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Soil carbon storage capacity of drylands 
under altered fire regimes
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Anders Ahlström    12, Lars Nieradzik12, Stephen Sitch    13, Joe R. Melton    14, 
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The determinants of fire-driven changes in soil organic carbon (SOC) 
across broad environmental gradients remains unclear, especially 
in global drylands. Here we combined datasets and field sampling of 
fire-manipulation experiments to evaluate where and why fire changes 
SOC and compared our statistical model to simulations from ecosystem 
models. Drier ecosystems experienced larger relative changes in SOC than 
humid ecosystems—in some cases exceeding losses from plant biomass 
pools—primarily explained by high fire-driven declines in tree biomass 
inputs in dry ecosystems. Many ecosystem models underestimated the 
SOC changes in drier ecosystems. Upscaling our statistical model predicted 
that soils in savannah–grassland regions may have gained 0.64 PgC due 
to net-declines in burned area over the past approximately two decades. 
Consequently, ongoing declines in fire frequencies have probably created 
an extensive carbon sink in the soils of global drylands that may have been 
underestimated by ecosystem models.

Fire-driven changes in soil organic carbon (SOC) arising from altered 
fire frequencies are hypothesized to be predicted by how much fire 
directly combusts SOC1,2 and indirectly alters plant biomass inputs 
to soils and decomposition of residual SOC post-fire3–10. In drier and 
warmer ecosystems, which dominate global burned area11,12, most 
SOC is in the mineral horizon where heat rapidly dissipates13 and little 
direct combustion of SOC occurs8,14,15. In these drier sites, fire-driven 
shifts in plant biomass inputs, especially from trees16–18, are thought 
to determine changes in SOC stored in the mineral horizon19–21. Con-
sequently, increases in fire frequency may drive large SOC losses in 
climates with low precipitation and/or seasonal rainfall, where water 
constrains tree growth and post-fire biomass recovery22–25 relative to 
ecosystems in climates where biomass recovery is faster. In addition 
to water availability, temperature and soil texture and mineralogy 
can modify post-fire decomposition rates26–28 such that warmer cli-
mates and coarse-textured soils may allow for higher C losses because 

the residual plant material is more quickly decomposed4. Thus, we 
hypothesize that water availability, temperature and soil texture all 
act to modify the effect of repeated burning on SOC storage in the 
mineral horizon.

Global data to evaluate these hypotheses are lacking because 
there have yet to be studies examining repeated burning effects 
on SOC and plant biomass in parallel across broad climatic and 
ecological gradients, despite comparisons within individual eco-
systems2,19,29. Thus, models used to simulate the effects of fire 
regime changes on ecosystems, such as fire-enabled Dynamic 
Global Vegetation Models30 (DGVMs), lack a clear benchmark for 
evaluating how well they simulate SOC responses across environ-
mental gradients31. Here we examine the factors that determine 
the magnitude of SOC losses or gains in the mineral horizon when 
fire frequencies change, evaluate whether DGVMs capture spatial 
patterns in fire effects on SOC storage and estimate the potential 
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found that while fire reduced SOC in semi-arid and dry sub-humid 
zones by 35 ± 9% and 23 ± 15%, respectively, it did not significantly 
decrease it in humid and hyper-humid zones (humid = 19 ± 35% lower 
and hyper-humid = 8 ± 14% lower, respectively; Fig. 1b).

Annual precipitation seasonality was the second most important 
environmental variable in the statistical model, with twice as large 
fire-driven declines in high vs mean seasonality sites (27 ± 8% lower vs 
13 ± 9% lower, respectively, p < 0.001, at seasonality values of 69 vs 47, 
respectively; Fig. 1c and Supplementary Table 2; Pearson correlation 
coefficient between annual precipitation and aridity was relatively low 
(σ = 0.34)). Relative SOC losses were also greater in sites with cooler 
temperatures and coarser textured soils (p < 0.01 and p = 0.068, respec-
tively), although these environmental variables were less important 
than aridity and precipitation seasonality according to the model selec-
tion analyses (Supplementary Table 2 and Extended Data Fig. 2). Taken 
together, water availability was the most important environmental fac-
tor explaining the relative change in SOC with altered fire frequencies.

To test the hypothesis that fire-driven changes in SOC could be 
attributed to changes in tree biomass inputs across sites, we focused 
on savannah–grasslands and analysed 74 plots across seven sites in 
our meta-analysis with data on soil δ13C (Methods). We used δ13C as a 
proxy for tree biomass inputs in these sites because C3 tree biomass 
has a lower 13C than C4 grass biomass. Thus, SOC 13C is commonly 
used to quantify C3 tree biomass inputs relative to C4 grass inputs  
in savannahs19,20,34.

Fire-driven changes in 13C illustrate that larger decreases in SOC 
in drier climates were linked with lower tree biomass inputs to soils. 
Comparing δ13C values across sites and in unburned vs burned plots 
illustrated that 13C was higher in burned plots (F1,40 = 50.9, p < 0.001, 
mixed-effects model with site as random intercept; F1,40, F statistic with 
degrees of freedom), illustrating frequent burning caused a shift from 
C3 tree- to C4 grass-derived biomass inputs: the proportion of SOC 
from C3 trees was, on average, 39 ± 27% lower in frequently burned 
plots relative to unburned plots (Supplementary Table 3). The losses 
of C3-derived inputs positively correlated with the losses in SOC stocks 
across sites, pointing to changes in woody biomass inputs to soils driv-
ing changes in SOC storage, but the relative magnitude of change varied 
across sites (r2 = 0.71, p = 0.01; Fig. 2a and Supplementary Table 3). In 
contrast, total SOC stocks from C4-derived inputs were unchanged by 
fire across sites (p > 0.50). Thus, while grass biomass inputs to SOC were 

impact of recent regional changes in fire frequencies on SOC 
storage.

