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A B S T R A C T   

Information on plant species is fundamental to forest ecosystems, in the context of biodiversity monitoring and 
forest management. Traditional methods for plant species inventories are generally inefficient, in terms of cost 
and performance, and there is a high demand for a quick and feasible approach to be developed. Of the various 
attempts, remote sensing has emerged as an active approach for plant species classification, but most studies 
have concentrated on image processing and only a few of them ever use hyperspectral information, despite the 
wealth of information it contains. In this study, plant species are classified from hyperspectral leaf information 
using different machine learning models, coupled with feature reduction and selection methods, and their per
formance is optimized through Bayesian optimization. The results show that including feature selection and 
Bayesian optimization increases the classification accuracy of machine learning models. Among these, the 
Bayesian optimization-based support vector machine (SVM) model, combined with the recursive feature elimi
nation (RFE) feature selection method, yields the best output, with an overall accuracy of 86% and a kappa 
coefficient of 0.85. Furthermore, the confusion matrix revealed that the number of samples correlates with 
classification accuracy. The support vector machine with informative bands after Bayesian optimization out
performed in classing plant species. The results of this study facilitate a better understanding of spectral 
(phenotype) information with plant species (genotype) and help to bridge hyperspectral information with 
ecosystem functions.   

1. Introduction 

Information about plant species is fundamental to our knowledge of 
forest biodiversity and ecosystems and is an inevitable requirement for 
natural ecosystem conservation and sustainable management (Dalponte 
et al., 2012; Santos et al., 2019). The ability to identify and classify plant 
species is, therefore, essential for the automatic mapping of vegetation 
composition, distribution, and forest dynamics. A traditional plant 
species survey approach, however, involves a lot of laborious, costly, 
and time-consuming fieldwork, which is commonly localized and can 
rarely be extended to cover large scales (Cho et al., 2009; Ribeiro da Luz, 
2006). As a result, effective and accurate techniques for comprehen
sively classifying plant species are in high demand. 

Among various attempts, the remote sensing technique offers a 
practical approach for classifying plant species, especially at large scales 
(Alonzo et al., 2014; Liu et al., 2021; Mäyrä et al., 2021). Several types of 
remotely sensed data have been reported in previous studies for plant 
species classification, ranging from multispectral, hyperspectral, light 

detection and ranging to their combinations (Aviña-Hernández et al., 
2023; Fassnacht et al., 2016; Heinzel and Koch, 2012; Zhang et al., 
2020b). Among the diverse remote sensing information, hyperspectral 
leaf reflectance contains a number of continuous narrow spectral bands 
for the finer discrimination of spectral properties and should have the 
potential to classify plant species (Cavender-Bares et al., 2016; Hennessy 
et al., 2020; Omeer and Deshmukh, 2021; Prospere et al., 2014). Dif
ferences between the spectra relate closely to differences in biochemical 
composition, pigments, and water content, as well as structures (Curran, 
1989; Nakaji et al., 2019), contributing to the ability to distinguish plant 
species. What is more, studies have demonstrated that spectral diversity 
can be used as a surrogate for functional or phylogenetic diversity (Frye 
et al., 2021; Schweiger et al., 2018), which provides a solid foundation 
for plant species classification using spectroscopy. So far, leaf spectral 
differences in different species have been confirmed in previous studies 
(Castro-Esau et al., 2006; Jin et al., 2020), implying the possibility of 
classifying species based on leaf hyperspectral signatures. In truth, 
several previous studies have already demonstrated that there is a great 
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potential for spectrally discriminating plant species (Hycza et al., 2018; 
Ullah et al., 2021). 

Classifying plant species from hyperspectral information relies on a 
number of classification approaches, including both parametric and 
non-parametric models. The most commonly and continuously used 
method is discriminant analysis, e.g. linear discriminant analysis (LDA) 
(Fisher, 1936), which is a parametric classifier. There is an assumption 
of a normal distribution and it yields good results for species classifi
cation in various ecosystems, particularly in tropical forests (Clark et al., 
2005; Féret and Asner, 2011). However, the use of non-parametric 
classifiers, such as the k-nearest neighbor algorithm (KNN), random 
forest (RF), and support vector machine (SVM), has gradually increased 
to classify plant species in recent years (Khan et al., 2022; Maxwell et al., 
2018; Omeer and Deshmukh, 2021). These non-parametric classifiers 
are effective for classifying complex and high-dimensional data and 
have achieved good classification accuracies in previously reported 
studies (Ferreira et al., 2016; Grabska et al., 2020). To the best of our 
knowledge, however, few studies have ever conducted a direct com
parison of different approaches, with most previous reports focused only 
on each specific classification method. As a result, the potential gener
alizability of classification models has yet to be fully evaluated. 

