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Death is a common outcome of infection, but most disease models do not track hosts
after death. Instead, these hosts disappear into a void. This assumption lacks critical
realism, because dead hosts can alter host—pathogen dynamics. Here, we develop a
theoretical framework of carbon-based models combining disease and ecosystem per-
spectives to investigate the consequences of feedbacks between living and dead hosts
on disease dynamics and carbon cycling. Because autotrophs (i.e. plants and phyto-
plankton) are critical regulators of carbon cycling, we developed general model struc-
tures and parameter combinations to broadly reflect disease of autotrophic hosts across
ecosystems. Analytical model solutions highlight the importance of discase—ecosystem
coupling. For example, decomposition rates of dead hosts mediate pathogen spread,
and carbon flux between live and dead biomass pools are sensitive to pathogen effects
on host growth and death rates. Variation in dynamics arising from biologically realistic
parameter combinations largely fell along a single gradient from slow to fast carbon
turnover rates, and models predicted higher disease impacts in fast turnover systems
(e.g. lakes and oceans) than slow turnover systems (e.g. boreal forests). Our results dem-
onstrate that a unified framework, including the effects of pathogens on carbon cycling,
provides novel hypotheses and insights at the nexus of disease and ecosystem ecology.
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Introduction

Host—pathogen interactions occur within an ecosystem con-
text (Preston et al. 2016, Borer et al. 2021a), with nutrient
supply rates, climate, and biodiversity altering the outcome
of many host—pathogen interactions (Keesing et al. 2006,
Seabloom et al. 2015, Borer et al. 2016). In turn, pathogens
can be important drivers of ecosystem fluxes, such as primary
productivity, decomposition, and nutrient cycling, because
they can alter host growth and death rates and tissue chemistry
(Mitchell 2003, Suttle 2005, Lovett et al. 2010, Cobb et al.
2013, Jover et al. 2014, Preston et al. 2016, Seabloom et al.
2017, Fischhoff et al. 2020). Despite repeated calls for stron-
ger conceptual linkages (Loreau et al. 2005, Preston et al.
2016), theoretical advances in disease and ecosystem ecology
remain largely separate (Borer et al. 2021a, 2022).

This separation between disease and ecosystem ecology
reflects the different conceptualization of live and dead mat-
ter in these fields, which leads to use of different currencies.
The canonical models in disciplines rooted in population
biology, such as disease ecology, are typically formulated in
units of individuals and use an open framework in which
dead individuals permanently exit the system (Keeling and
Rohani 2008), perhaps after a period as infectious cadavers
(Fuller et al. 2012). In contrast, the movement of matter and
energy between living and non-living states lies at the core of
ecosystem ecology, and ecosystem models are typically for-
mulated in units of elemental mass (e.g. carbon) or energy
that can be tracked as they flux between biotic and abiotic
states (Lindeman 1942, Pastor 2008).

Population-based models have formed the core of
theory in disease ecology since the inception of the field
(Kermack et al. 1927, May and Anderson 1979, Heesterbeek
and Roberts 2015), and this tight coupling with theory has
facilitated rapid conceptual advances and links with fields
such as community ecology (Holt and Pickering 1985, May
and Nowak 1994, Keesing et al. 2006, Seabloom et al. 2015,
Borer et al. 2016) and behavioral ecology (Madden et al.
2000, Ezenwa etal. 2016, Verelst etal. 2016, Shaw etal. 2017,
Brookes et al. 2019, Shoemaker et al. 2019, Strauss et al.
2020). However, population-based models have hindered
progress in developing an integrated theoretical framework
for disease and ecosystem ecology. While population-based
models in disease ecology have examined the effects of abiotic
resources (e.g. nitrogen or phosphorus) on population, com-
munity, and disease dynamics (Borer et al. 2016, Pell et al.
2019, Strauss et al. 2019), the matter that comprises the hosts
in these models is not typically tracked after hosts die and
decompose. Nevertheless, dead hosts can have significant
effects on the host, and pathogen dynamics (e.g. host growth
rates and pathogen spread), and their fate determines criti-
cal ecosystem fluxes (e.g. decomposition rates and microbial
respiration).

Dead hosts can alter host and pathogen dynamics
by serving as sources of infectious pathogen propagules
(Breban et al. 2009, Fuller et al. 2012, Thingstad et al. 2014)
or through effects on host growth and death rates (Foster
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and Gross 1998, Clark and Tilman 2010). For example,
dead primary producer biomass (i.e. litter or necromass)
can increase the impacts of fungal pathogens on plant
seedlings (Garcia-Guzmén and Benitez-Malvido 2003,
Beckstead et al. 2012). In addition, dead primary producer
biomass, such as leaf litter in forests or wrack in saltmarshes,
can reduce plant growth and reproduction through shading
or by creating a physical barrier to growth (Shigesada and
Okubo 1981, van der Valk 1986, Bertness and Ellison 1987,
Townsend et al. 1994, Brewer et al. 1998, Foster and Gross
1998, Clark and Tilman 2010, Flynn and Raven 2017). In
the longer term, nutrients from dead primary producer hosts
can be recycled potentially increasing host growth (Weil and
Magdoff 2004, Pastor 2008, Chapin et al. 2012, Schlesinger
and Bernhardt 2013, Klawonn et al. 2021). This feedback
has been well studied in marine systems, where viral lysis
of microbial hosts can increase organic matter recycling and
net primary productivity (i.e. the viral shunt; Wilhelm and
Suttle 1999, Weitz et al. 2015).

In contrast to disease ecology, models in ecosystem ecol-
ogy are typically formulated in currencies of energy and ele-
ments (e.g. mass of carbon or nitrogen), which can be tracked
as they move between living and non-living ecosystem com-
partments (Lindeman 1942, Chapin et al. 2012, Schlesinger
and Bernhardt 2013). However, these types of ecosystem
models have rarely included pathogens (Weitz et al. 2015,
Vage et al. 2016, Borer et al. 2021a, 2022), although eco-
system ecology has long recognized the primacy of microbes
in regulating some fluxes of energy and elements (e.g.
decomposition and microbial respiration, Roy et al. 2001,
Chapin et al. 2012, Schlesinger and Bernhardt 2013).
Nevertheless, microbial pathogens can directly affect ecosys-
tem fluxes and pools by altering the fixation of carbon (C)
through photosynthesis (e.g. gross primary productivity),
respiration, and host mortality and the supply of organic
C to decomposers (Wilhelm and Suttle 1999, Suttle 2007,
Preston et al. 2016, Kohli et al. 2019, Cappelli et al. 2020,
Borer et al. 2021a, Kohli et al. 2021).

Here we develop a theoretical framework using carbon
as currency to integrate disease and ecosystem modeling
approaches to investigate feedbacks between disease and eco-
system dynamics. This framework is composed of a series of
four carbon-based models: 1) a logistic-growth model, 2) a
disease model, 3) an ecosystem model, and 4) an integrated
disease—ecosystem model (Fig. 1). By formulating these
models in units of elemental carbon (g C), we can directly
track fluxes of matter between biotic and abiotic states
(Pastor 2008, Borer et al. 2021a). We focus on pathogens of
autotrophs (e.g. primary producers such as plants and phy-
toplankton), as these hosts regulate ecosystem carbon fluxes
between organic and inorganic material states through pho-
tosynthesis, respiration, and decomposition (Chapin et al.
2012). In addition to their unique role as the primary source
of energy for most food webs, autotrophs dominate organic
ecosystem carbon; they comprise over 80% of biomass on
Earth, with microbes accounting for an additional 19%
(Bar-On et al. 2018).

