L)

Check for
updates

Neural Network Compression for Noisy Storage Devices

BERIVAN ISIK, KRISTY CHOI, XIN ZHENG, TSACHY WEISSMAN, STEFANO ERMON,
and H.-S. PHILIP WONG, Stanford University, USA
ARMIN ALAGHI, Reality Labs Research, Meta, USA

Compression and efficient storage of neural network (NN) parameters is critical for applications that run
on resource-constrained devices. Despite the significant progress in NN model compression, there has been
considerably less investigation in the actual physical storage of NN parameters. Conventionally, model com-
pression and physical storage are decoupled, as digital storage media with error-correcting codes (ECCs)
provide robust error-free storage. However, this decoupled approach is inefficient as it ignores the overpara-
meterization present in most NNs and forces the memory device to allocate the same amount of resources
to every bit of information regardless of its importance. In this work, we investigate analog memory devices
as an alternative to digital media — one that naturally provides a way to add more protection for significant
bits unlike its counterpart, but is noisy and may compromise the stored model’s performance if used naively.
We develop a variety of robust coding strategies for NN weight storage on analog devices, and propose an
approach to jointly optimize model compression and memory resource allocation. We then demonstrate the
efficacy of our approach on models trained on MNIST, CIFAR-10, and ImageNet datasets for existing com-
pression techniques. Compared to conventional error-free digital storage, our method reduces the memory
footprint by up to one order of magnitude, without significantly compromising the stored model’s accuracy.

CCS Concepts: « Computer systems organization — Embedded hardware; - Hardware — Memory
and dense storage;

Additional Key Words and Phrases: Neural networks, robustness, compression, analog storage, PCM

ACM Reference format:

Berivan Isik, Kristy Choi, Xin Zheng, Tsachy Weissman, Stefano Ermon, H.-S. Philip Wong, and Armin Alaghi.
2023. Neural Network Compression for Noisy Storage Devices. ACM Trans. Embedd. Comput. Syst. 22, 3, Art-
icle 58 (May 2023), 29 pages.

https://doi.org/10.1145/3588436

Bl is supported by the Stanford Graduate Fellowship and a Meta research award. KC is supported by the NSF GRFP, Stan-
ford Graduate Fellowship, and Two Sigma Diversity Ph.D. Fellowship. The Stanford authors’ work was supported by
NSF (#1651565, #1522054, #1733686), ONR (N00014-19-1-2145), AFOSR (FA9550-19-1-0024), ARO (W911NF2110125), and
Amazon AWS.

Authors’ addresses: B. Isik and T. Weissman, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, US; emails:
berivan.isik@stanford.edu, tsachy@stanford.edu; K. Choi and S. Ermon, Stanford University, 353 Jane Stanford Way, Stan-
ford, CA 94305, US; emails: kechoi@stanford.edu, ermon@cs.stanford.edu; X. Zheng and H. S. Philip Wong, Stanford Uni-
versity, 330 Jane Stanford Way, Stanford, CA 94305, US; emails: xzheng3@stanford.edu, hspwong@stanford.edu; A. Alaghi,
Meta Reality Labs, 9845 Willows Rd NE, Redmond, WA 98052, US; email: alaghi@meta.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/05-ART58 $15.00

https://doi.org/10.1145/3588436

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://orcid.org/0000-0002-4926-5443
https://orcid.org/0000-0002-5859-7060
https://orcid.org/0000-0003-1877-9430
https://orcid.org/0009-0008-1099-691X
https://orcid.org/0000-0003-0039-2887
https://orcid.org/0000-0002-0096-1472
https://orcid.org/0000-0003-2055-6754
https://doi.org/10.1145/3588436
mailto:permissions@acm.org
https://doi.org/10.1145/3588436
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3588436&domain=pdf&date_stamp=2023-05-13

58:2 B. Isik et al.

1 INTRODUCTION

The rapidly growing size of deep neural networks presents new challenges in their storage, com-
putation, and power consumption for deployment in resource-constrained devices [16, 46]. This
makes it crucial to compress and efficiently store NN parameters. The most commonly used ap-
proach is to separate the problem of model compression from physical storage. Reliable digital
storage media, fortified by error correcting codes (ECCs), provide nearly error-free storage to
users — this allows researchers to develop model compression techniques independently from the
precise characteristics of the devices used to store the compressed weights [9, 11]. Meanwhile,
memory designers strive to create efficient storage by hiding such physical details from users.

Although the decoupled approach enables isolated investigation of model compression and sim-
plifies the problem, it misses the opportunity to exploit the full capabilities of the storage device.
With no context from data, memory systems dedicate the same amount of resources to each bit
of stored information. This is suboptimal as NNs tend to exhibit a considerable amount of re-
dundancy in their parameterization [12, 76]. To address this shortcoming, we investigate the joint
optimization of NN model compression and physical storage — specifically, we perform model com-
pression with the additional knowledge of the memory’s physical characteristics. This allows us
to dedicate more resources to important bits of data, while relaxing the resources on less valuable
bits.

This joint optimization scheme, however, is cumbersome to implement in practice on digital
storage media due to the device’s physical characteristics (Sections 2.1 and 2.2). We instead turn to
analog technology - in particular, phase-change memory (PCM) — as a more feasible alternat-
ive [42, 53]. Recent studies have demonstrated the promise of end-to-end analog memory systems
for storing analog data, such as NN weights, as they have the potential to reach higher storage
capacities than digital systems with a significantly lower coding complexity [71-73].

Yet despite their advantages, analog storage devices are noisy and may corrupt the written
input values. This presents several key challenges for the compression task. First, the noise
characteristic of such memories is a non-linear function of the input value written onto the cell.
Second, slight perturbations of the NN weights from the memory cell may cause the network’s
performance to plummet [1], which is unaccounted for in most NN compression techniques. Thus
our objective is to not only minimize the number of memory cells used to store the given NN model
(a standard metric named storage density), but also preserve the compressed weights’ predictive
performance.

Motivated by the above challenges, we draw inspiration from classical information theory and
coding theory to develop a framework for encoding and decoding NN parameters to be stored
on analog devices [62]. In particular, our method: (i) leverages existing compression techniques
such as pruning [25, 27] and knowledge distillation (KD) [33, 57, 69] to learn a compressed
representation of the NN weights; and (ii) utilizes various coding strategies to ensure robustness
of the compressed network against storage noise.! To the best of our knowledge, this is the first
work on NN compression for analog storage devices with realistic noise characteristics, unlike
previous works that only investigate white Gaussian noise models [22, 74].

In summary, the contributions of our work are as follows:

(1) We develop a variety of strategies to mitigate the effect of noise and preserve the NN
performance on PCM storage devices.

(2) We present methods to combine these strategies with existing model compression
techniques.

IThis joint approach is fundamentally different from the problem of preserving the utility of the lossily compressed noisy
data [39] or vice-versa — noise-corrupted compressed data.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:3

Empirically, we evaluate the efficacy of our methods on classification tasks with models trained
on MNIST, CIFAR-10, and ImageNet datasets and regression tasks with the Neural Radiance
Field (NeRF) model [52]; and show that storage density can be increased by 18 times on average
compared to conventional error-free digital storage.

2 PRELIMINARIES
2.1 Analog Storage and Phase Change Memory (PCM)

Most memory technologies utilize continuous physical values (e.g., charge) as a means of data
storage. The full continuous storage range is often divided into intervals and used to store discrete
values. One extreme that maximizes the device’s performance is to allow only two values (high and
low) to be written to each memory cell. With this approach, one bit of information can be stored
in a memory cell. Storing more values allows more bits to be stored per cell, but also increases the
chance of reading an incorrect value from the memory - this represents a natural trade-off between
memory density and probability of error. Therefore, storage devices often use error correcting
codes (ECCs) in practice to protect data from such memory errors.

Although digital storage (i.e., storing discrete values) is the dominant paradigm in physical
memory technology, it is still possible to store continuous values in memory cells, and read them
back as continuous values, albeit with noise. This approach, also known as analog storage, has
regained attention recently [72] with the emergence of different non-volatile memory (NVM)
technologies, such as PCM. NVMs not only retain the stored information even when the power
supply is off, but also allow efficient storage of multiple bits per cell. In the extreme case, NVMs
can store continuous values [67], making them more efficient than their digital counterparts that
require discrete inputs [71, 73]. Among the various NVM technologies, our work focuses on phase-
change memory (PCM) technology because it: (i) has faster read/write speed and higher endur-
ance than its competitors; and (ii) can enhance chip performance by reducing the cost of data
movement thanks to its on-chip integration.

A major advantage of the PCM memory device over its (digital) competitors is its relatively
low cost as compared to its access time (read/write time). Commonly used memory devices such
as SRAM (static random access memory) and DRAM (dynamic random access memory)
have short access time and high endurance, and are thus used as the cache and main memory
in a wide range of technologies. Storage devices such as NOT-AND (NAND) flash, on the other
hand, provide low-cost, high density, and non-volatile storage, but their long access time makes
them unsuitable to use as memory devices. As shown in Figure 1(a), PCM successfully bridges the
gap between memory and storage devices. Such advantages of the PCM device allows for utilizing
both memory and storage on the main chip, which, when coupled with its high endurance, makes
it a compelling alternative to conventional memories such as NAND flash and DRAM. This is
especially true for applications requiring NN inference, where both short access time and non-
volatile storage are crucial for real-time deployment.

2.1.1 PCM Basics: Physics Mechanism, Cell Design and Analog Storage Capability. After a
significant amount of research in both academia and industry, the PCM array has entered the
market as a breakthrough technology bridging the gap between memory and storage [24]. A
common PCM device consists of a phase change material (e.g., GeSbTe) inserted between the
top electrode and bottom electrode as in Figure 1(b)-left. The information in PCM is stored
by utilizing the resistivity difference between the low-conductive amorphous state and high-
conductive poly-crystalline states of the phase change material. In the following paragraphs,
we briefly explain the physical mechanism by which reading and writing take place on a PCM
array.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:4 B. Isik et al.

10
10°
'g 104
2 407 @ Top electrode ®) A
(0]
E 10° ANGNIL RESET pulse
'; material 2 i | P EITRTREN Trmett
n an7 £
g 10 £
< 10° @ SET pulse
<10 Heate! =3
9 Storage-Class i { Insulator EL g
10 Memo = -
10 4 Bottom electrode Read
10) '_1 '0 ‘1 . edheVecdenecaaadeTroom
10 10 10 10 10 | Programmable Time
Cost [$/GB] region

() (b)

Fig. 1. (a) Figure from [24] comparing the access time (read/write time) of various memories versus cost.
Significant space has opened between conventional digital memories, namely NAND flash and DRAM, in
the memory hierarchy. PCM can fill this gap and further complement the memory hierarchy. (b) The cross-
section schematic of PCM cell (left) and RESET and SET pulses are used to program the PCM cell with
different temperature (right). Read pulse is used to read the resistance of PCM cell. Figure from [67].

To write onto the device, electrical pulses are used to generate phase transformation through
joule heating (Figure 1(b)-right). The fresh PCM device is usually in a high-conductive poly-
crystalline state. A fast high-temperature (above melting temperature) pulse (RESET pulse) can
be used to melt and quench the programming region into low-conductive amorphous states. A
longer medium-temperature (above crystallization temperature) pulse, i.e., SET pulse, can then be
used to crystallize the programming region back to high-conductive poly-crystalline state. To read
from the cell, a smaller pulse is used to measure the resistance of the cell without changing the
cell states. In particular, the cell state is measured by reading the cell resistance when applying a
small bias (read pulse), whose amplitude is small enough not to disturb the cell. The cell resistance,
interestingly, can be continuously tuned as it is decided by the ratio between amorphous region
and polycrystalline region. As a result, the PCM device enables analog storage as the cell resistance
is an analog value that is determined by the ratio of the two (amorphous and crystalline) phase
regions. This property will potentially increase the storage density of PCM by storing more than
1 bit per cell.