To evaluate the determinants of fire effects on SOC, we conducted 
a meta-analysis to identify the environmental variables relating to how 
multi-decadal alterations of fire frequency impact SOC storage in the 
mineral horizon using data from experiments in 53 sites containing 434 
replicate plots. Within these sites, we compared the effect of repeated 
burning at different frequencies relative to unburned plots or plots 
burned at lower frequencies over the same period (Supplementary 
Table 1 and Methods). We focused our analyses on ecosystems that 
account for the majority of both total burned area and recent changes 
in fire frequency (savannahs, grasslands and seasonal woodlands and 
forests)12 (Extended Data Fig. 1).

Globally, our meta-analysis demonstrated that the most important 
climatic and edaphic variables explaining fire effects on SOC in the 
mineral horizon were aridity, precipitation seasonality, mean annual 
temperature and silt content, with larger relative changes in SOC in 
drier and cooler environments on coarsely textured soils (r2 = 0.82, 
p < 0.001; Supplementary Table 2 and Extended Data Fig. 2). Using 
Akaike information criterion-based model selection on mixed-effects 
meta-regression models, we identified the important environmental 
variables based on their inclusion in the top model and their relative 
importance calculated from summing the weights of the models in 
which the variable occurred. We then fit the top model to the data to 
illustrate the influence of these environmental variables on fire effects 
(Supplementary Table 2 and Methods) and used the first and third 
quartiles of the covariates to compare ‘low’ and ‘high’ values, respec-
tively, of environmental covariates. Variables related to experimental 
design (for example, duration that fire frequencies were altered and 
the absolute fire frequency) and overall ecosystem type were also 
incorporated to better isolate environmental variables (Extended 
Data Fig. 2 and Methods).

Relative to unburned plots, SOC in burned plots was 17 ± 10% lower 
in sites with mean aridity and 37 ± 23% lower in sites with high aridity 
(p < 0.001, aridity index = 0.63 vs 0.31, respectively; Fig. 1a and Supple-
mentary Table 2; uncertainties are standard errors and aridity is defined 
as the ratio between precipitation/potential evapotranspiration32; 
Methods). Because aridity is often defined categorically (defined by 
the United Nations Environment Program, World Atlas of Desertifica-
tion) e.g., ref. 33, we tested fire effects in different aridity zones and 
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Fig. 1 | Water availability modifies the effect of fire on SOC. Environmental 
conditions influenced the percent difference in SOC concentrations in the 
burned versus unburned plots (lower values thus signify a fire-driven  
loss). a, Fire effects as a function of aridity (precipitation/potential 
evapotranspiration), with a lower aridity index (AI) indicating dry conditions 
(Methods). b, Response ratios calculated within aridity classes as defined by the 
UNEP World Atlas of Desertification (Methods) (Supplementary Information). 
SA: arid and semi-arid: 0 < AI ≤ 0.5; DSH: dry sub-humid: 0.5 < AI ≤ 0.65; H: humid: 

0.65 < AI ≤ 0.75; HH: hyper-humid: AI > 0.75. The colours indicate different aridity 
classes. c, Fire effects as a function of precipitation seasonality, which is the 
coefficient of variation of monthly precipitation within a year multiplied by 100. 
All dashed lines indicate 95% confidence intervals of the model fit. Importance of 
all variables in the model selection are presented in Supplementary Table 2. a and 
c illustrate results from meta-regression of the top model with all other variables 
set to their medians. Extended Data Figs. 2 and 3 contrast other variables in the 
model selection and fire frequency effects.
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robust to fire treatment, declines in woody plant inputs determined 
the magnitude of SOC losses.

Water availability was important in explaining the variability in 
13C changes across sites. Within these seven savannah–grassland sites, 
aridity and mean annual precipitation strongly covaried (σ = 0.95), and 
the limited sample size restricted our ability to conduct model selection 
including multiple variables. Consequently, we present analyses for 
aridity but point out that relationships are equivalent for mean annual 
precipitation and thus refer to the gradient as one of ‘dryness’. The dri-
est sites experienced the strongest fire-driven declines in C3-derived 
inputs (aridity: r2 = 0.58, p = 0.029; mean annual precipitation: r2 = 0.64, 
p = 0.019; Fig. 2b), consistent with fire causing the largest relative 
changes in SOC in drier climates. Thus, fire-driven changes in tree bio-
mass inputs into soils helps explain SOC responses to fire across sites.