On the other hand, it is well known that hyperspectral data has the 
disadvantage of high data dimensionality and multicollinearity and thus 
contains redundant information, resulting in overfitting and decreasing 
the performance of the classification models (Fassnacht et al., 2014; 
Zhang et al., 2020a). Consequently, using feature reduction and selec
tion algorithms to select optimal latent factors for summarizing and the 
optimal subset from the original hyperspectral data, such as principal 
component analysis and recursive feature elimination (Demarchi et al., 
2020; Kalacska et al., 2007), is a critical step to addressing such short
comings. Nevertheless, limited knowledge of how feature selection im
pacts the accuracy of classification methods greatly confined our 
understanding. Appropriate feature selection strategies for deriving 
critical hyperspectral bands for accurate species classification should be 
examined. 

Importantly, machine learning models are highly sensitive to the 
choice and values of the hyperparameters involved; ways of optimizing 
these hyperparameters are considered to be one of the most critical steps 
in machine learning models (Agrawal, 2021; Bischl et al., 2023). 
Commonly applied hyperparameter optimization techniques, such as 
grid search and random search, typically involve discretizing the 
parameter space and implementing an iterative search procedure to 
approximate the optimal hyperparameter (Bergstra and Bengio, 2012; 
Yang and Shami, 2020). Recently, the Bayesian optimization (BO) al
gorithm has gradually captured the attention of many fields and 
emerged as an efficient method for hyperparameter tuning because of its 
superiority to conventional methods (Snoek et al., 2012; Yang and 
Shami, 2020). This method views the hyperparameter tuning process as 
the optimization of a black-box function and determines the next hyper- 
parameter value based on the previously-obtained results, avoiding 
numerous unnecessary evaluations (Eggensperger et al., 2013; Malu 
et al., 2021). Therefore, it may be worthwhile trying to use the algorithm 
to optimize hyperparameters for machine learning models on plant 
species classification from hyperspectral leaf information. 

Furthermore, most previously reported studies on plant species 
classification only explored specific species grown in limited environ
ments. Very few studies have ever been conducted to encompass a wide 
range of species belonging to different plant functional types, growing in 
varied environments or ecosystems. As reported in previous studies, 
large variations between and within the species could influence the 
performance of classification models (Clark and Roberts, 2012; Hesketh 
and Sánchez-Azofeifa, 2012), hence a comprehensive representation of 
plant species is necessary. In addition, no consensus has yet been 
reached on which classification models should be applied in discrimi
nating plant species. 

This study, therefore, aims to investigate different classification 

methods to classify plant species using hyperspectral leaf information, 
using a relatively comprehensive dataset compiled from several publicly 
available datasets covering different species from different locations. 
Specific objectives include: 1) examine the feasibility of classifying plant 
species using machine learning models; 2) assess the impact of feature 
selection algorithms and hyperparameter optimization on classification 
accuracy; and 3) evaluate how the classification accuracy for specific 
species is sensitive to sample size. 

2. Materials and methods 

2.1. Data used in this study 

The data used in this study were compiled from a number of inde
pendent datasets covering various species and plant functional types 
from different locations, each of which contained hyperspectral leaf 
reflectance. In detail, the publicly available datasets included those 
from: ANGERS (National Institute for Agricultural Research) (Jacque
mound et al., 2003), LOPEX (Joint Research Centre) (Hosgood et al., 
1993), FAB (Cedar Creek LTER, East Bethel, MN, USA) (Kothari et al., 
2018), NEON (University of Wisconsin Environmental Spectroscopy 
Laboratory) (Wang, 2017a, 2017b), and BHI (Blackhawk Island) (Chlus 
and Townsend, 2018). In addition, another dataset from Nakakawane 
Forest in Japan (NAKA) (138◦06′E, 35◦04′N) was also used in this study, 
in which samples of Acer nipponicum, Acer shirasawanum, Betula grossa, 
Fagus crenata, Pterostyrax hispidus, and Stewartia pseudocamellia 
(collected from 2014 to 2019 and then 2021) were considered. The 
detailed descriptions of these datasets are presented in Table 1. 