2.2 Our Setup

2.2.1 Analog-Storage with TT1IR PCM Array: Measurement Details. To simulate realistic storage,
we utilize measurements collected from physical experiments on PCM arrays [68] of 1 mega
1T1R cells [68]. We use a simple analog programming strategy by first resetting the device to a
low-conductive initial state and then setting it with 31 different pulse amplitudes (input levels)
and more than 1,000 cells for each pulse amplitude. Although this simple programming strategy
yields higher noise levels than more complex strategies, the write speed is fast. The SET pulse
amplitude is controlled with a control transistor connected in series to the PCM device (1T1R
structure). Figure 2(a) shows the 1-standard deviation error bar from cell-to-cell variation for each
input level, where both the mean and standard deviation of the output (programmed resistance
in log scale) exhibits a non-linear relationship with the input. Figure 2(b) is the histogram of
output distributions corresponding to the 31 input levels, which shows that the output is roughly

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:5

i
2

Channel Output

Channel Output
Frequency

..J“““Ulﬂkf.. Wik -';-“--U"' :

1= 4
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Channel Input Channel Output Channel Input

(a) 1-sigma error bar plot. (b) Channel output distribution. (c) Interpolated measurement data.

Fig. 2. Characteristics of the channel noise in a PCM cell. (a) 1-standard deviation error bars for each input
level, where both the mean and variation of the output have a nonlinear relationship to the input value.
(b) Distribution of output values corresponding to 31 distinct input values into the PCM array. (c) Charac-
teristics of the channel noise in a PCM cell, which is dependent on the input value. Each point corresponds
to a possible cell output for a given input.

Gaussian distributed conditioned on the input level. The channel response to the input values
in between measurement points is then interpolated in order to construct the differentiable
continuous analog channel model used in this work as shown in Figure 2(c). The differentiability
of the model allows for an end-to-end learning scheme (to be discussed in Section 3.3, see Figure 6).
Figure 2(c) illustrates the PCM model as a noisy channel.

Each point in Figure 2(c) corresponds to a possible read (output) value for a given write (input)
value. For simplicity, we linearly map both the inputs and outputs to be within range [—-1, 1]. Our
realistic PCM model has different noise mean and standard deviation (std) for each input, which
improves over prior works that only investigate white Gaussian noise [22, 74] when storing NN
models on noisy storage.

2.2.2 Baselines and Key Assumptions on PCM Storage Modes. In this section, we establish
our two digital storage baselines, as well as the set of assumptions used for our approach. For a
fair comparison, we use the same memory device (PCM arrays) in both digital and analog modes
(Section 2.1) to mitigate confounding factors in the hardware technology.

Ideal baseline for PCM digital storage. In classical information theory, the maximum amount
of data that can be reliably transmitted across a noisy channel (or as in our case, reliably stored
into memory cells) with arbitrarily low error is called the channel capacity [62]. In the case of the
PCM noise model shown in Figure 2(c), we derive the channel capacity as 2 bits per cell as in [21],
and set this as our ideal baseline for digital storage. If we assume 32-bit floating point number
representation for each NN weight, then this channel capacity implies that the weight can be
reliably stored using 16 digital memory cells. Later in Section 4, we also consider less precise
representations through quantization, which will serve as our stronger baselines.

Practical baseline for PCM digital storage. Next, we show a more realistic baseline for PCM digital
storage that is representative of their real-world usage. In practice, various ECCs add extra bits to
the data by trading off the overhead coming from additional bits to be stored with the overall re-
duction in bit error rate (BER). This naturally leads to a rate smaller than the theoretical capacity.
We estimate the practically achievable rate of PCM digital storage by multiplying the channel ca-
pacity of PCM device (2 bits per cell) by a factor a, where @ < 1 represents the capacity loss factor
(overhead) of practical implementations of Low Density Parity Check (LDPC) codes — a com-
monly used ECC in the industry. Specifically, we extract @ = 0.9 from Figure 6 of [65] that presents
LDPC overhead in an additive white Gaussian (AWGN) channel. The practically achievable rate

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:6 B. Isik et al.

for storing digital data on PCMs would then be 1.8 bits per cell, smaller than the theoretical limit
(2 bits per cell). Therefore, a single NN weight (in 32-bit floating point number representation)
for this baseline can be reliably stored in 18 digital memory cells. We note that the achieved BER
under this assumption is 1e”’, which is still much larger than the target BER 1e™'° (digital storage
industry standard for acceptable BER). Therefore, 18 cells is actually an optimistic value for the
baseline (since the baseline would realistically require more cells in practice), which implies that
it is a pessimistic assumption for our method. Nevertheless, we set this as our realistic baseline.

PCM analog storage. In our work, we use PCM cells as analog storage devices by storing single-
precision floating point data into the device without separating the information into bits. We
assume that the read/write circuitry of the PCM has a precision equivalent to that of a single-
precision (32-bit) floating point data. This means that a floating point number can be directly writ-
ten to a memory cell, and the data read back is also a 32-bit float, albeit with the added PCM noise.
Although a naive application of PCM analog storage would require more than 1K memory cells to
store a single NN weight reliably (while eliminating the effect of the PCM noise), we demonstrate
that we can drastically reduce this number to outperform all digital baselines (see Tables 1-6).

2.2.3 Additional Assumptions. In addition to the major assumptions above, we outline a few
additional assumptions that are less critical. Our work only focuses on weight storage on the PCM
device - that is, we assume the chip will not be used for training purposes, so there is no need to
store gradients onto the cell. We also assume that the pretrained NN activations will be stored in
local caches. If such caches are not sufficient for activation storage, then we will have to pay the
costly off-chip storage, because PCMs are not efficient for writing purposes (read is cheap; write
is expensive).

2.24 Model Limitations. The PCM model used in this work does not consider second-order ef-
fects such as device aging and process variation. The latter can be corrected by adding a compensa-
tion term to our error model, once wafer-level variation data becomes available to us. Furthermore,
our method does not consider cell value tuning because its effect was not available in our PCM
model. Our methodology will not be affected by cell value tuning as its effect will only show up
as a new and possibly better error model.

2.3 Problem Statement and Notation

To formalize the joint compression problem, we consider a supervised learning setup where x €
X C R is the input variable, and y € Y = {1,...,k} is the label. We assume access to samples
D = {(x4,y:)}]., drawn from an underlying (unknown) joint distribution pgata(x, y), which are
used to train an NN predictor f,, : X — Y. This network, parameterized by the weights w € ‘W
to be compressed and stored on analog storage devices (where ‘W denotes the parameter space of
NNs), indexes a conditional distribution p,, (y|x) over the labels y given the inputs x.

The NN weights w will be exposed to some input dependent device noise €(w) when written to
the analog storage device, yielding noisy versions of the weights w = w+¢e(w). In our experiments,
we find that PCM noise dramatically hurts classification performance - as a concrete example,
the test accuracy of a ResNet-18 model trained on CIFAR-10 drops from 95.10% (using w) to 10%
(using w) after the weights are corrupted (via naive storage on analog PCM). Thus, to preserve NN
performance even after it is stored on the analog device, we explore various strategiesg : W — W
for designing reconstructions of the perturbed weights g(w) such that the resulting distribution over
the output labels pyy) (ylx) is close to that of the original network p,, (y|x).

We note that this notion of “closeness” between the original weights w and the reconstructed
weights g(w) has several interpretations. In Section 3.1.1, we explore methods to minimize the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:7

distance between w and g(w) in Euclidean space:

min (%) - w]l.

In Sections 3.1.2-3.3, we study ways to minimize the Kullback-Leibler (KL) divergence between
these two output distributions:

rn;n Ex~pdata(x) [Dkr (Pw(ylx)“pg(ﬁ/)(mx))] (1)
where we learn the appropriate transformation g(-).

3 ROBUST NEURAL NETWORK COMPRESSION

We develop several novel methods to provide NNs robustness against storage noise while also
minimizing the storage density. In Section 3.1, we describe several robust coding strategies for NN
weights to be applied post-training. We exploit the sparsity and sensitivity of NN weights to make
our strategies more efficient. In Section 3.2, we propose robust training and robust distillation
methods that simultaneously train the NN model to perform well on the downstream task and be
robust to storage noise. We achieve this by regularizing the loss function with KL divergence in
Equation (1). Finally, in Section 3.3, we introduce a probabilistic end-to-end approach to optimize
compression and robustness (against storage noise) of the NN model.

3.1 Robust Coding Strategies

In this section, we devise several novel coding strategies for g(-) that can be applied to the model
post-training to mitigate the effect of perturbations in the weights. For each strategy, we require
a pre-mapping process to remove the input dependence in the mean of the PCM response in
Figure 2(c).

Pre-mapping: Let C represent the PCM channel. The mean function of C, denoted as y1 : X — R,
in Figure 2(c) can be learned via a k-nearest neighbor classifier on the channel response measure-
ments. We can also learn an inverse function h = p~! using the measurement data and use it to
remove the input dependence in the mean. More precisely, we pre-map the data with h prior to
channel usage, which yields an identity function with zero-mean noise ¢ = C o h (Figure 3), i.e.,
¢(x) = x + €9 (x) where € (x) is a zero-mean noise with input dependent std o(x) due to the PCM
channel. Thus, the relationship between input weights w;, to be stored and output weights wo,;
to be read is:

P(a-win—p) + 8

[24

Wout =

where « and f are scale and shift factors, respectively. Since the noise is zero-mean, we have:

a-Win =P +e(win) + B €0(Win)
Wour = p = wip + —Y

If we use the noisy channel ¢ r times (i.e., store the same weight on r “independent” cells and
average over the outputs — much like repetition codes in coding theory), the relationship between
win and wy,; becomes:
1 €0,i(Win)
Wour = _Z Winp + ——
r 4 a
i=1 (2)
% ZLI €0,i(Win)

o

= Wi +

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:8 B. Isik et al.

1.0

0.75
—— g(x)=x 078 = g(x)=x —— g(x)=x

0.50

% o0s 90x) = d(x) - = 0% g =p(x) = g(x) = p(x)

o 3 D 025 e <o D 0.25

3 00 é 0.00 E_ 0.00

= S -0.25 3 -0.25

O s o BT o
050 e -0.50

-05 0.0 0.5 -05 0.0 0.5 -05 0.0 0.5
Input: x Input: x Input: x
(a) 1 memory cell (b) 10 memory cells (c) 100 memory cells

Fig. 3. Behavior of the inverted channel ¢ = C o f when outputs are read from an average over 1, 10, and
100 memory cells, respectively.

Let us define a new random variable é(wj,,r) = % 211 €0,i(Win). Notice that the standard devi-

-
ation of é(wjy,,) is % Then the standard deviation of é(w;,, 7,) = W in Equation (2)

is given by: ”E“L\/‘;") More precisely, we have:
Wout = Win + é("Vin, r, 0()

where the standard deviation of é(w;y, r, @) is U;‘y;") . This provides us two tools to protect the NN

weights against zero-mean noise.

(Method #1) Increase the number of channel usage r (number of PCM cells per weight).
(Method #2) Increase the scale factor & under the condition that « - w;, satisfies the cell
input range limitation (| - wi, — f| < 1).

For the first method, we observe in Figure 3 that the response becomes less noisy as we increase
the number of PCM cells used (r). However, we desire to keep r at a minimum for an efficient
storage. The second method allows us to make use of the full analog range by scaling the weights.
This is particularly useful when storing weights with small magnitude. But we cannot increase «
without bound because of the device constraint, since we must satisfy -1 < a - w;j, — f < 1 (in
practice, this constraint is —0.65 < a-w;, —f§ < 0.75 since the remaining portion of the response is
non-invertible, and therefore unusable for our purposes). Such limitations leave more to be desired
for a general-purpose robust coding strategy for NN weights.

3.1.1 Sparsity-Driven Protection. Next, we leverage the observation that the weights of a fully-
trained NN tend to be sparse [40] (Figure 4(a)). Table 1 shows that the test accuracy of a Resnet-18
model on CIFAR-10 with weights corrupted by PCM noise drops from 95.10% to 10% (random
behavior) when fewer than 64 memory cells are used per weight, which does not compare well
with our realistic baseline for digital storage, where 18 cells per weight would be enough. Luckily,
sparsity-driven strategies help to outperform the realistic baseline with an 18X improvement in
the required amount of storage compared to digital storage. The 5th row of Table 1 shows that we
achieve 95.10% accuracy with 3 cells (and 94.44% even with 1 cell) per weight using the sparsity-
driven protection; on the other hand, the NN performance is compromised without sparsity-driven
protection even using 512 cells per weight with an accuracy of 94.20% (see No Protection row)
— more than 512X times reduction in the required amount of storage compared to analog storage
without our strategies. Figure 5 demonstrates the effectiveness of our approach in preserving NN
performance on PCM (Figure 8 for CIFAR-10 in Appendix). We now introduce each sparsity-driven
strategies one by one.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:9

300 10
—~ 250 —~ 8
3 g °
o 200+ o
> o
< 150 =
2 L 4l
S 100+ 5
S S
504 21
: : - : : 0 , : . \
—0.04 —0.02 0.00 0.02 0.04 0 2 4 6 8
Weights Sensitivity term le-8

(a) Distribution of weights (ResNet-18 trained on (b) Distribution of sensitivity terms (ResNet-18
CIFAR-10). trained on CIFAR-10).