To further assess the relative changes in SOC across fire frequency 
treatments and attribute the changes to shifts in biomass inputs, we 
conducted a field-sampling campaign across the six longest-running 
fire-manipulation experiments (that experienced 53–64 years of 
altered fire frequencies) in savannahs that span semi-arid to humid 
zones (Methods). SOC was on average 26% lower (range of 13–44% 
lower) in the highest-frequency plots relative to the fire exclusion 

plots (F1,34.1 = 9.1, p = 0.005; Fig. 3; 0–20 cm depth). Across all sites, fire 
reduced the proportion of SOC derived from C3 plants (F1,34 = 35.4, 
p < 0.001). Finally, within a site, SOC in a plot positively correlated 
with 13C, illustrating larger SOC stocks had a greater proportion of SOC 
derived from C3 plants (mixed-effects model, F1,40.4 = 9.4, p = 0.004).

To evaluate estimates of fire effects on SOC at the global scale, 
we analysed whether an ensemble of seven fire-enabled DGVMs were 
able to recreate the biogeographical trends in fire effects found in our 
empirical findings (model details in refs. 30,31 and Methods; Extended 
Data Fig. 4 for global maps). Fire-vegetation models are able to repre-
sent spatial and seasonal patterns of burnt area, and the inclusion of 
fire improves the simulated vegetation distribution30,31. We used model 
experiments that were similar in concept to our field experiments: com-
paring simulations of SOC in a ‘world with fire’ (allowing fire frequency 
and impact to emerge as a function of climate, vegetation type and fuel 
load) vs a ‘world without fire’ (fire modules are turned off). Rather than 
compare model-based estimates of SOC fluxes with data at individual 
sites, we compare the within-model relationships between fire effects 
and water availability gradients with the predictions from our empirical 
model across the same gradients. Generally, the DGVMs predicted that 
areas experiencing the largest differences in burned area between the 
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Fig. 2 | Fire effects on SOC are predicted by changes in tree-based SOC, which 
track the aridity gradient. a, Differences in the total SOC between burned and 
unburned vs the percent of SOC derived from tree biomass (stocks standardized 
to 0–20 cm of the mineral horizon). The negative slope illustrates that greater 
losses of SOC with burning correlate with greater losses of SOC derived from 

trees. b, Aridity index (lower values are drier) and the difference in SOC from 
trees between burned and unburned. Solid lines are linear regressions with the 
dashed lines representing the standard error. These averages are based on n = 49 
plots distributed across the sites.
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fire vs no fire simulations also experienced the largest changes in SOC 
(Extended Data Fig. 5). However, the models were inconsistent in their 
simulated patterns of SOC sensitivity to fire across aridity and precipi-
tation seasonality gradients (Fig. 4 and Extended Data Figs. 6 and 7). 
In savannah–grasslands, which account for 70% of global burned area, 
only two of the seven models (LPJ-GUESS-BLAZE and CTEM models) 
correctly recreated the empirically determined relationships between 
the sensitivity of SOC to fire and both precipitation seasonality and 
aridity (Fig. 4 and Extended Data Figs. 6 and 7). Although we cannot 
isolate the role of model-based differences in simulating burned area 
across climates because we did not run constrained simulations with 
a forced fire frequency, these results suggest a DGVM ensemble is 
probably biased towards underestimating fire-driven changes in SOC 
in drier regions.

To estimate the potential area over which frequent burning could 
limit SOC storage in mineral soils, we scaled up our statistical model 
of fire effects on SOC to savannah–grasslands. To estimate what 
areas may be either losing or gaining SOC, we extrapolated observed 
trends in burned area for approximately two decades12 to identify 
areas of increasing or decreasing fire frequency and used the environ-
mental covariates and SOC content derived from other global maps  
(Methods) to estimate potential SOC changes. Across 2.3 million km2 
where burned area is tending to decline, SOC has potentially risen 
by 23% (Fig. 5a). In 1.38 million km2 where burned area is tending to 
rise, SOC has potentially declined by 25% (Fig. 5b). The causes of the 
changes in burned area are described in detail in other studies12, but 
namely arise from fire suppression due to population expansion and 
landscape fragmentation in savanna-grassland regions. By multiply-
ing these relative values with total SOC stocks, we estimate reductions 
in burning from 1998–2015 resulted in a gain of 1.78 PgC, while more 
frequent fires resulted in a loss of 1.14 PgC, for a net change of 0.64 PgC, 
or a flux of 0.038 PgC yr−1.

While previous research has highlighted the theoretical capacity 
of savannah–grassland soils to serve as a C sink21, subsequent studies 
have argued that variance limits broad extrapolations; our study, for 

the first time, identifies the environmental variables that explain the 
wide variability in SOC responses to fire across drylands as a whole. 
This information can inform management choices that implement 
nature-based climate solutions4, which estimate SOC contributes >50% 
to the total accrual potential in savannah–grassland ecosystems. Cur-
rent estimates of potential SOC change from nature-based solutions 
in grasslands focus on adjustments to grazing regimes (optimizing 
intensities and plant composition, totalling 0.30 PgCO2 equivalent 
(PgCO2e) yr−1) and avoided conversion (0.23 Pg CO2e yr−1) (refs. 35,36). 
Our estimated sink in areas with declining burned area is equivalent to 
~0.38 Pg CO2e yr−1, with the caveat that we do not account for changes 
in other greenhouse gas emissions and we focus on both savannahs 
and grasslands (for example, CH4 and N2O, although it is unlikely these 
change much in dry savannah–grasslands). The impact of fire on SOC 
was considered to be variable enough to be omitted from past esti-
mates37. Given that we have identified the environmental conditions 
that explain a large portion of such variance, we propose fire manage-
ment should now be integrated into estimates of nature-based climate 
solutions in savannah–grasslands.