For each dataset, spectral outliers were excluded by using principal 
component space with a ratio statistic (Dangal et al., 2019) before they 
were combined together. Since under-representative data samples have 
difficulty meeting the requirement for separation into training and test 
data sets in the machine learning classification methods, those species 
with <50 spectral samples were also excluded, finally resulting in a total 
of 52 species (a total of 8340 spectral samples) for further analysis 
(Table 2). Furthermore, as the reflectance spectra of these datasets were 
measured using either the ASD Field Spec (Analytical Spectral Devices, 
Boulder, CO), Spectral Evolution PSR+, or Perkin–Elmer Lambda 19 
spectroradiometer, which cover different wavelength ranges, the spec
tral range was uniformed to the domain from 400 to 2400 nm in this 
study. The distributions of leaf spectra in each combined dataset are 
illustrated in Fig. 1. 

2.2. Data analysis 

The flowchart describing the steps for classifying plant species based 
on spectral leaf information and using different machine learning 
models, is illustrated in Fig. 2. Hyperspectral data within the domain of 
400 to 2400 nm were smoothed using the Savitzky-Golay method first. 
Then, four different feature reduction and selection methods were 

Table 1 
Descriptions of the datasets used in this study.  

Dataset Location Date Spectroradiometer Spectral 
range 
(nm) 

ANGERS Angers, France 2003 ASD FieldSpec 400–2450 

LOPEX Ispra 1993 
Perkin Elmer 
Lambda 19 400–2500 

FAB 
Cedar Creek 
LTER, USA 

2018 psr + 3500 350–2500 

NEON Eastern USA 2017 ASD FieldSpec/psr+ 350–2500 

BHI Blackhawk 
Island, WI 

2018 psr + 3500 350–2500 

NAKA 
Nakakawane, 
Japan 

2014–2019, 
2021 ASD FieldSpec 350–2500  
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employed to summarize and extract potential informative spectral bands 
for later plant species classification using different classification models, 
using full bands or the selected informative spectral bands. In the 
meantime, the Bayesian optimization algorithm was incorporated into 
the machine learning models. 

2.2.1. Feature reduction and selection methods 
Several popularly applied feature reduction and selection methods 

were used in this study, including principal components analysis (PCA), 
recursive feature elimination (RFE), least absolute shrinkage and se
lection operator (LASSO), and a genetic algorithm for the identification 
of a robust subset (GARS). Their brief summaries are presented in 
Table 3. These methods have been successfully used together with many 

classification algorithms to build robust classification models (Chiesa 
et al., 2020; Demarchi et al., 2020; Kalacska et al., 2007). In addition, 
the available functions of each method are also shown in Table 3. As for 
this study, the scree plot of variance, explained by each component in 
PCA, and the cumulative spectral variance were examined to determine 
the number of principal components (PCs) in subsequent analyses. The 
correlations of selected PCs with each wavelength were then calculated 
to evaluate the spectral information they represented. The number of 
features in the RFE and GARS methods were retained in the range of 20 
to 200. The criteria in the LASSO to select variables was based on the 
penalty factor (λ). Ten-fold validation was applied in all RFE, LASSO, 
and GARS selection methods. 

Fig. 1. Hyperspectral leaf reflectance of different datasets.  

Table 2 
Plant species list and the number of samples for each species used in this study.  

