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Death is a common outcome of infection, but most disease models do not track hosts 
after death. Instead, these hosts disappear into a void. This assumption lacks critical 
realism, because dead hosts can alter host–pathogen dynamics. Here, we develop a 
theoretical framework of carbon-based models combining disease and ecosystem per-
spectives to investigate the consequences of feedbacks between living and dead hosts 
on disease dynamics and carbon cycling. Because autotrophs (i.e. plants and phyto-
plankton) are critical regulators of carbon cycling, we developed general model struc-
tures and parameter combinations to broadly reflect disease of autotrophic hosts across 
ecosystems. Analytical model solutions highlight the importance of disease–ecosystem 
coupling. For example, decomposition rates of dead hosts mediate pathogen spread, 
and carbon flux between live and dead biomass pools are sensitive to pathogen effects 
on host growth and death rates. Variation in dynamics arising from biologically realistic 
parameter combinations largely fell along a single gradient from slow to fast carbon 
turnover rates, and models predicted higher disease impacts in fast turnover systems 
(e.g. lakes and oceans) than slow turnover systems (e.g. boreal forests). Our results dem-
onstrate that a unified framework, including the effects of pathogens on carbon cycling, 
provides novel hypotheses and insights at the nexus of disease and ecosystem ecology.
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transmission
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Introduction

Host–pathogen interactions occur within an ecosystem con-
text (Preston et al. 2016, Borer et al. 2021a), with nutrient 
supply rates, climate, and biodiversity altering the outcome 
of many host–pathogen interactions (Keesing  et  al. 2006, 
Seabloom et al. 2015, Borer et al. 2016). In turn, pathogens 
can be important drivers of ecosystem fluxes, such as primary 
productivity, decomposition, and nutrient cycling, because 
they can alter host growth and death rates and tissue chemistry 
(Mitchell 2003, Suttle 2005, Lovett et al. 2010, Cobb et al. 
2013, Jover et al. 2014, Preston et al. 2016, Seabloom et al. 
2017, Fischhoff et al. 2020). Despite repeated calls for stron-
ger conceptual linkages (Loreau  et  al. 2005, Preston  et  al. 
2016), theoretical advances in disease and ecosystem ecology 
remain largely separate (Borer et al. 2021a, 2022).

This separation between disease and ecosystem ecology 
reflects the different conceptualization of live and dead mat-
ter in these fields, which leads to use of different currencies. 
The canonical models in disciplines rooted in population 
biology, such as disease ecology, are typically formulated in 
units of individuals and use an open framework in which 
dead individuals permanently exit the system (Keeling and 
Rohani 2008), perhaps after a period as infectious cadavers 
(Fuller et al. 2012). In contrast, the movement of matter and 
energy between living and non-living states lies at the core of 
ecosystem ecology, and ecosystem models are typically for-
mulated in units of elemental mass (e.g. carbon) or energy 
that can be tracked as they flux between biotic and abiotic 
states (Lindeman 1942, Pastor 2008).

Population-based models have formed the core of 
theory in disease ecology since the inception of the field 
(Kermack et al. 1927, May and Anderson 1979, Heesterbeek 
and Roberts 2015), and this tight coupling with theory has 
facilitated rapid conceptual advances and links with fields 
such as community ecology (Holt and Pickering 1985, May 
and Nowak 1994, Keesing et al. 2006, Seabloom et al. 2015, 
Borer  et  al. 2016) and behavioral ecology (Madden  et  al. 
2000, Ezenwa et al. 2016, Verelst et al. 2016, Shaw et al. 2017, 
Brookes  et  al. 2019, Shoemaker  et  al. 2019, Strauss  et  al. 
2020). However, population-based models have hindered 
progress in developing an integrated theoretical framework 
for disease and ecosystem ecology. While population-based 
models in disease ecology have examined the effects of abiotic 
resources (e.g. nitrogen or phosphorus) on population, com-
munity, and disease dynamics (Borer et al. 2016, Pell et al. 
2019, Strauss et al. 2019), the matter that comprises the hosts 
in these models is not typically tracked after hosts die and 
decompose. Nevertheless, dead hosts can have significant 
effects on the host, and pathogen dynamics (e.g. host growth 
rates and pathogen spread), and their fate determines criti-
cal ecosystem fluxes (e.g. decomposition rates and microbial 
respiration).

Dead hosts can alter host and pathogen dynamics 
by serving as sources of infectious pathogen propagules 
(Breban et al. 2009, Fuller et al. 2012, Thingstad et al. 2014) 
or through effects on host growth and death rates (Foster 

and Gross 1998, Clark and Tilman 2010). For example, 
dead primary producer biomass (i.e. litter or necromass) 
can increase the impacts of fungal pathogens on plant 
seedlings (García-Guzmán and Benítez-Malvido 2003, 
Beckstead et al. 2012). In addition, dead primary producer 
biomass, such as leaf litter in forests or wrack in saltmarshes, 
can reduce plant growth and reproduction through shading 
or by creating a physical barrier to growth (Shigesada and 
Okubo 1981, van der Valk 1986, Bertness and Ellison 1987, 
Townsend et al. 1994, Brewer et al. 1998, Foster and Gross 
1998, Clark and Tilman 2010, Flynn and Raven 2017). In 
the longer term, nutrients from dead primary producer hosts 
can be recycled potentially increasing host growth (Weil and 
Magdoff 2004, Pastor 2008, Chapin et al. 2012, Schlesinger 
and Bernhardt 2013, Klawonn et al. 2021). This feedback 
has been well studied in marine systems, where viral lysis 
of microbial hosts can increase organic matter recycling and 
net primary productivity (i.e. the viral shunt; Wilhelm and 
Suttle 1999, Weitz et al. 2015).

In contrast to disease ecology, models in ecosystem ecol-
ogy are typically formulated in currencies of energy and ele-
ments (e.g. mass of carbon or nitrogen), which can be tracked 
as they move between living and non-living ecosystem com-
partments (Lindeman 1942, Chapin et al. 2012, Schlesinger 
and Bernhardt 2013). However, these types of ecosystem 
models have rarely included pathogens (Weitz et al. 2015, 
Vage et al. 2016, Borer et al. 2021a, 2022), although eco-
system ecology has long recognized the primacy of microbes 
in regulating some fluxes of energy and elements (e.g. 
decomposition and microbial respiration, Roy et  al. 2001, 
Chapin  et  al. 2012, Schlesinger and Bernhardt 2013). 
Nevertheless, microbial pathogens can directly affect ecosys-
tem fluxes and pools by altering the fixation of carbon (C) 
through photosynthesis (e.g. gross primary productivity), 
respiration, and host mortality and the supply of organic 
C to decomposers (Wilhelm and Suttle 1999, Suttle 2007, 
Preston et al. 2016, Kohli et al. 2019, Cappelli et al. 2020, 
Borer et al. 2021a, Kohli et al. 2021).

Here we develop a theoretical framework using carbon 
as currency to integrate disease and ecosystem modeling 
approaches to investigate feedbacks between disease and eco-
system dynamics. This framework is composed of a series of 
four carbon-based models: 1) a logistic-growth model, 2) a 
disease model, 3) an ecosystem model, and 4) an integrated 
disease–ecosystem model (Fig. 1). By formulating these 
models in units of elemental carbon (g C), we can directly 
track fluxes of matter between biotic and abiotic states 
(Pastor 2008, Borer et al. 2021a). We focus on pathogens of 
autotrophs (e.g. primary producers such as plants and phy-
toplankton), as these hosts regulate ecosystem carbon fluxes 
between organic and inorganic material states through pho-
tosynthesis, respiration, and decomposition (Chapin  et  al. 
2012). In addition to their unique role as the primary source 
of energy for most food webs, autotrophs dominate organic 
ecosystem carbon; they comprise over 80% of biomass on 
Earth, with microbes accounting for an additional 19% 
(Bar-On et al. 2018).
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Our goal here is to develop a general, discipline-bridging 
framework that produces parameter-independent, analytical 
solutions, thereby increasing generality over more complex 
models that require simulation-based analyses of finite regions 
of parameter space. This approach builds from ecosystem-
specific models, which include greater system-level realism 
at the cost of generality (Ruardij  et  al. 2005, Jacquet et al. 
2010, Rhodes and Martin 2010, Weitz et al. 2015, Vage et al. 
2016). By formulating models with closed-form solutions 
expressed in terms of interpretable biological processes (e.g. 
decomposition rate), the approach can reveal general, bio-
logically meaningful insights that are independent of specific 
ranges or combinations of parameters. We then use these 
models to build links among earlier system-specific models 
by exploring model dynamics around biologically relevant 
parameter values and combinations that broadly align with 
organisms and process rates in different ecosystem types (e.g. 
terrestrial, freshwater and marine).