Fig. 4. Histogram of (a) weights of ResNet-18 trained on CIFAR-10, (b) sensitivity terms (s; =
% zfig%)z from Section 3.1.2) of ResNet-18 trained on CIFAR-10. Since both the weights and

J
sensitivities are sparse, the increase in the average number of cells per weight due to adaptive redundancy

and sensitivity-driven protection strategies is negligible.

Table 1. Accuracy of ResNet-18 on CIFAR-10; and ResNet-50, MobileNet-v2, Efficientnet-B2 on ImageNet
when Weights are Perturbed by the PCM Cells

2056 cells 512 cells 64 cells 32 cells 16 cells 8 cells 4 cells 3 cells 2 cells 1 cell Additional Bits

No Protection 95.1 94.2 27.1 9.0 10.2 10.2 9.9 9.6 9.8 103 0

SP 95.1 95.0 94.2 94.0 92.8 89.5 67.0 419 118 9.8 1

ResNet-18 ~ AM+AR 95.0 95.0 94.8 94.7 94.4 937 931 927 89.2 58.0 1
CIFAR-10 SP+AM 95.1 95.1 95.0 95.0 94.8 947 946 939 932 90.6 2
SP+AM+AR 95.1 95.1 95.0 95.0 95.0 950 95.0 951 948 944 2
SP+AM+AR+Sens. 95.1 95.1 95.1 95.1 951 951 95.0 951 948 95.0 3

No Protection 67.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0

SP 75.8 4.2 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

ResNet-50 AM+AR 76.1 76.0 70.2 70.0 67.8 655 461 358 103 0.1 1
ImageNet ~ SP+AM 76.6 75.5 75.0 68.2 65.0 50.2 488 251 122 1.0 2
SP+AM+AR 76.6 76.6 76.6 76.6 76.6 764 759 76.0 758 755 2
SP+AM+AR+Sens. 76.6 76.6 76.6 76.6 76.5 76.6 762 759 76.0 759 3

No Protection 34.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0

SP 69.9 2.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1
MobileNet-v2 AM+AR 71.4 68.4 65.1 61.0 52.3 36.8 226 119 0.1 0.1 1
ImageNet SP+AM 71.8 71.2 70.6 65.4 50.5 438 320 167 0.1 0.1 2
SP+AM+AR 71.8 71.8 71.8 71.8 71.8 714 710 705 70.2 69.5 2
SP+AM+AR+Sens. 71.8 71.8 71.8 71.8 71.8 716 712 711 710 704 3

No Protection 39.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0

SP 72.4 5.2 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1
EfficientNet-B2 AM+AR 79.6 77.1 72.8 64.7 49.3 372 175 9.2 0.1 0.1 1
ImageNet SP+AM 80.2 78.6 76.5 69.8 57.0 408 241 159 0.1 0.1 2
SP+AM+AR 80.2 80.2 71.8 80.2 79.9 792 786 78.0 774 764 2
SP+AM+AR+Sens. 80.2 80.2 80.2 80.1 80.2 80.1 79.8 79.2 788 779 3

Baseline accuracy (without noise) is 95.1% for ResNet-18 on CIFAR-10, 76.6% for ResNet-50 on ImageNet, 71.8% for
MobileNet-v2 on ImageNet, and 80.2% for EfficientNet-B2 on ImageNet. SP: sign protection, AM: adaptive mapping,
AR: sparsity-driven adaptive redundancy, Sens.: sensitivity-driven adaptive redundancy. Results are averaged over
three runs. Higher is better. We provide the average number of cells, including the ones required to store the additional
bits, in Table 2.

Sign Protection: When scaling the weights by « to fit them in range [—0.65,0.75] of ¢ (Figure 3),
small weights are mapped to values very close to zero. This is problematic because a majority of
the trained NN weights have small magnitudes, and thus the NN with reconstructed weights will
suffer a severe drop in performance due to sign errors (see Figure 4(a)). Therefore, we store the
sign and magnitude of the weights separately. The sign can be represented by 1 bit. When we
store magnitudes instead of actual weights, we can use an « that is twice as large, reducing the
variance of noise from Method #2. The No Protection and SP rows of Table 1 illustrate the effect

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:10 B. Isik et al.

T o Sw s IR R R n——
I = — 7~
- / /
e rd Vs
£ ~ /
2 fF
> I /
u 0
@© ’ 1
5 l == No NOise
o F 4 ! PCM Noise
é N / j " PcMase
’ / | = PCMEsPraM
N / h == PCM+SP+AM+AR
/ == PCM+SP+AM+AR+Sens.
Y A G

Number of Cells pér Weight '

Fig. 5. ResNet-50 on ImageNet. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive
redundancy, AP: adaptive protection (AM+AR), Sens.: sensitivity-driven adaptive redundancy.

of sign protection as the required memory to achieve a test accuracy of 94.1 + 0.1% on CIFAR-10
is reduced by 16X times (from 512 cells to 32 cells).

Adaptive Mapping: Although protecting the sign bit leads to accuracy gains on CIFAR-10, we
still require more than 18 devices to achieve the original accuracy without PCM noise. To further
improve the efficiency, we again use the observation that the majority of nonzero weights are quite
small (see Figure 4(a)). This implies that using different values of & depending on the magnitude
of the weight (larger scale factor « for small weights) can reduce the overall variance of the cell’s
noise from Method #2. This requires an extra bit to indicate whether a weight is small or large
since two different o’s are used in encoding and decoding. With this strategy, according to SP and
SP+AM rows of Table 1, we can increase the model’s accuracy from 9.8% to 90.6% with an average
of 1 cell per weight on CIFAR-10 (and a corresponding increase in accuracy from 0.1% to 51.3%
with an average of 16 cells per weight for ImageNet).

Adaptive Redundancy: Finally, we propose to vary the number of PCM cells used for larger and
smaller weights. The average number of cells that we aim to minimize is:

Tsmall X Nsmalr + Tlarge X Nlarge
Nsmair + Nlarge

Favg =

where Niq11 and Njgrge are the number of small and large weights; rypmqr; and riq,4. are the
number of cells used per weight for small and large weights, respectively. Using more cells for
larger weights (which are more critical for NN performance) increases the accuracy while it does
not increase the average redundancy too much (Method #1) since most weights are sparse (see
Figure 4(a)), e.g., Nymay = 11,168,312 and Njgg. = 5,650 in ResNet-18 trained on CIFAR-10.
Sign protection and adaptive mapping help protect mostly the small weights while adaptive
redundancy protects large weights by reserving more resources for them. As shown in the SP+AM
and SP+AM+AR rows of Table 1, combining these strategies increases the accuracy by 4%/66%
on CIFAR-10/ImageNet for the 1 cell per weight case without requiring any additional bits.

3.1.2 Sensitivity-Driven Protection. While we have demonstrated the success of sparsity-driven
protection strategies for g(-) even with 1 cell per weight for ResNet-18 on CIFAR-10, the method
falls short for more complex datasets. For ImageNet, the accuracy of ResNet-50 with sparsity-
driven protection against 1 PCM per weight is 10.6% lower than the original accuracy without
PCM noise (76.6%, see Table 1). To close this gap, we first define J,, as the final perturbation on
the weights, i.e., g(w) = w+46,,. Then we approximate the KL divergence via a second-order Taylor

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:11

expansion:

B~ i () [DKL (P (Y1) [|prw 500 (y1))] = Sw! Féw + O(116wl[*) ®)

where F := Eyx y-py(xy) [V 10g P (ylx)VE log p.y (ylx)] is the Fisher Information Matrix [26, 51].
Dropping the off-diagonal entries in F yields

d
SwTFow ~ B vy - L108Pw())
w W =R By, y~paata(x,y) Z Wi (9—\4{, @
Jj=1
d 2
6logpw(y|x)
_ 2
= jzgl 5W]’Ex,y'“17data(x,y) (6—\4;] (5)

where d is the number of weights. Thus, KL divergence between the conditional distribution para-
meterized by the original (w) and perturbed weights (g(w)) that we aim to minimize is:

d1og pu (yilx:))2

Bwj

d N
B Dt Qs]~ 0 Y w2 6
=

i=1
For each weight w;, we can estimate how much performance degradation dw; can cause by
evaluating the term

N 2
1 dlogp., (yilx;)
5 =5 Z() ™

which we call “sensitivity”. For the storage of sensitive weights w; with large s;, we should use
more PCM cells as slight perturbations of these weights may lead to significant changes in the
output distributions (Method #1). This will not significantly affect the number of cells per weight
on average (rq04) because the gradients of a fully trained network (which correlate with the sensit-
ivity) are known to be sparse. Figure 4(b) further demonstrates the sparsity of the sensitivity terms.
We combine sensitivity- and sparsity-driven protection to vary the number of memory cells per
weight. Table 1 demonstrates that sensitivity-driven protection provides a 2.8% improvement in
test accuracy using 1 cell per weight for ResNet-50 trained on ImageNet. Figure 5 illustrates that
sparsity-driven and sensitivity-driven protection strategies provide 2056x more efficient storage
of NN models by preserving the accuracy against PCM noise. We refer the reader to Figure 8 in
the Appendix for similar results on CIFAR-10.

3.2 KL Regularization for Robustness

The following set of techniques for constructing g(-) are designed to correct the errors that the
robust coding strategies in the previous section fail to address.

Robust Training: For robust training, we regularize the standard cross-entropy loss with the KL
divergence in Equation (1). Specifically, the loss function is as follows:

L(W) = Ex, y~poua [~ 108 pu (y1)] + ABx [Dic1 (o (Y1) 1pg () (y1))]. ®)

In our experiments, we add a noise (with a carefully adjusted standard deviation) as a perturbation
dw (i.e., g(w) = w+ Sw is a noisy weight) during robust training, and we observe that the trained
network is more robust to PCM noise and also to pruning effects. This is because the final perturb-
ation dw on the weights (g(w) = w + dw) can be thought of as a noise or the effect of pruning on
the w. Although our framework does not involve a pruning step (pruning can be performed inde-
pendently as we show in Section 4.1), we believe that making NN weights more robust to pruning
effects is an important additional feature of our strategy. In particular, when we apply pruning, we

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:12 B. Isik et al.

have: dw; = 0 for a non-pruned weight w;, and Sw; = —w; for a pruned weight w;. Recall that
in magnitude pruning, only the small weights are set to zero, that is dw; is equal to 0 (for large
weights) or —w; (for small weights). In other words, dw; is always a small value, just like a noise,
therefore this strategy could provide robustness against pruning effects as well. Our experiments
on CIFAR-10 and ImageNet verify that robust training has a protective effect against PCM noise
where robust coding strategies are not enough.

Robust Distillation: Distillation is a well-explored NN compression technique [33]. The idea is to
first train a teacher network to capture a smooth probability distribution on labels, and then train
a smaller student network by distilling the output probability information from the teacher. We
use distillation to optimize a compressed model to be robust to PCM noise via the noisy student
loss:

Ls(ws) = (1= DEx,y~po, [~ 10g i, (y1x)] + ABuc [Dk L (Prv, (Y1) [pg(w,) (y1x))] ©)

where A € [0, 1] is a scalar, w; and w; are teacher and student weights, g(ws) = g(ws + €(ws)) =
ws + dwg with e(ws) being the PCM noise and dws being the noise injected onto the student
network’s weights. Although [74] provides an initial exploration into distillation for noisy storage,
we leverage experimental data collected from real storage devices to build a realistic model of the
PCM noise.

3.3 End-to-End Learning

Finally, we explore a probabilistic, end-to-end learning approach for ¢g(-) that jointly optimizes
over the model compression and the known characteristics of the noisy storage device. We assume
access to a set of weights {Wj};_; from K models that have been trained on the same dataset D -
this serves as an empirical distribution over NN weights, as different initializations of NNs typically
converge to different local minima. Additionally, we assume that each weight is a sample from a
normal distribution W;; ~ N'(0,1) [20, 76].

