon

Perimeter (P) The distance around a building polygon

Length (I) The length (I) and width (W) of the minimum bounding rectangle enclosing the building polygon
Width (W)

ELG=l/W
500 m building height raster

Elongatedness (ELG)
Height




6 W. CHEN ET AL.

Parcel-based summary statistics were generated by
calculating a measure of central tendency (median)
and variability (standard deviation) for each of the
metrics. The former allows us to measure character-
istics of the typical residential parcel, while the latter
allows us to measure the uniformity of residential
parcels. To ensure that the machine learning algo-
rithm applied equal weight to each metric, we normal-
ized each metric with a mean of zero and one standard
deviation (Durst et al. 2021).

We then applied the OneClassSVM algorithm to par-
cels with the number of buildings in the parcel (Numy,)
larger than the threshold and classified them into resi-
dential or non-residential parcels. OneClassSVM, an
unsupervised outlier detection algorithm, was chosen to
classify residential and non-residential (outliers) parcels
because of the unequal distribution of binary classes
(80% of residential vs. 20% of non-residential). The
threshold of Num; was used to obtain higher classifica-
tion accuracy because we found that there were distinct
differences between binary classes in the parcel larger
than a threshold. For example, when the threshold is 24
(Figure 6(b)), the difference between binary classes was
more distinct compared to the threshold is 1
(Figure 6(a)).

The optimal threshold of Num;, can be determined
for different cities by following a three-step process. In
Figure 6(c), the upper, middle, and bottom portions
respectively provide examples for each step, allowing us
to gain insights into the determination of the optimal
threshold. First, the density curve of Num, was gener-
ated using probability density function (Equation (1))
for Numy, in each city dataset. Second, the cumulative
density curve (Equation (2)) of Num,, was obtained by
integrating the probability density function. Third, as
shown in the bottom portion of Figure 6(c),
a consistently error rate below 10% was achieved for
the four cities we examined when the value of Numy,,

was approximately at the turning point of cumulative
density curve. This error rate is calculated as the ratio
between the number of non-residential buildings in
residential parcels and the total number of non-
residential buildings. Therefore, the turning point of
cumulative density curve was determined as the thresh-
old of Numj. Using a Cartesian plane, we determined
the turning point on the cumulative density curve by
calculating the shortest distance between the curve’s
points and the line connecting the cumulative prob-
ability for minimum and maximum values of Num,.

P(a<x<b) :}If(x)dx (1)

F(x) =P(X <x)= :fc f(t)dt, for all xeR  (2)

Let x be the continuous random variable with the
probability density function f. The probability is cal-
culated by finding the area under its curve and the
X-axis within the lower limit (a) and upper limit (b).
The cumulative distribution function F is found by
integrating the f.

3.2.2. Identification of non-residential building
functions

We utilized area percentage and type ratio to identify
non-residential building functions. First, the building
footprint layer was intersected with the land use parcel
layer, and the intersected area percentage was calcu-
lated. If the intersected area percentage was larger than
50%, building footprints were assigned with land use
parcel type. Second, the building footprint layer was
intersected with the POIs layer and the intersected
POIs were used to calculate type ratio (Equation (3))
(Chen et al. 2020) to determine the POI type that can
be appended to buildings. This ratio was calculated as

(a) (b) (©)
P (Numb > 1) A (Numb > 1) P (Numb > 20) A (Numb > 20)
10 S T & T CO_Greeley
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0 %AAAA aliaa 0 m“%ﬁ s 4 0.0 anb " 0 &AAA 2.8 1.8 =
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Figure 6. Normalized parcel-based building footprint metrics in Greeley, CO when Num, larger than 1 (a) and 20 (b). The
determined Numythreshold of four example cities based on their different density curves (c).



the percentage of POI types among the total number
of POIs in the building’s buffer region. The radius of
the building’s buffer is the half of the Euclidean dis-
tance between this building and its nearest building
because a POI is not likely to be shared by two build-
ings. Type ratio was calculated for POIs with the major
functions (i.e. hospital, school, and hotel) in each
building buffer. The function with the maximum
type ratio was appended to building footprints.