In related work, Borer et al. (2021a, 2022) developed and 
analyzed stoichiometric models linking ecosystem and dis-
ease ecology to examine the concurrent fluxes and recycling 
of carbon and a growth-limiting nutrient (e.g. nitrogen or 
phosphorus). These stoichiometric models that explicitly 
include the effects of environmental nutrients on host growth 
are well-suited for examining dynamics arising from elemen-
tal recycling. However, because of their greater complexity, 
analyses of these models cannot be parameter value indepen-
dent; insights rely on simulations of finite parameter sets. The 
carbon-based models presented here sacrifice some realism of 
earlier approaches but gain the greater generality that arises 
from analytical solutions. These carbon-based models also 
have fewer parameters than stoichiometric models, making 
it possible to parameterize our model to visualize dynamics 
across a broader range of biologically motivated parameter 

value combinations than the earlier stoichiometric ecosystem-
disease (Borer et al. 2021a, 2022). Finally, by focusing on car-
bon in the current model, we can include additional pools of 
carbon that are important in a wide range of host–pathogen 
systems (e.g. necromass, decomposed carbon, and environ-
mental pools of pathogens, Ruardij et al. 2005, Breban et al. 
2009, Fuller et al. 2012, Weitz et al. 2015, Vage et al. 2016).

We use a carbon-based framework to investigate how 
pools of living and non-living carbon can alter host–patho-
gen interactions (e.g. pathogen prevalence and spread rates) 
and how disease can alter important ecosystem properties 
(e.g. pools of live, dead, and fully decomposed C). We start 
by examining the analytical equilibria in disease models with 
and without ecosystem feedbacks (model 2 and 3) and eco-
system models with and without disease (model 3 and 4). We 
then examine these interactions within biologically relevant 
parameter values and combinations by estimating parameter 
values from a range of aquatic, marine and terrestrial biomes 
(e.g. lakes, oceans, grasslands and forests).

Modeling framework

Here, we present and compare four carbon-based models: 1) 
a logistic-growth model, 2) a disease model, 3) an ecosystem 
model and 4) an integrated disease–ecosystem model (Fig. 1). 
Detailed descriptions of the methods and additional analysis 
of these models are presented in the Supporting information. 
Parameter definitions and units are presented in Table 1, and 
diagrams of the main models are shown in Fig. 1. In these 
models, we include an environmental pool of pathogens ( P ).  
We present a parallel analysis of these models without the 
explicit environmental pathogen pool in the Supporting 
information.

Figure 1. Schematic of nested ecosystem and disease models. Parameters are described in text and in the Supporting information. 

 16000706, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.09880, W

iley O
nline Library on [07/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Page 4 of 17

In the following models, the basic reproduction num-
ber of the pathogen (R0) is defined as the average number 
of new infections caused by one infection in a popula-
tion consisting of only susceptible hosts (Diekmann et al. 
1990). In our case, we are working in units of C as opposed 
to host individuals, which changes the interpretation of R0 
to some degree. To calculate R0, we use the next-gener-
ation matrix (NGM) approach (Diekmann  et  al. 2010). 
In all cases, the pathogen can only invade the system if R0 

> 1. Details and proofs are presented in the Supporting 
information.

Model 1. A carbon-based logistic-growth model

We start with a logistic-growth model (Verhulst 1845, Pearl 
and Reed 1920), in which we track the density-dependent 
change in host biomass (S),

Table 1. Parameter units, values (mean and range) and definitions. NAs indicate parameters that are not considered in most disease or eco-
system models. Biome specific parameter values are presented in the Supporting information. *Used to derive model parameters (Supporting 
information), but not parameters in the model themselves.

Parameter Units Mean value (Range) Meaning: disease ecology Meaning: ecosystem ecology

NEP* g C m day- -2 1 2.39 (0.148–10.8) NA Net ecosystem productivity 
(typically measured in intact 
ecosystems, i.e. under 
conditions of light limitation 
and herbivory)

K* g C m-2 4390 (1–18 300) Carrying capacity of all hosts in 
terms of carbon, including live 
and recently dead biomass 
[terrestrial] or dead phytoplankton 
in photic zone [aquatic])

Storage pool of all autotroph 
carbon (live and recently dead)

r * day−1 0.787 (0.00036–3) Intrinsic growth rate of hosts Maximum per carbon NEP under 
absence of light limitation

α m g C2 1- 0.204 (0.0000162–0.979) Strength of density dependence on 
population growth

Strength of density dependence 
(i.e. light limitation) on NEP

dS
day−1 0.0257 (0.0014–0.05) Per capita death rate for susceptible 

hosts (litterfall and root turnover 
[terrestrial ecosystems] or 
phytoplankton death rate 
[aquatic])

Litterfall; root turnover; 
senescence on per carbon 
basis

dI
day−1 0.438 (0.0238–0.85) Per capita death rate for infected 

hosts
NA

rS
day−1 0.813 (0.00178–3.05) Per capita birth rate for susceptible 

hosts
Net primary productivity rate on 

per carbon basis

rI
day−1 0.569 (0.00125–2.14) Per capita birth rate for infected 

hosts
NA

gS
day−1 0.0888 (0.02–0.2) NA Decomposition rate for dead 

susceptible hosts (terrestrial 
ecosystems) or sinking rate for 
dead phytoplankton (aquatic)

g I
day−1 0.0888 (0.02–0.2) NA

σ unitless 0.9 NA Retention of solid carbon during 
transition from dead to 
decomposed pool

ε unitless 0.9 NA Retention of solid carbon during 
transition from live to dead 
pool

m day−1 NA Respiration of solid carbon 
during transition from dead to 
decomposed pool

b m g C day2 1 1- - 0.237 (0.00000201–1.33) Pathogen transmission coefficient NA

bI day−1 1.9 × 10−4 (1.46 × 10−9–0.008) Pathogen shedding rate from live 
infected hosts

NA

bD day−1 3.35 × 10−5 (1.46 × 10−9–0.001) Pathogen shedding rate from dead 
infected hosts

NA

d p
day−1 0.1449 (0.0013–5) Environmental pathogen 

degradation rate
NA

k unitless 0 Infectious dose: amount of 
pathogen incorporated into host 
during infection

NA
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dS
dt

S S S SS bS S mS= -( ) - +( )r q d q1 1 	  (1a)

which can be rewritten in the more traditional form of logis-
tic growth

dS
dt

S SS S
S bS S mS

S S
= - - +

-
æ

è
ç

ö

ø
÷( ) .r d r q d q

r d
1 	  (1b)

In this model, change in total host biomass (S), measured 
in units of C, is determined by the balance of mass-specific 
death rate (δs) and maximum mass-specific biomass pro-
duction rate (ρs), which can be considered as a maximum, 
mass-specific, C fixation (e.g. net primary productivity, NPP) 
rate for a primary producer. In other model formulations, 
(ρs − δs) is represented as r, the intrinsic rate of population 
increase. This model includes linear density dependence of 
decreasing biomass production (θbS) and increasing death 
(θmS) rates, because this formulation allows us to isolate den-
sity dependent effects on host growth or death rates. Here 
θbS and θmS represent the strengths of density-dependence 
on growth and death rates, respectively. This negative den-
sity dependence could reflect a range of processes, including 
depletion of limiting resources (e.g. water, light, or elemental 
nutrients such as nitrogen or phosphorus), increasing pres-
sure from natural enemies (e.g. herbivores, grazers), or physi-
cal crowding. However, these are not explicitly included in 
this model. Importantly, this density dependence allows for a 
finite, disease-free equilibrium, a characteristic necessary for 
the ecosystem model (model 3).