To learn the representation of the NN weight, we maximize the mutual information (MI)
between the original network weight W and the compressed weight Z that has been corrupted by
the noisy channel. Following [13], our coding scheme can be represented by the following Markov
chain?:

WoZ—>Z->W, (10)

where Z denotes the compressed weight and Z = Z + €(Z) where €(Z) denotes the input-
dependent PCM noise. Then, we obtain the following lower bound to the true MI:

I(W;Z) = HW) - HW|Z) = —H(W|Z) + const. (11)
> BEq,(ziw)[log po(W|Z)] (12)

where g4 (Z|W) and pg(W|Z) denote approximations to the true posteriors p(Z|W) and p(W|Z),
respectively [4]. We train an autoencoder g4 o(-) with a stochastic encoder and decoder to learn
these variational posteriors. The decoder is trained to output a set of reconstructed weights such
that its predictions are close to those of the original network. Notably, our approach differs from
KD in that we learn the weight compression scheme rather than using a fixed student network
architecture.

Here, we introduce the new notation Z and Z for the compressed and noisy version of the weights because, in the end-to-
end learning approach, we have neural encoder and decoder networks to compress (W — Z) and decompress (Z — W)
the weights. This notation was not necessary in the previous sections, as we did not have such an encoder-decoder pair.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:13

Table 2. A Sample of Accuracy vs. Average Number of Cells Required to Store: (1) the Continuous Weight
Values, and (2) the Additional Bits

SP+AM+AR SP+AM+AR SP+AM+AR SP+AM+AR+Sens. SP+AM+AR+Sens. SP+AM+AR+Sens.

4 cells 3 cells 2 cells 4.5 cells 3.5 cells 2.5 cells
ResNet-18 on CIFAR-10 95.1 94.8 94.4 95.1 94.8 95.0
ResNet-50 on ImageNet 76.0 75.8 75.5 75.9 76.0 75.9
MobileNet-v2 on ImageNet 70.5 70.2 69.5 71.1 71.0 70.4
EfficientNet-B2 on ImageNet 78.0 77.4 76.4 79.2 78.8 717.9

Numbers taken from Table 1 by computing the average number of cells considering the ones that are required to store
the additional bits. Baseline accuracy (without noise) is 95.1% for ResNet-18 on CIFAR-10, 76.6% for ResNet-50 on
ImageNet, 71.8% for MobileNet-v2 on ImageNet, and 80.2% for EfficientNet-B2 on ImageNet. SP: sign protection, AM:
adaptive mapping, AR: sparsity-driven adaptive redundancy, Sens.: sensitivity-driven adaptive redundancy. Results are
averaged over three runs. Higher is better.

4 EXPERIMENTAL RESULTS

We empirically investigate: (1) whether our protection strategies for g(-) help to preserve NN ac-
curacy; and (2) the improvements in storage efficiency when using our approach. All experimental
results are averaged over 3-5 runs. For conciseness, we report the average and refer the reader to
Appendix B for the complete results.

For all the classification experiments, we consider models trained on three image datasets:
MNIST [48], CIFAR-10 [44], and ImageNet [17]. We use the standard train/val/test splits for
MNIST and CIFAR-10 datasets and the standard train/val split for the ImageNet dataset. For
MNIST, we use two architectures: LeNet [47], and a 3-layer MLP. For CIFAR-10, we use two types
of ResNets [32]: ResNet-18 and a slim version of ResNet-20. For ImageNet, we use pretrained
ResNet-50 from PyTorch [32], and lightweight models MobileNet-v2 [59] and EfficientNet-B2 [64].
For the regression experiment, we use the standard Neural Radience Fields (NeRF) model [52]
on the fern dataset (https://github.com/bmild/nerf). For additional details on architectures and
hyperparameters, we refer the reader to Appendix A.

4.1 Sparsity and Sensitivity Driven Protection

We show the effect of sparsity- and sensitivity-driven protection in Figure 5 on ResNet-50
for ImageNet (Figure 8 for CIFAR-10 in Appendix). The exact numerical results are given in
Table 1.

In CIFAR-10 experiments, the number of small weights was Nsp,q;; = 11M and the number of
large weights was Nj4,ge = 5.6K and number of cells per weight on average for adaptive redund-
ancy is not more than 0.02 above the listed numbers in the table. Similarly, in ImageNet experi-
ments, Nymai; = 25.4M, Njgrge = 15K and the difference between the number of cells per weight
on average and the listed number is always smaller than 0.06.

In Table 1, we provide detailed experimental results on the effect of each sparsity- and sensitivity-
driven strategy with ResNet-10 on CIFAR-10; and ResNet-50, MobileNet-v2, and EfficientNet-B2 on
ImageNet. We provide the required number of cells per weight to store the continues value of the
weight (3rd-12th columns) and the additional bits to store for each strategy (last column) separately.
In Table 2, we report some of the results from Table 1 again, this time by providing the number
of cells per parameter required to store (1) the continuous weight value, and (2) the additional
bits. Recall that we can store 2 bits or 1.8 bits digitally in one PCM cell with the ideal or realistic
baselines, respectively. It is seen from the two tables that sparsity driven protection strategies are
enough for ResNet-18 on CIFAR-10 to preserve the classification accuracy (95.10%) with 4 cells
per weight. Moreover the accuracy with 2.5 cells per weight. is only 0.1% less than the baseline
accuracy (95.10%). Similar observation can be made for the ImageNet results as well. Table 1 also

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://github.com/bmild/nerf

58:14 B. Isik et al.

shows that sign protection is a critical step: for instance, the AM+AR and SP+AM+AR rows
indicate that sign protection can increase the accuracy from 58% AM+AR to 94.4% SP+AM+AR
on CIFAR-10.°

We also combine sparsity driven protection with pruning. Results on 90% pruned ResNet-18
(on CIFAR-10) are given in Table 15 in Appendix B.2. We follow the standard pruning procedure:
first train the model as usual, then prune 90% of the weights, and then retrain the remaining non-
pruned weights by keeping the pruned weights frozen at value zero. In our experiment, we retrain
the pruned model for 20 epochs. Then for the storage of this pruned model, we assume that the
pruning mask could be stored using the compressed sparse row (CSR) or compressed sparse
column (CSC) format and Huffman coding, as detailed in [28]. This would require at most 0.5 bits
per weight. Then we need to store the continuous weight values of the non-pruned weights. Note
that this is the standard technique for storing a pruned network: (1) first store the pruning mask,
(2) then store the values of the non-pruned weights. In Table 15, the number of cells we report are
computed as follows:

of pruned weights

avg. # of cells per weight = X (avg. # of cells per non-pruned weight) + 0.25,

total # of weights

translating the number of cells per non-pruned weight to number of cells per (pruned or non-
pruned) weight and also considering additional 0.25 cells per parameter to store the pruning mask.
Note that the accuracy of the pruned model without noise is 94.8% and we get 94.2% test accuracy
with PCM noise using only 1.35 cells per weight. Compared to the realistic digital baseline (no
compression and each 32-bit weight is digitally stored on 18 PCM cells), we provide 5= = 13.3x

1.35
more efficient storage with analog storage combined with our strategies and 90% pruning.

4.2 Robust Training and Distillation

We compare robust training with naive training (training with no noise) in Table 3 on ResNet-18
(on CIFAR-10) and on ResNet-50 (on ImageNet). In our experiments, we use A = 0.5 as the
coeflicient of the KL term in the loss. We experimented with different combinations of the sparsity
and sensitivity driven strategies, and in all cases, robust training provides better robustness
against PCM noise than the naive training. Robust training provides robustness against pruning
as well. When ResNet-18 trained without noise is pruned with 90% sparsity, the accuracy drops
from 95.1% to 90.2%. However, the same model trained with N(0,0.006) gives 95.0% accuracy
after 90% pruning.

Table 4 shows the distillation results on ResNet-20 distilled from ResNet-18 (on CIFAR-10) with
PCM noise applied at test time. We compare three networks: (1) a student ResNet-20 distilled
without noise injection, (2) a student ResNet-20 distilled with Gaussian noise injection, and
(3) a teacher ResNet-20 (a baseline) trained without noise. As shown in Table 4, student ResNet-20
distilled with noise injection outperforms both teacher ResNet-20 and student ResNet-20 distilled
without noise when weights are perturbed by PCM at test time. (see Appendix B.4 for additional
results.)

4.3 Analog-Digital Comparison

We also consider quantization as a way to improve the efficiency of digital storage. Table 5 shows
a comparison between analog storage improved with our strategies and digital storage improved

3We would like to note that it is possible to improve the performance of the noisy NNs further by retraining them after
the weights are read from the PCM cells. In fact, our experiments suggest that for the models stored with SP+AM+AR and
SP+Am+AR+Sens. strategies using 1 cell per weight, retraining recovers the original accuracy in 1 — 3 epochs. However,
we believe it is not realistic to assume that the stored NNs can be retrained further since we are particularly interested in
resource-constrained edge devices.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:15

Table 3. Robust Training Vs. Naive Training for ResNet-18 on CIFAR-10 and ResNet-50 on ImageNet

Naive Train Robust Train ~ Robust Train Average
(no noise) (with 0 =0.01) (with 0 = 0.006) Number of Cells
No Noise 95.10 95.50 95.60 -
PCM (No Protection) 9.70 8.30 9.90 1
PCM+SP 9.70 10.63 10.33 1.5
CIFAR-10 PCM+AP 27.69 86.20 81.83 1.5
PCM+SP+AP 90.60 94.73 94.80 2
PCM+AP+Sens 36.21 86.73 78.93 2
PCM+SP+AP+Sens 94.95 95.03 95.03 2.5
No Noise 76.60 76.60 76.60 -
PCM (No Protection) 0.1 0.1 0.1 1
PCM+SP 0.1 0.4 0.2 1.5
ImageNet PCM+AP 0.1 0.002 0.1 1.5
PCM+SP+AP 75.50 77.10 77.80 2
PCM+AP+Sens 0.3 0.6 0.5 2
PCM+SP+AP+Sens 75.90 76.20 76.50 2.5

SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy), Sens.:
sensitivity-driven adaptive redundancy. The average number of cells per weight to store the continuous weight value is
1 in all experiments. The reported average number of cells in the rightmost column includes (1) the number of cells
required to store the continuous weight value, and (2) the number of cells required to store the additional bits.

Table 4. Accuracy of ResNet-20 Distilled from ResNet-18 on CIFAR-10

Avg. # of Cells Teacher Teacher Student Noisy Student Avg. # of Cells

for Cont. Weights ResNet-18 ResNet-20 ResNet-20 ResNet-20 in Total
No Noise - 95.70 92.50 92.90 93.00 -
PCM+AP 3 16.23 48.38 73.38 81.75 3.5
1 93.35 86.30 88.58 90.65 2
PCM+SP+AP 3 94.78 89.73 89.98 91.33 4
PCM+AP+Sens. 1 9.60 29.68 38.18 69.49 2
1 93.36 88.40 88.96 91.10 2.5
PEM#SP+AP+Sens. 3 94.90 89.92 90.44 91.78 45

The average number of cells per weight to store the continuous weight value is given in the leftmost column. The
reported average number of cells in the rightmost column includes (1) the number of cells required to store the
continuous weight value, and (2) the number of cells required to store the additional bits.

with quantization techniques. We consider both the ideal (2 bits per cell) and realistic baselines
(1.8 bits per cell). For digital storage, we apply quantization using different techniques from the lit-
erature [3, 41]. We find the number of cells to store one quantized weight in both ideal and realistic
cases. Then we adjust the number of cells used to store one weight in analog PCMs to be the same
as the digital PCMs for both baselines, by adapting the redundancy for large and less sensitive
weights. For instance, when [3] performs 4-bit quantization, each parameter is represented by
4 bits. In the ideal baseline, this would require 2 cells per parameter. We adjust the parameters
in our robust strategies so that the number of cells required to store one parameter is 2 and
report the result (76.02) in the “PCM (analog) + our robust strategies” row under “Ideal” column.
We repeat the same procedure for the realistic baseline which requires 2.22 cells per parameter
to store 4 bits. We report the result (76.08) in the “PCM (analog) + our robust strategies” row
under “Realistic” column. As shown in Table 5, noisy analog storage improved by our strategies
outperforms digital storage of quantized weights. We do not compare against more aggressive
quantization techniques [2, 14, 23, 43, 54, 66] that can achieve higher efficiency in digital storage
since they incur a huge complexity with multiple retraining stages.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:16 B. Isik et al.