No Species Species Code Sample Number No Species Species Code Sample Number 

1 Acalypha neomexicana ACANEO 72 27 Magnolia acuminata MAGACU 64 
2 Acacia saligna ACASAL 147 28 Phacelia austromontana PHAAUS 100 
3 Acer nipponicum ACENIP 52 29 Platanus occidentalis PLAOCC 156 
4 Acer pseudoplatanus ACEPSE 191 30 Poa tracyi POATRA 72 
5 Acer rubrum ACERUB 709 31 Polycarpon depressum POLDEP 90 
6 Acer saccharinum ACESAC 627 32 Populus grandidentata POPGRA 160 
7 Acer shirasawanum ACESHI 218 33 Prenanthes serpentaria PRESER 60 
8 Ailanthus altissima AILALT 58 34 Pterostyrax hispidus PTEHIS 56 
9 Andropogon gerardii ANDGER 181 35 Quercus ×macnabiana QUE × MA 90 
10 Besseya alpina BESALP 78 36 Quercus ×palaeolithicola QUE × PA 58 
11 Betula alleghaniensis BETALL 80 37 Quercus alba QUEALB 665 
12 Betula grossa BETGRO 88 38 Quercus falcata QUEFAL 80 
13 Betula nigra BETNIG 151 39 Quercus mohriana QUEMOH 86 
14 Betula papyrifera BETPAP 120 40 Quercus nigra QUENIG 86 
15 Calliandra conferta CALCON 64 41 Quercus phellos QUEPHE 56 
16 Calochortus tolmiei CALTOL 134 42 Quercus rubra QUERUB 772 
17 Carya cordiformis CARCOR 214 43 Quercus velutina QUEVEL 86 
18 Celtis occidentalis CELOCC 87 44 Quercus virginiana QUEVIR 77 
19 Digitaria villosa DIGVIL 66 45 Robinia pseudoacacia ROBPSE 74 
20 Fagus crenata FAGCRE 320 46 Sophora nuttalliana SOPNUT 68 
21 Fagus grandifolia FAGGRA 78 47 Spartina pectinata SPAPEC 81 
22 Fraxinus nigra FRANIG 66 48 Stewartia pseudocamellia STEPSE 97 
23 Fraxinus pennsylvanica FRAPEN 105 49 Tilia americana TILAME 694 
24 Juglans nigra JUGNIG 108 50 Trichomanes davallioides TRIDAV 68 
25 Linum striatum LINSTR 122 51 Typha latifolia TYPLAT 68 
26 Liriodendron tulipifera LIRTUL 128 52 Ulmus americana ULMAME 112  
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2.2.2. Classification approaches 
In this study, the composited data were separated into training (80%) 

and testing (20%) datasets following a stratified sampling method based 
on species to maintain the same class distribution as the original dataset. 
This splitting was conducted using the ‘createDataPartition’ function in 
the caret package (Kuhn, 2008). Well-known types of machine learning 
classification approaches were considered in this study, such as condi
tional inference trees (CTree), random forest (RF), support vector 

machine (SVM), k-nearest neighbor (KNN), and gradient boosting 
(XGBoost: extreme gradient boosting; LightGBM: light gradient boosting 
machine). These classification methods were extensively documented in 
previous studies classifying plant species and have demonstrated mod
erate to good performance (Georganos et al., 2018; Sabat-Tomala et al., 
2020; Venkatasubramaniam et al., 2017). The description, implemented 
packages, and functions for these classification methods are shown in 
Table 4. In this study, the Bayesian optimization (BO) method, as 

Fig. 2. Flowchart of the plant species classification procedure in this study.  

Table 3 
Feature extraction and selection methods, as well as the functions that implement these methods in plant species classification in this study.  

Selection method Type Description Package: 
Function 

Parameter 

Principal components analysis 
(PCA) 

Feature 
extraction 

Transform the data into a set of orthogonal components and maximize the 
variance to summarize the spectral information (Lever et al., 2017). 

stats: prcomp – 

Recursive feature elimination 
(RFE) 

Feature 
selection 

Aim at estimating the features that are most helpful for the classes of interest and 
recursively eliminate the unimportant features (Guyon et al., 2002). 

caret: rfe feature_range 
(20−200) 

Least absolute shrinkage and 
selection operator (LASSO) 

Feature 
selection 

A popular high-dimensional data analysis method that compresses non-relevant 
variables to be exactly zero (Tibshirani, 1996). glmnet: glmnet 

lambda (λ,

0.001–0.1) 
Genetic algorithm for the 

identification of a robust subset 
(GARS) 

Feature 
selection 

An innovative implementation of genetic algorithms for fast and accurate 
identification of informative features in multi-class and high-dimensional 
datasets (Chiesa et al., 2020). 

Bioconductor: 
GARS_GA 

feature_range 
(20–200)  
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implemented in the rBayesianOptimization package, was employed to 
obtain the optimal values of these hyperparameters (Table 4). 

2.3. Classification performance evaluation 

All analyses were performed in the R environment on a Windows 10 
desktop with 32 GB of RAM, and an NVIDIA GeForce RTX 3060 Ti 
graphics card with 8 GB of RAM. The performance of machine learning 
models on plant species classification was evaluated using overall ac
curacy and kappa coefficient (Cohen, 1960), by generating confusion 
matrices (Theissler et al., 2022), which provide a comparison between 
actual and predicted labels of species and have been a very commonly 
used measure for solving classification problems. The correspondence of 
specific species was assessed in terms of sensitivity, precision, and F1- 
score in the confusion matrices. Sensitivity and precision are the frac
tions of correctly predicted actual positive classes and predictive posi
tive classes, respectively. In addition, the higher F1-score (the harmonic 
mean of sensitivity and precision) showed a better performance. The 
specific formulas for calculating these criteria are given below: 

Sensitivity =
TP

TP + FN
(1)  

Precision =
TP

TP + FP
(2)  

F1 − score =
2 × TP

2 × TP + FN + FP
(3)  

where TP, FN, and FP are true positive, false negative, and false positive, 
respectively, based on the comparison of the actual and predicted spe
cies labels. 