This model’s solutions reach a stable, positive equilibrium,

S S S

S bS S mS
1
* = -

+
r d

r q d q
	  (2)

when ρs > δs. This expression r d
r q d q

S S

S bS S mS

-
+

 is functionally 

analogous to the carrying capacity (K) of the canonical logis-
tic growth model.

Model 2. A carbon-based disease model

We then extended our carbon-based logistic-growth model 
into a carbon-based, microparasite model with density-
dependent transmission (SI model), which tracked the carbon 
(mass) in susceptible ( S ) and infected ( I ) hosts as well as 
carbon in the environmental pool of pathogens ( P ) (Fig. 1). 
In this model, we do not include a recovered class of hosts, as 
would be the case in a SIR model (Keeling and Rohani 2008). 
This model is based on a variety of canonical microparasite 
models (Anderson and May 1986, Keeling and Rohani 2008):

dS
dt

S I S

S I I

S S
S bS S mS

S S

I bI

= - - +
-

+( )æ

è
ç

ö

ø
÷

+ - +( )( )

( )r d r q d q
r d

r q

1

1 --bSP

	  (3a)

dI
dt

SP S I b II mI I= +( ) - + +( )( ) -b k d q1 1 	  (3b)

dP
dt

b I SP PI P= - -kb d . 	  (3c)

In this model, δs and δI are the mass-specific death rates for 
susceptible and infected hosts respectively; ρs and ρI are the 
maximum mass-specific biomass production rates (i.e. NPP) 
for susceptible and infected hosts, respectively. β is the den-
sity-dependent transmission rate of the pathogen from the 
environmental pool of pathogens (P), bI is the pathogen shed-
ding rate from live infected hosts ( I ), δP is the pathogen deg-
radation rate in the environment, and κ represents the portion 
of the pathogen pool that is incorporated into the host during 
the infection process (e.g. the carbon in the spores or viral par-
ticles that enter the host during infection). As in model 1 (Eq. 
1), we include the assumption of density-dependent effects 
on biomass production (θbS, θbI) and death (θmS, θmI) rates, 
which might differ for susceptible and infected hosts. Host 
biomass is finite in the absence of disease (e.g. in model 1 and 
3), because of these assumptions of density-dependence.

Disease transmission is determined by the transmission 
rate of the pathogens (β), the density of infected (I) and sus-
ceptible (S) host biomass, and the size of the pathogen pool 
(P), which depends on the density of infected host biomass 
(I) and the rate at which infected hosts shed pathogens into 
the environment. To link this model to ecosystem process 
rates, we frame this model in units of C (g C m−2), and our 
state variables ( S , I  and P ) track the mass of C in host 
and pathogen biomass as opposed to numbers of individuals. 
While this approach is mathematically identical to the more 
familiar SI models, the biological interpretation is different, 
as C, is not infected but rather is contained within the mass 
of infected host individuals (Borer et al. 2021a). More spe-
cifically, we are tracking the total g of C that are contained 
within susceptible ( S ) or infected (I) hosts (Borer  et  al. 
2021a), and the g of C that are contained within the pool of 
pathogens in the environment (P).

In the absence of a pathogen (I = 0 and P = 0 ), hosts will 
persist in the system if ρs > δS with an equilibria density ( S1

* ;  
Eq. 2). While real, analytical solutions exist for the endemic 
equilibrium, the densities of susceptible hosts ( S2

* ), infected 
hosts ( I2

* ), and the environmental pathogen pool ( P2
* ) are 

too complex to present here.
The intrinsic rate of increase of the pathogen (R0) is

R
S b

S b S
I

I mI I P

0
1

1 1

1

1
=

+( )
+( ) +( ) +( )

*

* *

b k

d q kb d
	  (4a)

..or equivalently

R S b
S S b

I
P I mI I

0 1
1 1

1 1 1
1

= +( )
+

æ

è
ç

ö

ø
÷ +( ) +
æ

è
ç
ç

ö

ø
÷
÷

*
* *

.b k
kb d d q

	  (4b)
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In this second formulation (Eq. 4b), R0 can be decomposed 
into biologically relevant components, which all lead to 
increases in R0: host density in the absence of disease ( S1

* ) , 
transmission rate (b k1+( )) , the shedding rate of the patho-
gen from infected hosts (bI), the duration of pathogen per-

sistence in the environment 1
1kb dS P
* +

æ

è
ç

ö

ø
÷ , and infection 

duration 1
1 1d qI mI IS b+( ) +

æ

è

ç
ç

ö

ø

÷
÷*

.

Model 3. A carbon-based ecosystem model

As a complement to the carbon-based disease model (model 
2), we developed an ecosystem model with no disease, in 
which we tracked the movement of C between three pools: 
live biomass (S), recently dead biomass or necromass (Ds, e.g. 
plant litter or suspended dead phytoplankton in the seston), 
and highly decomposed biomass or organic matter (W, e.g. 
soil organic matter or lake sediments; Fig. 1):

dS
dt

S D SS S
S bS S mS

S S
S= - - +

-
+( )æ

è
ç

ö

ø
÷( )r d r q d q

r d
1 	  (5a)

dD
dt

S D S DS
S mS S S S= + +( )( ) -ed q1 g 	  (5b)

dW
dt

D WS S= -s mg . 	  (5c)

In addition to the parameters in model 1, we include the 
rate at which necromass (Ds) decomposes (γs) and the rate 
at which organic matter (W) is lost to the system through 
processes such as leaching, erosion, or microbial respiration 
(μ). We account for losses of C (e.g. herbivory) by allowing 
only a fraction (ε) of the dying biomass to be retained in 
the necromass pool and only a fraction of the decomposing 
necromass (σ) to be retained in the organic matter pool (W). 
In this model, the host growth rate is limited by the accumu-
lation of necromass (Ds) because of shading or the creation 
of a physical barrier (Shigesada and Okubo 1981, Bertness 
and Ellison 1987, Agustí 1991, Townsend et al. 1994, Foster 
and Gross 1998, Clark and Tilman 2010, Lønborg  et  al. 
2013, Flynn and Raven 2017). Systems vary widely in the 
degree to which dead material limits host growth. This can 
be accounted for in this formulation by either reducing ε or 
increasing γs, which will reduce the accumulation of growth-
inhibiting dead material.

The nontrivial equilibrium for this model is:

S S S S

S bS mS S mS S S S bS
3
* ( )

( ( ) )
= -

+( ) + +
g

g g
r d

e r q q q d r q
�  (6)

D
S S

SS
S mS

S S mS
3

3 3

3

1
*

* *

*=
+( )

-

ed q

ed qg
	  (7)

W DS
S3 3

* *= sg
m

	  (8)

This model includes negative density-dependent effects of 
necromass on host growth; however, decomposed organic 
material can eventually have a positive effect on plant 
growth, especially in terrestrial systems. For example, 
soil organic matter can mediate access to growth-limiting 
resources, such as water or soil nutrients, by increasing 
water-holding and cation-exchange capacity (Weil and 
Magdoff 2004). We explore the effects of including pos-
itive-density dependence of decomposed organic mate-
rial (W) on host growth, which can potentially reduce 
the strength of the negative density dependence aris-
ing from recently dead material (DS), in the Supporting 
information.