9SUADIT suowwo)) dANeaI)) d[qedrjdde ayy £q paurdA0ST are s3[oNIE O 9Sh JO SA[NI 10J AIRIqIT dUI[UQ AJ[IA UO (SUOIIPUOI-PUL-SULI)/WO0D" A3[1M ATeIqI[oul[uo//:sd)iy) suonipuo)) pue suLd |, ) 39S ‘[€707/90/L0] uo Areiqr aurjuQ A[IM ‘08860 10/ [ [ 1°01/10p/wod Ao[1m Arelqraurjuo//:sdiy woij papeojumod ‘0 ‘90L00091



Model 1: Logistic (S) Model

Model 2: Disease (SI) Model

f(ps Gs) f(ps Obs) flor, O)
9(p,)
S S T |
5 »s, I | g
A"3p

Model 3: Ecosystem (SD) Model

S(Ps Gbs)
S
(1-8) 8¢
h(&, s ,0us)
Ds
(1-0)%
»
oY

Model 4: Disease & Ecosystem (SIDD) Model

f(ps Oes) f(p1,6s)
a3
S T |
— o W
h(e, 3, Ous)) A"'gp (% ., 0)
b,
DS - D|
(1_@%‘ "4(1_0)%
on on
i H

Figure 1. Schematic of nested ecosystem and disease models. Parameters are described in text and in the Supporting information.

Our goal here is to develop a general, discipline-bridging
framework that produces parameter-independent, analytical
solutions, thereby increasing generality over more complex
models that require simulation-based analyses of finite regions
of parameter space. This approach builds from ecosystem-
specific models, which include greater system-level realism
at the cost of generality (Ruardij et al. 2005, Jacquet et al.
2010, Rhodes and Martin 2010, Weitz et al. 2015, Vage et al.
2016). By formulating models with closed-form solutions
expressed in terms of interpretable biological processes (e.g.
decomposition rate), the approach can reveal general, bio-
logically meaningful insights that are independent of specific
ranges or combinations of parameters. We then use these
models to build links among earlier system-specific models
by exploring model dynamics around biologically relevant
parameter values and combinations that broadly align with
organisms and process rates in different ecosystem types (e.g.
terrestrial, freshwater and marine).

In related work, Borer et al. (2021a, 2022) developed and
analyzed stoichiometric models linking ecosystem and dis-
ease ecology to examine the concurrent fluxes and recycling
of carbon and a growth-limiting nutrient (e.g. nitrogen or
phosphorus). These stoichiometric models that explicitly
include the effects of environmental nutrients on host growth
are well-suited for examining dynamics arising from elemen-
tal recycling. However, because of their greater complexity,
analyses of these models cannot be parameter value indepen-
dent; insights rely on simulations of finite parameter sets. The
carbon-based models presented here sacrifice some realism of
carlier approaches but gain the greater generality that arises
from analytical solutions. These carbon-based models also
have fewer parameters than stoichiometric models, making
it possible to parameterize our model to visualize dynamics
across a broader range of biologically motivated parameter

value combinations than the earlier stoichiometric ecosystem-
disease (Borer et al. 2021a, 2022). Finally, by focusing on car-
bon in the current model, we can include additional pools of
carbon that are important in a wide range of host—pathogen
systems (e.g. necromass, decomposed carbon, and environ-
mental pools of pathogens, Ruardij et al. 2005, Breban et al.
2009, Fuller et al. 2012, Weitz et al. 2015, Vage et al. 2016).

We use a carbon-based framework to investigate how
pools of living and non-living carbon can alter host—patho-
gen interactions (e.g. pathogen prevalence and spread rates)
and how disease can alter important ecosystem properties
(e.g. pools of live, dead, and fully decomposed C). We start
by examining the analytical equilibria in disease models with
and without ecosystem feedbacks (model 2 and 3) and eco-
system models with and without disease (model 3 and 4). We
then examine these interactions within biologically relevant
parameter values and combinations by estimating parameter
values from a range of aquatic, marine and terrestrial biomes
(e.g. lakes, oceans, grasslands and forests).

Modeling framework

Here, we present and compare four carbon-based models: 1)
a logistic-growth model, 2) a disease model, 3) an ecosystem
model and 4) an integrated disease—ecosystem model (Fig. 1).
Detailed descriptions of the methods and additional analysis
of these models are presented in the Supporting information.
Parameter definitions and units are presented in Table 1, and
diagrams of the main models are shown in Fig. 1. In these
models, we include an environmental pool of pathogens (7).
We present a parallel analysis of these models without the
explicit environmental pathogen pool in the Supporting
information.
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Table 1. Parameter units, values (mean and range) and definitions. NAs indicate parameters that are not considered in most disease or eco-
system models. Biome specific parameter values are presented in the Supporting information. *Used to derive model parameters (Supporting
information), but not parameters in the model themselves.

Parameter Units Mean value (Range) Meaning: disease ecology Meaning: ecosystem ecology
NP gemayt 20N v Nt oo oty
ecosystems, i.e. under
conditions of light limitation
and herbivory)
K* Cm> 4390 (1-18 300) Carrying capacity of all hosts in Storage pool of all autotroph
& terms of carbon, including live carbon (live and recently dead)
and recently dead biomass
[terrestrial] or dead phytoplankton
in photic zone [aquatic])
r* day™’ 0.787 (0.00036-3) Intrinsic growth rate of hosts Maximum per carbon NEP under
absence of light limitation
o 2 el 0.204 (0.0000162-0.979) Strength of density dependence on  Strength of density dependence
m-gC lati h S o R
population growt (i.e. light limitation) on NEP
S day™! 0.0257 (0.0014-0.05) Per capita death rate for susceptible Litterfall; root turnover;
hosts (litterfall and root turnover senescence on per carbon
[terrestrial ecosystems] or basis
phytoplankton death rate
[aquatic])
S, day™! 0.438 (0.0238-0.85) PeL capita death rate for infected NA
osts
Ps day™! 0.813 (0.00178-3.05) Per capita birth rate for susceptible ~ Net primary prod'uctivity rate on
hosts per carbon basis
P day™! 0.569 (0.00125-2.14) Pelr1 capita birth rate for infected NA
osts
Vs day™! 0.0888 (0.02-0.2) NA Decomposition rate for dead
susceptible hosts (terrestrial
ecosystems) or sinking rate for
dead phytoplankton (aquatic)
s day™! 0.0888 (0.02-0.2) NA
c unitless 0.9 NA Retention of solid carbon during
transition from dead to
decomposed pool
€ unitless 0.9 NA Retention of solid carbon during
transition from live to dead
pool
u day™! NA Respiration of solid carbon
during transition from dead to
decomposed pool
B m?eClday! 0237 (0.00000201-1.33) Pathogen transmission coefficient NA
g ay
b, day™! 1.9x 107* (1.46 x 107°-0.008) Pathogen shedding rate from live NA
infected hosts
b, day! 3.35x 107° (1.46 x 107°-0.001)  Pathogen shedding rate from dead =~ NA
infected hosts
5 day™! 0.1449 (0.0013-5) Environmental pathogen NA
’ degradation rate
K unitless 0 Infectious dose: amount of NA

pathogen incorporated into host
during infection

In the following models, the basic reproduction num-
ber of the pathogen (R)) is defined as the average number
of new infections caused by one infection in a popula-
tion consisting of only susceptible hosts (Diekmann et al.
1990). In our case, we are working in units of C as opposed
to host individuals, which changes the interpretation of R,
to some degree. To calculate R, we use the next-gener-
ation matrix (NGM) approach (Diekmann et al. 2010).
In all cases, the pathogen can only invade the system if R,
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> 1. Details and proofs are presented in the Supporting
information.