Empirical data
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We demonstrate the relative SOC sequestration when fire is 
excluded is roughly double in sites with high precipitation seasonal-
ity and aridity (we used first and third quartiles of the covariates to 
compare ‘low’ and ‘high’ values). SOC sequestration comes with a 
potential cost of tree encroachment, which can reduce biodiversity—a 
key consideration that may be offset through management of brows-
ing herbivores, which we did not consider here. For example, brows-
ers—or lack thereof—can determine decadal trends in tree cover in 
savannahs38,39, such that the restoration of their populations may help 
abate deleterious effects of woody encroachment caused by fire sup-
pression. The carbon-biodiversity tradeoffs are difficult to ascertain 
because little work has been done assessing cross-site patterns of the 
sensitivity of dryland biodiversity to changes in fire, and even less on 
how that relates to SOC, across environmental conditions. Such assess-
ments will be key given that fire has been shown to both decrease40, 
increase41 or not change42 biodiversity. Thus, further work is needed to 
understand the relationship between SOC and biodiversity to manage 
fire for nature-based solutions. Along those lines, our dataset has large 
gaps in Europe and Asia, which have unique biogeographic assemblages 
of plants and differences in fire behaviour, which should be addressed 
in future studies to test the generality of our findings. However, our 
dataset does cover the bioclimatic conditions and soil properties 
representative of the area over which we are making predictions.

Although statistical upscaling provides a benchmark for evaluating 
the spatial distribution of SOC changes and the general order of magni-
tude, improving the process-based models should be a priority. Paths 
forward include simulating potential direct effects of fire on SOC, which 
may be minimal in some systems with limited organic horizons but 
become more important in forests. Second is accurately representing 
tree growth, overestimates of which may inflate resilience of trees in dry 
areas relative to the greater reductions we observe empirically16. Third 
is capturing the potential for tree–grass coexistence and changes in tree 
cover within savannah, which is key for how fire frequency changes SOC 
in a landscape that remains savannah17,19. Given ecosystem models are 
used to estimate both historical and future SOC changes under altered 
land use43, ensuring they capture observed changes arising from fire  
(a key process used to manage agricultural lands12,44) is critical.

We did not focus on systems with either intense crown wildfires 
such as boreal spruce forest or smouldering ground fires in peatlands. 
Although these ecosystems can store large amounts of SOC, they burn 
less frequently than savannah–grasslands (albeit with increasing fre-
quency)4, and the factors that determine direct combustion of SOC 
are well characterized4. Meanwhile, savannah-grasslands have lower 
per area SOC stocks, but given their large spatial extent and frequent 
burning, SOC stocks underlying savannah-grasslands that burn equate 
to ~14.5 PgC (ref. 4). Our sink estimate is small relative to the residual 
land C sink (3.1 ± 0.6 PgC yr−1) (ref. 45), but given we observed continued 
declines in SOC with the long duration of experiments in our dataset 
(~60 years), SOC in drylands probably have a relatively long-lasting 
capacity to sequester carbon.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
Meta-analysis
The repeated burning treatments ranged from fire return intervals 
of 1–17 years (0.06–1 fires per year). The mean duration that fire 
frequencies were altered was 33 years spanning 9–65 years. Sites 
spanned mean annual temperatures from 3.9–27.1 °C, average 
of 15.6 °C, mean annual precipitation from 342 to 2,448 mm yr−1, 
average of 995 mm yr−1. Averages and ranges for soil proper-
ties are: carbon content = 3.29% (range = 0.565–9.37%), clay per-
cent = 18% (range = 3–63%), silt percent = 25% (range = 2–81%), sand 
percent = 57% (range = 1–92%), bulk density 1.27 g cm−3 (range =  
0.48–1.72 g cm−3). Study design: 43 sites were experiments and 10 
were from incidental fire histories.

Study compilation and overview
Our methods were similar to previous meta-analyses of how fire affects 
soils by calculating a response ratio of soil carbon (C) in plots with 
different fire treatments within sites and then comparing responses 
across sites 10. To obtain data from the literature, we searched for stud-
ies that measured the response of mineral soils to repeated burning 
(completed in May 2020) on Google Scholar. We included ‘decadal’, 
‘fire frequency’, ‘soils’, ‘repeated burning’, ‘carbon’, ‘long-term’ to isolate 
papers with long-term repeated burning manipulations; searches were 
conducted in English and yielded 156 articles. We used a threshold of 
plots experiencing at least two fires that had been running for a decade 
or longer. We made one exception for a site that had been running for 
nine years because it was in an ecosystem that was not well represented 
in the dataset.

We focused on the mineral soil because of our focus on under-
standing fire effects in drylands, where it dominates soil C storage 
pools. We analysed data from the uppermost soil layers ( < 20 cm depth) 
because these are the most biologically active and likely to be the 
most responsive to burning. There is evidence that fire can alter soil 
C > 20 cm deep in some ecosystems 8,10,46, suggesting our estimates 
could be conservative.