TR; = — x100% 3)

N

J

where TR; is the type ratio of POI function 4 #; is the
number of POIs with function i and N; is the total
number of POIs in the building’s buffer region j.

3.3. Accuracy assessment

We collected POIs and land use parcels from OSM in
50 U.S. cities to evaluate results of the geospatial data
collection from the web-based platform. We generated
500 m x 500 m grids to calculate POIs density in each
city for data from OSM and Google Maps and pro-
duced building function density map (i.e. total floor
areas in 500 m grid) for four socioeconomic functions
(i.e. commercial, office, institutional, and residential
types). We calculated the area of land use parcels
within the city boundary for school, hospital, commer-
cial corridors, and open space from OSM and Google
Maps.

Boston, MA, a metropolitan city in the northeast-
ern coastal area and Des Moines, IA, a medium-sized
city in the middle west were selected to evaluate the
performance of the proposed framework in detail. We
collected assessor’s parcels in Boston and Des Moines
from the Boston government online data portal (Anon
2017) and the Polk County Assessor Database (Anon
2019) to identify the functions of reference building
footprints. Approximately 5% of building footprints in
Boston and Des Moines were not mapped by our
framework. In Des Moines, the unclassified building
footprints consisted of mobile homes (43%), multi-
functional buildings (28%), and industrial structures
(10%). Meanwhile, in Boston, the unclassified building
footprints included other exempt buildings (33%),
multi-functional buildings (32%), and industrial struc-
tures (21%). For the 95% of building footprints that
were successfully mapped by our framework, we col-
lected a total of 10,000 reference building footprints in
a stratified manner to evaluate the performance of
building function identification. The numbers of
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reference buildings in Boston and Des Moines were
listed in Table 2. These 10,000 reference buildings
were sampled to conduct accuracy assessment 1000
times. Confusion matrices, overall accuracy,
Producer’s Accuracy (PA), User’s Accuracy (UA),
and kappa coefficient were calculated in each accuracy
assessment.

4. Results
4.1. Accuracy of building function identification

The accuracy assessment indicates that our framework
performed well in identifying building functions
(Figure 7). In Des Moines and Boston, the average
overall accuracy achieved was 93.9% and 93.4%,
respectively, accompanied by an average kappa coeffi-
cient of 0.62 and 0.63 (Figure 7(c)). As a dominant
function, residential function donmonstrated remark-
able accuracies, exhibiting both UA and PA values
greater than 0.9 (Figure 7(a,b)). Within the category
of non-residential functions, our framework show-
cased exceptional performance in accurately classify-
ing schools, achieving an average UA and PA
exceeding 0.7. This successful identification of schools
is visually depicted in Figure S2(b-d). However, when
it came to classifying offices, our framework demon-
strated relatively lower performance, with average UA
and PA hovering around 0.5 and 0.6, repectively. As
illustrated in Figure S2(c), several buildings were clas-
sified as shops and restaurants in our framework,
whereas they were labeled as offices in the reference
map. Furthermore, the restaurant function demon-
strated a notable PA of approximately 0.75, but
a comparatively lower UA of around 0.6. Conversely,
shops demonstrated a remarkable UA of approxi-
mately 0.7, but a significantly lower PA of around
0.4, suggesting that our framework faced challenges
in identifying some buildings with the shop function.
For example, in the upper area of Figure S2(d), our
framework failed to identify several buildings with
shop functions. In terms of hospitals and hotels, our
framework showed better performance in Des Moines
compared to Boston. Especailly for hotels, we achieved
an impressive performance in Des Moines, with an
average PA of 0.68 and UA of 0.75.