Model 1. A carbon-based logistic-growth model

We start with a logistic-growth model (Verhulst 1845, Pearl
and Reed 1920), in which we track the density-dependent
change in host biomass (§),
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§=p5 (1-0458)S —85(1+0,55)S (1a)
t

which can be rewritten in the more traditional form of logis-
tic growth

de(Ps—Ss) 1 PsBus +05Bs ¢ 0 (1b)
dr ps —ds

In this model, change in total host biomass (S), measured
in units of C, is determined by the balance of mass-specific
death rate () and maximum mass-specific biomass pro-
duction rate (p,), which can be considered as a maximum,
mass-specific, C fixation (e.g. net primary productivity, NPP)
rate for a primary producer. In other model formulations,
(p, — ) is represented as 7, the intrinsic rate of population
increase. This model includes linear density dependence of
decreasing biomass production (0,5) and increasing death
(0, rates, because this formulation allows us to isolate den-
sity dependent effects on host growth or death rates. Here
0,s and O, ¢ represent the strengths of density-dependence
on growth and death rates, respectively. This negative den-
sity dependence could reflect a range of processes, including
depletion of limiting resources (e.g. water, light, or elemental
nutrients such as nitrogen or phosphorus), increasing pres-
sure from natural enemies (e.g. herbivores, grazers), or physi-
cal crowding. However, these are not explicitly included in
this model. Importantly, this density dependence allows for a
finite, disease-free equilibrium, a characteristic necessary for
the ecosystem model (model 3).

This model’s solutions reach a stable, positive equilibrium,

S = _ Ps—8 )
PsOss + 856,
ps —Bs
PsOss + 850,
analogous to the carrying capacity (X) of the canonical logis-
tic growth model.

when p, > 8. This expression is functionally

Model 2. A carbon-based disease model

We then extended our carbon-based logistic-growth model
into a carbon-based, microparasite model with density-
dependent transmission (SI model), which tracked the carbon
(mass) in susceptible (§) and infected (/) hosts as well as
carbon in the environmental pool of pathogens () (Fig. 1).
In this model, we do not include a recovered class of hosts, as
would be the case in a SIR model (Keeling and Rohani 2008).
This model is based on a variety of canonical microparasite

models (Anderson and May 1986, Keeling and Rohani 2008):

s PsOss + 850,
— = —d)| 11— (S5+T) |S
It (ps 5)( 05— Bs ( )j

(3a)
+p; (1= 04 (S+1)) 1 —BSP

dl

T BSP(1+x) =8, (1+6,,(S+1))-41 (3b)
L (3¢c)
dt

In this model, 8, and 9, are the mass-specific death rates for
susceptible and infected hosts respectively; p, and p, are the
maximum mass-specific biomass production rates (i.e. NPP)
for susceptible and infected hosts, respectively. p is the den-
sity-dependent transmission rate of the pathogen from the
environmental pool of pathogens (P), &, is the pathogen shed-
ding rate from live infected hosts (7), 8, is the pathogen deg-
radation rate in the environment, and K represents the portion
of the pathogen pool that is incorporated into the host during
the infection process (e.g. the carbon in the spores or viral par-
ticles that enter the host during infection). As in model 1 (Eq.
1), we include the assumption of density-dependent effects
on biomass production (0, 0,) and death (0, 6, ) rates,
which might differ for susceptible and infected hosts. Host
biomass is finite in the absence of disease (e.g. in model 1 and
3), because of these assumptions of density-dependence.

Disease transmission is determined by the transmission
rate of the pathogens (B), the density of infected (/) and sus-
ceptible (S) host biomass, and the size of the pathogen pool
(P), which depends on the density of infected host biomass
(/) and the rate at which infected hosts shed pathogens into
the environment. To link this model to ecosystem process
rates, we frame this model in units of C (g C m™), and our
state variables (S, /7 and P) track the mass of C in host
and pathogen biomass as opposed to numbers of individuals.
While this approach is mathematically identical to the more
familiar SI models, the biological interpretation is different,
as C, is not infected but rather is contained within the mass
of infected host individuals (Borer et al. 2021a). More spe-
cifically, we are tracking the total g of C that are contained
within susceptible (§) or infected (/) hosts (Borer et al.
2021a), and the g of C that are contained within the pool of
pathogens in the environment (P).

In the absence of a pathogen (/=0 and P =0), hosts will
persist in the system if p, > 8, with an equilibria density (S ;
Eq. 2). While real, analytical solutions exist for the endemic
equilibrium, the densities of susceptible hosts (S,), infected
hosts (/5 ), and the environmental pathogen pool (B) are
too complex to present here.

The intrinsic rate of increase of the pathogen (R) is

RO _ 51B(1+K)b[ (43)

(51 (1+6,,5 )+ )(Kﬁsf +8,)

..or equivalently

. 1 1
=SiB(1+)b;| —— * . (4b
o B(+K)’[KBSI+8P][8,(1+em,51)+b,} )
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In this second formulation (Eq. 4b), R, can be decomposed
into biologically relevant components, which all lead to
increases in R host density in the absence of discase (S),
transmission rate (B(1+ «)) , the shedding rate of the patho-
gen from infected hosts (), the duration of pathogen per-

sistence in the environment , and infection

KBS; + 81)

1
S, (1 + 9,,,le)+1;1

duration

Model 3. A carbon-based ecosystem model

As a complement to the carbon-based disease model (model
2), we developed an ecosystem model with no disease, in
which we tracked the movement of C between three pools:
live biomass (S), recently dead biomass or necromass (D, e.g.
plant litter or suspended dead phytoplankton in the seston),
and highly decomposed biomass or organic matter (W, e.g.
soil organic matter or lake sediments; Fig. 1):

ds PsOss + 050,

—= —O5)|1-—=—2"(85+Ds) |S 5
I (ps s)( D5 — s ( + s)) (5a)
dDg

?2885(14'6”,5(54'[)5))5—%;1)5 (5b)
aw

——=0ysDs —pW. (50)
dt

In addition to the parameters in model 1, we include the
rate at which necromass (D) decomposes (y,) and the rate
at which organic matter (W) is lost to the system through
processes such as leaching, erosion, or microbial respiration
(W). We account for losses of C (e.g. herbivory) by allowing
only a fraction (g) of the dying biomass to be retained in
the necromass pool and only a fraction of the decomposing
necromass (G) to be retained in the organic matter pool (W).
In this model, the host growth rate is limited by the accumu-
lation of necromass (D,) because of shading or the creation
of a physical barrier (Shigesada and Okubo 1981, Bertness
and Ellison 1987, Agusti 1991, Townsend et al. 1994, Foster
and Gross 1998, Clark and Tilman 2010, Lenborg et al.
2013, Flynn and Raven 2017). Systems vary widely in the
degree to which dead material limits host growth. This can
be accounted for in this formulation by either reducing € or
increasing vy, which will reduce the accumulation of growth-
inhibiting dead material.
The nontrivial equilibrium for this model is:

o Ys(ps —8s)
S; = (6)
(elps (955 +0,s )) +750,s5)0s + vs5PsOss
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. 865 (1+9mSS;)S; ( )
= m 7

. Ys —€050,,55;
P %Dga ®)

This model includes negative density-dependent effects of
necromass on host growth; however, decomposed organic
material can eventually have a positive effect on plant
growth, especially in terrestrial systems. For example,
soil organic matter can mediate access to growth-limiting
resources, such as water or soil nutrients, by increasing
water-holding and cation-exchange capacity (Weil and
Magdoff 2004). We explore the effects of including pos-
itive-density dependence of decomposed organic mate-
rial (W) on host growth, which can potentially reduce
the strength of the negative density dependence aris-
ing from recently dead material (D), in the Supporting
information.