Table 5. Digital vs. Analog Storage for ResNet-50 on ImageNet

Ideal Realistic

PCM (digital) + 8-bit quantization with [41] 68.30 68.30
~4 cells per parameter PCM (digital) + 8-bit quantization with ACIQ [3] 73.60 73.60
PCM (analog) + our robust strategies 76.02 76.08
PCM (digital) + 4-bit quantization with [41] 72.50 72.50
~2 cells per parameter PCM (digital) + 4-bit quantization with ACIQ [3] 73.80 73.80
PCM (analog) + our robust strategies 75.50 75.62

For digital storage, number of cells is reduced via 4-bit and 8-bit quantization techniques [3, 41]. For analog storage,
it is reduced via our strategies. For fair comparison, the number of PCM cells per weight in analog storage is
adjusted to be the same as the digital storage (in both ideal and realistic baselines). For instance, when [3] performs
4-bit quantization, each parameter is represented by 4 bits. In the ideal baseline, this would require 2 cells per
parameter. We adjust the parameters in our robust strategies so that the number of cells required to store one
parameter is 2 and report the result (76.02) in the “PCM (analog) + our robust strategies” row under “Ideal” column.
We repeat the same procedure for the realistic baseline which requires 2.22 cells per parameter to store 4 bits. We
report the result (76.08) in the “PCM (analog) + our robust strategies” row under “Realistic” column.

Table 6. NeRF [52] Model on Fern Dataset
(https://github.com/bmild/nerf)

PSNR (dB)
No protection (32 cells) 5.66
SP+AM+AR (4 cells) 23.08
SP+AM+AR (3 cells) 20.41
SP+AM+AR (2 cells) 18.20
SP+AM+AR+Sens. (4.5 cells) 24.75
SP+AM+AR+Sens. (3.5 cells) 22.98
SP+AM+AR+Sens. (2.5 cells) 20.65

A sample of PSNR vs. average number of cells required to
store (1) the continuous weight values, and (2) the
additional bits. Baseline PSNR (without noise) is 24.73 dB.
SP: sign protection, AM: adaptive mapping, AR:
sparsity-driven adaptive redundancy, Sens.:
sensitivity-driven adaptive redundancy. Higher is better.

4.4 Regression Models

We test our strategies on a regression setting as well. For the regression task, we consider the
Neural Radiance Fields (NeRF) framework [52] that contains a neural network to model the relation
between (1) the 3D coordinates of a point in a given 3D scene and the view direction; and (2) the
view-dependent continuous color* and volume density at that 3D point. More precisely, a NeRF
model takes 3D positions (x,y, z) of a point in 3D space and a particular direction to view the
3D scene (6, ¢); and outputs a view-dependent RGB color and a volume density at that point. We
note that this is a nontrivial task that has been attracting significant interest from the computer
graphics and vision communities since the first paper in 2020 [52]. We report the PSNR of the
NeRF model on fern dataset (https://github.com/bmild/nerf) that was generated by the authors
of [52] under the effect of PCM noise in Table 6. Though the PSNR is affected severely by the PCM
noise when there is no protection, our robust strategies help to preserve the PSNR. In particular,
the PSNR is 24.75 dB with an average number of 4.5 cells, which is even higher than the baseline

“4Color is then discretized during evaluation.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://github.com/bmild/nerf
https://github.com/bmild/nerf

Neural Network Compression for Noisy Storage Devices 58:17

Table 7. MLP-based Autoencoder Architecture for
Synthetic Experiments, Trained on 50 Logistic
Regression Classifiers Per Task

Name Component
(Encoder) Input Layer Linear 3 — 1, ReLU
(Encoder) Hidden Layer Linear 1 — 1
(Decoder) Hidden Layer | Linear 1 — 1, ReLU
(Decoder) Output Layer Linear 1 — 3

(without noise) PSNR 24.73 dB. Additionally, we note that we would normally expect to see a more
severe effect on PSNR by the PCM noise. This is because the exact values of the model outputs
matter more in a regression setting than in a discriminative one, since the classifier’s accuracy
can remain unchanged even with small perturbations to the logits. However, as can be seen from
Table 6, PSNR is still within an acceptable range once we apply the robust strategies. We believe
this is due to the discretization at the evaluation phase, which may cancel out some noise on the
output.

As a final note, the storage density for the NeRF model or other 3D regression models could be
improved further through model compression techniques such as [7, 35, 36].

4.5 End-to-End Learning

Finally, we explore the effectiveness of the end-to-end learning scheme in which we train an au-
toencoder on a set of model weights. We generate two sets of 2-D Gaussian mixtures: an “easy”
task in which we first sample a two-dimensional mean vector y; € R? where py; ~ U[-1,0) and
Hy € R? where fai ~ UI[0,1) for i = {1,2}. After sampling these means, we draw a set of 50K
points for the two mixture components: x; ~ N (u1,I) and x; ~ N (2, I). This ensures that the
two mixture components are well-separated. For the “hard” task, we sample overlapping means:
both components of y; and py are drawn from U[—-1, +1] before sampling from their respective
mixture components. We generate 50 datasets per task, where each dataset has 50K data points.

We train 50 different logistic regression models on each of the datasets for both the “easy” and
“hard” tasks (each model has three parameters). After training the logistic regression models, we
use an autoencoder with MLP encoder and MLP decoder architectures and ReLU nonlinearities, as
shown in Table 7. The autoencoder for both the “easy” and “hard” tasks is trained for 10 epochs
with a batch size of 100 using the Adam optimizer with learning rate = 0.001, f; = 0.9, f, = 0.999,
and early stopping on a held-out validation set.

We test the autoencoder on both Gaussian and PCM noise: that is, we corrupt the 1-dimensional
encoder output (z-representation of the classifier weights) with the appropriate perturbation be-
fore passing in the encoded representation into the decoder. Figure 6 provides an illustration of
the autoencoding process for the PCM array, which is analogous to the Gaussian noise setup. For
the easy task with Gaussian noise, the autoencoder achieves an accuracy of 95.2%; for PCM noise,
it achieves 91.8% accuracy. For the hard task with Gaussian noise, the autoencoder achieves an av-
erage accuracy of 78.8% across all classifiers; for PCM channel noise, it achieves 78.6% on average
across all 50 classifiers.

Interestingly, we find that the 1-D classifier representations in the autoencoder’s latent space
is semantically meaningful. In Figure 7, we qualitatively analyze the learned representations of
the logistic regression classifier weights. In Figure 7(a), we plot all 50 datasets of the Gaussian
mixtures (“easy task”) as well as the true decision boundaries for each of the 50 logistic regression
models, each boundary colored by the magnitude of its z-representation as learned by the
autoencoder. We plot the same for the “hard task” in Figure 7(b). For the easy task, we note that

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:18 B. Isik et al.

W | ENCODER A PCM Z DECODER W

Fig. 6. lllustration of the autoencoder used for the logistic regression experiments. The input weight W is
mapped to a compressed representation Z by an encoder module, which is then perturbed by the PCM (or
analogously, Gaussian) noise channel to become a perturbed representation Z. This perturbed representation
is then passed to the decoder, which produces a reconstructed weight W.

Logistic regression models (easy task) Logistic regression models (hard task)

-4

R o
-6
-1
-8
2 -10
-2 -1 0 1 2 -2 -1 0 1 2
x1 x1
(b) Logistic regression experiment, hard task.
s Hard Dataset #5, Z=0.15 0
2.0
1.0 -
15 2
0.5 1.0 -4
N o~
X 0.0 x 0.5 6
0.0
-0.5
-8
-0.5
-1.0 10 . P * ~10
-1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -0.5 0.0 05 1.0 1.5 2.0
x1 x1
(c) Encoded classifier with large magnitude. (d) Encoded classifier with small magnitude.

Fig. 7. (a-b) Qualitative visualizations of the learned representations in the logistic regression experiment.
(a) shows all 50 datasets with the true decision boundaries colored by the magnitude of their z-
representations for the “easy task”, while (b) shows the analogous plot for the harder task with overlapping
means. (c-d) Qualitative visualizations of the learned representations for the hard logistic regression task.
We find in (c) that classifiers with large magnitudes in z-space have the positive labels to the left of the de-
cision boundary, while (d) those with small magnitudes have the positive labels to the right of the decision
boundary.

the classifiers are encoded by their relative location in input-space: those that are in the lower
left corner of the scatter plot have smaller magnitudes than those on the upper right. For the hard
task, however, the z-representations appear to be fairly random - at a first glance, there does not
appear to be a particular correlation between the magnitudes of the z-encodings and the original
classifier weights.

We further explore this phenomenon for the hard task in Figure 7(c-d). For two particular data-
sets (though the trend holds across all 50 datasets), we color the original data points by their

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:19

mixture component as well as the true decision boundary by the magnitude of its z-encoding. As
shown in Figure 7(c) and (d), we find that the autoencoder has learned to map all classifiers with
the positive class to the left of the decision boundary to z-representations with large magnitude;
conversely, those with the positive class to the right of the decision boundary are encoded to z-
representations with smaller magnitudes. Through this preliminary investigation, we demonstrate
that the end-to-end approach for learning both the compression scheme while taking the physical
constraints of the storage device into account shows promise.

5 RELATED WORK

In this section, we briefly summarize the related work in model compression and analog computing
in NNs.

Model Compression. Compression of NN parameters has a rich history starting from the early
works of [15, 30], with techniques such as pruning [5, 25, 28, 29, 37, 38, 40, 45, 49, 56, 61, 63],
quantization, [2, 14, 23, 43, 70], and KD [33, 57, 69] among others [18]. [55] explores KD as a way
to encourage robustness to adversarial perturbations in input space, while we specifically desire
robustness to weight perturbations. Although probabilistic approaches to model compression have
been explored in [31, 50, 58], we additionally consider the physical constraints of the storage device
used for memory as part of our learning scheme. Our end-to-end approach is most similar to [54],
in that they also learn a decoder to map NN weights into a latent space prior to quantization.
However, our method is different in that our autoencoder also learns the appropriate compression
scheme (with an encoder), we inject noise into our compressed weights rather than quantizing,
and we do not require training an NN from scratch.

Analog Computing in NNs. A complementary line of work utilizes analog components in NN
training and/or inference [6, 8, 10, 19, 42, 60, 75]. The common theme is performing computation
in the analog domain to reduce the overall computation power, but this procedure may be noisy or
inflexible. In contrast, our work focuses on storing NN models in analog cells — once the parameters
are read from memory, the actual computation happens in the digital domain.

6 DISCUSSION AND CONCLUSION

In this work, we formalized the problem of jointly optimizing model compression and memory
resource allocation on noisy analog storage devices. We introduced novel coding techniques for
preserving NN accuracy even in the presence of weight perturbations, and demonstrated their
effectiveness on models trained on MNIST, CIFAR-10, and ImageNet. Additionally, we explored
different training strategies that can be coupled with existing compression techniques such as
distillation, and provided an initial foray into a fully end-to-end learning scheme for the joint
problem.

Limitations. First, the actual deployment of our approach may require some level of quantiza-
tion in practice — directly writing analog values on a physical storage device requires complex
read/write circuitry, which may not be feasible on current systems. For future work, we aim to
investigate this bottleneck on physical hardware devices. Second, our end-to-end learned com-
pression scheme assumes that all models share identical structures and are trained on the same
dataset. Extending our framework to handle models trained on various datasets/tasks is an exciting
research direction.

Broader Impacts. cAlthough our work aims to reduce power and memory consumption through
more efficient NN model compression, it is still susceptible to propagating existing biases in the
original trained network. While the research community has mainly evaluated the success of NN

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:20 B. Isik et al.

compression methods by only considering the compression ratio-accuracy trade-off, a recent study
has shown that existing compression methods may disproportionately impact different subgroups of
the data [34]. Unfortunately, this implies that we will not be able to detect or prevent potential
amplification of existing biases once the network is deployed. This speaks to the fundamental
importance in the careful curation of datasets and selection of training objectives to mitigate
model bias.

APPENDICES
A ADDITIONAL EXPERIMENTAL DETAILS

We conducted our experiments on NVIDIA Titan XP GPUs on an internal cluster server. We used
2 GPUs for ImageNet experiments and 1 GPU for the rest of the experiments. In the following
subsection, we provide additional details on the models, model architectures, and hyperparameters
used in our experiments.