3. Results 

3.1. Informative hyperspectral bands identified by different feature 
reduction and selection methods 

PCA analysis of spectral leaf data revealed that the first three prin
cipal components (PCs) explained 94% of the cumulative variance, ac
cording to the screen plot of variance. Correlations between the 
determined PCs and each wavelength are presented in Fig. 3a, clearly 
showing that each PC carries information from specific wavelengths. In 
detail, the strongest correlations between the first PC and wavelengths 
were found in the shortwave infrared (SWIR) regions with a spectral 
domain longer than 1600 nm. The second and third PCs had the stron
gest correlations, with the near-infrared (NIR) domain (800–1100 nm) 
and the visible (VIS) domain (500–700 nm), respectively. 

The informative hyperspectral bands selected for plant species clas
sification using RFE, LASSO, and GARS selection methods are illustrated 
in Fig. 3b. In detail, 72, 57, and 48 informative bands were selected by 
RFE, LASSO, and GARS, respectively. Obviously, much fewer bands 
were involved in the GARS selection method and the selected bands 
were spread over the whole spectral regions from 400 to 2400 nm. In 
comparison, the LASSO selection method selected the bands in specific 
spectral regions. Commonly, spectral bands selected by the three se
lection methods most include the visible region of the spectrum 
(400–700 nm); furthermore, the wavelengths around 1900 nm were 
consistently selected, irrespective of the selection method. 

3.2. Classification models with or without feature reduction and selections 

The performance (overall accuracy and kappa coefficient) of each 
machine learning classification model (including CTree, KNN, RF, SVM, 
XGBoost, and LightGBM) on plant species classification coupling with or 
without feature reduction and selections was depicted in Fig. 4 and 
Table 5. The Bayesian optimization (BO) algorithm was used for 
hyperparameter optimization. 

In detail, the SVM model achieved the highest mean accuracy (84%) 
and kappa coefficient (0.83) among all the classification models, when it 
was without coupling with any feature reduction or selection methods. 
This was followed by the LightGBM and XGBoost models, which had the 
mean accuracy and kappa coefficient of 74% and 0.71, and 72% and 
0.68, respectively. The CTree model performed worst of all and only 
yielded a mean accuracy of 41% and a mean kappa coefficient of 0.38. 

The accuracy and kappa coefficient of the classification models with 
the fewer informative features selected by PCA and LASSO were lower 
than the performance of the models without feature reduction and se
lection methods. However, the performance of classification models 
based on the selected features of RFE and GARS was comparable and 
even better in comparison to using all features. The SVM model also 
outperformed the other models, based on the features selected by PCA, 
RFE, LASSO, and GARS methods, with the accuracy and kappa coeffi
cient ranging from 61% to 86% and 0.55 to 0.85, respectively. More 
specifically, after hyperparameter optimization, the SVM model com
bined with the RFE selection method obtained an accuracy and kappa 
coefficient of 86% and 0.85, respectively, which is higher than the 
model combined with the GARS (82% and 0.81), LASSO (63% and 0.61), 
and PCA (61% and 0.55) methods. Furthermore, the other classification 
models combined with the RFE band selection method exhibited a 
higher accuracy and kappa coefficient than the PCA, GARS, and LASSO 
selection methods. On the other hand, however, the GARS involved 
much fewer spectral bands (48) than when based on the RFE selection 
method (72). Overall, the SVM model had the highest accuracy and 

Table 4 
Description of different classification methods for plant species classification and the packages and functions used to implement these methods in this study.  

Classification method Description Package: Function Parameter 

Conditional inference trees 
(CTree) 

It determines the variable to split on based on a measure of association between 
each covariate and target, and then calculates the best split point for that variable 
(Hothorn et al., 2006). 

partykit: ctree 
minsplit (10–40), minbucket (5–15), 
maxsurrogate (0–5) 

Random forest (RF) It is a congregation of decision trees that are created with subsets which are 
selected on a random basis with replacement (Breiman, 2001). 

randomForest: 
randomForest 

mtry (1-(ncol(feature)-1), ntree 
(200−1000), nodesize (1-(sqrt(nrow 
(traindata))) 

Support vector machine 
(SVM) 