The majority of our sites were from fire-manipulation experi-
ments where fire treatments were prescribed (43 out of 53). The fire 
frequencies ranged from one fire every 17 years to one fire every year. 
The low fire treatments were usually complete fire exclusion. In some 
cases the authors note an incidental fire that burned through one of 
the fire exclusion plots, but these fires were mostly rare. One site was 
running for only 9 years 47, but we included this study because it came 
from a grassland that had received >5 fires and was one of the only 
sites in an arid region. Fire treatments were replicated at the landscape 
scale in all but 16 sites. Independent replicates of the fire treatments 
were generally defined based on the application of different fires (for 
example, fire breaks separated the plots and the managers burned 
each plot separately).

In several sites, the plots had experienced other types of land use 
before the establishment of the experiment. For example, many of 
the forested sites in the southeastern United States were established 
on abandoned agricultural land or tree plantations. Other types of 
disturbance also occurred during the experiment such as intermit-
tent drought and herbivory. We assume that there were no overarch-
ing biases in the land use history of the experiment that would drive 
our trends. Herbivory was clearly biased, however, with the African 
savannah sites exposed to browsing and grazing. We assume that these 
characteristics are important natural processes in the ecosystem ( just 
as intermittent drought in many ecosystems) and thus included the 
sites in our analysis.

In addition to the literature search, we incorporated data from 
our own surveys of seven sites. Several of these sites replace previous 
measurements because we wanted to extend the timescale over which 
fire had been manipulated (for example, in some cases plots had been 
surveyed in the 1990s and we re-surveyed them).

Different sites and calculations from a previous meta-analysis 
and field surveys
Matopos studies: weighted the soil C under grasses vs trees by the tree 
cover. Texture data are in refs. 47,48. Kruger: we used data from our own 
re-survey across all the plots in 2015. Morton, Hitchiti, Cedar Creek: 
re-analysed the soil samples in our lab. Cedar Creek duration extended. 
Limestone and Chimney Springs: surveyed soils with our own sampling 
to extend the dataset by two decades. University Missouri: added data 
from Pellegrini et al. 2021 16. Wet Peachester: now from refs. 49 because 
this extended the dataset.

Soil texture
We compiled data on soil texture using either (1) measurements within 
the study site, (2) extrapolations based on discrete soil classification 
(for example, clay loam, sand and so on; http://www.fao.org/tempref/
FI/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e06.
htm) 50. When percent texture did not add to 100, we used average clay, 
then silt and then took the difference with sand. In the cases where 
only clay was reported, we used the reported value of clay, mean silt in 
the texture class and then subtracted out sand from 100. In the cases 
where texture was provided but class was not given, we used texture 
to assign it to a class.

Climate variables
We used WorldClim32 to obtain climate variables for each site. In 
our model selection, we focused on variables related to growing 
season length and variability and water availability. Specifically, 
we analysed mean annual temperature, annual temperature range, 
mean precipitation (mean annual and broken down into the wettest 
and driest quarters) and precipitation seasonality (coefficient of 
variation of precipitation calculated with the standard deviation 
across months within a year divided by the annual precipitation and 
multiplied by 100).

To integrate water and evaporative demand, we used an Aridity 
Index51. Aridity was calculated from the WorldClim data based on data 
from 1950–2000. The aridity index is given as:

Aridity Index = (mean annual precipitation) /

(mean annual potential evapotranspiration)

Potential evapotranspiration was calculated via the Hargreaves 
equation52 (mm per month) using the WorldClim data as input:

PET = 0.0023 × (extra-terrestrial radiation) × (mean temperature + 17.8)

× (daily temperature range)0.5

We divided the index by 10,000.
Aridity classes are calculated from the UNEP World atlas of deserti-

fication, 2nd addition. Arid and semi-arid: 0 < AI ≤ 0.5; dry sub-humid: 
0.5 < AI ≤ 0.65; humid: 0.65 < AI ≤ 0.75; hyper-humid: AI > 0.75.

Imputed standard deviations
For nine of the sites, we imputed standard deviations. We did this by 
first calculating the coefficient of variation across all the sites with 
reported standard deviations and then multiplying the coefficient of 
variation by the mean for the sites being imputed. Imputing standard 
deviations using values from studies included within the meta-analysis 
has been shown to be the most accurate 53.

Meta-analysis statistics
All statistics were run in R 54. We calculated log response ratios on soil C 
concentrations in the high-frequency plots divided by the concentra-
tions in the unburned plots for each site (RRsite).
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RRsite = ln (μburn
μunb

)

To determine variable weights (var), we used the inverse of the 
variance within a site. We calculated the variance within each site by 
combining the standard deviation (σ), sample size (n) and sample 
means (μ) for each treatment within each site.

varsite =
σ2burn

nburnμ
2
burn

+
σ2unb

nunbμ
2
unb

We then calculated the overall effects, 95% confidence intervals 
and their significance using multivariate meta-analysis models (rma.
mv) in the metaphor package 55.

To evaluate the important predictors of fire effects on soil C, we 
performed model selection on linear meta-analysis models using 
the glmulti package 55 with the log response ratio as the predicted 
variable and environmental variables as the predictor variables. 
Models were fit using maximum likelihood estimation via the func-
tion rma.glmulti. For this analysis we only considered first-order 
effects and not interactions between environmental variables. 
Variables included are listed in the ‘Weighted variable importance 
from model selection’ in Supplementary Table 2 and bolded are 
those included in the top model (criterion for top model in the 
following paragraph).