A.1 MNIST
The architectures for LeNet and the MLP are shown in Tables 8 and 9, respectively:

Table 8. LeNet Architecture for MNIST Experiments

Name Component

convl [5 X 5 conv, 20 filters, stride 1], ReLU, 2 X 2 max pool
conv2 [5 % 5 conv, 50 filters, stride 1], ReLU, 2 X 2 max pool
Linear Linear 800 — 500, ReLU

Output Layer Linear 500 — 10

Table 9. MLP Architecture for MNIST Experiments

Name Component
Input Layer Linear 784 — 100, ReLU
Hidden Layer Linear 100 — 100, ReLU
Output Layer Linear 100 — 10

For both the LeNet and MLP classifiers, we use a batch size of 100 and train for 100 epochs, early
stopping at the best accuracy on the validation set. We use the Adam optimizer with learning rate
= 0.001, and By = 0.9, f = 0.999 with weight decay = 5¢~4. For knowledge distillation, we use a
temperature parameter of T = 1.5 and equally weight the contributions of the student network’s
cross entropy loss and the distillation loss (4 = 0.5).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:21

A.2 CIFAR-10

We provide the architectural details for the ResNet-18 and the slim ResNet-20 used in our experi-
ments in Tables 10 and 11 below:

Table 10. ResNet-18 Architecture for CIFAR-10 Experiments

Name Component
convl 3 X 3 conv, 64 filters. stride 1, BatchNorm

3 X 3 conv, 64 filters
3 X 3 conv, 64 filters

Residual Block 1

. (3 x 3 conv, 128 filters]
Residual Block 2 3% 3 conv, 128 ﬁlters_ X 2

. (3 x 3 conv, 256 filters]
Residual Block 3 3% 3 conv, 256 ﬁlters_ X 2

. (3 x 3 conv, 512 filters]
Residual Block 4 3% 3 conv, 512 ﬁlters_ X 2

Output Layer 4 X 4 average pool stride 1, fully-connected, softmax

Table 11. Slim ResNet-20 Architecture for CIFAR-10 Experiments

Name Component

convl 3 X 3 conv, 16 filters. stride 1, BatchNorm
[3 16 filters]

Residual Block 1 3 X3 conv, 16 filters X 2

|3 X 3 conv, 16 ﬁlters_

. (3 x 3 conv, 32 filters]|
Residual Block 2 3% 3 conv, 32 filters| X 2

. (3 x 3 conv, 64 filters]
Residual Block 3 3% 3 conv, 64 filters| X 2

Output Layer 7 X 7 average pool stride 1, fully-connected, softmax

For both ResNet-18 and slim ResNet-20, we use a batch size of 128 and train for 350 epochs,
early stopping at the best accuracy on the validation set. We use SGD with learning rate = 0.1, and
momentum = 0.9 and weight decay = 5¢™*.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:22 B. Isik et al.

A.3 ImageNet

We provide the architectural details for the ResNet-50 used in our experiments in Table 12.

Table 12. ResNet-50 Architecture for ImageNet Experiments

Name Component
convl 3 X 3 conv, 64 filters. stride 1, BatchNorm
[1 % 1 conv, 64 filters]
Residual Block 1 3 X 3 conv, 64 filters | X 3

|1 % 1 conv, 256 filters]
[1 X 1 conv, 128 filters]
Residual Block 2 3 X 3 conv, 128 filters| x 4
|1 % 1 conv, 512 filters]
[1 X 1 conv, 256 filters]
Residual Block 3 3 X 3 conv, 256 filters | X 6
|1 X 1 conv, 1024 filters|
[1 X 1 conv, 512 filters]
Residual Block 4 3 X 3 conv, 512 filters | x 3
|1 X 1 conv, 2048 filters|
Output Layer | 4 X 4 average pool stride 1, fully-connected, softmax

We use the pretrained ResNet-50 from PyTorch (https://github.com/pytorch/vision/blob/master/
torchvision/models/resnet.py), with a batch size of 64. For the robust training experiments, we
retrain the model for 20 epochs with early stopping at best accuracy. We use SGD with learning
rate = 0.001, and momentum = 0.9 and weight decay = 5¢™*.

Table 13. Accuracy of ResNet-18 on CIFAR-10 when Weights are Perturbed by the PCM Cells

512 cells 64 cells 32 cells 16 cells 8 cells 4 cells 3 cells 2 cells 1 cell Additional Bits
No Protection 942(x0.1) 27.1(x34) 90(£41) 102(x05) 102(£05) 99(x01) 9.6(%05) 98(x0.7) 103 (+04) 0
Sp 95.0 (+ 0.0) 942 (+0.1) 94.00 (+0.2) 9280 (0.3) 89.50 (+0.6) 67.00 (+02) 41.90(+0.5) 11.80 (+5.1) 9.80 (+ 1.5) 1
AM+AR 95.0 (+0.0) 94.8(+0.1) 9470 (£0.1) 9440 (+0.1) 9370 (£0.2) 93.10(+0.2) 9270 (£0.2) 89.20 (+2.6) 58.00 (+ 8.2) 1
SP+AM 951 (£0.0) 95.0 (£0.0) 9500 (+£0.1) 94.80 (+0.1) 9470 (£0.1) 94.60 (£0.1) 93.90 (+0.2) 9320 (+0.1) 90.60 (+ 0.3) 2
SP+AM+AR 95.1(£0.0) 95.0 (£0.0) 95.00 (+0.1) 95.00 (+0.1) 95.00 (+0.1) 95.00 (+0.1) 95.10 (+0.1) 94.80 (+0.1) 94.44 (+0.2) 2
SP+AM+AR+Sens. 95.1 (+0.0) 95.1 (+0.0) 95.10 (+0.1) 95.07 (+0.1) 95.11(+0.1) 95.03 (+0.2) 95.14 (+0.1) 94.80 (+0.1) 94.95 (+0.3) 3

Baseline accuracy (when there is no noise) is 95.10%. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven
adaptive redundancy, Sens.: sensitivity-driven adaptive redundancy. Reported results are averaged over three
experimental runs.

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Sparsity- and Sensitivity-Driven Protection

We give the full results of sparsity-driven and sensitivity-driven protection experiments on
CIFAR-10 and ImageNet with confidence intervals in Tables 13 and 14. In Figure 8, we present
experimental results with ResNet-18 on CIFAR-10. As can be seen from Figure 8(a), our strategies,
namely sign protection, adaptive mapping, and adaptive redundancy, reduce the number of PCM
cells per weight required to preserve accuracy from 1, 024 to 1. We also test our strategies against
Gaussian noise. In the Gaussian experiments, we consider hypothetical storage devices with
white Gaussian noise where the standard deviation of the overall noise on the output (é(r, &) “not
input-dependent”) can be reduced by using the channel multiple times (Method #1) and by using
the channel in the its power limit (Method #2). Figure 8(b) shows that our strategies increase the
standard deviation threshold, where the NN performance sharply drops, from 0.005 to 0.2, i.e.,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

Neural Network Compression for Noisy Storage Devices 58:23

Table 14. Accuracy of ResNet-50 on ImageNet when Weights are Perturbed by the PCM Cells

512 cells 64 cells 32 cells 16 cells 8 cells 4 cells 3 cells 2 cells 1 cell Additional Bits
No Protection 0.1(x0.0) 0.1(£00) 01(x00) 01(x00) 01(£00) 0.1(£00) 01(x00) 01(x00) 0.1(=0.0) 0
Sp 44(£0.0) 09(£0.0) 01(x00) 01(x00) 01(£00) 0.1(£00) 0.1(x00) 01(x00) 0.1 (+0.0) 1
AM+AR 75.0 (£0.5) 66.7 (£0.8) 66.4(+25) 63.2(£25) 57.5(£22) 34.1(+34) 224(+30) 37(£00) 0.1(+0.0) 2
SP+AM 706 (£0.7) 69.4(x1.1) 551(+32) 513 (£24) 346(£18) 280 (+56) 17.6(x4.1) 4.6(£0.0) 0.2 (+0.0) 2
SP+AM+AR 754 (£0.2) 745(£0.1) 742(+04) 73.8(+00) 73.8(+02) 72.8(£00) 722(£04) 702(+00) 66.0 (+0.8) 1
SP+AM+AR+Sens. 75.8 (£0.0) 75.6 (£ 0.0) 753 (+0.0) 74.8(£0.1) 74.9(+01) 74.5(£0.1) 73.7(£00) 73.0(£02) 68.8(x0.3) 3

Baseline accuracy (when there is no noise) is 76.6%. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven
adaptive redundancy, Sens.: sensitivity-driven adaptive redundancy. Reported results are averaged over three
experimental runs.

W—.-W [& @ ® & g w‘\ —0—0
80 /’ A
3 / ¥ \
s ¢ s)
> 60 1 > 60 == No Noise i
(9) 1 (@] G . .
© © aussian Naise \
—
3 40 f = Fio ioise S 40 —e— Gaussian Noise+SP+AM+AR |
Iv] / PCM Noise S \
< 59 Vi =@+ PCM+SP < \
| =@+ PCM+SP+AM 20 1
L =@+ PCM+SP+AM+AR (=)
10° 10t 10? 10° 10-3 10-2 10-1 100
Number of Cells per Weight Standard Deviation of Gaussian Noise
(a) Perturbation by PCM cells. (b) Perturbation by Gaussian noise.

Fig. 8. Accuracy of ResNet-18 on CIFAR-10 when weights are perturbed by (a) PCM cells, (b) Gaussian
noise. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive redundancy. Experiments
are conducted three times.

robustness increases by 40 times. We note that we present results of Gaussian noise experiments
to be comparable to future work although this scenario is not realistic.

B.2 Robust Pruning

We give the results of robust pruning experiment in Table 15. We apply one-shot pruning followed
by 20 epochs of retraining. When sparsity- and sensitivity-driven strategies are applied, 2.05 cells
per weight are enough to preserve the original accuracy of the pruned model (94.8%). Moreover, if
we use only 1.35 cells per weight on average, the accuracy drop is only 0.1%, which is insignificant
considering the fact that pruning reduces the accuracy by 0.3% (from 95.1% to 94.8%). We note that
this performance degradation due to pruning can be eliminated with robust training, explained in
Section 3.2. With this strategy, we can reduce the number of cells required to store each weight
from 16 (in digital storage) to 1.35 with analog storage combined with our robust strategies and
pruning. This corresponds to an 11.85 times more efficient storage.

Table 15. Accuracy of 90% Pruned ResNet-18 on CIFAR-10 when Weights are Perturbed by the
PCM Cells vs the Average Number of Cells Required to Store (1) the Continues Weight Values of
the Non-pruned Parameters, and (2) the Pruning Mask

2.05 cells 1.55cells 1.95cells 1.45cells 1.85cells 1.35 cells
SP+AM+AR - 94.3 - 94.5 - 94.2
SP+AM+AR+Sens. 94.8 - 94.6 - 94.7 -

Baseline accuracy after the pruning (when there is no noise) is 94.8%. SP: sign protection, AM: adaptive
mapping, AR: sparsity-driven adaptive redundancy, Sens.: sensitivity-driven adaptive redundancy.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:24 B. Isik et al.

Table 16. Accuracy of ResNet-18 on CIFAR-10 when Weights are Perturbed by the PCM Cells

Naive Training Robust Training Robust Training Additional
(no noise) (with N(0, 0.01)) (with N(0, 0.006)) Bits

No Noise 95.10 95.50 95.60 0
PCM Noise (No Protection) 9.70(x 1.0) 8.30 (= 0.4) 9.90 (+ 1.1) 1
PCM Noise+SP 9.70(+ 1.5) 10.63 (£ 0.2) 10.33 (£ 0.2) 2
PCM Noise+SP+AP 90.60(0.2) 94.73 (0.1) 94.80 (+ 0.2) 2
PCM Noise+AP 27.69(+ 8.2) 86.20 (+ 0.4) 81.83 (+ 4.2) 1
PCM Noise+AP+Sens 36.21(% 3.1) 86.73 (£ 2.2) 78.93 (+ 4.4) 2
PCM Noise+SP+AP+Sens ~ 94.95(+ 0.3) 95.03 (+ 0.1) 95.03 (+ 0.1) 3

Baseline accuracy (when there is no noise at train or test time) is 95.10%. SP: sign protection, AP: adaptive protection
(adaptive mapping+sparsity-driven adaptive redundancy), Sens.: sensitivity-driven adaptive redundancy. Experiments
are conducted three times.