It aims to obtain optimal hyperplanes through the selection of the points that have 
the largest gaps between different classes (Cortes and Vapnik, 1995). 

caret: svm cost (0.01–100), gamma (0.001–0.1), 
kernel (radial) 

K-nearest neighbor (KNN) It searches k samples that are nearest to the point to be classified based on the 
distance metrics between different data points (Steinbach and Tan, 2009). 

class: knn n_neighbors (3–50) 

Extreme gradient boosting 
(XGBoost) 

It is a scalable machine learning method for tree boosting that performs 
classification based on obtained feature importance (Chen and Guestrin, 2016). 

xgboost: xgb.train 
eta (0.1–1), max_depth (4–6), 
subsample (0.1–1), 
bytree (0.4–1), nrounds (50–200) 

Light gradient boosting 
machine (LightGBM) 

It is a fast and efficient gradient boosting method to perform classification using 
tree-based learning algorithms (Ke et al., 2017). 

lightgbm: lgb.train 

learning_rate (0.01–1), 
max_depth (4–6), bytree (0.4–1), 
subsample (0.1–1), 
min_data (20), nrounds (50–200)  
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kappa coefficient among the classification models which underwent the 
Bayesian optimization for hyperparameters in all cases. 

3.3. Confusion matrix for individual species classification 

The confusion matrix generated from the best model, namely the 
SVM model in combination with RFE after Bayesian optimization, was 
further evaluated in terms of sensitivity, precision, and F1-score (Fig. 5). 
The model very accurately classified ACEPSE (Acer pseudoplatanus), 
CARCOR (Carya cordiformis), FAGCRE (Fagus crenata), PHAAUS (Pha
celia austromontana), QUERUB (Quercus rubra), and POPGRA (Populus 
grandidentata) with high sensitivity, precision, and F1 (all >0.95). The 
ACERUB (Acer rubrum), ACESAC (Acer saccharinum), ACESHI (Acer 
shirasawanum), ANDGER (Andropogon gerardii), QUEALB (Quercus alba), 
SPAPEC (Spartina pectinate), and TILAME (Tilia americana) were next 
best, with sensitivity, precision, and F1 >0.90. The model was less ac
curate in the prediction of PRESER (Prenanthes serpentaria) with sensi
tivity, precision, and F1 <0.50. 

Furthermore, the sensitivity, precision, and F1-score were found to 
be non-linearly related to the number of samples (Fig. 6). Sensitivity, 
precision, and F1-score increased with the number of samples until they 
reached about 150 and then they remained relatively constant. Specif
ically, the sensitivity, precision, and F1-score were all higher than 0.82 
in each species with samples >150, mostly within the range of 0.85 to 
0.98. The sensitivity, precision, and F1-score in the species with <150 
samples mostly ranged from 0.50 to 0.85, except for a few individual 
species. 

4. Discussion 

4.1. Classification approaches 

In this study, different non-parametric classification models were 

examined, with regard to their potential to classify plant species from 
hyperspectral leaf information. The results show that hyperspectral leaf 
reflectance has the ability to accurately classify plant species, as has 
been reported in previous studies (Clark et al., 2005; Omeer and Desh
mukh, 2021; Prospere et al., 2014). It has been reported that spectral 
leaf reflectance varies considerably due to a variety of factors, such as 
seasonality, canopy variations, and environmental variability (Asner 
et al., 2014; Hesketh and Sánchez-Azofeifa, 2012; Jin et al., 2020), and 
this can restrict the separability of plant species. In our study, the species 
were collected from different datasets in various environments, with 
seasonal and canopy variations contained in some individual datasets. 
Several robust machine learning classification methods were applied to 
the plant species classification in this study and obtained moderate to 
good results in this study, suggesting a strong potential for classifying 
plant species using machine learning models based on leaf-level 
hyperspectral information. 

Of all the machine learning classification models available, the best 
accuracy and kappa coefficient for plant species classification was ach
ieved by the SVM model after Bayesian optimization, regardless of 
whether feature reduction was used or which selection method was 
used. The results are consistent with previous studies which reported 
that the SVM model obtained superior performance in plant species 
classification across the remote sensing fields, owing to the advantage of 
handling high-dimensional feature spaces (Cervantes et al., 2020; 
Mountrakis et al., 2011). For example, Grabska et al. (2020) demon
strated that the SVM model outperformed the random forest and 
extreme gradient boosting for forest species mapping using a combina
tion of Sentinel-2 imagery and environmental data. Furthermore, the 
SVM model based on informative bands, selected by RFE selection 
methods after the Bayesian optimization, obtained the highest accuracy 
(86%) and kappa coefficient (0.85) throughout this study. The predic
tive ability, as shown in this study, is higher than those reported in 
previous studies (Cavender-Bares et al., 2016; Hesketh and Sánchez- 