To evaluate the top model, we first extracted the models with 
the lowest corrected Akaike Information Criterion within a value of 
2. We calculated variable importance by summing the weights of the 
models that the variable occurred in. Sometimes a cut-off of 0.8 is 
used to delineate important vs unimportant variables. Here, however, 
the top model contained several variables that were not above this 
cut-off, making it less straightforward to evaluate whether a variable 
was important. Consequently, we tested for variable significance in 
the top model (which included the variables that had an importance 
<0.80), which is reported in the main text, using a meta-analysis via 
linear mixed-effects model (rma) in package metafor with a maximum 
likelihood estimator. Significance of moderators was evaluated using 
an omnibus test (QM test) using a chi-square distribution. Signifi-
cance of individual coefficients are tested using a standard normal 
distribution. We allowed for aridity and precipitation to both be in 
the top model because they had a relatively low Pearson correlation 
coefficient (σ = 0.34).

We compare ‘low’ and ‘high’ values of environmental covariates 
using the first and third quartiles of the covariates, respectively.

Survey of savannah sites for soil carbon and δ13C
In seven of the sites included in the meta-analysis, δ13C was measured 
in combination with soil C (Breaks, Cedar Creek, Hitchiti, IBGE, 
Satara, MatoposClay and MatoposSand). These sites spanned tropi-
cal and temperate regions in North and South America and Africa. 
The savannahs all contained C4 grasses, which allowed us to use 
δ13C values to partition tree vs grass biomass contributions to soil 
C (although some contained a mix of C3 and C4 grass). The abso-
lute number of soil samples collected varied across sites because 
of differences in tree cover, but we used plot-level averages in the 
analysis. Duration of fire frequency experiments ranged from 25–64 
years. The ratio of 13C to 12C is assumed to be relatively unchanged 
by fire compared to the difference between C3 vs C4 photosynthetic 
pathways20,34,56,57.

We used isotopic mixing models to calculate the proportion of 
soil C derived from grasses vs trees. We performed these calculations 
in savannah sites where C4 grasses comprised a large proportion (if not 
all) of herbaceous biomass. We assumed a C4 signature of −15‰ and 
C3 of −28‰ for the sites where plant isotope values are not available. 
In other cases, site-specific values were used 19.

We generated a two end-member mixing model to calculate the 
relative contribution of trees vs C4 grasses, where x denotes the pro-
portion coming from trees.

δ13CBulkSoil = x × δ
13CTreeBiomass + (1 − x) × δ

13CGrassBiomass

We did not necessarily expect the functional form of the curve 
between soil δ13C and total soil C to be linear so we fit generalized addi-
tive models with a penalized spline. The maximum degrees of freedom 
was set to k = 3, where k is a parameter determining the flexibility of the 
spline. All fitting was done using the mgcv package in R58.

We tested the overall effect of fire on δ13C values across sites using 
a mixed-effects model with site as a random effect. Within each site, 
we tested for significant effects using linear models (Supplementary 
Table 3).

For this analysis we calculate the relative contributions of C3 
trees vs C4 grasses in terms of total stocks of SOC. To calculate this, 
we use bulk density values reported for the site, standardized it to a 
depth of 0–20 cm and multiplied total soil mass per area by the soil C 
concentration.

Field sampling in six fire-manipulation experiments
We sampled fire-manipulation experiments in the Cedar Creek Savanna 
Fire Experiment in Minnesota, USA, the Reserva Ecologica do IBGE in 
Brasília, Brazil, and four sites across the Experimental Burn Plots in Kru-
ger National Park, South Africa. These are some of the longest-running 
fire-manipulation experiments in the world and described in detail in 
ref. 57. These sites span a gradient from semi-arid savannahs to mesic 
savannah–forest ecotones with a range in total precipitation and its 
seasonality.

Experimental design
In all the sites, replicate plots >1 hectare in size have received different 
prescribed burning frequencies. Burns are conducted at the end of 
the dry season in the tropical sites and early spring in the temperate 
sites. Fires are typical of savannahs with low to moderate intensities 
that result in little adult tree mortality but tend to topkill saplings59–61.

In all cases the ‘low’ fire frequency treatment is fire exclusion that 
was initiated on a savannah landscape. The intermediate frequency 
approximates the historical average for the region (fire return intervals 
of 3–5 years in Brazil, 3 years in South Africa, 3 years in the United States) 
and a high-frequency treatment is greater than the historical mean (fire 
return intervals of 2 years in Brazil and 1 year in South Africa; the plots 
in the United States were burned 3 out of every 4 years).

Sampling
We sampled the top 0–20 cm of the mineral soil horizons. Bulk density 
was measured concurrently and calculated within each fire treatment, 
thereby controlling for potential compaction under more frequent 
burning. Soils were dried, sieved to 2 mm and analysed for total C via 
combustion on Elemental Analysers at Stanford University, Princeton 
University and the University of Cape Town. Acid digests on soils with 
high carbonate concentrations were performed to isolate SOC from 
inorganic C.

Soil cores were taken at 2–5 locations within each replicate plot 
within each treatment in a site. When necessary, we stratified sampling 
underneath either a tree canopy or in the grassy matrix. The five cores 
were then homogenized within each vegetation type. Bulk densities 
were measured on these samples and used to calculate total stocks. 
We weighted our calculated soil variables based on the tree cover in a 
site (for example, 20% tree cover meant that the soil C value under trees 
contributed only 20% to the plot-level average and the soil C values 
under grasses contributed the other 80%).