Model 4. A carbon-based disease–ecosystem model

Combining the disease and ecosystem models (model 2 and 
3) is relatively straightforward, because we have framed them 
in units of C (Fig. 1). We separately track the abundance 
of necromass from susceptible (Ds) and infected (DI) hosts, 
allowing us to incorporate environmental transmission of a 
pathogen as the shedding rate of the pathogen (bD) from dead 
infected hosts (DI) (García-Guzmán and Benítez-Malvido 
2003, Beckstead  et  al. 2012, Borer  et  al. 2021a). This also 
allows us to account for differential decomposition rates of 
infected (γI) and uninfected (γs) necromass (Omacini et  al. 
2004, Leroy  et  al. 2011, Grimmett  et  al. 2012, Cobb and 
Rizzo 2016, Pazianoto et al. 2019), which can arise through 
infection-induced changes in defensive compounds or tissue 
chemistry. This structure also allows for the case of partial 
infection, where infected tissue may be shed while the host 
remains living (e.g. a tree dropping an infected branch) or 
where an entire host dies but only a portion of the host tissue 
was infected.

This model is given by

dS
dt

S I D D S

S

S S
S bS S mS

S S
S I

I bI

= - - +
-

+ + +( )æ

è
ç

ö

ø
÷

+ - +

( )r d r q d q
r d

r q

1

1 II D D I SPS I+ +( )( ) -b

	 (9a)

dI
dt

SP S I D D I b II mI S I I= +( ) - + + + +( )( ) -b k d q1 1 	  (9b)

dD
dt

S I D D S DS
S mS S I S S= + + + +( )( ) -ed q1 g 	  (9c)

 16000706, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.09880, W

iley O
nline Library on [07/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Page 7 of 17

dD
dt

S I D D I

D D

I
I mI S I

I I D I

= + + + +( )( )

- -

ed q1

g b
	  (9d)

dP
dt

b I b D SP PI D I P= + - -kb d 	  (9e)

dW
dt

D D WS S I I= + -s s mg g . 	  (9f )

In the absence of disease (I = 0, P = 0, and DI = 0), the non-
trivial equilibria of this model are the same as in the eco-
system model (Eq. 6–8). Analytical solutions exist for the 
endemic equilibria density of susceptible hosts ( S4

* ), infected 
hosts ( I4

* ), infected and uninfected necromass ( D DS I4 4
* *, ), 

the environmental pathogen pool ( P4
* ), and organic matter 

(W4
* ); however, they are too long and complex to be instruc-

tive, so we do not present them here.
The intrinsic rate of increase of the pathogen (R0) is 

obtained by using the disease-free equilibrium:

R
S S D b b b

b S

S mI D I D I I

D I
0

3 3 1

3

1 1
=

+( ) + +( ) + +( )
+( ) +

* * *

*

(( )b k q e d

kb

g

g dd q dP S mI I IS D b( ) + +( ) +( )( )* *1 3 1

 (10a)

or equivalently

R S
S

b
S D b

P

I
S mI I I

0 3
1

3 1

1 1

1
1

= +( )
+

æ

è
ç

ö

ø
÷

+ +( )( ) +

æ

è

ç
çç

ö

*
*

* *

b k
kb d

q d
øø

÷
÷÷

+
+

æ

è
ç

ö

ø
÷

+ +( )( )
+ +( )( )

b
b

S D

S D
D

I D

I S mI

S mI

1 1

1

1 1

3 1g

ed q

q d

* *

* *
II Ib+

æ

è

ç
çç

ö

ø

÷
÷÷

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

.  (10b)

While this equation is complex, the second formula-
tion (Eq. 10b) reveals that R0 is composed of biologically 
meaningful components, which all serve to increase disease 
spread: host density in the absence of disease ( S3

* ) , trans-
mission rate (b k1+( )) , the duration of pathogen persis-

tence in the environment 1
3kb dS P
* +

æ

è
ç

ö

ø
÷ , the transmission 

pathway via live hosts b
S D b

I
S mI I I

1
1 3 3+ +( )( ) +

æ

è

ç
çç

ö

ø

÷
÷÷* * q d

,  

and the transmission pathway via infected necromass 

b
b

S D

S D b
D

I D

I S mI

S mI I I

1 1

1

3 3

3 3g

ed q

q d+
æ

è
ç

ö

ø
÷

+ +( )( )
+ +( )( ) +

æ

è

* *

* *
çç
çç

ö

ø

÷
÷÷

. The live host 

transmission pathway can be decomposed into the shedding 
rate of the pathogen from infected hosts (bI) and infection 

duration of live hosts 1
1 3 3+ +( )( ) +

æ

è

ç
çç

ö

ø

÷
÷÷S D bS mI I I

* * q d
. The 

infected necromass transmission pathway can be decomposed 
into the shedding rate of the pathogen from infected necromass 

(bD), infection duration of infected necromass 1
g I Db+

æ

è
ç

ö

ø
÷ ,  

and proportion of the C from dying infected hosts that 

becomes infected necromass 
ed q

q d

I S mI

S mI I I

S D

S D b

1

1

3 3

3 3

+ +( )( )
+ +( )( ) +

æ

è

ç
çç

ö

ø

÷
÷÷

* *

* *
.  

Importantly, this model illustrates how disease spread rate is 
directly affected by C flux rates in the ecosystem, such as the 
decomposition rate (γI) and the loss of gaseous C from host 
biomass (1− ε) which can both reduce the amount necro-
mass that can serve as a source of infection.

As with the Ecosystem model (model 3), we examine a 
model in which there is positive-density dependence of 
decomposed organic material (W) on host growth in the 
Supporting information.

Model simplification to facilitate parameterization

All four models are written in terms of the effects of den-
sity-dependence on biomass production (θbS, θbI) and death 
(θmS, θmI) rates, which will vary for susceptible and infected 
hosts. To compare our models with empirical data, we 
make the following simplifying assumptions, which allow 
us to write the models in terms of a carrying capacity ( K ),  
a value we can estimate from readily available empirical 
data spanning a wide range of ecosystems and host vital 
rates. We start by assuming that density dependence acts 
only on biomass production rates ( q qmI mS= = 0 ) and that 
density dependence does not differ between susceptible 
and infected hosts ( q q abI bS= = ). Under these assump-
tions, infection can still alter mass-specific death rates (δS 
≠ δI) and the maximum mass-specific biomass production 
rates (ρS ≠ ρI), and all density-dependent effects are rep-
resented by a single parameter α. We also assume that the 
portion of pathogen pool incorporated into the host dur-
ing the infection process is vanishingly small (κ = 0). Given 
these modifications, the full disease–ecosystem model (Eq. 
9) can be rewritten as:

dS
dt

S I D D S

S I D D

S S
S

S S
S I

I S I

= - -
-

+ + +( )æ

è
ç

ö

ø
÷

+ - + + +( )(

( )r d r a
r d

r a

1

1 )) -I SPb

	  (11a)

dI
dt

SP I b II I= - -b d 	  (11b)
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dD
dt

S DS
S S S= -ed g 	  (11c)

dD
dt

I D DI
I I I D I= - -ed g b 	  (11d)

dP
dt

b I b D PI D I P= + - d 	  (11e)

dW
dt

D D WS S I I= + -s s mg g . 	  (11f )

In the absence of disease (I = 0, P = 0  and DI = 0), the non-
trivial equilibrium of this model is

S S S S

S S S
5
* ( )= -

+( )
g

g
r d

r a ed
	  (12)

D S
S

S

S
5

5*
*

= ed
g

	  (13)

W DS
S5 5

* * .= sg
m

	  (14)

Analytical solutions exist for the endemic equilibrial density 
of susceptible hosts ( S5

* ), infected hosts ( I5
* ), infected and 

uninfected necromass ( D DS I5 5
* *, ), the environmental pool of 

pathogens ( P5
* ),and organic matter (W5

* ); however, they are 
too long and complex to present here. The intrinsic rate of 
increase of the pathogen (R0) is

R
S b b b

b b
D I I D I

P D I I I
0

5
=

+ +( )( )
+( ) +( )