4.2. Evaluation of data collection workflow

Compared to POIs from OSM, POIs from Google
Maps in 50 cities had larger coverage and higher
density (Figure 8), which can largely benefit building

Table 2. Sample size for seven building functions in representative cities of Boston and Des Moines.

Function Residence Office Shop Hotel Hospital School Restaurant
Boston 9000 440 320 20 40 130 50
Des Moines 9000 455 350 15 20 90 70
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function mapping. We collected a total of over
120,000 POIs via web crawler and a total of 550,000
POIs via map crawler. As Figure 8 shows, POIs from
Google Maps were obviously denser than those from
OSM in large, middle, and small size cities. The
difference of POI density between Google Maps and

OSM was small in central business districts of large
cities. In middle and small size cities, POIs collected
from Google Maps were distributed around the
whole city but those from OSM were only distributed
in the city center, especially in Des Moines and Rapid
City.



Compared to land use parcels from OSM, land use
parcels from Google Maps performs better in identify-
ing commercial corridors (Figure 9(d)). The total area
of school parcels from OSM was larger than that of
Google Maps in big cities, such as Chicago and
Houston. In addition, the total area of hospital parcels
from OSM was slightly larger than Google Maps in big
cities, such as Dayton and New York. There are two
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reasons leading to smaller areas of land use parcels
from Google Maps than OSM. First, as shown in the
top of Figure 9(e,f), school and hospital parcels in
Google Maps were split by roads with a smaller extent.
Second, some school and hospital buildings were not
represented by parcels in Google Maps because they
only had single buildings in them and these buildings
were represented by POIs (Figure 9(e,f) bottom).
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The total number of POIs derived from Google
Static Maps exceeded those from TripAdvisor, parti-
cularly in the case of shop POIs. As shown in
Figure 10(a), the disparity in the number of shop
POIs between Google Static Maps and TripAdvisor
exceeds 10,000 in major metropolitan cities such as
New York, Houston, and Los Angeles. This distinc-
tion is reasonable since the shops gathered by
TripAdvisor predominantly consist of appealing
establishments that cater to travelers such as shop-
ping malls, antique stores, and street markets, while
the shops derived from Google Static Maps predomi-
nantly comprise various stores that are part of our
daily lives, such as grocery stores, small retail shops,
and drugstores. However, TripAdvisor has demon-
strated an advantage in acquiring restaurant POIs in
major metropolitan cities and hotel POIs in small
cities (Figure 10(b,c)). For instance, in cities such as
Los Angeles, Houston, and Chicago, the number of
restaurant POIs derived from TripAdvisor exceeded
those from Google Maps by over 2000. In cities such

as Rochester, Fergus Falls, and Greensburg, the num-
ber of hotel POIs derived from TripAdvisor slightly
exceeded those from Google Maps.

4.3. Urban building function maps

The spatial patterns of buildings with different
functions can be captured by the generated urban
building function maps and have similar spatial
patterns with reference data. The density of residen-
tial buildings identified by our maps shows a similar
spatial pattern with the reference data. Figure 11d
shows that the densest residential buildings areas
with total floor areas larger than 2.7 x 10* were
mainly distributed in southeastern Boston and
northern Des Moines. In addition, both our map
and reference map revealed the spotty pattern of
institutional buildings (i.e. hospitals and schools).
Figure 11c shows that hospitals and schools with
total floor areas larger than 0.9 x 10* were clustered
together and sparsely distributed across the city.
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Figure 11. The total floor areas of buildings in 500 m x 500 m grids for (a) commercial, (b) office, (c) institutional, and (d)
residential types in Des Moines, IA (upper) and Boston, MA (bottom).



The density of office and commercial types
(Figure 11(a,b)) was slightly different with reference
maps, especially in Boston. The reason is that res-
taurants and shops with high PA but low UA were
easy to be misclassified as offices, leading to lower
density of commercial types and higher density of
office types.