We tested for significant fire effects on SOC, the contribution of C3 
plants to SOC and the relationship between SOC and the contribution 
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of C3 plants using linear regressions followed by an Analysis of  
Variance (ANOVA).

Fire Model Intercomparison Project simulations
The empirical spatial pattern and climate relationships of fire’s impact 
on soil carbon was compared to that simulated by a set of fire-enabled 
global vegetation models. Simulated global soil carbon output from 
seven global fire-vegetation models was obtained from a set of stand-
ardized simulations provided by the Fire Model Intercomparison Pro-
ject (FireMIP30,62):

Two sets of simulations were used: first a fully transient simulation 
with changing climate, population density, land use and [CO2] and 
another identical sensitivity experiment in which fire was switched 
off. The difference between both runs indicated the long-term impact 
fire has on soil carbon as simulated by each model. Climate, land use, 
population density and [CO2] forcing data was standardized so that 
inter-model differences can be traced back to differences in model 
structure and parameterization and not to differences in forcing data. 
Of the models we used, CLM-Li and LPJ-GUESS-SIMFIRE-BLAZE had 
nitrogen cycles.

A spin up until the slowest C pool was in equilibrium was per-
formed for each run, during which climate was recycled over the 
1901–1920 period and all other forcing data were kept constant at 
their initial value. After spin up, the models were forced by time vary-
ing land use, population density and [CO2] (1700–2013) and climate 
(1901–2013). Two models slightly deviated from this protocol by start-
ing their transient simulations later (CLM: 1850 and CTEM: 1861), but 
this should have minimal impact on the results used here. Soil carbon 
output averaged over the last two decades of each model’s simulations 
was used for analysis. More detailed information about the fire on/off 
simulations can be found in refs. 31,62. For our statistical analyses, we 
merged the WorldClim dataset with the model output for direct com-
parability between the spatial trends in our empirical data. Because 
we are interested in the factors that determine the impact of fire on 
soil C, we filtered the data to only include grid cells that had non-zero 
burned area.

All the DGVMs we used in this study explicitly simulate litter burn-
ing. The models do not simulate SOC burning except for CLM-Li. CLM-Li 
simulates SOC burning only over peatlands. However, for consistency 
with the other models, we did not consider its impact on SOC in the 
FireMIP simulations.

Upscaling calculations
We determined the distribution of savannah–grasslands using the 
World Wildlife Fund (WWF) ecoregions but excluded the Montane Grass-
lands and Shrublands category because this included steppe (https://
www.worldwildlife.org/biomes/montane-grasslands-and-shrublands).  
Maps were downloaded on 1 January 2023.

We included the main environmental variables determined in our 
main meta-regression: percent silt, precipitation seasonality, mean 
annual temperature, mean annual precipitation and aridity. Climate 
data were acquired from the same sources as we described above. 
Percent silt data were taken from the Harmonized World Soils Database 
v.1.2 (accessed 20 May 2020). We used a 17-year duration of fire treat-
ments based on the 1998–2015 GFED4 records.

We then applied our statistical model to each gridcell across  
savannah–grasslands. We determined the potential significance of 
cells using the 95% confidence intervals of the model fit. We present a 
comparison between global data extrapolated over and data used to 
fit the statistical model in Supplementary Fig. 1. For our calculations, 
we restricted our analysis to include only environmental conditions 
covered by our dataset used to build the statistical model.

Areas that were experiencing either gains or declines in burned 
area were determined using remote sensing data on fire occurrences 
from 1998 to 2015 from a previously published dataset 12. For the 

declines in burned area, we re-calculated the response ratios in terms 
of fire exclusion/high frequency to illustrate the potential gain in soil 
C and transformed them to percent differences; this was repeated for 
the cases where fire frequency increased. These were then multiplied to 
the total SOC stocks in each grid cell calculated from the Harmonized 
World Soils Database v.1.263 to transport a percentage to a stock change.

As a comparison between the extrapolation-based SOC flux 
estimates and empirical measurements, we used the SOC fluxes 
from the six sites from our field campaign where we measured 
bulk densities to a standardized depth of 20 cm. Field measure-
ment fluxes were 0.21 ± 0.10 MgC ha−1 yr−1 (mean ± standard devia-
tion) while model-based estimates were 0.37 ± 0.26; the median was 
0.31 MgC ha−1 yr−1 (model-based estimates follow a log normal 
distribution).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data are freely available on Figshare at https://doi.org/10.6084/
m9.figshare.23899530. Source data are provided with this paper.

