nature sustainability

Article

https://doi.org/10.1038/s41893-023-01160-2

Biorenewable and circular
polydiketoenamine plastics

Received: 15 December 2022

Accepted: 26 May 2023

Published online: 27 July 2023

% Check for updates

Jeremy Demarteau®', Benjamin Cousineau®', Zilong Wang***?,

Baishakhi Bose ®°, Seokjung Cheong®3*5, Guangxu Lan ® %%, Nawa R. Baral® %>,
Simon J. Teat® ¢, Corinne D. Scown ® 2578, Jay D. Keasling>®*>9'° &

Brett A. Helms ®"*"

Amid growing concerns over the human health and environmental

impacts of plastic waste, the most promising solution would be to build
acircular plastics economy where sustainability considerations dictate

the fulllife cycle of plastics use including replacing petrochemicals

with biorenewables. Here we show that by incorporating the polyketide
triacetic acid lactone (TAL) in polydiketoenamines (PDK) we increase the
working temperature of these circular plastics, opening the door wider to
applications where circularity is urgently needed. By varying the number of
carbons of TAL-derived monomers, both polymer properties and recycling
efficiency are affected. Simply using glucose as the main carbon source, we
engineered a process for producing bioTAL under fed-batch fermentation.
A systems analysis of this bioprocess under different scenarios quantifies
the environmental and economic benefits of PDK plastics and the risks when
implemented at anindustrial scale, providing opportunities in biorenewable

circularity.

Bringing biorenewable circularity to plasticsis critical to ensuring their
sustainability'. While bio-based monomers used to produce plastic
resins are increasingly available from biomass and bioproducts**?,
using them simply as drop-in replacements for commodity petro-
chemicals fails to deliver a bio-advantage in performance®. Justifying
their use in plastics production therefore remains difficult, as they
are often produced at higher cost than the petrochemical they seek
toreplace. Furthermore, few existing plastics, evenif produced from
bio-monomers, are chemically recycled in closed-loops, particularly
monomer-to-monomer"’. Without biorenewable circularity, we will
continue to consume the dwindling supply of fossil resources to meet
the rapidly growing demand for plastics®; moreover, we will have few

incentives to recover plastic waste for recycling and reuse, failing to
meet our goals for sustainable manufacturing. Future generations of
plastics should emphasize bio-advantaged designs that achieve high
efficiency in chemical recycling with respect to monomer recovery
atend of life®’, so that the biorenewable content may be recirculated
across the maximum possible number of manufacturing cycles. If this
wasrealized, there could be a confluence of performance, manufactur-
ing and economic benefits to motivate the switch to new materials in
the transition to a circular bio-plastics economy.

In support of this paradigm shift, we and others have demon-
strated that circularity in emerging bio-plastics is achievable through
codesign of polymers and chemical recycling processes (for example,
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acidolysis, solvolysis, enzymolysis and catalytic ring-closing depolym-
erization)'°%. Chen etal. have exploited ring-chain equilibria to enable
circularity in polyesters and nylons from strained lactone and lactam
monomers, some of which canbe produced frombio-based raw materi-
als”™. Complementing these efforts, Mecking et al. have prioritized
solvolysis in the deconstruction of polyesters and polycarbonates
from high molecular weight diols and carboxylic acids™. Solvolysis
and acidolysis are likewise applicable to bio-plastics featuring imine
and diketoenamine bonds. Some of these bio-plastics have even shown
properties similar to petroleum-derived plastics that remain difficult
to recycle in closed-loops, such as polyethylene and polyurethane’.
Among them, bio-plastics based on polydiketoenamines (PDK) stand
out for the concomitantly high efficiency and low cost required to
chemically recycle them to the same monomers usedin primary resin
production®%, However, it remains a challenge to demonstrate cir-
cularity in bio-plastics while deriving benefits from their constituent
bio-monomers.