Model 4. A carbon-based disease-ecosystem model

Combining the disease and ecosystem models (model 2 and
3) is relatively straightforward, because we have framed them
in units of C (Fig. 1). We separately track the abundance
of necromass from susceptible (D) and infected (D)) hosts,
allowing us to incorporate environmental transmission of a
pathogen as the shedding rate of the pathogen (4,)) from dead
infected hosts (D) (Garcia-Guzmdn and Benitez-Malvido
2003, Beckstead et al. 2012, Borer et al. 2021a). This also
allows us to account for differential decomposition rates of
infected (y,) and uninfected (y) necromass (Omacini et al.
2004, Leroy et al. 2011, Grimmett et al. 2012, Cobb and
Rizzo 2016, Pazianoto et al. 2019), which can arise through
infection-induced changes in defensive compounds or tissue
chemistry. This structure also allows for the case of partial
infection, where infected tissue may be shed while the host
remains living (e.g. a tree dropping an infected branch) or
where an entire host dies but only a portion of the host tissue
was infected.

This model is given by

dS:(pS—SS)(l—F)Se“JFSSe”’S(SJr1+DS +D1)]S

dt ps —Os (92)

+p7(1-04 (S+1+Ds +D;)) I —pSP

dl

Z:BSP(1+K)—61(1+6m1(S+1+D5+D1))[—b11 (9b)
¢

dDs

7=885(1+9m5(S+I+Dg +D1))S—'Y5D5 (9C)
t
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dDy
=€8;(140,;,(S+1+Ds+Dy;))I

g =016 5+ 1) (9d)
~y1D; —=bp Dy

f{l:b[[+bDD1 _KBSP_SPP (96)

t

aw

; = G'YSDS + G'Y[D[ _“W (9{:)

In the absence of disease (/ = 0, P=0, and D,=0), the non-
trivial equilibria of this model are the same as in the eco-
system model (Eq. 6-8). Analytical solutions exist for the
endemic equilibria density of susceptible hosts (S;), infected
hosts (7;), infected and uninfected necromass ( D4, D;4),
the environmental pathogen pool (2 ), and organic matter
(W ); however, they are too long and complex to be instruc-
tive, so we do not present them here.

The intrinsic rate of increase of the pathogen (R)) is
obtained by using the discase-free equilibrium:

_ S;B(l + K)((l + (S; + D;l )em[ )SbDSI + (bD +Yr )b]

- | e (108
(bD +’Y])(KBS3 +5p)((1+(53 +D51)9m])8[ +b])
or equivalently
R=sp+x) - L
KBSI +8p
(1+(S3 +D51)9m,)6, + &
. (10b)

%{ ) J(a&,(l+(${+D§1)em,)

vr+bo )| (1+(S3 +D§1)9m,)61 +b

While this equation is complex, the second formula-
tion (Eq. 10b) reveals that R, is composed of biologically
meaningful components, which all serve to increase disease
spread: host density in the absence of disease (S5), trans-
mission rate (B(1+K)), the duration of pathogen persis-

tence in the environment , the transmission

KBS; + 8,
1
1+(S§+D§3)6m,)8, +b

pathway via live hosts & (

and the transmission pathway via infected necromass
8 (1+(S3 + Dis )0, )

1
. The i
bD('Y]‘f‘bDJ (1+(S;+D;3)em1)6[+bl e live host

transmission pathway can be decomposed into the shedding
rate of the pathogen from infected hosts (¢) and infection

1
(1+(S§ +D§3)9m,)81 +b;

infected necromass transmission pathway can be decomposed
into the shedding rate of the pathogen from infected necromass

1
'Y] +bD

and proportion of the C from dying infected hosts that

8 (1+ (85 + D55 )0,
(1+(S§ +D§3)9m1)6, +b;
Importantly, this model illustrates how disease spread rate is
directly affected by C flux rates in the ecosystem, such as the
decomposition rate (y,) and the loss of gaseous C from host
biomass (1— €) which can both reduce the amount necro-
mass that can serve as a source of infection.

As with the Ecosystem model (model 3), we examine a
model in which there is positive-density dependence of
decomposed organic material (W) on host growth in the
Supporting information.

. The

duration of live hosts

5>

(b,), infection duration of infected necromass (

becomes infected necromass

Model simplification to facilitate parameterization

All four models are written in terms of the effects of den-
sity-dependence on biomass production (0, 0,,) and death
0,5 0, rates, which will vary for susceptible and infected
hosts. To compare our models with empirical data, we
make the following simplifying assumptions, which allow
us to write the models in terms of a carrying capacity (K ),
a value we can estimate from readily available empirical
data spanning a wide range of ecosystems and host vital
rates. We start by assuming that density dependence acts
only on biomass production rates (6,,; =6,,s =0) and that
density dependence does not differ between susceptible
and infected hosts (0,; =0, =a ). Under these assump-
tions, infection can still alter mass-specific death rates (8,
# 8,) and the maximum mass-specific biomass production
rates (p; # p,), and all density-dependent effects are rep-
resented by a single parameter . We also assume that the
portion of pathogen pool incorporated into the host dur-
ing the infection process is vanishingly small (k=0). Given
these modifications, the full disease—ecosystem model (Eq.
9) can be rewritten as:

dS:(ps_Ss)[l— Psc (S+1+DS+D1)JS
dt ps —8s (11a)
+p; (1= a(S+1+Ds+D;)) ] -BSP
ﬁ:[}SP—a,[—M (11b)
dt
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dDs

7=8855—'Y5D5 (IIC)
dt

4D =8,/ —y,;D; —bpD; (11d)
dr

di:b]]+bDD1—8pP (lle)
dr

dw

j:GYSDS +oy,D; —pW. (11f)

In the absence of disease (/=0, P =0 and D,=0), the non-
trivial equilibrium of this model is

SS*: YS(PS—SS) (12)
pso(eds +vs)

o 88555*

Dss (13)
Ys

*

W; ="TYSD§5. (14)

Analytical solutions exist for the endemic equilibrial density
of susceptible hosts (S:), infected hosts (75 ), infected and
uninfected necromass ( Dss, Dys ), the environmental pool of
pathogens (R ),and organic matter (W5 ); however, they are
too long and complex to present here. The intrinsic rate of
increase of the pathogen (R)) is

S;B(SbDS] +b] (bD +'Y[))
= 15
RO Sp (éD +'Y[)(8[ +b[) ( a>

or equivalently

ot L 1 1 881
Ro—SSB(SJ{@[S’+b}]+bD[y[+bDj[8]+blﬂ. (15b)

Under these simplifying assumptions, R, depends on the
same components as in the more complex model (Eq. 10b):
host density in the absence of disease (S5), transmission rate
(B), the duration of pathogen persistence in the environment

1 - . 1
— |, the transmission pathway via live hosts &; ,
op S+
and the transmission pathway via infected necromass

bp 1 €d; . As before, the live host transmis-
Y+ bD 61 + b[

sion pathway can be decomposed into the shedding rate of
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the pathogen from infected hosts (4)) and infection duration

d) . The infected necromass transmis-

of live hosts

d; + b
sion pathway can be decomposed into the shedding rate of
the pathogen from infected necromass (4,,), the infection

duration of infected necromass , and proportion

Y1 +op
of the C from dying infected hosts that becomes infected
881
necromass . However, these components are
8, +b;

markedly simpler than in the more complex disease—ecosys-
tem model (Eq. 10). As in Eq. 10b, this reveals a direct link
between disease persistence and key ecosystem rates, such as
decomposition.