*b e d

d d

g

g
	  (15a)

or equivalently

R S b
b

b
b bP

I
I I

D
I D

I

I I
0 5

1 1 1= æ
è
ç

ö
ø
÷ +

æ
è
ç

ö
ø
÷ + +

æ

è
ç

ö

ø
÷ +
æ
è
ç

ö
ø

*b
d d g

ed
d ÷÷

é

ë
ê

ù

û
ú . 	  (15b)

Under these simplifying assumptions, R0 depends on the 
same components as in the more complex model (Eq. 10b): 
host density in the absence of disease ( S5

* ) , transmission rate 
(b) , the duration of pathogen persistence in the environment 

1
dP

æ
è
ç

ö
ø
÷ , the transmission pathway via live hosts b

bI
I I

1
d +

æ
è
ç

ö
ø
÷ ,  

and the transmission pathway via infected necromass 

b
b bD

I D

I

I I

1
g

ed
d+

æ

è
ç

ö

ø
÷ +
æ
è
ç

ö
ø
÷ . As before, the live host transmis-

sion pathway can be decomposed into the shedding rate of 

the pathogen from infected hosts (bI) and infection duration 

of live hosts 1
dI Ib+

æ
è
ç

ö
ø
÷ . The infected necromass transmis-

sion pathway can be decomposed into the shedding rate of 
the pathogen from infected necromass (bD), the infection 

duration of infected necromass 1
g I Db+

æ

è
ç

ö

ø
÷ , and proportion 

of the C from dying infected hosts that becomes infected 

necromass ed
d

I

I Ib+
æ
è
ç

ö
ø
÷ . However, these components are 

markedly simpler than in the more complex disease–ecosys-
tem model (Eq. 10). As in Eq. 10b, this reveals a direct link 
between disease persistence and key ecosystem rates, such as 
decomposition.

With these simplifying assumptions, Eq. 11a can then be 
rewritten as a function of K

dS
dt

S I D D
K

S

S I D D I SP

S S
S I

I S I

= - - + + +æ
è
ç

ö
ø
÷

+ - + + +( )( ) -

( )r d

r a b

1

1

	  (16)

where

K S S

S
= -r d

ar
	  (17)

and

a r d
r

= -S S

SK
. 	  (18)

Equation 17 and 18 illustrate that the carrying capacity (K) 
represents a density-dependent scaling of the birth (ρS) and 
death (δS) rates the strength of which is determined by the 
parameter (α).

Expressing transmission (b ) in terms of prevalence (T) to 
facilitate parameterization

While our model includes transmission rates (b ), these 
are notoriously difficult to estimate in empirical systems and 
are rarely reported; however, transmission rates are closely 
related to disease prevalence, a much more empirically intui-
tive and measurable metric. We can solve for disease preva-

lence at equilibrium (T) as T I
I S

=
+

*

* *  and then express β 
as a function of T:

b
g d g d e d e g g a

d d r r
T

A b T b

b
D I S S I S S D I

I I S I S
( ) =

+( ) -( ) - +( ) +( )( )
+ - - +( )) - +( )T BS Sr d

	 (19)

where  A= −(bI+δI)((ρI−ρS)T+ρS)δP and B= γS(bDδIε+bI(bD+γI))
(T−1). This function has two vertical asymptotes, the 
smaller of which provides a boundary for maximum preva-
lence at the endemic equilibrium. Prevalence increases as β 
increases, but as β continues to increase, prevalence will be 
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bounded by these asymptotes. One asymptote occurs when 
T = 1 (where 100% of hosts are infected) the second occurs 
when T satisfies the expression below:

T
b

b
b

S S

S S I I I

I I I

S S I I I

= -
- - - -( )

= + - -
- - - -( )

r d
r d r d

r d
r d r d

( )

( )
1 	  (20)

If ρS > δS and ρI < dI Ib+ , the second asymptote is smaller 
than 1, and this value limits the maximum prevalence of the 
system. We use this to define the maximum prevalence at 
equilibrium (T*) when β is sufficiently large:

T min
b

S S

S S I I I

*

( )
,= -

- - - -( )
ì
í
ï

îï

ü
ý
ï

þï

r d
r d r d

1 	  (21)

which we can express in terms of intrinsic growth rates rS = ρS 
− δS and rI = ρI – δI − bI

T min r
r r

S

S I

* , .=
-

ì
í
î

ü
ý
þ

1 	  (22)

In this simpler formulation, the maximum prevalence at equi-
librium (T*) will be less than 1 when susceptible hosts have 
a positive population growth rate (rS > 0) and the infected 
hosts do not (rI < 0). Finally, using this expression for T*, we 
parameterized the value of β to yield half the maximum prev-

alence at endemic equilibrium, evaluating b T *

2
æ

è
ç

ö

ø
÷  in Eq. 19.

Results

Insights from analytical solutions

The potential for a tight coupling between disease dynamics 
and ecosystem fluxes and pools is apparent from the analyti-
cal solutions of the integrated disease and ecosystem model 
(model 4) relative to the disease-only model (model 2) or the 
ecosystem-only model (model 3). This direct comparison is 
made possible by using C as currency, which can be tracked 
as it moves between living and nonliving states. While the 
integrated model (model 4) is more complex than either the 
disease (model 2) or ecosystem (model 3) models, it is unique 
in providing a single, integrated framework that can examine 
the interactive effects of disease (e.g. transmission and viru-
lence) and ecosystem processes (e.g. primary productivity 
and decomposition) on state variables of relevance to both 
disease (e.g. prevalence and R0) and ecosystem ecology (e.g. 
live, dead, decomposed biomass).

The effects of ecosystem feedbacks on disease dynamics 
are apparent in the solutions for a pathogen’s intrinsic rate 
of increase (R0) in the integrated disease–ecosystem model 
(model 4) relative to the disease-only model (model 2). 

As expected, R0 in both models depended on host density, 
pathogen transmission rates, and the death rate of infected 
hosts (Eq 4 and 10). However, the integrated disease–ecosys-
tem model reveals disease-regulating mechanisms absent in 
the disease-only model. For example, by comparing model 2 
and 3, dead host biomass (necromass) dynamics can alter a 
pathogen’s intrinsic rate of increase R0 through two distinct 
pathways. First, dead biomass can serve as a source for the 
environmental reservoir of pathogens that infect susceptible 
hosts, thereby increasing R0, in a process analogous to pop-
ulation-based disease models of systems with environmen-
tal pathogen pools (Breban et al. 2009, Fuller et al. 2012). 
Second, dead biomass can reduce the abundance of suscepti-
ble hosts, reducing R0 (Eq. 15). This second pathway is medi-
ated by negative host density dependence. It is distinct from 
that found in typical models describing transmission from 
an environmental pool of pathogens, as it can alter R0 and 
host abundance even when dead biomass is not a source of 
pathogens (bD = 0). In the case where there are positive effects 
of decomposed organic matter on host growth (Supporting 
information), the suppressive effects of necromass may be 
reduced, thereby increasing disease spread. The strength of 
these effects is partly governed by decomposition rates, such 
that increased decomposition will reduce the suppressive 
effects of necromass on host growth while also reducing the 
source of infectious propagules. As a result, decomposition 
rates mediate the relationship between the rate of increase of 
pathogen (R0) and transmission rate (Eq. 10b and 15b).

The pathways by which pathogens can alter elemental 
fluxes and pools are also apparent in the analytical solutions 
of the disease–ecosystem model (model 4) relative to the 
ecosystem model without disease (model 3). Most directly, 
pathogens can reduce C fixation via photosynthesis if ρS > ρI 
and increase the supply of dead host biomass to decomposers 
if δI > δS (Eq. 11). Pathogens also might alter decomposition, 
which controls the accumulation of necromass and organic 
matter if infected and uninfected cells or tissues decompose 
at different rates (γI ≠ γS). Finally, if necromass is a source of 
infection, this can reduce C fixation, highlighting a distinct 
pathway that becomes apparent only with the integration of 
disease and ecosystem models.