Here we show that biorenewable circularity in plastics concomi-
tantly delivers auseful bio-advantage by incorporating the polyketide
triacetic acid lactone (TAL) in PDK, which are deconstructed to mono-
mer atend of life with low carbonintensity in highyield and purity. The
bio-advantage of TAL arises fromits planarity, which promotes efficient
stacking in the solid state and has the effect of densifying TAL-based
PDKs (TAL-PDK). This densification raises the glass transition tempera-
ture (T,) beyond akey threshold of 150 °C, making possible the use of
TAL-PDKs in broader applications (for example, automotive)*, where
structural integrity up to that temperature is of great importance.
To understand the prospects for producing PDK resins from TAL, we
developed a fed-batch fermentation process for bioTAL production
using an engineered strain of Escherichia coli that expresses a heter-
ologous polyketoacyl-CoA thiolase, BktB, which converts acetyl-CoA
into TALin high titre. We also provide a detailed systems analysis of this
process at different production volumes, where the environmental and
economic benefits derived from biorenewability are quantified and
delineated in the context of managing risk along the path to producing
bioTAL and TAL-PDK resins at industrial scale.

Results

Biorenewable TAL-based PDK resins

PDK resins are prepared via spontaneous ‘click’ polycondensation
reactions between polytopic triketone and amine monomers; no chemi-
cal condensation agent is required and water is the sole byproduct
of the reaction® %, Triketone monomers used in PDK production
are synthesized from various 1,3-diketones and diacids. During syn-
thesis, acylation of the 1,3-diketone typically occurs first at oxygen,
which is then followed by an O- to C-acyl rearrangement catalysed by
4-(dimethylamino)pyridine (DMAP)*. Owing to structural similarities
between O-acylintermediates and the likely reactivity of the preferred
tautomer of TAL, we hypothesized that TAL could stand in place of con-
ventional petrochemical1,3-diketones, such as dimedone, in monomer
synthesis alongside commonaliphatic Cg_;, dicarboxylic acids (Fig.1a)
to make available biorenewable triketone monomers (TAL-TK 1-5)
and in turn PDK resins (TAL-PDK 1-5). Confirming this hypothesis,
TAL-TK 1-5 were prepared in 40-63% yield (after recrystallization)
using N,N’-dicyclohexylcarbodiimide (DCC) and DMAP. We obtained
single-crystal X-ray structures for TAL-TK 1, 3 and 5—all of which evi-
denced herringbone packing of the monomers in the solid state, due
to stacking enabled by the planarity of TAL (Fig. 1b and Supplemen-
tary Figs.1-2). This propensity for stacking and densification is highly
differentiated from that exhibited by a similar triketone monomer
prepared from the petrochemical dimedone, whichis not planar (Sup-
plementary Table1). This differencein crystallinity is further exempli-
fied in DSC analysis of TAL-TK monomers, showing sharp endothermic
melting peaks for TAL-TK 1, 3 and 5 (150, 143 and 143 °C, respectively),
while TAL-TK 2 and 4 shows broader transitions at lower temperatures

(60 and 100 °C, respectively) (Supplementary Fig. 3). It follows that
the properties of PDK resins produced from these triketone mono-
mers may likewise have different properties arising from the unique
microstructures afforded to each.

Tounderstand these emergent microstructure-property relation-
ships, we first prepared TAL-PDK resins 1-5 from TAL-TK monomers1-5
and tris(2-aminoethyl)amine (TREN); as a control, we also prepared a
PDK resin from TREN and a triketone monomer derived from dime-
done. To confirm that the polycondensation was complete, we per-
formed"C solid-state nuclear magnetic resonance (NMR) spectroscopy
on powdered samples of TAL-PDK 1-5 (Supplementary Figs. 4-8). We
observed adisappearance of sharp peaks, otherwise corresponding to
the crystalline triketone monomer, as well as aconcomitantbroadening
of peaks corresponding to the polymer network. We further confirmed
the extent of polymerization was high by powder X-ray diffraction,
where sharp andintense peaks associated with the Bragg reflections of
crystalline triketone monomers completely subsided to peaks exhibit-
ing lower-intensity and significant broadening due to amorphization
into aglassy vitrimer network (Supplementary Fig. 9).