Table 17. Accuracy of ResNet-50 on ImageNet when Weights are Perturbed by the PCM Cells

Naive Training Robust Training Robust Training Additional
(no noise) (with N(0, 0.01)) (with N(0, 0.006)) Bits

No Noise 76.60 76.60 76.60 0
PCM Noise (No Protection) 0.1(x 0.0) 0.1 (+ 0.0) 0.1 (+0.0) 0
PCM Noise+SP 0.1(x 0.0) 0.4 (0.0) 0.2 (+ 0.0) 1
PCM Noise+AP 0.1(x 0.0) 0.2 (+ 0.0) 0.1 (% 0.0) 1
PCM Noise+SP+AP 66.00(0.8) 69.00 (% 0.3) 69.20 (= 0.2) 2
PCM Noise+AP+Sens 0.3(x 0.0) 0.6 (= 0.0) 0.5 (+ 0.0) 2
PCM Noise+SP+AP+Sens 68.80 (+ 0.3) 70.20 (+ 0.0) 70.40 (£ 0.1) 3

Baseline accuracy (when there is no noise at train or test time) is 74.4%. SP: sign protection, AP: adaptive protection
(adaptive mapping+sparsity-driven adaptive redundancy), Sens.: sensitivity-driven adaptive redundancy. Experiments
are conducted three times.

B.3 Robust Training

We give the full results of robust training experiments on CIFAR-10 and ImageNet with confid-
ence intervals in Tables 16 and 17. We use A = 0.5 as the coeflicient of the KL regularization term
in the loss function in Section 3.2. The level of the noise (standard deviation) injected during the
training is adjusted according to r and « values to be used at storage time since the noise at stor-
age time has a standard deviation of UZL\;F”) It is seen from Tables 16 and 17 that robust training
improves the robustness of the network against noise. We have also observed that the pruned
network reaches higher accuracy after robust training compared to naive training without noise
injection (an increase from 90.2% to 95.0% without retraining).

B.4 Robust Distillation
Knowledge distillation (KD) is a well-established NN compression method where a large teacher
network is trained with £, loss given by

‘Et = Exsy~Pdata [_ Iogpwt (ylx)]

where w; is the weights of the teacher network, and probability of each class i is the output of the
high temperature softmax activation applied to logits:

o exp(zi/T)
YT S el M)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

Neural Network Compression for Noisy Storage Devices 58:25

where z; is the logit for class i. Temperature T > 1 helps the output probabilities of the teacher
network be softer. Using the same temperature, a smaller student network can be trained with the
following student loss function Ls:

L= (1 - A)Ex,y~pdum [_ IOngS (ylx)] + AEy [DKL(PW, (ylx)“PwS (ylx))]

where wy is the weights of the student network. It has been shown that distilled student network
achieves a test accuracy that a teacher network with the same architecture cannot achieve. In
other words, a student network distilled from a teacher network performs comparable to a larger
network. This suggests that knowledge distillation can be regarded as a promising compression
method. In addition to compression, distillation has been shown to be an effective method for
other desired NN attributes such as generalizability and adversarial robustness [55]. In this work,
we define “robustness” as preserving a network’s downstream classification accuracy when noise
is added to the weights. This is achieved in part by robust training in the previous section where
a trained network is robust to pruning and noise on the weights. Here, we present a student loss
function that would make a (compressed) student network more robust to noise with no change
in the teacher network training:

Ls = (1 - /I)Ex,y~pdam [_ IOng(ws)(y|x)] + AEx[DKL(pw, (y|x)||Pg(ws)(y|X))]

Table 18. Accuracy of ResNet-20 Distilled from ResNet-18 on CIFAR-10 when Weights are Perturbed by

PCM
Number of Teacher Teacher Student Noisy Student ~ Add.
PCM cells ResNet-18 ResNet-20 ResNet-20 ResNet-20 Bits
No Noise 16 95.70 92.50 92.90 93.00 0
PCM+AD 3 16.23 (£ 1.6) 4838 (14.3) 73.38 (£ 2.4) 81.75 (+ 1.5) 1
1 9335 (= 0.5) 8630 (= 1.5) 88.58 (= 0.4) 90.65 (= 0.7)
PCM+SP+AP 3 94.78 (£ 0.2) 89.73 (£ 0.2) 89.98 (£ 0.3) 91.33 (+ 0.2) 2
PCM+AP+Sens. 1 9.60(= 0.4) 29.68 (= 0.4) 38.18 (= 7.2) 69.49 (= 3.7) 2
1 9336 (= 0.2) 88.40 (= 1.4) 88.96 (= 0.7) 91.10 (= 0.3)
PCM=+SP+AP+Sens. 3 94.90 (= 0.2) 89.92 (£ 0.5) 90.44 (= 0.6) 91.78 (+0.2) 3

SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy), Sens.:
sensitivity-driven adaptive redundancy. During the distillation of noisy student, a Gaussian noise with N(0,0.01) is
injected onto the weights. Experiments are conducted five times.

Table 19. Accuracy of ResNet-20 Distilled from ResNet-18 on CIFAR-10 when Weights are
Perturbed by the Gaussian Noise

Teacher Teacher Student Noisy Student Additional
ResNet-18 ResNet-20 ResNet-20 ResNet-18 Bits
No Noise 95.70 92.50 92.90 93.00 0
N(0,0.01)+No Protection 82.90 (+ 2.3) 86.44 (+ 1.6) 89.10 (+ 0.7) 90.56 (% 0.4) 0
N(0,0.01)+SP+AP 95.60 (£ 0.0) 92.30 (+ 0.1) 92.66 (= 0.0) 92.76 (+ 0.1) 2
N(0,0.02)+No Protection 10.88 (+ 1.2) 45.36 (+ 8.8) 65.50 (+ 7.0) 77.78 (% 3.7) 0
N(0,0.02)+SP+AP 95.70 (+ 0.0) 91.68 (0.4) 92.30 (+ 0.1) 92.36 (0.2) 2

SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy).
During the distillation of noisy student, a Gaussian noise with N(0,0.01) is injected onto the weights.
Experiments are conducted five times.

In the experiments, we use a temperature parameter of T = 1.5 and equally weight the contri-
butions of the student network’s cross entropy loss and the KL term (4 = 0.5). Similar to robust
training, the noise level (standard deviation) during training is adjusted according to r and « val-
ues to be used at storage time. We give the full results on CIFAR-10 with confidence intervals in
Tables 18 and 19 with weights perturbed by PCM cells and Gaussian noise, respectively. We also

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

58:26 B. Isik et al.

present the same set of experiments on MLP distilled from LeNet (on MNIST) in Tables 20 and 21.
As in CIFAR-10 experiments, noise injection during distillation makes the student network more
robust to both PCM and Gaussian noise in MNIST experiments.

Table 20. Accuracy of MLP Distilled from LeNet on MNIST when Weights are Perturbed by the PCM Cells

Teacher Teacher Student Noisy Student Noisy Student Number of Additional
LeNet MLP MLP MLP MLP PCM cells Bits
(Student baseline) (No Noise) (with N(0,0.1)) (with N(0,0.006))

No Noise 99.20 97.50 97.80 96.30 97.30 16 0
PCM+SP 98.94 (£ 0.0) 91.86(+17) 87.46 (£3.7) 95.46(x0.1) 93.12 (+ 1.4) 1 1
PCM+AP 98.60 (£0.2) 92.76 (+ 1.6) 95.40 (£1.0) 95.78(+0.2) 96.04 (+ 0.4) 1 1
PCM+SP+AP 99.20 (£ 0.0) 97.04 (£ 0.1) 97.46(+0.2) 96.12(x0.1) 97.58 (x 0.1) 1 2
PCM+SP+AP+Sens. 99.20 (£ 0.0) 97.20 (£ 0.0) 97.72(+0.1) 96.14(+ 0.1) 97.80 (+ 0.1) 1 3
PCM+AP+Sens. 98.88 (£ 0.1) 95.04 (£ 0.5 97.10 (x0.1) 95.92(% 0.1) 97.46 (+ 0.1) 1 3
SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy), Sens.:

sensitivity-driven adaptive redundancy. Experiments are conducted five times.

Table 21. Accuracy of MLP Distilled from LeNet on MNIST when Weights are Perturbed by the
Gaussian Noise

Teacher Teacher Student Noisy Student Noisy Student Additional
LeNet MLP MLP MLP MLP Bits
(Student baseline) (No Noise) (with N(0,0.1)) (with N(0,0.006))
No Noise 99.20 97.50 97.80 96.30 97.30 0
N(0,0.1)+No Protection 22.60 (£ 7.7) 77.72 (+ 3.8) 58.90 (+ 3.6) 93.80 (+0.4) 62.20 (« 3.5) 0
N(0,0.1)+SP+AP 99.22 (+0.0) 95.92(+0.3) 95.96 (+ 0.8) 95.82 (0.2) 97.02 (+0.2) 2
N(0,0.2)+No Protection 12.02 (£ 3.0) 33.50 (+ 3.4) 24.78 (+ 6.3) 74.82(x5.0) 25.02(% 2.8) 0
N(0,0.2+SP+AP) 99.18 (£ 0.1) 90.36 (+ 1.0) 86.30 (+ 4.6) 95.06(0.3) 93.06 (= 2.1) 2
N(0,0.06)+No Protection 99.24 (+ 0.0) 97.38 (+ 0.1) 97.82 (+ 0.1) 96.28 (+ 0.0) 97.86 (= 0.0) 0

N(0,0.06)+SP+AP 99.20 (£ 0.0) 97.50 (£ 0.0) 97.80 (+ 0.0) 96.30 (+ 0.0) 97.90 (% 0.0) 2

SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy). Experiments
are conducted five times.

ACKNOWLEDGMENTS

The authors would like to thank TSMC Corporate Research for the technical discussions; and
Robert M. Radway and Pulkit Tandon for their constructive feedback.

REFERENCES

[1] Alessandro Achille, Giovanni Paolini, and Stefano Soatto. 2019. Where is the information in a deep neural network?
arXiv preprint arXiv:1905.12213 (2019).

[2] RonBanner, Itay Hubara, Elad Hoffer, and Daniel Soudry. 2018. Scalable methods for 8-bit training of neural networks.
In Advances in Neural Information Processing Systems. 5145-5153.

[3] Ron Banner, Yury Nahshan, and Daniel Soudry. 2019. Post training 4-bit quantization of convolutional networks for
rapid-deployment. Advances in Neural Information Processing Systems 32 (2019).

[4] David Barber and Felix V. Agakov. 2003. The IM algorithm: A variational approach to information maximization. In
Advances in Neural Information Processing Systems. None.

[5] Leighton Pate Barnes, Huseyin A. Inan, Berivan Isik, and Ayfer Ozgiir. 2020. rTop-k: A statistical estimation approach
to distributed SGD. IEEE Journal on Selected Areas in Information Theory 1, 3 (2020), 897-907.

[6] Jonathan Binas, Daniel Neil, Giacomo Indiveri, Shih-Chii Liu, and Michael Pfeiffer. 2016. Precise neural network
computation with imprecise analog devices. arXiv preprint arXiv:1606.07786 (2016).

[7] Thomas Bird, Johannes Ballé, Saurabh Singh, and Philip A. Chou. 2021. 3D scene compression through entropy
penalized neural representation functions. In 2021 Picture Coding Symposium (PCS). IEEE, 1-5.

[8] G. M. Bo, D. D. Caviglia, and M. Valle. 2000. An on-chip learning neural network. In Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks. [JCNN 2000. Neural Computing: New Challenges and Per-
spectives for the New Millennium, Vol. 4. 66-71. https://doi.org/10.1109/[JCNN.2000.860751

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://doi.org/10.1109/IJCNN.2000.860751

Neural Network Compression for Noisy Storage Devices 58:27

(9]

[10]

[11]
[12]

[13]
[14]
[15]
[16]

[17]
[18]

[19]

[20

[t

[21]

[22

—

[23

—

[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model compression. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06). Association for Comput-
ing Machinery, New York, NY, USA, 535-541. https://doi.org/10.1145/1150402.1150464

G. W. Burr, S. Ambrogio, P. Narayanan, H. Tsai, C. Mackin, and A. Chen. 2019. Accelerating deep neural networks
with analog memory devices. In 2019 China Semiconductor Technology International Conference (CSTIC). 1-3. https:
//doi.org/10.1109/CSTIC.2019.8755642

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018. Model compression and acceleration for deep neural networks:
The principles, progress, and challenges. IEEE Signal Processing Magazine 35, 1 (2018), 126-136.