5. Discussion
5.1. Uniqueness of the proposed methodology

This study aims to identify non-residential building
functions on a large scale through an integration of
the data obtained from open-source web platforms.
The use of TripAdvisor.com, a life-service website, pro-
viding not only reviews and rates for hotels, shops, and
restaurants but also their detailed addresses. Employing
a combination of geocoding technique and web crawler
workflow, these text-based addresses can be converted
into POlIs, enabling the inference of building functions.
Similarly, other life-service websites, such as Realtor.
com can be leveraged to extract POIs with residential
functions using a comparable approach. Another valu-
able resource is Google Maps, a popular web mapping
platform, which offers static map images encompassing
various features such as POIs, land use parcels, and
building footprints. By implementing a map crawler
workflow, it becomes possible to convert the image-
based information into geospatial data, facilitating the
inference of building functions. This methodology can
be extended to extract additional data from Google
static maps, including bus stations, road networks,
and parking lots, among other features.

This study also aims to identify residential building
functions on a large scale through building footprint-
derived landscape metrics. First, we use a dataset of
building footprints developed by Microsoft to measure
the size, placement, and uniformity of housing. These
comprehensive Microsoft data cover the entire nation,
making them a potential data source for future expan-
sion into a nationwide study. Second, we investigated
suitable machine learning algorithm according to the
characteristics of the residential parcels, such as
unequal distribution of binary classes and optimal
threshold of Numy,. By capturing how these building
footprint-derived metrics varies within each parcel, we
used the OneClassSVM algorithm and self-adaptive
Numy, to successfully distinguish between residential
and non-residential parcels.

5.2. Practical applications of the proposed
methodology

5.2.1. Workflows for web-based data collection
Our workflows for web-based data collection are
highly adaptable with relatively low cost, enabling
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execution with multiple iterations to maintain up-to-
date building function maps. Among Google Maps
APIs (e.g. street view, place detailed, and maps static
APIs), Google Maps Static API was the most cost- and
computation-effective one. Specifically, compared to
28,000 free monthly downloads for Google static street
view APIs that many urban studies utilized (Richards
and Wang 2020; Zeng et al. 2018), Google Maps Static
APIs can have requested for free up to 100,000 down-
loads per month. In addition, although both Google
places detailed and Maps Static APIs had 100,000 free
monthly downloads, one Google places detailed API
request can only be used to obtain information of one
POI. By using our workflow of data collection, one
Google Maps Static API request can be used to obtain
the location and type of many POIs. Therefore, by
utilizing a web crawler on TripAdvisor.com at no
cost and employing a map crawler on the Google
Maps Static APT at a low cost, we have the capability
to collect current POIs and land use parcels on an
annual basis. These collected data sets are then used
to update the building functions for existing buildings,
ensuring our building function maps up to date.

Our workflows for web-based data collection were
replicable across geographies, which can support geos-
patial data-driven urban studies over large areas. Web-
based mapping platforms are ideal data sources for
geospatial data-driven urban studies with its copious-
ness, large area coverage and reliability (Chao et al.
2018; Wang, Li, and Shi 2017). With the help of the
map crawler, important map elements such as build-
ing footprints, roads, parks, and bus stops in Google
Maps can be retrieved by assigning them with differ-
ent RGB codes in map styles, providing useful geos-
patial datasets for urban sustainable studies at a large
scale. For example, compared to OSM road networks,
road polygons with width and types (i.e. highway,
arterial, drivable local, and trail traffic) can be col-
lected by the map crawler, supporting the quantifica-
tion of pedestrian exposure to traffic particulate
matter (Qiu et al. 2017). Bus stops and parks collected
by the map crawler can be used to assess the equitable
availability of public open space (Timperio et al. 2007)
and optimize public transportation systems for
increasing accessibility of urban green space (Chen
and Chang 2015).