Code availability
All code used for analysis and figure creation are on Figshare at  
https://doi.org/10.6084/m9.figshare.23899530.
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Extended Data Fig. 1 | Distribution of semi-arid regions and savannah-
grasslands. Distribution of semi-arid regions and savannah-grasslands in 
yellow with points identifying the locations of our sites in the meta-analysis. We 
determined the distribution of savannah-grasslands using the WWF ecoregions 
but excluded the Montane Grasslands & Shrublands category because this 

included steppe (https://www.worldwildlife.org/biomes/montane-grasslands-
and-shrublands). Maps were downloaded on 1/1/2023. We also added the MODIS 
map of semidry shrub and savannah64. References for the specific experimental 
sites are as follows65–99.
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Extended Data Fig. 2 | Variable importance and partial plots of variables 
within the top model in addition to precipitation seasonality and aridity 
(presented in Fig. 1). a) Variable importance indices for the top model 
(detailed in Supplementary Table 2). b–e) Percent difference in mineral soil C 
concentrations in the burned versus unburned plots (b), versus duration of fire 
frequency treatments, (c) across biome types (broadleaf (n = 15) and needleleaf 
(n = 16) vegetation are forests and sav-grass are savannah-grasslands (n = 22), with 

‘All’ indicating the total dataset and lines illustrating 95% confidence intervals), 
(d) versus mean annual temperature, (e) versus percent silt content. Panels b,d, 
and e are meta-regressions of the top model with the dashed lines illustrating 
the 95% confidence intervals. Dots in c represent means. Variable names: Panel 
(a) SltP = silt percent, MAT = mean annual temperature, Pssn = precipitation 
seasonality, I(A) = Aridity Index, Vgtt = biome categorizations, StdL = study 
duration.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Fire frequency is important in sites but does not 
explain the relative changes in soil carbon across sites. Fire frequency is not 
important at explaining the relative changes in soil carbon (C) across sites but it is 
important within sites. a) Each point is a site, displaying the percent difference in 
mineral soil C concentrations in the high frequency vs. unburned plots.  
b-c) comparisons using the intermediate fire frequency treatments on 34 sites. 
These 36 sites have intermediate frequencies of burning (generally relative 
to what is believed to be the historical or ‘natural’ frequency), allowing us to 

evaluate the impact of increased burning or decreased burning relative to 
an intermediate level. b) soil C in the intermediate fire frequency plots vs. 
fire exclusion plots. c) soil C in the high-frequency plots vs. intermediate fire 
frequency plots. For both b-c Negative values illustrate lower C concentrations 
in the higher frequency treatment. Circles in b-c represent the means and error 
bars are 95% confidence intervals. Sample sizes for b-c: grassland: n=3, woody 
savannah: n=13, broadleaf forest: n=10, warm needleleaf forest: n=6.
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Extended Data Fig. 4 | Global distribution of the percent difference in soil carbon stock between the fire on and fire off simulations. Global distribution of the 
percent difference in soil carbon stock between the fire-on and world without fire simulations. Spatial resolution of model output varies according to model structure.
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Extended Data Fig. 5 | Model-based predictions of percent difference in soil 
carbon between the fire on vs. fire off simulations across global savannah-
grasslands. Model-based predictions of percent difference in soil carbon 
between the fire-on vs. world without fire simulations across global  

savannah-grasslands as a function of the percent of a gridcell that burns annually 
in the fire-on scenario. Points are coloured based on their densities (yellow 
indicates higher density). Dashed grey line is a generalized additive model fit to 
the model output.
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Extended Data Fig. 6 | Model-based predictions of percent difference in soil 
carbon between the fire on vs. fire off simulations across global savannah-
grasslands as a function of aridity. Model-based predictions of percent 
difference in soil carbon between the fire-on vs. world without fire simulations 
across global savannah-grasslands as a function of aridity. This comparison is 
meant to demonstrate the agreement in the direction of change in fire effects on 

soil C across the climate gradient, and is not a direct comparison of quantitative 
values because of the fundamental differences in how model simulations are 
conducted compared to field experiments. Points are coloured based on their 
densities (yellow indicates higher density). Dashed grey line is a generalized 
additive model fit to the model output and the solid black line is the relationship 
derived from empirical data with shaded grey illustrating +/− the standard error.
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Extended Data Fig. 7 | Model-based predictions of percent difference 
in soil carbon between the fire on vs. fire off simulations across global 
savannah-grasslands as a function of precipitation seasonality (coefficient 
of variation of annual precipitation across months). This comparison is 
meant to demonstrate the agreement in the direction of change in fire effects on 
soil C across the climate gradient, not direct comparisons of their quantitative 
values because of the fundamental differences in how model simulations are 

conducted compared to field experiments. Points are coloured based on their 
densities (yellow indicates higher density). Dashed grey line is a generalized 
additive model fit to the model output and the solid black line is the relationship 
derived from empirical data with shaded grey illustrating +/− the standard error. 
Precipitation seasonality is the coefficient of variation of monthly precipitation 
within a year multiplied by 100.
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Extended Data Fig. 8 | Density graphs of the distribution of variable values 
in our dataset used to train the model and the global values across which we 
extrapolated our model. Density graphs of the distribution of variable values 
in our dataset used to train the model and the global values that we extrapolated 
our model across. MAP = mean annual precipitation in mm yr−1, MAT = mean 
annual temperature in degrees Celsius. Aridity index is calculated as the ratio 

between precipitation and potential evapotranspiration. Precip. seasonality =  
Precipitation seasonality, which is the coefficient of variation of monthly 
precipitation within a year multiplied by 100. Sources for these values are 
explained in detail in the SI, but briefly the climate data come from WorldClim 
and soils data from the Harmonized World Soils Database v.1.2 (accessed 
5/20/2020).
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Extended Data Fig. 9 | Trends in burned area from 1997-2015. Trends in burned area at 0.25x0.25 resolution expressed as the relative change in amount of gridcell 
area burned each year taken over 1997-2015. For the full analysis see12.
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