Enabled by the intrinsic dynamic covalent character of vitrim-
ers, crosslinked PDK resin powders remain thermally processable,
for example, by compression moulding®®~*. For TAL-PDK resins 1-5,
compression moulding at 20 kPsi pressure required temperatures of
150,140,130,125and 110 °C, respectively, to fabricate samples (Fig. 1c
and Supplementary Fig.10); thus, lowering vitrimer crosslinking den-
sity has the effect of lowering the energy requirement for PDK manu-
facturing. Whereas the expected colour and high transparency of the
vitrimers were readily apparent for TAL-PDK 1, 3 and 5 (as well as the
control), colours were unexpectedly darker and hazier for TAL-PDK 2
and 4. The natural hue of TAL-PDK resins, which varies with crosslink-
ing density and odd-even effects, would need to be accounted for in
compounding with pigments to arrive at desired specifications. None-
theless, we observed a monotonic and well-behaved decrease in the
glass transition temperature (7,) with decreasing crosslinking density
(Fig.1d and Supplementary Fig. 11). Importantly, in all cases we found
that TAL dramatically raises T,when incorporated into PDK resins: for
example, the T, of biorenewable TAL-PDK 3 is 36 °C higher than that of
the related dimedone petrochemical control (7, =96 °C), pointing to
the key role of PDK microstructure on thermal properties. To provide
context for thermal stability, thermal gravimetric analysis data of the
different formulations, with monomers (TAL-TK 1-5), powder and
pressed-moulded polymers (TAL-PDK1-5) do not show any degradation
below 200 °C (Supplementary Fig. 12). Structural integrity of glassy
polymer networks is critical for most commercial applications, from
automotive to protective barriers and sporting gear; increasing 7, to
meet product specifications remains an outstanding challenge, yet
appears addressable with TAL-based PDK resins on account of their
unique microstructure.

Motivated by this bio-advantage and its link to polymer micro-
structure, we carried out further studies of PDK properties, where
microstructure often dictates outcomes, including density (p) and
storage modulus (£") at temperatures above T,,. For elastic polymer net-
works, £’ is proportional to p as well as the crosslinking density. Absent
significant changes to p (whicharerare), £ should decrease monotoni-
cally with decreasing crosslinking density, as was observed for 7,; how-
ever, thatis not what we observed experimentally. Instead, we observed
odd-even effectsinboth pand F’, depending on the length of the diacid
incorporated into the TAL-derived triketone monomer (Fig. 1e,f and
Supplementary Fig.13). In all cases, p and £’ were higher for TAL-PDK
materials than those of the related dimedone petrochemical control
(Supplementary Tables 2 and 3), consistent with the body of evidence
presented herein, indicating more efficient packing in the solid state
and useful gainsin elasticity and stiffness. For example, pis 1.078 g cm™
and E’ is 13.5 MPa for TAL-PDK 3, whereas p is 0.987 gcm™ and £’ is
only 3.5 MPa for the control (that is, 3.9-fold lower than TAL-PDK 3).
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Fig.1|Biorenewable circularity in PDK plastics derived from TAL. a, Synthesis
and chemical recycling of biorenewable PDK resins derived from TAL (TAL-PDK
1-5). b, Single-crystal X-ray structures of triketone TAL-TK 3 (left) and arelated
aliphatic triketone prepared from the petrochemical dimedone in place of TAL
(right). ¢, Compression-moulded samples of TAL-PDK 1-5. d, Glass transition

temperatures (7,) measured by DSC (T,psc) for TAL-PDK 1-5 and a related aliphatic
PDK resin prepared from dimedone. e, f, Density (e) and storage modulus (f)
(atrubbery state, 180 °C) of compression-moulded TAL-PDK 1-5 and a related
aliphatic PDK prepared from dimedone.

We are unaware of previous reports of odd-even effects in vitrimer
microstructure-property relationships, yet they appear intrinsic and
relevant to their design for function. Until now, odd-even effects in
elastic polymer networks had only been explored theoretically—for
example, with respect to monomer topology, accounting for num-
ber of networking functionality in the monomers®. Now, molecular

configuration of constituent monomers and their influence on poly-
mer chain conformation within the network architecture emerge as
further points of interest and intrigue. Although unrelated, given the
dissimilarity between linear and crosslinked polymer architectures,
these observations are nonetheless reminiscent of odd-even effects
in thermal properties of thermoplastics—for example, the melting
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pristine TAL-TK 1 (top) along with crude TAL-TK 1 recovered from chemically
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1(middle) and TAL-TK 1recovered from the crude after recrystallization in EtOH
(bottom). Characteristic peaks in the 'H NMR spectra forimportant structural
motifs are highlighted with red arrows, while impurities are identified by using
purple asterisks. f, TAL-TK yields for both crude (purple) and recrystallized
(green) monomers after acidolysis of TAL-PDK plastics. g, ESI-MS spectrum of
crude TAL-TK 1 recovered after acidolysis of thermally processed TAK-PDK 1.

points of 1,n-nylons*'. Odd-even effects, observed here in TAL-PDK
materials, may be universal for polymer networks. In this way, we
continue to unravel the foundations of thermoplastic-like character of
vitrimers**~?, including biorenewable PDK resins produced from TAL.