Yu Cheng, Felix X. Yu, Rogerio S. Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. 2015. An exploration of
parameter redundancy in deep networks with circulant projections. In Proceedings of the IEEE International Confer-
ence on Computer Vision. 2857-2865.

Kristy Choi, Kedar Tatwawadi, Aditya Grover, Tsachy Weissman, and Stefano Ermon. 2019. Neural joint source-
channel coding. In International Conference on Machine Learning. PMLR, 1182-1192.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. 2020. Universal deep neural network compression. IEEE Journal
of Selected Topics in Signal Processing (2020).

Yann Le Cun, John S. Denker, and Sara A. Solla. 1990. Optimal Brain Damage. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 598-605.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’Aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, et al. 2012. Large scale distributed deep networks. In Advances in Neural Information
Processing Systems. 1223-1231.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database.
In CVPROY.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model compression and hardware acceleration for
neural networks: A comprehensive survey. Proc. IEEE 108, 4 (2020), 485-532.

Yuan Du, Li Du, Xuefeng Gu, Jieqiong Du, X. Shawn Wang, Boyu Hu, Mingzhe Jiang, Xiaoliang Chen, Subramanian S.
Iyer, and Mau-Chung Frank Chang. 2018. An analog neural network computing engine using CMOS-compatible
charge-trap-transistor (CTT). IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38,
10 (2018), 1811-1819.

Gintare Karolina Dziugaite, Gabriel Arpino, and Daniel M. Roy. 2018. Towards generalization guarantees for SGD:
Data-dependent PAC-bayes priors. (2018).

J. H. Engel, S. B. Eryilmaz, S. Kim, M. BrightSky, C. Lam, H. Lung, B. A. Olshausen, and H. P. Wong. 2014. Capacity
optimization of emerging memory systems: A Shannon-inspired approach to device characterization. In 2014 IEEE
International Electron Devices Meeting. 29.4.1-29.4.4.

Omobayode Fagbohungbe and Lijun Qian. 2020. Benchmarking inference performance of deep learning models on
analog devices. arXiv preprint arXiv:2011.11840 (2020).

Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Rémi Gribonval, Hervé Jégou, and Armand Joulin. 2020.
Training with quantization noise for extreme model compression. (2020).

Scott W. Fong, Christopher M. Neumann, and H.-S. Philip Wong. 2017. Phase-change memory-towards a storage-
class memory. IEEE Transactions on Electron Devices 64, 11 (2017), 4374-4385.

Jonathan Frankle and Michael Carbin. 2019. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
International Conference on Learning Representations (ICLR) (2019).

Roger Grosse and James Martens. 2016. A Kronecker-factored approximate Fisher matrix for convolution layers. In
International Conference on Machine Learning. 573-582.

Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for efficient DNNs. In Advances in
Neural Information Processing Systems. 1379-1387.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep compression: Compressing deep neural networks with prun-
ing, trained quantization and Huffman coding. International Conference on Learning Representations (ICLR) (2016).
Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural
network. In Advances in Neural Information Processing Systems. 1135-1143.

Babak Hassibi, David G. Stork, Gregory Wolff, and Takahiro Watanabe. 1993. Optimal brain surgeon: Extensions
and performance comparisons. In Proceedings of the 6th International Conference on Neural Information Processing
Systems (NIPS’93). San Francisco, CA, USA, 263-270.

Marton Havasi, Robert Peharz, and José Miguel Hernandez-Lobato. 2019. Minimal random code learning: Getting
bits back from compressed model parameters. In International Conference on Learning Representations (ICLR).
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770-778.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1109/CSTIC.2019.8755642

58:28 B. Isik et al.

[33] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop. http://arxiv.org/abs/1503.02531

[34] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. 2020. Characterising bias in com-

pressed models. arXiv preprint arXiv:2010.03058 (2020).

Berivan Isik. 2021. Neural 3D scene compression via model compression. arXiv preprint arXiv:2105.03120 (2021).

[36] BerivanIsik, Philip Chou, Sung Jin Hwang, Nicholas Johnston, and George Toderici. 2021. LVAC: Learned volumetric
attribute compression for point clouds using coordinate based networks. Frontiers in Signal Processing (2021), 65.

[37] Berivan Isik, Albert No, and Tsachy Weissman. 2021. Rate-distortion theoretic model compression: Successive refine-
ment for pruning. arXiv preprint arXiv:2102.08329 (2021).

[38] Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Zorzi Michele. 2023. Sparse random networks
for communication-efficient federated learning. In The Eleventh International Conference on Learning Representations.
https://openreview.net/forum?id=k1FHgri5y3-

[39] Berivan Isik and Tsachy Weissman. 2022. Learning under storage and privacy constraints. In 2022 IEEE International
Symposium on Information Theory (ISIT). IEEE, 1844-1849.

[40] Berivan Isik, Tsachy Weissman, and Albert No. 2022. An information-theoretic justification for model pruning. In
International Conference on Artificial Intelligence and Statistics. PMLR, 3821-3846.

[41] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and
Dmitry Kalenichenko. 2018. Quantization and training of neural networks for efficient integer-arithmetic-only in-
ference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2704-2713.

[42] V.Joshi, M. Le Gallo, Simon Haefeli, I. Boybat, S. Nandakumar, C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and
E. Eleftheriou. 2020. Accurate deep neural network inference using computational phase-change memory. Nature
Communications 11 (2020).

[43] Soroosh Khoram and Jing Li. 2018. Adaptive quantization of neural networks. In International Conference on Learning
Representations.

[44] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).

[45] Souvik Kundu, Mahdi Nazemi, Peter A. Beerel, and Massoud Pedram. 2021. DNR: A tunable robust pruning frame-
work through dynamic network rewiring of DNNs. In Proceedings of the 26th Asia and South Pacific Design Automation
Conference. 344-350.

[46] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436—444.

[47] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 11 (1998), 2278-2324.

[48] Yann LeCun, Corinna Cortes, and C. J. Burges. 2010. MNIST handwritten digit database. (2010).

[49] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. 2018. SNIP: Single-shot network pruning based on

connection sensitivity. arXiv preprint arXiv:1810.02340 (2018).

Christos Louizos, Karen Ullrich, and Max Welling. 2017. Bayesian compression for deep learning. arXiv preprint

arXiv:1705.08665 (2017).

[51] James Martens. 2014. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193
(2014).

[52] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020.
NeRF: Representing scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision.
Springer, 405-421.

[53] S.R.Nandakumar, Irem Boybat, Vinay Joshi, Christophe Piveteau, Manuel Le Gallo, Bipin Rajendran, Abu Sebastian,

and Evangelos Eleftheriou. 2019. Phase-change memory models for deep learning training and inference. In 2019

26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). 727-730. https://doi.org/10.1109/

ICECS46596.2019.8964852

Deniz Oktay, Johannes Ballé, Saurabh Singh, and Abhinav Shrivastava. 2019. Scalable model compression by entropy

penalized reparameterization. arXiv preprint arXiv:1906.06624 (2019).

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. 2016. Distillation as a defense to

adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,

582-597.

Francesco Pase, Berivan Isik, Deniz Gunduz, Tsachy Weissman, and Michele Zorzi. [n. d.]. Efficient federated random

subnetwork training. In Workshop on Federated Learning: Recent Advances and New Challenges (in Conjunction with

NeurlIPS 2022).

Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression via distillation and quantization. arXiv

preprint arXiv:1802.05668 (2018).

Brandon Reagan, Udit Gupta, Bob Adolf, Michael Mitzenmacher, Alexander Rush, Gu-Yeon Wei, and David Brooks.

2018. Weightless: Lossy weight encoding for deep neural network compression. In International Conference on Ma-

chine Learning. 4324-4333.

—
w
w

[’

[50

=

(54

=

[55

=

(56

[l

(57

—

(58

[t

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=k1FHgri5y3-
https://doi.org/10.1109/ICECS46596.2019.8964852

Neural Network Compression for Noisy Storage Devices 58:29

[59]

[60]

[61]
[62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Re-
cognition. 4510-4520.

Alexandre Schmid, Yusuf Leblebici, and D. Mlynek. 2000. Mixed analogue-digital artificial-neural-network architec-
ture with on-chip learning. Circuits, Devices and Systems, IEE Proceedings - 146 (01 2000), 345-349. https://doi.org/10.
1049/ip-cds:19990685

Vikash Sehwag, Shigi Wang, Prateek Mittal, and Suman Jana. 2020. Hydra: Pruning adversarially robust neural
networks. Advances in Neural Information Processing Systems (NeurIPS) 7 (2020).

Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and
Communications Review 5, 1 (2001).

Sidak Pal Singh and Dan Alistarh. 2020. WoodFisher: Efficient second-order approximations for model compression.
arXiv preprint arXiv:2004.14340 (2020).

Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning. PMLR, 6105-6114.

Thuy Van Nguyen, Aria Nosratinia, and Dariush Divsalar. 2012. The design of rate-compatible protograph LDPC
codes. IEEE Transactions on Communications 60, 10 (2012), 2841-2850.

S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban, T. Marin¢, D. Neumann, T. Nguyen, H. Schwarz, T.
Wiegand, D. Marpe, and W. Samek. 2020. DeepCABAC: A universal compression algorithm for deep neural networks.
IEEE Journal of Selected Topics in Signal Processing 14, 4 (2020), 700-714.

H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P. Reifenberg, Bipin Rajendran, Mehdi Asheghi,
and Kenneth E. Goodson. 2010. Phase change memory. Proc. IEEE 98, 12 (2010), 2201-2227.

J. Y. Wu, Y. S. Chen, W. S. Khwa, S. M. Yu, T. Y. Wang, J. C. Tseng, Y. D. Chih, and Carlos H. Diaz. 2018. A 40nm
low-power logic compatible phase change memory technology. In 2018 IEEE International Electron Devices Meeting
(IEDM). IEEE, 27-6.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. 2020. Self-training with noisy student improves
ImageNet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10687-10698.

Sean I. Young, Wang Zhe, David Taubman, and Bernd Girod. 2020. Transform quantization for CNN compression.
arXiv preprint arXiv:2009.01174 (2020).

Ryan Zarcone, Dylan Paiton, Alex Anderson, Jesse Engel, H. S. Philip Wong, and Bruno Olshausen. 2018. Joint source-
channel coding with neural networks for analog data compression and storage. In 2018 Data Compression Conference.
IEEE, 147-156.

Ryan V. Zarcone, Jesse H. Engel, S. Burc Eryilmaz, Weier Wan, SangBum Kim, Matthew BrightSky, Chung Lam,
Hsiang-Lan Lung, Bruno A. Olshausen, and H.-S. Philip Wong. 2020. Author correction: Analog coding in emerging
memory systems. Scientific Reports 10, 1 (August 2020), 13404. https://doi.org/10.1038/s41598-020-70121-y

Xin Zheng, Ryan Zarcone, Dylan Paiton, Joon Sohn, Weier Wan, Bruno Olshausen, and H.-S. Philip Wong. 2018.
Error-resilient analog image storage and compression with analog-valued RRAM arrays: An adaptive joint source-
channel coding approach. In 2018 IEEE International Electron Devices Meeting (IEDM). IEEE, 3-5.

Chuteng Zhou, Prad Kadambi, Matthew Mattina, and Paul N. Whatmough. 2020. Noisy machines: Understand-
ing noisy neural networks and enhancing robustness to analog hardware errors using distillation. arXiv preprint
arXiv:2001.04974 (2020).

Chuteng Zhou, Quntao Zhuang, Matthew Mattina, and Paul N. Whatmough. 2021. Information contraction in noisy
binary neural networks and its implications. arXiv preprint arXiv:2101.11750 (2021).

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. 2018. Non-vacuous generalization
bounds at the ImageNet scale: A PAC-Bayesian compression approach. arXiv preprint arXiv:1804.05862 (2018).

Received 17 March 2022; revised 2 September 2022; accepted 3 February 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 3, Article 58. Publication date: May 2023.

https://doi.org/10.1049/ip-cds:19990685
https://doi.org/10.1038/s41598-020-70121-y