Fig. 3. Correlation coefficients between the three principal components (PC1: orange, PC2: green, and PC3: black) and each wavelength (a) and the distribution of 
the bands selected by different band-selection methods (RFE: grey, LASSO: blue, and GARS: red) (b). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

G. Song and Q. Wang                                                                                                                                                                                                                          



Ecological Informatics xxx (xxxx) xxx

7

Azofeifa, 2012; Prospere et al., 2014), albeit the dataset used in this 
study contains the species with different environmental, seasonal, and 
canopy variations. The performance was similar to the accuracy of 11 
tree species classification (85.6%) using the combination of SVM and 
RFE from spectral imagery (Grabska et al., 2020), but was superior to the 
most popular multi-layer perception neural network (MLP) (Rawat and 
Wang, 2017; Sumsion et al., 2019), which had the accuracy and kappa 
coefficient of 0.81 and 0.80, respectively, when the hidden layer con
sisted of 32 neurons. The results clearly revealed the effectiveness of 
feature selection and hyperparameter optimization in machine learning 
models for plant species classification. 

4.2. Importance of feature selections for plant species classifications 

Hyperspectral data contains narrow bands that are correlated with 
one another and commonly involve feature reduction and selection al
gorithms to isolate the most important bands when performing plant 
species classification. In this study, with the RFE feature selection, the 
classification of these plant species with the Bayesian optimization- 
based SVM model resulted in an overall accuracy of 86% and a kappa 
coefficient of 0.85, which were relatively higher than other feature 
reduction and selection methods, as well as full bands. In comparison to 
full bands, the RFE selection method uses much fewer spectral bands. On 
the other hand, the PCA, LASSO, and GARS methods reduced the 
number of spectral bands during classification, while losing part of the 

inherent spectral information, resulting in lower classification perfor
mance. The results are in line with previous studies, which reported the 
effectiveness of the feature selection method in the machine learning 
models for species classification based on hyperspectral signatures 
(Demarchi et al., 2020; Hennessy et al., 2020). 

Within the feature selection methods, the relatively unique spectral 
information was further identified for plant species classification. The 
spectral regions selected by the RFE selection method were mostly 
concentrated in visible light (400–700 nm) and shortwave infrared 
(SWIR). The results are consistent with previous studies, highlighting 
the classification ability and relatively unique spectral information 
contributed by pigment absorption related to the xanthophyll cycle and 
chlorophyll (Alonzo et al., 2014). The bands around 1900 nm were 
selected consistently in the feature selection methods, which are related 
to water absorption and largely influence leaf reflectance (Das et al., 
2021; Skoneczny et al., 2020). These two spectral regions are also 
closely related to the phylogenetic structure and signatures, and thus 
contribute to species classification (Diniz et al., 2021; McManus et al., 
2016). Nevertheless, fewer near-infrared spectral regions were selected 
in this study, in contrast to the study by Clark et al. (2005), which found 
that near-infrared (NIR: 700–1327 nm) bands were important spectral 
regions for tropical tree species discrimination. The results are in 
accordance with the study by Dalponte et al. (2012), which found that 
the NIR region was inappropriate for tree species classification, based on 
the fusion of spectral images and LiDAR data, due to high within-class 

Fig. 4. Accuracy and kappa coefficient of the different classification methods with and without feature reduction and selection methods after Bayesian optimization 
(BO) for the plant species classification. 
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diversity. The selection of particular spectral domains improved classi
fication accuracy and computation efficiency, compared to the retention 
of whole hyperspectral wavelengths, thereby better classifying plant 
species, especially in large datasets. 

4.3. Impact of Bayesian optimization on classification accuracy 

This study aimed to seek a robust classification model that contin
uously delivers high classification performance when classifying plant 
species in datasets with large variations. Thereby, the Bayesian opti
mization method was applied to determine the optimal hyperparameters 
for these machine learning models. So far, the Bayesian optimization 
method has captured a lot of attention as an efficient tool for hyper
parameter tuning (Agrawal, 2021; Malu et al., 2021; Yang and Shami, 
2020) and it is essential for models involving black-box functions and 
very little prior information. Accordingly, the analysis revealed that a 
combination of the Bayesian optimization yielded an overall accuracy 
range of 41–84% when the classification models were built without 
considering feature reduction and selection methods. The ranges of ac
curacy in different classification models ranged from 38 to 86% using 
the Bayesian optimization method including feature reduction and se
lection. This result is in line with the previous studies in various fields 
(Sameen et al., 2020; Wang et al., 2021), which showed superior per
formance in the use of Bayesian optimization in machine learning 
models for classification problems. 