Molecular basis for TAL-PDK circularity in recycling

PDK resins typically undergo deconstruction to triketone and amine
monomers in strong acid at ambient temperature. Unlike triketone
monomers derived from dimedone (that s, the control), which have
no cleavable linkages, those derived from TAL have motifs, such as
the lactone, that may be susceptible to acidolysis. If lactone acid-
olysis is competitive with diketoenamine hydrolysis, then it could
affect the materials efficiency of chemically recycling TAL-PDK resins
back to monomer—for example, if products other than TK 1-5 are
also generated. To quantify the efficiency of circularity for TAL-PDK
1-5, we carried out their acidolysis in 5 M HCI for 24 h, after which
all deconstructed to dispersed solids of TAL-TK 1-5, along with ion-
ized TREN, which remained ionized in solution (Fig. 2a). We isolated
TAL-TK1-5solidsin72,93,90,98 and100% yield, respectively (Fig. 2c);
TREN can be recovered separately in high purity from the aqueous
phase using a basic ion exchange resin”. Recycled TAL-TK 1-5 were
indistinguishable from the pristine monomers by 'H NMR spectros-
copy (Fig. 2b and Supplementary Figs. 14-18), indicating that the
TAL-TK motif is remarkably stable under these conditions. Further-
more, when compared toyields and purity for monomer recovery for
dimedone-based PDK resins (that is, derived from petrochemicals),
TAL-PDK circularity compares favourably, particularly for resins with
lower crosslinking density.

In quantifying further the efficiency of TAL-PDK circularity in
compression-moulded samples, we likewise found that lowering the
crosslinking density was useful for ensuring high monomer recov-
ery from TAL-PDK resins that had undergone conversion to various

form-factors at high pressure and temperature (Fig. 2e,f and Supple-
mentary Figs. 19-32). Polymer degradation during thermal process-
ing during manufacturing or even mechanical recycling at end of life
can be detrimental towards the development of circular plastics. An
analysis of the degradation products formed after thermal processing
canbeinformative towards animproved understanding of vulnerable
structures and degradation pathways. These insights may provide new
design criteria for constructing PDKs and other circular materials.
To thisend, we analysed mass spectraforall crude triketones obtained
after TAL-PDK deconstruction and compared these data with spectra
obtained fromthe pristine monomers. In all cases, we observed anew
and unique peak around 44 mass units below the peak corresponding
toa[TAL-TK +Na]"ion (Fig.2d,g and Supplementary Figs. 28-32). This
indicated a loss of carbon dioxide from some monomers recovered
after depolymerization. In parallel, we observed new yet minor peaks
(<15%) in the 6 = 6.7-17.0 ppm region of the '"H NMR spectra for crude
triketones. Thisindicated that while one triketone motifin the ditopic
monomer remained intactin the minor byproduct of depolymerization
reaction, the other had undergone decarboxylation during thermal
processing (Supplementary Figs. 19-27). To remain consistent with
the structural analysis afforded by mass spectrometry, it is likely that
this transformation generates a y-pyrone. In cases where process-
ing at high temperature and pressure led to materials degradation,
we found triketone recrystallization from ethanol quite effective at
removing unwanted y-pyrone byproducts. Even with this additional
purification process in place, TAL-TK 5 yields as high as 88% could
be maintained, whereas in the absence of thermal processing and
recrystallization, 100% yields were obtained. This understanding of the
molecular basis for biorenewable circularity with TAL-PDK materials
elevates future designs that benefit from lower crosslinking density
to minimize mechanochemical activation of susceptible bonds within
the TAL-PDK network.
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Bioproduction of TAL

Polyketide natural products are ubiquitous: some serve asimportant
medicines and others as useful chemicals or feedstocks for materi-
als®. TAL can be produced by the enzyme 2-pyrone synthase (2-PS),
which catalyses a succession of decarboxylative Claisen condensa-
tionreactions. TAL bioproduction with 2-PS has been achieved in Yar-
rowia lipolytica (36 g 1") and Rhodotorula toruloides (28 g I™), although
overall yields from common carbon sources, such as glucose, could
be improved if TAL synthases that perform non-decarboxylative
Claisen condensation using acetyl-CoA as a substrate were used
rather than those that perform decarboxylative condensation using
malonyl-CoA as asubstrate® %, Here we used the non-decarboxylative
polyketoacyl-CoA thiolase, BktB*’, for TAL bioproduction in an engi-
neered strain, E. coliJBEI-3695 (Fig. 3a). If successful, the advance could
openthe doortodirectly converting sugars from plant biomass hydro-
lysates to this valuable bioproduct in high yield*°, closer to bringing
biorenewable circularity to PDK resins.