5.2.2. Web-based building function mapping

Our framework exhibits high transferability to other
cities due to its ease of execution and the utilization of
data sources with worldwide coverage. Google Static
Maps offer almost complete coverage around the
world, even cities located in the southern hemisphere
of the globe (e.g. Rustenburg in South Africa, Rocha in
Uruguay). TripAdvisor.com, as the largest travel site
in the world operating in 26 countries, can provide
travel-related POIs (i.e. shops, restaurants, and hotels)
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in tourist cities around the world. To meet the demand
for mobile navigation and life services in daily life,
geospatial data from web mapping platforms need to
be frequently updated (Chen et al. 2020). In addition,
with the goal to increase the coverage of building
footprint data available to public, Microsoft have
recently released building footprints in South
America, Africa, and Australia. Our framework incor-
porates straightforward geospatial analysis and
machine learning algorithms, allowing for easy execu-
tion. As the data resources receive updates, our frame-
work enables the identification of building functions
for new structures and the updating of building func-
tions for existing ones through multiple iterations.

Our framework can contribute to quantitative
urban studies, especially on a large scale. For example,
bottom-up urban building energy use or heat emission
models (Y. Chen et al. 2022; Li et al. 2017) need
detailed building information such as size, height,
and function to estimate spatial and temporal patterns
of energy consumptions or heat emissions at a fine
scale. Considering the existing large scale building
footprint (Anon 2018) and height (Li et al. 2020)
datasets, large scale building function maps can con-
tribute to quantifying large-scale building energy uses
or heat emissions. Therefore, our building function
maps have potential to pave a way for urban building
energy modeling to investigate urban building energy
uses and heat emissions under different climate back-
grounds, offering support for government policy mak-
ing and sustainable city development planning.

5.3. Legal regulations on web crawler technology

In this study, we have used two ways to retrieve data
from web-based platforms. One approach was to uti-
lize the Maps Static APIs, which are provided by
Google to establish a connection with their Google
Maps service. The Google Maps API operates on
a pay-as-you-go pricing structure, offering a monthly
$200 USD credit for each billing account within the
Google Maps platform. The $200 USD credit enables
us to perform up to 100,000 requests to the Maps
Static API or 50,000 requests to the Geocoding API.
In this study, we used a total of $800 USD free credit
over a span of four months, which enabled us to
conduct 121,631 requests to the Geocoding API,
809,090 Maps Static API requests at the zoom level
of 18, and 97,501 Maps Static API requests at the zoom
level of 15. Providing APIs has become a common
practice among various web mapping platforms,
including Baidu Maps, MapQuest, and Bing Maps,
etc., enabling users to connect with their mapping
services. Therefore, the proposed map crawler proves
to be practical and effective, as long as the web map-
ping platforms maintain their current method of data
sharing through APIs.

Furthermore, there exists publicly accessible data
on the internet that has not been structured for direct
downloading or is inaccessible through an API. To
obtain this content, it is necessary to scrape it from
websites using programming code, as it is accessible
and viewable within web browsers. Therefore, specia-
lized packages such as “Beautiful Soup” and “Scrapy”
offer effective solutions in this regard. On
17 April 2019, the European Union introduced
a legal framework for Text and Data Mining (TDM)
on copyright and related rights in the Digital Single
Market (DSM Directive) (Egger, Kroner, and Stockl
2022). The DSM Directive grants TDM an exception
in regard to reproductions and extractions made by
research organizations and cultural heritage institu-
tions in order to carry out, for the purposes of scien-
tific research to which lawful access is acknowledged.
Thus, the proposed web crawler designed to extract
publicly displayed addresses from TripAdvisor.com is
exclusively intended for scientific research purposes.
To date, TripAdvisor.com has been a valuable source
for conducting big data analysis, as numerous
researchers have utilized its extensive information on
online review ratings to understand customer beha-
viors (Khorsand, Rafiee, and Kayvanfar 2020; Mariani,
Borghi, and Laker 2023; O’connor 2008). By imple-
menting our proposed web crawler, TripAdvisor.com
will become an invaluable resource for inferring build-
ing functions.