With these simplifying assumptions, Eq. 11a can then be
rewritten as a function of K

ds S+1+Ds+D

IR A

dt K (16)
+ps (1= o(S+1+Ds+D;))I —BSP

where

K: pS _65 (17)

aps

and

Q:M. (18)
Kps

Equation 17 and 18 illustrate that the carrying capacity (X)
represents a density-dependent scaling of the birth (py) and
death () rates the strength of which is determined by the
parameter (ct).

Expressing transmission (B ) in terms of prevalence (T) to
Jacilitate parameterization

While our model includes transmission rates (f3), these
are notoriously difficult to estimate in empirical systems and
are rarely reported; however, transmission rates are closely
related to disease prevalence, a much more empirically intui-
tive and measurable metric. We can solve for disease preva-

*

lence at equilibrium (7) as 7" = s and then express

as a function of 7*

A(((éD +'Y1)85—'YSSI)ST—(858+'Y5)(hD +'Y1)>(X (19)
((b] +5] —85 —Pr +p5)T—p5 +65)B

B(T)=

where A=—(b+8)((p,—py) T+pg)d,and B=7,(b,d,e+b,(by+v,)
(T—1). This function has two vertical asymptotes, the
smaller of which provides a boundary for maximum preva-
lence at the endemic equilibrium. Prevalence increases as f3
increases, but as § continues to increase, prevalence will be
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bounded by these asymprtotes. One asymptote occurs when
T =1 (where 100% of hosts are infected) the second occurs
when T satisfies the expression below:

T = ps —Os
(pS_SS)_(p[_SI —51)

+ pr—90;,—b
(ps —83)—(P1 -9d; —171)

If pg > dgand p, < &; + 4y, the second asymptote is smaller
than 1, and this value limits the maximum prevalence of the
system. We use this to define the maximum prevalence at
equilibrium (77) when p is sufficiently large:

=1 (20)

T =min Ps =9 ,1 1)
(ps —55)—(91 i —51)

which we can express in terms of intrinsic growth rates 7,= py

—dgand r,=p,—,— b,

*

T =min

NS (22)

A

In this simpler formulation, the maximum prevalence at equi-
librium (77) will be less than 1 when susceptible hosts have
a positive population growth rate (r, > 0) and the infected
hosts do not (7, < 0). Finally, using this expression for 7", we
parameterized the value of P to yield half the maximum prev-

T
alence at endemic equilibrium, evaluating 8 By in Eq. 19.

Results
Insights from analytical solutions

The potential for a tight coupling between disease dynamics
and ecosystem fluxes and pools is apparent from the analyti-
cal solutions of the integrated discase and ecosystem model
(model 4) relative to the disease-only model (model 2) or the
ecosystem-only model (model 3). This direct comparison is
made possible by using C as currency, which can be tracked
as it moves between living and nonliving states. While the
integrated model (model 4) is more complex than either the
disease (model 2) or ecosystem (model 3) models, it is unique
in providing a single, integrated framework that can examine
the interactive effects of disease (e.g. transmission and viru-
lence) and ecosystem processes (e.g. primary productivity
and decomposition) on state variables of relevance to both
disease (e.g. prevalence and R;) and ecosystem ecology (e.g.
live, dead, decomposed biomass).

The effects of ecosystem feedbacks on disease dynamics
are apparent in the solutions for a pathogen’s intrinsic rate
of increase (R) in the integrated disease—ecosystem model
(model 4) relative to the disease-only model (model 2).

As expected, R, in both models depended on host density,
pathogen transmission rates, and the death rate of infected
hosts (Eq 4 and 10). However, the integrated discase—ecosys-
tem model reveals disease-regulating mechanisms absent in
the disease-only model. For example, by comparing model 2
and 3, dead host biomass (necromass) dynamics can alter a
pathogen’s intrinsic rate of increase R, through two distinct
pathways. First, dead biomass can serve as a source for the
environmental reservoir of pathogens that infect susceptible
hosts, thereby increasing R, in a process analogous to pop-
ulation-based disease models of systems with environmen-
tal pathogen pools (Breban et al. 2009, Fuller et al. 2012).
Second, dead biomass can reduce the abundance of suscepti-
ble hosts, reducing R, (Eq. 15). This second pathway is medi-
ated by negative host density dependence. It is distinct from
that found in typical models describing transmission from
an environmental pool of pathogens, as it can alter R, and
host abundance even when dead biomass is not a source of
pathogens (4, = 0). In the case where there are positive effects
of decomposed organic matter on host growth (Supporting
information), the suppressive effects of necromass may be
reduced, thereby increasing disease spread. The strength of
these effects is partly governed by decomposition rates, such
that increased decomposition will reduce the suppressive
effects of necromass on host growth while also reducing the
source of infectious propagules. As a result, decomposition
rates mediate the relationship between the rate of increase of
pathogen (R) and transmission rate (Eq. 10b and 15b).

The pathways by which pathogens can alter elemental
fluxes and pools are also apparent in the analytical solutions
of the disease—ecosystem model (model 4) relative to the
ecosystem model without disease (model 3). Most directly,
pathogens can reduce C fixation via photosynthesis if pg> p,
and increase the supply of dead host biomass to decomposers
if §,> &, (Eq. 11). Pathogens also might alter decomposition,
which controls the accumulation of necromass and organic
macter if infected and uninfected cells or tissues decompose
at different rates (y, # v,). Finally, if necromass is a source of
infection, this can reduce C fixation, highlighting a distinct
pathway that becomes apparent only with the integration of
disease and ecosystem models.

Insights from model parameterization

In addition to the analytical solutions of these models, we
examined model dynamics in biologically relevant param-
eter space by estimating parameter ranges and combinations
that provide broad depictions of the dominant autotrophs
found in four major terrestrial biomes (temperate grasslands,
tropical forests, boreal forests, and temperate forests) and
four major aquatic biomes (open oceans, coastal oceans, oli-
gotrophic lakes, and eutrophic lakes) (Table 1, Supporting
information). This more focused examination of biologi-
cally informed parameter values aimed to consider the model
dynamics for reasonable parameter ranges and combinations,
not to make quantitative predictions for specific biomes, con-
ditions, or locations. Our estimates help build an intuition
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for model dynamics in the regions of parameter space that
capture a broad range of biologically informed values, rather
than seeking to encompass the full range of potential param-
eters within biomes. Details on parameter estimation are pre-
sented in the Supporting information.

Using these parameters, we examined the effects
of the transmission rate (f), host density dependence

azm , and decomposition rates (y=vy,=Y,) on

Kps

R,, maximum prevalence at equilibrium (T"), live biomass
pools (S +1), and dead biomass pools (Dg + D,). Simulations
reached stable equilibria for the model state variables for
hosts with characteristics ranging from phytoplankton to
trees (Supporting information).