We synthesized the gene encoding BktB from Burkholderia sp.
RF2-non_BP3 with codon-optimization for £. coli and cloned it into
the vector pBbASA, followed by transformation into E. coli JBEI-3695,
which had some of its mixed-acid production enzyme genes deleted
(AadhE AldhA AfrdBC Apta) to enhance TAL production. We performed
growth and production in a 1-1 fed-batch bioreactor with optimized
production media (Supplementary Table 7), using glucose as the main
carbon source. We monitored cell growth using optical density at
600 nm (OD,,) of 1-ml cell samples removed periodically during the

production. The cells achieved a final OD¢, 0f 27.9 in 120 h and pro-
duced TAL to a final titre of 2.77 g I"! (Fig. 3b). The overall yield of TAL
was around 0.11 g TAL per g of glucose, and the overall production
rate was 0.035 g I”"h™%. This experiment was repeated to produce addi-
tional TAL batches for bioTAL-PDK synthesis (Supplementary Fig. 34).
Although unoptimized, these results compare favourably to previous
TALyields from mixed carbon sources (glucose, fructose, sucrose and
acetate) in Rhodotorulatoruloidesby 2-PS (0.089 g TAL per g of mixed
carbon sources)*"*?, After production and lyophilization of the broth,
we extracted the mixture with ethyl acetate and isolated the desired
TAL bioproduct (bioTAL) in high purity (Supplementary Fig. 35). We
then synthesized a biorenewable triketone monomer bioTAL-TK 3
from bioTAL and sebacic acid, which we obtained as a bioproduct
from Arkema (Fig. 3c). These 100% biorenewable triketone monomers
showed essentially identical properties when used in the synthesis and
chemicalrecycling of bioTAL-PDK 3 resins (Fig. 3d).

LCA and TEA of TAL bioproduction

Tounderstand the key cost and greenhouse gas (GHG) emissions drivers
of bioTAL production, we carried out asystem-level techno-economic
analysis (TEA) and life cycle GHG inventory. All costs and emissions
estimates are based onthe system summarizedin Fig.4a. We modelled a
biorefinery where cornstoveris pretreated with a bio-compatible ionic
liquid (choliniumlysinate), followed by enzymatic hydrolysis, to gener-
ateahydrolysate, which can be converted to bioTAL via bioconversion
of both pentose and hexose sugars in engineered E. coli expressing
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the non-native BktB thiolase. The cost of production is captured by a
single metric minimum selling price (MSP). MSP refers to the product
selling price at which the net present value of the project equals zero,
after incorporating an internal rate of return (10% for this study). In
other words, the MSP is the minimum price a company must sell the
product for to be as profitable as their next best investment option.
To estimate the MSP and generate mass and energy balances, we used
acombination of experimental data and chemical process modelling
to design and simulate a hypothetical commercial-scale bioTAL pro-
duction facility. All process simulation was conducted ina commercial
process modelling software package (SuperPro Designer-V12)*. We
translated outputs fromthe process model, including equipment sizing
and costs, operating inputs and waste processing costs, into aseparate
cash flow model to determine the MSP of bioTAL.

To understand the impact of bioTAL yield and other process
parameters on MSP, we analysed four biomass-derived bioTAL pro-
duction scenarios based on the current demonstrated and future
optimized yields. The scenario associated with ‘this work’ reflects the
bioTAL yield experimentally demonstrated in this study with glucose,
extrapolated to xylose assuming acommercial-scale biorefinery would
use a cofermenting host. For comparison, we also considered ascenario
built from the bioTAL yield in R. toruloides using 2-PS, as reported by
Cao et al.” (Fig. 4b). The ‘intermediate’ scenario extrapolates from
this study with a moderate improvement upon the current bioTAL
yield, reaching approximately 50% of the theoreticalmaximum (0.35 g
bioTAL per gofglucose, 0.315 gbioTAL per g of xylose). Both ‘thiswork’
and ‘intermediate’ scenarios rely on a bioconversion residence time
of approximately 75 h. An ‘optimized’ scenario represents a mature

facility in which the bioTAL yield reaches approximately 90% of theo-
retical maximum (0.63 gbioTAL per g of glucose, 0.567 gbioTAL per g
of xylose) and all process parameters have been optimized toreach a
practicalminimum production cost, including areductioninresidence
time to 48 h. Material balances for the intermediate scenario and major
costs and revenues associated with bioTAL production are presented
inSupplementary Tables 8 and 9, respectively.