Insights from model parameterization

In addition to the analytical solutions of these models, we 
examined model dynamics in biologically relevant param-
eter space by estimating parameter ranges and combinations 
that provide broad depictions of the dominant autotrophs 
found in four major terrestrial biomes (temperate grasslands, 
tropical forests, boreal forests, and temperate forests) and 
four major aquatic biomes (open oceans, coastal oceans, oli-
gotrophic lakes, and eutrophic lakes) (Table 1, Supporting 
information). This more focused examination of biologi-
cally informed parameter values aimed to consider the model 
dynamics for reasonable parameter ranges and combinations, 
not to make quantitative predictions for specific biomes, con-
ditions, or locations. Our estimates help build an intuition 
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for model dynamics in the regions of parameter space that 
capture a broad range of biologically informed values, rather 
than seeking to encompass the full range of potential param-
eters within biomes. Details on parameter estimation are pre-
sented in the Supporting information.

Using these parameters, we examined the effects 
of the transmission rate (β), host density dependence 

a r d
r

= -æ

è
ç

ö

ø
÷

S S

SK
, and decomposition rates (γ = γI = γS) on 

R0, maximum prevalence at equilibrium (T * ), live biomass 
pools (S + I), and dead biomass pools (DS + DI). Simulations 
reached stable equilibria for the model state variables for 
hosts with characteristics ranging from phytoplankton to 
trees (Supporting information).

Parameter values were highly correlated across the values 
estimated from the literature for the eight different biomes 
(Supporting information), suggesting that a lower dimen-
sional representation of parameters could provide a sum-
mary of the model behavior. We used principal components 
analysis (PCA) to summarize the variation of five model 
parameters (α, δS, ρS, bl, γS); we excluded parameters derived 
from other parameters or state variables (δI, ρI, bD, γI, βH, 
βE,) because of their inherent correlations. The first principal 
component (PC1) accounted for most of the total variance 
(77%) in parameter values. PC1 was characterized by the 
rate of host turnover, ranging from fast (aquatic phytoplank-
ton) to slow (terrestrial vascular plants) (e.g. δS, r S and γS; 
Supporting information).

We used the system turnover rate (i.e. PC1) to gain general 
intuition for the disease (model 2), ecosystem (model 3), and 
ecosystem and disease (model 4) models, before examining 

the effects of specific parameter combinations (Fig. 2). In 
most cases, all three models responded similarly to changes in 
system turnover rate (PC1). For example, live and dead host 
biomass pools declined with the system turnover rate, while 
prevalence increased with the system turnover rate. The gen-
eral concordance among these models suggests that a carbon-
based modeling framework can form the basis for a unified 
framework to link disease and ecosystem ecology.

While predictions were largely concordant, key differences 
among the models also became apparent. For example, the 
integrated ecosystem and disease model (model 4) predicted 
less live host biomass than the disease and ecosystem-only 
models (model 2 and 3), and this difference was largest in slow 
turnover systems (Fig. 2). The lower biomass in the disease–
ecosystem model is likely due to necromass accumulation sup-
pressing host growth combined with more pathogens being 
transmitted from dead hosts where decomposition rates were 
slow (Eq. 9; Supporting information). Because of the inclu-
sion of necromass, the integrated disease–ecosystem model 
(model 4) also predicted higher prevalence and R0 in slow 
turnover systems and lower prevalence and R0 in fast turnover 
systems relative to the disease-only model (model 2).

We next examined the interactive effects of individual 
parameters on disease and host biomass while holding other 
parameters constant (Fig. 3, 4). As in our analyses using the 
single metric of host turnover rate (Fig. 2), the behavior of 
the integrated ecosystem and disease model (model 4) was 
broadly similar to the disease-only and ecosystem-only mod-
els (model 2 and 3) (Supporting information), suggesting 
that the C-based models can provide a coherent framework 
for integrating ecosystem and disease ecology.
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Figure 2. Comparison of disease model (model 2), ecosystem model (model 3), and disease and ecosystem model (model 4) predictions for 
(A) live biomass pools (S + I), (B) dead biomass pools (Ds + DI; model 3 and 4 only), (C) pathogen prevalence at equilibrium (T * ; model 2 
and 4 only), and (D) R0 (model 2 and 4 only) along a gradient of system rate represented by the first principal component (PC1) of a PCA 
of the parameters in eight biomes (Supporting information). Higher values of PC1 represent faster turnover rates (e.g. growth, death and 
decomposition).
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Disease invasion (R0) and prevalence increased with the 
pathogen transmission rate (β) and declined with the strength 
of host density dependence (α) (Fig. 3). This linkage between 
host density dependence and transmission is reflected in the 
positive slope of the disease invasion isocline (R0 = 1), which 
indicates that pathogen persistence requires higher transmis-
sion rates in systems with high levels of density dependence. 
These analyses also revealed the importance of ecosystem 
carbon fluxes in regulating disease dynamics. For example, 
disease invasion and prevalence increased with decomposi-
tion rates ( gS , g I ) for a given transmission rate (Fig. 4). The 
importance of decomposition rate also is reflected in the dis-
ease invasion isocline, which shows that lower transmission 
rates are needed for the disease to invade when decomposition 
rates are high (Fig. 4). The overall positive effect of decom-
position on disease suggests that suppression of host growth 
by dead biomass had stronger effects on disease dynamics 
than the increased supply of pathogens from necromass. This 
insight arises only from simultaneously considering disease 
and ecosystem dynamics.

The pools of live and dead host biomass were controlled 
by interactions between host density dependence (α), decom-
position rate ( gS , g I ), and pathogen transmission rate (β) 
(Fig. 3, 4). Host density dependence reduced live and dead 
biomass, regardless of the pathogen transmission rate. In con-
trast, decomposition rate and pathogen transmission strongly 

interacted to control the accumulation of live and dead host 
biomass. Peak live biomass occurred when the transmission 
rate was low and decomposition was high, while the highest 
levels of dead biomass occurred at low decomposition and 
transmission rates (Fig. 4). This interaction also was mani-
fested in the effects of decomposition on the disease inva-
sion isocline; the decomposition rate determines a threshold 
below which the disease cannot invade. As a result, the model 
predicts that only highly transmissible pathogens can invade 
systems with low decomposition rates.

Discussion

Disease and ecosystem ecology have remained disparate 
disciplines due to their different conceptual lineages. Our 
modeling framework builds from recent work revealing the 
complementarity of these fields and the prospects for novel 
insights arising from tighter integration (Preston et al. 2016, 
Borer et al. 2021a, 2022). A key to this integration is work-
ing in units of elements (here, C), a currency that can be 
tracked between healthy and infected host states, as well 
as between living and non-living states (Borer et al. 2021a, 
2022) and environmental pools of pathogens, themselves. In 
our analyses, the behavior of the integrated disease and eco-
system model (model 4) was broadly similar to our versions of 

Figure 3. Effects of transmission rate (β) and host density dependence (α) on R0, prevalence at equilibrium T * , live biomass pools (S + I) 
and dead biomass pools (DS + DI). White line indicates the isocline above which disease can invade (R0 = 1). Points represent parameter 
values for the focal biomes and the ellipse represents the 90% confidence interval around these points. All other parameters are fixed at the 
average across ecosystems. 

Figure 4. Effects of transmission rate (β) and decomposition rate (γ = γI = γS) on R0, maximum prevalence at equilibrium (T * ), live biomass 
pools (S + I) and dead biomass pools (DS + DI). White line indicates the isocline above which disease can invade (R0 = 1). Points represent 
parameter values for the focal biomes and the ellipse represents the 90% confidence interval around these points. All other parameters are 
fixed at the average across ecosystems.
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canonical disease-only and ecosystem-only models (model 2 
and 3) (Supporting information), suggesting that the C-based 
models can provide a coherent framework for integrating 
well-developed theory in ecosystem and disease ecology.