Parameter values were highly correlated across the values
estimated from the literature for the eight different biomes
(Supporting information), suggesting that a lower dimen-
sional representation of parameters could provide a sum-
mary of the model behavior. We used principal components
analysis (PCA) to summarize the variation of five model
parameters (o, O, Py, &, ¥¢); we excluded parameters derived
from other parameters or state variables 8, p, &,, Y5 By
B») because of their inherent correlations. The first principal
component (PC1) accounted for most of the total variance
(77%) in parameter values. PC1 was characterized by the
rate of host turnover, ranging from fast (aquatic phytoplank-
ton) to slow (terrestrial vascular plants) (e.g. 8;, p,and vy
Supporting information).

We used the system turnover rate (i.e. PC1) to gain general
intuition for the disease (model 2), ecosystem (model 3), and
ecosystem and disease (model 4) models, before examining

the effects of specific parameter combinations (Fig. 2). In
most cases, all three models responded similarly to changes in
system turnover rate (PC1). For example, live and dead host
biomass pools declined with the system turnover rate, while
prevalence increased with the system turnover rate. The gen-
eral concordance among these models suggests that a carbon-
based modeling framework can form the basis for a unified
framework to link disease and ecosystem ecology.

While predictions were largely concordant, key differences
among the models also became apparent. For example, the
integrated ecosystem and disease model (model 4) predicted
less live host biomass than the disease and ecosystem-only
models (model 2 and 3), and this difference was largest in slow
turnover systems (Fig. 2). The lower biomass in the disease—
ecosystem model is likely due to necromass accumulation sup-
pressing host growth combined with more pathogens being
transmitted from dead hosts where decomposition rates were
slow (Eq. 9; Supporting information). Because of the inclu-
sion of necromass, the integrated disease—ecosystem model
(model 4) also predicted higher prevalence and R, in slow
turnover systems and lower prevalence and R, in fast turnover
systems relative to the disease-only model (model 2).

We next examined the interactive effects of individual
parameters on disease and host biomass while holding other
parameters constant (Fig. 3, 4). As in our analyses using the
single metric of host turnover rate (Fig. 2), the behavior of
the integrated ecosystem and disease model (model 4) was
broadly similar to the disease-only and ecosystem-only mod-
els (model 2 and 3) (Supporting information), suggesting
that the C-based models can provide a coherent framework
for integrating ecosystem and disease ecology.
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Figure 2. Comparison of disease model (model 2), ecosystem model (model 3), and disease and ecosystem model (model 4) pre(iictions for
(A) live biomass pools (S + 1), (B) dead biomass pools (D,+ D; model 3 and 4 only), (C) pathogen prevalence at equilibrium (7" ; model 2
and 4 only), and (D) R, (model 2 and 4 only) along a gradient of system rate represented by the first principal component (PC1) of a PCA
of the parameters in eight biomes (Supporting information). Higher values of PC1 represent faster turnover rates (e.g. growth, death and

decomposition).

Page 10 of 17

9SUADIT suowwo)) dANeaI)) d[qedrjdde ayy £q paurdA0ST are s3[oNIE O 9Sh JO SA[NI 10J AIRIqIT dUI[UQ AJ[IA UO (SUOIIPUOI-PUL-SULI)/WO0D" A3[1M ATeIqI[oul[uo//:sd)iy) suonipuo)) pue suLd |, ) 39S ‘[€707/90/L0] uo Areiqr aurjuQ A[IM ‘08860 10/ [ [ 1°01/10p/wod Ao[1m Arelqraurjuo//:sdiy woij papeojumod ‘0 ‘90L00091



Prevalence Live Biomass (S+I) Dead Biomass (Dg+D) Pathogen (P)
N 106 10° 10t (] ' [10?
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Figure 3. Effects of transmission rate (ff) and host density dependence (@) on R,, prevalence at equilibrium T", live biomass pools (S +1)
and dead biomass pools (D; + D,). White line indicates the isocline above which disease can invade (R,=1). Points represent parameter
values for the focal biomes and the ellipse represents the 90% confidence interval around these points. All other parameters are fixed at the

average across ecosystems.

Disease invasion (R,) and prevalence increased with the
pathogen transmission rate (§) and declined with the strength
of host density dependence () (Fig. 3). This linkage between
host density dependence and transmission is reflected in the
positive slope of the disease invasion isocline (R,=1), which
indicates that pathogen persistence requires higher transmis-
sion rates in systems with high levels of density dependence.
These analyses also revealed the importance of ecosystem
carbon fluxes in regulating disease dynamics. For example,
disease invasion and prevalence increased with decomposi-
tion rates (s, Y;) for a given transmission rate (Fig. 4). The
importance of decomposition rate also is reflected in the dis-
ease invasion isocline, which shows that lower transmission
rates are needed for the disease to invade when decomposition
rates are high (Fig. 4). The overall positive effect of decom-
position on disease suggests that suppression of host growth
by dead biomass had stronger effects on disease dynamics
than the increased supply of pathogens from necromass. This
insight arises only from simultaneously considering disease
and ecosystem dynamics.

The pools of live and dead host biomass were controlled
by interactions between host density dependence (ar), decom-
position rate (ys, Y;), and pathogen transmission rate ()
(Fig. 3, 4). Host density dependence reduced live and dead
biomass, regardless of the pathogen transmission rate. In con-
trast, decomposition rate and pathogen transmission strongly

Prevalence

108

104 102 10°

] 1=

Live Biomass (S+I)
110

interacted to control the accumulation of live and dead host
biomass. Peak live biomass occurred when the transmission
rate was low and decomposition was high, while the highest
levels of dead biomass occurred at low decomposition and
transmission rates (Fig. 4). This interaction also was mani-
fested in the effects of decomposition on the disease inva-
sion isocline; the decomposition rate determines a threshold
below which the disease cannot invade. As a result, the model
predicts that only highly transmissible pathogens can invade
systems with low decomposition rates.

Discussion

Discase and ecosystem ecology have remained disparate
disciplines due to their different conceptual lineages. Our
modeling framework builds from recent work revealing the
complementarity of these fields and the prospects for novel
insights arising from tighter integration (Preston et al. 2016,
Borer et al. 2021a, 2022). A key to this integration is work-
ing in units of elements (here, C), a currency that can be
tracked between healthy and infected host states, as well
as between living and non-living states (Borer et al. 2021a,
2022) and environmental pools of pathogens, themselves. In
our analyses, the behavior of the integrated disease and eco-
system model (model 4) was broadly similar to our versions of

Pathogen (P)
l 102
10
10°
108
10* 102 10°
877

Figure 4. Effects of transmission rate () and decomposition rate (y = y, = 7,) on R, maximum prevalence at equilibrium (7" ), live biomass
pools (§+17) and dead biomass pools (D + D,). White line indicates the isocline above which disease can invade (R, =1). Points represent
parameter values for the focal biomes and the ellipse represents the 90% confidence interval around these points. All other parameters are
fixed at the average across ecosystems.
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canonical disease-only and ecosystem-only models (model 2
and 3) (Supporting information), suggesting that the C-based
models can provide a coherent framework for integrating
well-developed theory in ecosystem and disease ecology.

This integrated framework builds on other recent work
exploring the feedbacks between disease and ecosystem
dynamics within a single model framed around elemental
fluxes (Borer et al. 2021a, 2022). Taken together this theo-
retical work suggests that ecosystem—disease feedbacks are
likely to be generally important. The models presented here
simplify earlier work by focusing solely on carbon dynamic
fluxes, which has several advantages. The carbon-based mod-
els have many fewer parameters than stoichiometric models
(Borer et al. 2021a, 2022), which are more readily estimable
in empirical systems. The carbon-based models are also more
tractable analytically, having closed-form analytical solutions
independent of empirical parameters.