Inbiorenewable PDK production, bioTAL serves as areplacement
to dimedone, a petrochemical priced at US$10 per kg (ref. 44). As
shown in Fig. 4c, all three scenarios tied to bioTAL production in E.
coli using non-native BktB enzymes result in a lower MSP than the
reported price for dimedone, whereas MSP is higher for the previously
reported bioTAL production using 2-PSinR. toruloides. This encourag-
ingresult suggeststhat, provided the microbial host canbe engineered
to co-utilize both pentose and hexose sugars at comparable yields
and rates, commercial-scale bioTAL production from corn stover can
be cost-competitive with dimedone in the near term. The MSP results
for the ‘optimized’ scenario of approximately US$2 per kg of bioTAL
representa practicalminimumand canbe useful in screening for other
applications where bioTAL may or may not compete with incumbent
molecules. This optimized scenario can be viewed as something akin to
atheoretical minimum:;itis unlikely that costs could be reduced beyond
thatlevel. This exercise is useful because, if the optimized scenario was
toresultinhigher coststhanthe petrochemical alternative (dimedone),
this might suggest that bioTAL is not a viable replacement. For context,
the prices of HDPE, PU and PET were US$2.3 per kg, US$4 per kg and
US$1.2 per kg, respectively®. Using the optimized scenario, replacing
dimedone withbioTAL would resultina cost lower than the previously
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published PDK cost*. Improvements across all aspects of the produc-
tion system, including lower-cost corn stover, improved sugar yields,
higherionicliquid recoveryrates, andincreasesintitre, rate and yield
are needed to reach this ambitious target. In the near term, further
researchcanimprove the bioTAL recovery process (for example, bioTAL
refinement via recrystallization, instead of chromatography), which
willimprove both the costs and energy use.

Thelife cycle GHG assessment is based on a cradle-to-gate system
boundary and the functional unit is defined as one kg of bioTAL pro-
duced. We obtained life cycleinventory data and characterization fac-
tors forinput materials and commodity polymers from peer-reviewed
literature®*** and LCA databases including ecoinvent*®, US Life Cycle
Inventory (USLCI)*’, GREET**and WARM®* models. The GHG emissions
footprint for dimedone hasbeenreported tobe 0.7-15 kg CO,e perkg
of dimedone in previous works®. To contextualize our results, we use
amedian value of 8 kg CO,e per kg of dimedone. The intermediate and
optimized scenarios in Fig. 4d resultin lower GHG emissions compared
to dimedone. This result is encouraging, as it suggests that even with
moderate improvement in current bioTAL yield for the intermediate
scenario, keeping all other assumptions constant, commercial-scale
bioTAL production from corn stover can result in lower GHG emis-
sions when compared to dimedone in the near term. GHG emissions
are higher for the previously reported bioTAL production using 2-PSin
R. toruloides, when compared to dimedone. For ‘this work’ scenario, we
found that GHG emissions were 1.7 times higher than the median value,
and approximately equal to the highest reported value of dimedone.

Lower product yields and long bioconversion residence times
translateinto higher energy use, which drives GHG emissions. If lignin
recovered from biomass is sufficient to meet the facility’s heat and
electricity demands, no fossil fuels are directly required. Any excess
electricity canbe sold to the grid (Supplementary Table 10); we assume
these exports offset the US average grid mix. Ifligninis not sufficient,
supplemental natural gas is required for on-site combined heat and
power generation. We found for the bioTAL productionreportedin ‘this
work’ scenario that the pretreatment process is the single largest con-
tributor to life cycle GHG emissions (51%), followed by bioconversion
(31%). Switching to non-fossil energy sources could drive down the GHG
footprint. Another opportunity for GHG emissions reduction would be
toimprove the solvent recovery rate. We assume 95% solvent recovery
(ethylacetate, methanol), whichisreadily achieved atindustrial scale.