This integrated framework builds on other recent work 
exploring the feedbacks between disease and ecosystem 
dynamics within a single model framed around elemental 
fluxes (Borer et al. 2021a, 2022). Taken together this theo-
retical work suggests that ecosystem–disease feedbacks are 
likely to be generally important. The models presented here 
simplify earlier work by focusing solely on carbon dynamic 
fluxes, which has several advantages. The carbon-based mod-
els have many fewer parameters than stoichiometric models 
(Borer et al. 2021a, 2022), which are more readily estimable 
in empirical systems. The carbon-based models are also more 
tractable analytically, having closed-form analytical solutions 
independent of empirical parameters.

Our analytical and simulation-based analyses of these 
models demonstrate that ecosystem processes, such as 
decomposition, can strongly affect host–pathogen interac-
tions and that disease can fundamentally alter the cycling 
rates and pools of elements. Despite the logical evidence of 
the importance of the disease–ecosystem feedbacks, these are 
rarely explored experimentally, and disease is rarely consid-
ered in ecosystem ecology.

A comparison of the C-based, disease–ecosystem model 
(model 4) with the disease (model 2) or ecosystem (model 3) 
models reveals new dynamics that emerge when we explicitly 
link disease and ecosystem ecology. For example, account-
ing for dead host biomass altered host–pathogen dynamics 
in several ways, including the direct transmission of patho-
gens from dead hosts (García-Guzmán and Benítez-Malvido 
2003, Beckstead  et  al. 2012, Borer  et  al. 2021a) and den-
sity-dependent suppression of host growth by dead host 
biomass (Agustí 1991, Foster and Gross 1998, Clark and 
Tilman 2010, Lønborg et al. 2013). As a result, the decom-
position rate of dead hosts was integral to pathogen spread 
(R0), because decomposition regulated dead host biomass 
accumulation. While some existing disease ecology models 
include environmental transmission (Breban  et  al. 2009, 
Fuller et al. 2012), the direct suppression of host growth by 
dead host biomass remains largely unexplored in disease ecol-
ogy. Although the theoretical results presented here suggest 
a strong co-regulation of pathogens, disease, and elemental 
cycling, there have been very few experiments mechanisti-
cally examining these linkages.

In the integrated disease–ecosystem model, pathogens 
altered important ecosystem fluxes and the size of C pools 
of live biomass, dead biomass (e.g. litter or phytoplankton), 
and decomposed organic C (e.g. soil or lake and ocean sedi-
ments). These pathogen effects arose through several routes. 
First, infected hosts could experience reduced C fixation 
rates (i.e. photosynthesis) (Suttle  et  al. 1990, Kohli  et  al. 
2021), which reduced the C supply to the whole ecosystem 
(Seabloom et al. 2017, Cappelli et al. 2020). Second, infec-
tion could increase host death rates, thereby increasing the 
supply of dead biomass to decomposers and ultimately the 

influx of C to the longer-term C pools in soils or sediments 
(Jiao et al. 2010, Cobb et al. 2012, Weitz and Wilhelm 2012, 
Preston et al. 2016, Borer et al. 2021a). Finally, infected and 
uninfected necromass could decompose at different rates, 
controlling the size of the dead biomass pool (Omacini et al. 
2004, Jiao  et  al. 2010, Leroy  et  al. 2011, Grimmett  et  al. 
2012, Weitz and Wilhelm 2012, Cobb and Rizzo 2016, 
Pazianoto et al. 2019, Borer et al. 2021a).

The current modeling exercise aims to maintain gener-
ality by generating analytical solutions while also exploring 
model dynamics across a broad array of biologically relevant 
parameter values. While we examine model dynamics in the 
parameter space describing terrestrial, marine, and freshwater 
biomes, our intention is not to provide an accurate model 
for any specific system. Instead, these parameter combina-
tions allowed us to visualize the model dynamics for differ-
ent, biologically motivated regions of parameter space. This 
examination of dynamics across a wide range of parameter 
combinations arising from many biomes revealed that the 
largest dynamical differences were between parameters esti-
mated from aquatic and terrestrial biomes, reflecting a fast-
slow parameter value continuum (Wright et al. 2004, Reich 
2014, Bonetti et al. 2019). Interestingly, the models predict 
that disease effects will increase with host turnover rates; the 
models predicted much higher prevalence in fast turnover 
systems (e.g. aquatic ecosystems). This result is concordant 
with the observation that viruses have been estimated to kill 
20% of all marine microbial biomass each day (Fuhrman 
1999, Suttle 2005, Suttle 2007), a mortality rate that far 
exceeds anything that has been documented in slower turn-
over ecosystems (e.g. forests). The prediction of higher disease 
impacts in fast turnover biomes also may apply within sys-
tems. Cappelli et al. (2020) found fungal pathogens had the 
largest effects on biomass in experimental grasslands domi-
nated by fast-growing plant species.

The results spanning wide ranges of parameter values 
suggest the potential for novel questions, hypotheses, and 
insights arising from theory that integrates disease and eco-
system ecology. For example, they highlight the importance 
of decomposition rates in driving new production, thereby, 
enabling higher transmission rates and prevalence of infec-
tion. We are not aware of any direct empirical tests of whether 
the presence of pathogens alters the relationship between 
live and dead biomass or whether these effects are altered by 
decomposition rates. At global scales, there are only weak cor-
relations between live and dead biomass in terrestrial grass-
lands (O'Halloran et al. 2013), a pattern that more closely 
mirrors the predictions of the integrated disease–ecosystem 
model (model 4) compared to the ecosystem model (model 
3, that predicts a closer coupling of live and dead biomass) 
(Supporting information).

Recycling of elements is a core component of many eco-
system models (Lindeman 1942, Morowitz 1968, Ulanowicz 
1972, Harwell et al. 1977) that is not included in the current 
model formulation, though it has been addressed elsewhere 
(Borer  et  al. 2022). The critical effect of disease on nutri-
ent recycling is well illustrated in marine systems, where viral 
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lysis of microbial hosts can increase organic matter recycling 
and net primary productivity (i.e., the viral shunt; Wilhelm 
and Suttle 1999, Weitz et al. 2015).

Feedbacks arising from elemental recycling might only 
emerge in terrestrial systems over long periods of time. For 
example, C from decomposing litter can increase soil fertil-
ity by increasing the availability of growth-limiting resources, 
such as water or soil nutrients. This in turn can increase 
water-holding and cation-exchange capacity (Weil and 
Magdoff 2004) and thereby increase plant (host) productivity 
(Isbell et al. 2019, Seabloom et al. 2021). While our model 
only includes negative density effects of recently dead hosts, 
effects of positive feedbacks can be seen in the model varia-
tion in which accumulation of decomposed organic matter 
can increase host growth rates (Supporting information), 
thereby increasing host biomass in the absence of disease and 
increasing disease spread (R0).

However, fully addressing these types of feedbacks requires 
stoichiometric models that explicitly include growth-limiting 
nutrients, such as nitrogen or phosphorus. Recent models of 
this sort have demonstrated that nutrient recycling in dis-
ease systems is highly destabilizing. However, the destabiliz-
ing effects depend partly on the pathogen impacts on host 
demography (Borer et al. 2022). A challenge for future mod-
eling of elemental recycling is the vastly different time scales 
that govern host–pathogen dynamics (e.g. photosynthesis 
and disease transmission) and longer time scales of biogeo-
chemical feedbacks that affect hosts’ vital rates, such as soil 
development or lake turnover (Knops and Tilman 2000, 
Bonetti  et  al. 2019). Despite these challenges, theoretical 
investigations, and empirical tests of the effects of elemental 
recycling represent an essential frontier with both basic and 
applied importance.