Our analytical and simulation-based analyses of these
models demonstrate that ecosystem processes, such as
decomposition, can strongly affect host—pathogen interac-
tions and that disease can fundamentally alter the cycling
rates and pools of elements. Despite the logical evidence of
the importance of the disease—ecosystem feedbacks, these are
rarely explored experimentally, and disease is rarely consid-
ered in ecosystem ecology.

A comparison of the C-based, disease—ccosystem model
(model 4) with the disease (model 2) or ecosystem (model 3)
models reveals new dynamics that emerge when we explicitly
link disease and ecosystem ecology. For example, account-
ing for dead host biomass altered host—pathogen dynamics
in several ways, including the direct transmission of patho-
gens from dead hosts (Garcia-Guzmén and Benitez-Malvido
2003, Beckstead et al. 2012, Borer et al. 2021a) and den-
sity-dependent suppression of host growth by dead host
biomass (Agusti 1991, Foster and Gross 1998, Clark and
Tilman 2010, Lenborg et al. 2013). As a result, the decom-
position rate of dead hosts was integral to pathogen spread
(R), because decomposition regulated dead host biomass
accumulation. While some existing disease ecology models
include environmental transmission (Breban et al. 2009,
Fuller et al. 2012), the direct suppression of host growth by
dead host biomass remains largely unexplored in disease ecol-
ogy. Although the theoretical results presented here suggest
a strong co-regulation of pathogens, disease, and elemental
cycling, there have been very few experiments mechanisti-
cally examining these linkages.

In the integrated disease—ecosystem model, pathogens
altered important ecosystem fluxes and the size of C pools
of live biomass, dead biomass (e.g. litter or phytoplankton),
and decomposed organic C (e.g. soil or lake and ocean sedi-
ments). These pathogen effects arose through several routes.
First, infected hosts could experience reduced C fixation
rates (i.e. photosynthesis) (Suttle et al. 1990, Kohli et al.
2021), which reduced the C supply to the whole ecosystem
(Seabloom et al. 2017, Cappelli et al. 2020). Second, infec-
tion could increase host death rates, thereby increasing the
supply of dead biomass to decomposers and ultimately the
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influx of C to the longer-term C pools in soils or sediments
(Jiao et al. 2010, Cobb et al. 2012, Weitz and Wilhelm 2012,
Preston et al. 2016, Borer et al. 2021a). Finally, infected and
uninfected necromass could decompose at different rates,
controlling the size of the dead biomass pool (Omacini et al.
2004, Jiao et al. 2010, Leroy et al. 2011, Grimmett et al.
2012, Weitz and Wilhelm 2012, Cobb and Rizzo 2016,
Pazianoto et al. 2019, Borer et al. 2021a).

The current modeling exercise aims to maintain gener-
ality by generating analytical solutions while also exploring
model dynamics across a broad array of biologically relevant
parameter values. While we examine model dynamics in the
parameter space describing terrestrial, marine, and freshwater
biomes, our intention is not to provide an accurate model
for any specific system. Instead, these parameter combina-
tions allowed us to visualize the model dynamics for differ-
ent, biologically motivated regions of parameter space. This
examination of dynamics across a wide range of parameter
combinations arising from many biomes revealed that the
largest dynamical differences were between parameters esti-
mated from aquatic and terrestrial biomes, reflecting a fast-
slow parameter value continuum (Wright et al. 2004, Reich
2014, Bonetti et al. 2019). Interestingly, the models predict
that disease effects will increase with host turnover rates; the
models predicted much higher prevalence in fast turnover
systems (e.g. aquatic ecosystems). This result is concordant
with the observation that viruses have been estimated to kill
20% of all marine microbial biomass each day (Fuhrman
1999, Sutde 2005, Suttle 2007), a mortality rate that far
exceeds anything that has been documented in slower turn-
over ecosystems (e.g. forests). The prediction of higher disease
impacts in fast turnover biomes also may apply within sys-
tems. Cappelli et al. (2020) found fungal pathogens had the
largest effects on biomass in experimental grasslands domi-
nated by fast-growing plant species.

The results spanning wide ranges of parameter values
suggest the potential for novel questions, hypotheses, and
insights arising from theory that integrates disease and eco-
system ecology. For example, they highlight the importance
of decomposition rates in driving new production, thereby,
enabling higher transmission rates and prevalence of infec-
tion. We are not aware of any direct empirical tests of whether
the presence of pathogens alters the relationship between
live and dead biomass or whether these effects are altered by
decomposition rates. At global scales, there are only weak cor-
relations between live and dead biomass in terrestrial grass-
lands (O'Halloran et al. 2013), a pattern that more closely
mirrors the predictions of the integrated disease—ecosystem
model (model 4) compared to the ecosystem model (model
3, that predicts a closer coupling of live and dead biomass)
(Supporting information).

Recycling of elements is a core component of many eco-
system models (Lindeman 1942, Morowitz 1968, Ulanowicz
1972, Harwell et al. 1977) that is not included in the current
model formulation, though it has been addressed elsewhere
(Borer et al. 2022). The critical effect of disease on nutri-
ent recycling is well illustrated in marine systems, where viral
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lysis of microbial hosts can increase organic matter recycling
and net primary productivity (i.e., the viral shunt; Wilhelm
and Suttle 1999, Weitz et al. 2015).

Feedbacks arising from elemental recycling might only
emerge in terrestrial systems over long periods of time. For
example, C from decomposing litter can increase soil fertil-
ity by increasing the availability of growth-limiting resources,
such as water or soil nutrients. This in turn can increase
water-holding and cation-exchange capacity (Weil and
Magdoff 2004) and thereby increase plant (host) productivity
(Isbell et al. 2019, Seabloom et al. 2021). While our model
only includes negative density effects of recently dead hosts,
effects of positive feedbacks can be seen in the model varia-
tion in which accumulation of decomposed organic matter
can increase host growth rates (Supporting information),
thereby increasing host biomass in the absence of disease and
increasing disease spread (R)).

However, fully addressing these types of feedbacks requires
stoichiometric models that explicitly include growth-limiting
nutrients, such as nitrogen or phosphorus. Recent models of
this sort have demonstrated that nutrient recycling in dis-
ease systems is highly destabilizing. However, the destabiliz-
ing effects depend partly on the pathogen impacts on host
demography (Borer et al. 2022). A challenge for future mod-
eling of elemental recycling is the vastly different time scales
that govern host—pathogen dynamics (e.g. photosynthesis
and disease transmission) and longer time scales of biogeo-
chemical feedbacks that affect hosts™ vital rates, such as soil
development or lake turnover (Knops and Tilman 2000,
Bonetti et al. 2019). Despite these challenges, theoretical
investigations, and empirical tests of the effects of elemental
recycling represent an essential frontier with both basic and
applied importance.