Discussion
Oursummary findings show that biorenewable circularity with TAL-PDK
ismost promising when: bioprocesses for TAL production canbeincor-
poratedinto lignocellulosic biorefineries that take in crop residues and
other sustainable biomass feedstocks; engineered microorganisms
metabolize both pentose and hexose sugars; and bioTAL yields are high.
Weaalso find that the high efficiency, low cost and low carbon intensity of
PDK deconstructionand monomer recovery continue to stand out'*?,
even among emerging circular plastics” 2. In particular, our use of
TAL in place of petrochemicalsin PDK production does not negatively
impact PDK circularity. Instead, TAL provides an unexpected and useful
bio-advantage withregard to the thermal behaviour of TAL-PDK materi-
als, whichis exploited to expand the range of serviceable applications.
BioTAL production shows promise as a bio-advantaged alternative
to dimedone in the formulation of biorenewable circular PDK resins.
Even moderateimprovementsinyield canresultin costs andlife cycle
GHG emissions that are more competitive with the incumbent petro-
chemicals currently used in PDK production. However, large-scale
production will require advancements along the entire supply chain
to enable more efficient utilization of corn stover, including high sugar
yields, the use of microbial hosts capable of metabolizing pentose and
hexose sugars, and improvements in bioTAL yields. In the future, we
anticipate that synthetic biology will play an increasingly important
rolein PDK development. PDK properties can be tailored by aninterplay

of structure and chirality in monomer designs. Awide variety of struc-
turally diverse diacids and 1,3-diketones (that is, beyond TAL) are, in
principle, accessible as polyketide bioproducts, offering new targets
forbioproduction (for example, by engineered polyketide synthases)*.
Depending on the process and the feedstock required, PDK sustain-
ability may further benefit from these carbon-negative technologies.

Methods

Synthesis of triketone monomers

Triacetic acid lactone (2.1 equivalents, or eq), carboxylic diacid (1 eq)
and dimethylaminopyridine (DMAP, 3 eq) were solubilized in tetrahy-
drofuran on heating at 70 °C. A separate solution of dicyclohexyl-
carbodiimide (DCC, 2.4 eq) in tetrahydrofuran was added slowly to
the reaction mixture. The reaction mixture gradually turned yellow,
accompanied by the formation of a white precipitate. After the com-
plete addition of DCC, the reaction was allowed to cool to room tem-
perature and pursued overnight (24 h). The mixture was filtered and
washed with CH,Cl, until the solid became colourless. The filtrate was
concentrated and the recovered product, adarkred oil, was dissolved
in CH,Cl, and extracted twice with 2.0 M HCI. The organic phase was
dried over MgSO, and concentrated, leaving the crude product as an
orange paste. The crude product was recrystallized from ethanol/water
toyield yellow/orange needles.

Synthesis of PDK resins

The polymerization of PDK resins was realized using ball-milling. To the
triketone monomer was added TREN, using a precalibrated micropi-
pette such that the molar ratio of amine to triketone functional groups
is 1.1:1. This was immediately followed by ball-milling the contents of
the closed container for 30 min at 500 revolutions per minute (rpm)
with changesin spinning direction at 1-minintervals. The reactor was
openedtoairandthereactor walls were scraped to bringtogether the
reactants homogeneously. Ball-milling was resumed under identical
conditions for anadditional 30 min. The powders wererecovered from
thereactor and theresidual water was removed under vacuumat 90 °C.

Acid-catalysed hydrolysis of PDK samples

PDK materials were placed in separate 40 ml vials along with 5.0 M of
HCI (15 ml) and a magnetic stirrer. Depolymerization reactions were
conducted over 24 h at room temperature while stirring at 500 rpm.
Triketones were isolated by extraction with CH,Cl, and evaporation
of the organic phase.

Preparation of PDK plastics for hydrolysis

PDK resins obtained from ball-milling were compression-moulded into
sheets of approximately 1 mmin thickness using athermal press oper-
atingat110 °C for TAL-PDK 5,125 °C for TAL-PDK 4,130 °C for TAL-PDK
3,140 °C for TAL-PDK 2 and 150 °C for TAL-PDK 1, and 20,000 psi for
20 min.Small rectangular samples used for depolymerization studies
were shaped with dimensions of /=20 mm,w=5mm, t=1mm.