Infection of primary producers by pathogens might 
change the elemental and biochemical composition of host 
tissue with consequences for the decomposition rate of dead 
host biomass. Although we did not explore the dynami-
cal consequences here, recent work has generated a model-
ing framework using a stoichiometric approach to examine 
disease–ecosystem interactions (Borer  et  al. 2021a, 2022). 
Changes in host stoichiometry and their consequences for 
elemental cycling are attributed to the impact pathogens 
might have on host metabolism (i.e. photosynthetic activ-
ity, growth, and development), as well as by inducing host 
defense mechanisms (Berger et al. 2007, Bolton 2009), which 
might alter the rate of decomposition. Microbes can trigger 
increased metabolic rates of hosts by hijacking plant carbo-
hydrate and nutrient metabolism (Bolton 2009, Fagard et al. 
2014, Oliva et al. 2014, Rojas et al. 2014, Schwachtje et al. 
2018), and altering plant nutrient content, which can impact 
decomposition rates (Wolfe and Ballhorn 2020). For example, 
activation of host defenses against pathogens via secondary 
metabolites can upregulate host nitrogen uptake and mobi-
lization (Mur et al. 2017), and some endophytic fungi (e.g. 
Rhytisma acerinum) and bacteria can inhibit or enhance N or 
P reabsorption before leaf senescence. Both of these processes 
can impact litter nutrient content (Cornelissen et al. 2000, 

Cao et al. 2015), which can, in turn, control organic matter 
decomposition and the rate of carbon cycling (Aerts 1997). 
The production of defensive phenolic compounds (e.g. tan-
nins) also affects decomposition rates by forming polyphe-
nol–protein complexes (Hattenschwiler and Vitousek 2000) 
that are resistant to the breakdown by most microorganisms 
(Hattenschwiler and Vitousek 2000, Ormeno  et  al. 2006, 
Chomel  et  al. 2014, Chomel  et  al. 2016). Modeling has 
demonstrated that linking carbon and nutrient content of 
hosts can alter predictions for infectious disease (Borer et al. 
2021a), but this stoichiometric approach has significant chal-
lenges for finding analytical solutions and has, to date, relied 
on simulations across finite parameter ranges. Nonetheless, 
these pervasive feedbacks between metabolic or defensive 
compounds, infection, and carbon cycling suggest that this is 
a fruitful area for future work.

Despite empirical and theoretical evidence for dynamically 
meaningful linkages between disease and elemental cycles, 
there are few experimental studies that concurrently manipu-
late pathogens and measure elemental fluxes. Nevertheless, 
this type of experiment would provide the strongest tests of 
this theory and the best opportunity for data model inte-
gration. An example of the type of work that is needed is a 
long-term fungicide experiment conducted in both natural 
and experimental grasslands in the tallgrass prairie ecosystem 
of central North America (Borer et al. 2015, Seabloom et al. 
2017, Kohli et al. 2019, Kohli et al. 2021). This experiment 
demonstrated that reducing foliar fungal pathogens increased 
mass-specific C fixation (ρS + ρI) leading to significantly 
higher pools of live biomass (S + I) (Seabloom  et  al. 2017, 
Kohli et al. 2019, Kohli et al. 2021). These results validate 
core assumptions of the model structure, such as assuming 
mass-specific effects of pathogens on C fixation.

Some of the effects of pathogen reduction on C fluxes in 
grasslands are mediated by changes in plant tissue chemistry 
(Borer et al. 2015, Kohli  et al. 2019). Two fungicide stud-
ies have demonstrated that applications of foliar fungicides 
increase the dominance of fast-growing plants with high lev-
els of tissue N. These linkages suggest that a stoichiometric 
approach might yield additional insights (Borer et al. 2021a, 
b). In addition, these studies demonstrate that the effects of 
pathogens on nutrient cycling will be impacted by changes in 
community composition (Cappelli  et  al. 2020, Kohli  et  al. 
2021), suggesting critical knowledge gaps at the nexus of the 
community and ecosystem ecology of disease. As we seek 
to understand better both the role of disease and the fluxes 
of carbon and other elements in natural systems, these sys-
tem-specific experimental results and the general theoretical 
results presented here highlight the importance of additional 
experimental tests of the role of pathogens in mediating ele-
mental fluxes.

While we have focused on autotrophic hosts (e.g. plants 
and phytoplankton), this work also might be informative 
of dynamics of heterotrophic hosts. For example, in many 
systems dead hosts play key roles in serving as environmen-
tal reservoirs for animal pathogens (Hampson  et  al. 2011, 
Fuller et al. 2012, Miller et al. 2014, Escobar et al. 2020). In 
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prion diseases, such as chronic wasting disease (CWD), infec-
tious prions can remain in the environment, shed from decom-
posed carcasses, for years (Miller et al. 2014, Escobar et al. 
2020). Similarly, the transmission of anthrax Bacillus 
anthracis among herbivore hosts largely depends on indirect 
exposure to spores released from carcasses (Hampson et  al. 
2011). Despite the potential risk of anthrax exposure, there 
is some evidence suggesting that carcass-mediated nutrient 
pulses could attract herbivores (Turner  et  al. 2014), point-
ing to the intriguing idea that feedbacks between host death 
and transmission risk could be mediated by nutrient cycling 
across trophic levels. How mobile hosts might behaviorally 
mediate their risk to such potential exposures is a separate 
question not captured in our modeling framework. The cur-
rent work suggests that examining such host–parasite feed-
backs is an open and important future direction to consider 
(Ezenwa et al. 2016).

Working in a currency of elements allows us to link 
canonical disease and ecosystem models (Borer et al. 2021a); 
however, the current model does not nest carbon within 
individual hosts. In contrast, most disease models assume 
that entire hosts become infected instantaneously (Keeling 
and Rohani 2008). This whole-host infection approach does 
not capture dynamics such as the abscission of infected tis-
sues or whole leaves but the retention of uninfected tissue. 
Some models in disease ecology use a hierarchical structure 
whereby infection proceeds through a host and then spreads 
from host to host (Borer et al. 2016, Strauss et al. 2019). A 
possible extension of the current model could be to incor-
porate this hierarchical approach, recognizing that infected 
biomass occurs within a host individual, and infection 
spread through host tissues will likely proceed at very differ-
ent rates than transmission among hosts (Borer et al. 2016). 
This approach also could allow explicit incorporation of host 
body size, which can be an important determinant of disease 
dynamics (Kuris et al. 1980, George-Nascimento et al. 2004, 
Seabloom et al. 2015, Borer et al. 2022) and differs widely 
among ecosystems. For example, in the current model, host 
differences among biomes are reflected in C turnover rates 
(e.g. photosynthesis and death rates); however, the spread of 
a pathogen through a single tree (with many differentiated 
cells) differs substantially from the spread through a popu-
lation of single phytoplankton cells. While we expect that 
these more complex models will not be as analytically trac-
table as those presented here (Strauss et al. 2019), a hierarchi-
cal approach would, nonetheless, open many new areas of 
inquiry.

Despite their disparate lineages and conceptual frame-
works, disease and ecosystem ecology share a recognition 
of the importance of microbes in regulating critical rates 
in their respective disciplines. In disease ecology, microbial 
pathogens regulate the movement of material from biotic to 
abiotic pools via host death. Conversely, in ecosystem mod-
els, microbes regulate the conversion of dead material into 
biologically accessible sources of energy and matter (e.g. via 
decomposition). However, these differing approaches lead to 
conceptual gaps. For example, while ecosystem ecology has 

recognized the primacy of microbes in regulating the break-
down of organic C (e.g. microbial respiration and decom-
position), the field has given little attention to the impacts 
of microbes on C fixation through altered carbon fixation 
rates (but see, Kohli et al. 2021). In addition, the important 
role of pathogens in determining the supply of organic car-
bon to the decomposer food web has received little attention 
(Cobb et al. 2012). In a scan of ecosystem ecology textbooks, 
we found no references to disease or pathogens (Chapin et al. 
2002, Schlesinger and Bernhardt 2013). In addition, there 
have been very few experiments that specifically examine 
the effects of pathogens on ecosystem processes. Given the 
appreciation for the importance of microbes in ecosystem 
ecology, we expect that integrating microbial pathogens into 
this field will be a natural extension (Preston  et  al. 2016, 
Borer et al. 2021a). More broadly, we expect that a unified 
framework for ecosystem and disease ecology can move both 
fields forward, yielding exciting conceptual advances and 
providing a foundation for empirical hypothesis testing.
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