Infection of primary producers by pathogens might
change the elemental and biochemical composition of host
tissue with consequences for the decomposition rate of dead
host biomass. Although we did not explore the dynami-
cal consequences here, recent work has generated a model-
ing framework using a stoichiometric approach to examine
disease—ecosystem interactions (Borer et al. 2021a, 2022).
Changes in host stoichiometry and their consequences for
elemental cycling are attributed to the impact pathogens
might have on host metabolism (i.e. photosynthetic activ-
ity, growth, and development), as well as by inducing host
defense mechanisms (Berger et al. 2007, Bolton 2009), which
might alter the rate of decomposition. Microbes can trigger
increased metabolic rates of hosts by hijacking plant carbo-
hydrate and nutrient metabolism (Bolton 2009, Fagard et al.
2014, Oliva et al. 2014, Rojas et al. 2014, Schwachtje et al.
2018), and altering plant nutrient content, which can impact
decomposition rates (Wolfe and Ballhorn 2020). For example,
activation of host defenses against pathogens via secondary
metabolites can upregulate host nitrogen uptake and mobi-
lization (Mur et al. 2017), and some endophytic fungi (e.g.
Rhytisma acerinum) and bacteria can inhibit or enhance N or
P reabsorption before leaf senescence. Both of these processes
can impact litter nutrient content (Cornelissen et al. 2000,

Cao et al. 2015), which can, in turn, control organic matter
decomposition and the rate of carbon cycling (Aerts 1997).
The production of defensive phenolic compounds (e.g. tan-
nins) also affects decomposition rates by forming polyphe-
nol-protein complexes (Hattenschwiler and Vitousek 2000)
that are resistant to the breakdown by most microorganisms
(Hattenschwiler and Vitousek 2000, Ormeno et al. 2006,
Chomel et al. 2014, Chomel et al. 2016). Modeling has
demonstrated that linking carbon and nutrient content of
hosts can alter predictions for infectious disease (Borer et al.
2021a), but this stoichiometric approach has significant chal-
lenges for finding analytical solutions and has, to date, relied
on simulations across finite parameter ranges. Nonetheless,
these pervasive feedbacks between metabolic or defensive
compounds, infection, and carbon cycling suggest that this is
a fruitful area for future work.

Despite empirical and theoretical evidence for dynamically
meaningful linkages between disease and elemental cycles,
there are few experimental studies that concurrently manipu-
late pathogens and measure elemental fluxes. Nevertheless,
this type of experiment would provide the strongest tests of
this theory and the best opportunity for data model inte-
gration. An example of the type of work that is needed is a
long-term fungicide experiment conducted in both natural
and experimental grasslands in the tallgrass prairie ecosystem
of central North America (Borer et al. 2015, Seabloom et al.
2017, Kohli et al. 2019, Kohli et al. 2021). This experiment
demonstrated that reducing foliar fungal pathogens increased
mass-specific C fixation (pS+pl) leading to significantly
higher pools of live biomass (S+/) (Seabloom et al. 2017,
Kohli et al. 2019, Kohli et al. 2021). These results validate
core assumptions of the model structure, such as assuming
mass-specific effects of pathogens on C fixation.

Some of the effects of pathogen reduction on C fluxes in
grasslands are mediated by changes in plant tissue chemistry
(Borer et al. 2015, Kohli et al. 2019). Two fungicide stud-
ies have demonstrated that applications of foliar fungicides
increase the dominance of fast-growing plants with high lev-
els of tissue N. These linkages suggest that a stoichiometric
approach might yield additional insights (Borer et al. 2021a,
b). In addition, these studies demonstrate that the effects of
pathogens on nutrient cycling will be impacted by changes in
community composition (Cappelli et al. 2020, Kohli et al.
2021), suggesting critical knowledge gaps at the nexus of the
community and ecosystem ecology of disease. As we seek
to understand better both the role of disease and the fluxes
of carbon and other elements in natural systems, these sys-
tem-specific experimental results and the general theoretical
results presented here highlight the importance of additional
experimental tests of the role of pathogens in mediating ele-
mental fluxes.

While we have focused on autotrophic hosts (e.g. plants
and phytoplankton), this work also might be informative
of dynamics of heterotrophic hosts. For example, in many
systems dead hosts play key roles in serving as environmen-
tal reservoirs for animal pathogens (Hampson et al. 2011,
Fuller et al. 2012, Miller et al. 2014, Escobar et al. 2020). In
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prion diseases, such as chronic wasting disease (CWD), infec-
tious prions can remain in the environment, shed from decom-
posed carcasses, for years (Miller et al. 2014, Escobar et al.
2020). Similarly, the transmission of anthrax Bacillus
anthracis among herbivore hosts largely depends on indirect
exposure to spores released from carcasses (Hampson et al.
2011). Despite the potential risk of anthrax exposure, there
is some evidence suggesting that carcass-mediated nutrient
pulses could attract herbivores (Turner et al. 2014), point-
ing to the intriguing idea that feedbacks between host death
and transmission risk could be mediated by nutrient cycling
across trophic levels. How mobile hosts might behaviorally
mediate their risk to such potential exposures is a separate
question not captured in our modeling framework. The cur-
rent work suggests that examining such host—parasite feed-
backs is an open and important future direction to consider
(Ezenwa et al. 2016).

Working in a currency of elements allows us to link
canonical disease and ecosystem models (Borer et al. 2021a);
however, the current model does not nest carbon within
individual hosts. In contrast, most disease models assume
that entire hosts become infected instantaneously (Keeling
and Rohani 2008). This whole-host infection approach does
not capture dynamics such as the abscission of infected tis-
sues or whole leaves but the retention of uninfected tissue.
Some models in disease ecology use a hierarchical structure
whereby infection proceeds through a host and then spreads
from host to host (Borer et al. 2016, Strauss et al. 2019). A
possible extension of the current model could be to incor-
porate this hierarchical approach, recognizing that infected
biomass occurs within a host individual, and infection
spread through host tissues will likely proceed at very differ-
ent rates than transmission among hosts (Borer et al. 2016).
This approach also could allow explicit incorporation of host
body size, which can be an important determinant of disease
dynamics (Kuris et al. 1980, George-Nascimento et al. 2004,
Seabloom et al. 2015, Borer et al. 2022) and differs widely
among ecosystems. For example, in the current model, host
differences among biomes are reflected in C turnover rates
(e.g. photosynthesis and death rates); however, the spread of
a pathogen through a single tree (with many differentiated
cells) differs substantially from the spread through a popu-
lation of single phytoplankton cells. While we expect that
these more complex models will not be as analytically trac-
table as those presented here (Strauss et al. 2019), a hierarchi-
cal approach would, nonetheless, open many new areas of
inquiry.

Despite their disparate lineages and conceptual frame-
works, disease and ecosystem ecology share a recognition
of the importance of microbes in regulating critical rates
in their respective disciplines. In disease ecology, microbial
pathogens regulate the movement of material from biotic to
abiotic pools via host death. Conversely, in ecosystem mod-
els, microbes regulate the conversion of dead material into
biologically accessible sources of energy and matter (e.g. via
decomposition). However, these differing approaches lead to
conceptual gaps. For example, while ecosystem ecology has
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recognized the primacy of microbes in regulating the break-
down of organic C (e.g. microbial respiration and decom-
position), the field has given little attention to the impacts
of microbes on C fixation through altered carbon fixation
rates (but see, Kohli et al. 2021). In addition, the important
role of pathogens in determining the supply of organic car-
bon to the decomposer food web has received little attention
(Cobb etal. 2012). In a scan of ecosystem ecology textbooks,
we found no references to disease or pathogens (Chapin et al.
2002, Schlesinger and Bernhardt 2013). In addition, there
have been very few experiments that specifically examine
the effects of pathogens on ecosystem processes. Given the
appreciation for the importance of microbes in ecosystem
ecology, we expect that integrating microbial pathogens into
this field will be a natural extension (Preston et al. 2016,
Borer et al. 2021a). More broadly, we expect that a unified
framework for ecosystem and disease ecology can move both
fields forward, yielding exciting conceptual advances and
providing a foundation for empirical hypothesis testing.
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