APIs and web scraping are two standard methods
to collect data from websites but the preference leans
toward utilizing APIs. The operation of APIs is typi-
cally governed by the terms and conditions outlined
by the provider. This framework ensures that the like-
lihood of encountering legal complications is mini-
mized if we remain in alignment with these terms
and guidelines. In contrast, web scraping necessitates
strict adherence to data privacy regulations stipulated
by commercial entities to maintain the legality. Krotov
and Silva (2018) have generated a list of inquiries to
assess whether web scraping projects can potentially
result in lawsuits or ethical controversies, serving as
a valuable resource for gauging the likelihood of law-
suits or ethical disputes arising from such projects.
The inquiry list includes the following important
questions: does “terms of use” of the websites explicitly
forbid web crawling? Could crawling and scraping
potentially result in substantial damage to the website?
Additionally, does the acquisition of data from the
website have the potential to undermine personal
privacy?

5.4. Future work

This study opens future research avenues of mapping
multi-function buildings and building functions with
limited geospatial data. First, the proposed framework



only identified single function of buildings, resulting in
its low performance on correctly classifying offices. In
cases where a building encompasses multiple POIs, our
framework determines the building’s function based on
the majority function among the POIs. Leveraging
Google Street View images holds great promise in iden-
tifying buildings with multiple functions, as these images
offer building profile pictures captured from diverse
fields-of-view (Li, Zhang, and Li 2017). The profile
view of street-level images can be effectively utilized to
assess the socio-economic functions of an individual
building across various aspects, such as discerning
a restaurant on the left side and an office on the right
side, as well as vertical levels, such as identifying
a restaurant at the ground level and offices on the
upper levels.

Second, the proposed framework could perform
better in industrialized nations because cities in these
nations tend to have abundant geospatial data in web-
based platforms (Anguelov et al. 2010). Although data
in Google Maps and TripAdvisor.com exist in the
southern hemisphere of the globe (e.g. Sdo Paulo in
Brazil and Kampala in Africa), the coverage is less
dense in those areas compared to industrialized
nations (Anguelov et al. 2010). Therefore, the pro-
posed framework with low density of geospatial data
may have limited ability to identify building functions
in the Global South. However, before the global cover-
age of Google Maps and TripAdvisor databases
expanded to developing nations (Richards and Wang
2020), auxiliary datasets (e.g. remote sensing observa-
tions) could be used to improve building function
mapping, especially in the Global South.

6. Conclusion

Building function map can provide an important
source of data for characterizing human activities
in the complex urban environment. Although
social sensing-based methods are capable of identi-
fying detailed building functions such as hospitals
and schools for a large area, collecting social sen-
sing datasets is expensive and difficult. In this
paper, we present a framework for mapping build-
ing functions based on web-based geospatial data-
sets and implemented this framework in 50
U.S. cities with different sizes. Additionally, we
allocated approximately one week of computing
time on a server equipped with 50 threads for the
purpose of web-based data collection and the con-
struction of function identification (https://
researchit.las.iastate.edu). The accuracy assessment
indicates that the proposed framework performed
well with average overall accuracies of 93.9% and
93.4% and average kappa coefficients of 0.62 and
0.63 in Des Moines and Boston, respectively. The
mapped building functions can contribute to
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quantitative urban modeling studies, such as city-
scale building energy modeling. In addition, the
proposed workflows for web-based data collection
have potential to support a variety of urban envir-
onmental studies, such as evaluation of urban
green space availability and pedestrian exposure
to traffic particulate matter. Considering that the
Google Maps and TripAdvisor.com did not have
residential POIs and had limited spatial coverage in
the Global South, future research can focus on
improving accuracy of building function mapping
by identifying multi-function buildings and build-
ing functions in the southern hemisphere of the
globe.
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