Fed-batch fermentation for TAL production

The strain used for TAL production is E. coli JBEI-3695 harbouring
plasmid pBbASa-bktB (https://public-registry.jbei.org/entry/20892).
A single colony of the strain was inoculated into 10 ml of LB medium
and grown overnight at 37 °C. This seed culture (1 ml) was inoculated
into LB (100 ml) ina1-Ishake flask and grown with shaking at 37 °C for
16 h,beforeinoculationinto1-L EZ-Rich medium (OD¢,, = 0.05) ina 2-1
bioreactor (Sartorius BIOSTAT B plus). Agitation, temperature, airflow
and pH were maintained constant at 300 rpm, 22 °C, 0.5 volume of gas
per volume of liquid per minute and pH 7.0, respectively. The culture
was grown for 3-4 h at 37 °C to 0D, = 0.6, at which point 0.1 mM of
[B-D-1-thiogalactopyranoside was added to the culture toinduce protein
production. The temperature was adjusted to 22 °C, and the culture was
grown for seven days. Fed-batch experiments employed a dissolved
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oxygen (DO) signal-triggered glucose feeding loop (ADO =15 %, flow
rate =40 ml h™, pump duration = 5 min). Then, 1 ml cell culture was
removed every 24 hfor cell density and TAL titre measurement. At the
end of the five-day culture, the cultures were harvested at 8,000 rpm,
and TAL was extracted and purified from the supernatant.

System analysis of bioTAL production using SuperPro

The first step to conducting scenario analysis is establishing stoi-
chiometrically maximum achievable yields. We calculated the stoi-
chiometric maximum theoretical yield of bioTAL from glucose to
be 0.7 g per g of glucose. For all four scenarios considered in this
study, we assumed xylose to bioTAL conversion to be 90% of that
of glucose to bioTAL conversion. The scenario associated with ‘this
work’ reflects the bioTAL yield experimentally demonstrated in this
study with glucose (14.9% of theoretical maximum yield), extrapo-
lated to xylose assuming a commercial-scale biorefinery would use
acofermenting host. A2.6 g I' titre was used to calculate the yield in
glucose (0.104 g per g of glucose). Then, assuming xylose to bioTAL
conversion to be 90% of that of glucose to bioTAL conversion, the
yield from xylose to bioTAL conversion was also calculated.A2.6 g1
titre was used for the modelling purpose (instead of the highest
reportedtitreof2.77 g1™) asat 2.6 g I theresidence time of the bio-
conversion units could be kept lower, which reduces the energy use
of the system, and thus lowers the MSP and the GHG emissions of the
system. The intermediate and optimized scenarios are based on the
assumption of achieving 50% and 90% of theoretical yield based on
glucose, respectively. The ‘Cao et al. scenariois based onthe bioTAL
yield information obtained from article mentioned here (12.7% of
theoretical maximumyield)®.

We conducted the process modelling in SuperPro Designer soft-
ware®. The biorefinery operates 330 days per year and 24 h per day
(equivalent to 90% uptime). Capital cost accounts for equipment pur-
chase cost, installation costs, warehouse, site development, permits,
land and other field expenses and project contingency costs. Annual
operating cost accounts for materials, utilities, repair and maintenance,
labour and waste disposal costs. The assumptions for the model are
consistent with Humbird et al. unless otherwise specified**. The bulk
prices for material costs were obtained from peer-reviewed litera-
ture, market price reports and Alibaba. Equipment purchase prices
were derived using the built-in cost-estimating function available in
SuperPro. The process parameters and assumptions for ‘this work’
and optimized scenarios are summarized in Supplementary Table 11.
With the exception of yield, all other process parameters remained
the same for ‘this work’ and intermediate scenarios. For the Cao et al.
scenario, the same assumptions and parameters were used as that in
‘this work’ scenario, except during bioconversion where we used a
residence time and temperature of 120 h and 30 °C, respectively, and
during the recovery process, where we used crystallization to recover
bioTAL instead of column chromatography®.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Theauthorsdeclare that the data supporting the findings of this study
are available within the paper and its Supplementary Information.
Crystallographic data for compounds TAL-TK 1, TAL-TK 3 and TAL-TK
5are available free of charge from the Cambridge Crystallographic
Data Centre (www.ccdc.cam.ac.uk) under reference numbers 2223455,
2223456 and 2223457, respectively.
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