We also explored the performance of classification models using the 
grid search optimization method, which is one of the most commonly 
employed hyperparameter optimization methods (Injadat et al., 2020; 
Yang and Shami, 2020). Using the grid search optimization method 
yielded a relatively weak performance, with accuracies ranging from 
37% to 70% without considering or including feature reduction and 
selection (Fig. 7). Obviously, the hyperparameter tuning with the 
Bayesian optimization method in the machine learning models produced 
an improved classification of the plant species in all cases, in terms of 

accuracy and kappa coefficient, highlighting the importance of hyper
parameter optimization using the Bayesian optimization method. 
Interestingly, we note that, with the grid search optimization method, 
the feature reduction and selection is no longer a critical step, as we 
obtained similar or, even, slightly better results (accuracies varied from 
37% to 69%, Fig. 7), especially for the LightGBM and XGBoost models. 

4.4. Classification performance of individual species and future studies 

We divided the species into different plant types, based on xylem 
properties, and found that the sensitivity, precision, and F1-score of 
herbaceous species (0.88, 0.89, and 0.88) were higher than woody 
species (0.79, 0.82, and 0.80). Further separation of woody species into 
evergreen broadleaf and deciduous broadleaf revealed that deciduous 
species have higher sensitivity, precision, and F1-score than the ever
greens, the evergreen broadleaf shrub having the lowest sensitivity 
(0.63), precision (0.72), and F1-score (0.67). In addition, in terms of 
individual species, deciduous broadleaf trees (except P. austromontana) 
had the highest sensitivity, precision, and F1-score. For the species 
P. austromontana, the villous on the leaf of this species might have 
affected the hyperspectral signatures. Overall, our results indicate that 
hyperspectral leaf reflectance captured functional differences. Further
more, we found the classification performance of most individual spe
cies in the classification models to correlate with the number of samples, 
more or less. When the sample numbers are large (>200, see Fig. 6), 
their classification accuracies are very high, although some plant species 
with small samples also achieved high accuracies. 

Relatively high classification accuracy was obtained (for a total of 52 
species) in this study when using leaf-level spectra on species classifi
cation. Even so, it was realized that it may not currently be possible to 
simultaneously map all species in biodiverse forests. Expanding the 
classification feature space with non-spectral data may be required in 
the future, since Castro-Esau et al. (2004) demonstrated that incorpo
rating leaf chlorophyll content as ancillary data improved the classifi
cation of lianas and trees, suggesting the potential to include other leaf 
parameters into plant species classification. In addition, several studies 
have demonstrated that LiDAR data are valuable for identifying 
different species with different biophysical characteristics, thereby the 
classification accuracy could be further improved in combination with 
them (Cao et al., 2021; Dalponte et al., 2012; Liu et al., 2017). As a 
result, additional plant species information, such as plants’ biophysical 
and biochemical parameters, should help to further differentiate plant 
species and improve the interpretability of hyperspectral signatures. 

5. Conclusion 

Plant species classification has been attempted using machine 
learning models from hyperspectral leaf information with a composite 
dataset covering a broad range of species and plant functional types, 
grown in various environments. The classification accuracy was 
considerably influenced by the feature selection and hyperparameter 
optimization approaches. The support vector machine, based on infor
mative bands after Bayesian optimization, performed well in classing 
plant species. The results obtained in this study demonstrated the po
tential of using hyperspectral leaf information to classify plant species, 
which can provide a valuable basis for remote species mapping in a 
wider variety of ecosystems, even though leaf spectral characteristics 
may be influenced by environmental factors. While it remains a major 
challenge to collect representative ground data over large and difficult- 
to-entry areas, the integration of leaf hyperspectral data with other types 
of remote sensing data may improve classification accuracy and the 
ability to detect plant species in complex environments. In addition, 
future studies should progressively attempt to automate plant species 
classification using advanced machine learning and artificial intelli
gence techniques. 

Table 5 
Accuracy and kappa coefficient for species classification of each machine 
learning approach without and with feature reduction and selection methods 
under Bayesian optimization.   

Feature reduction and selection Accuracy (%) Kappa 

CTree 

Full band 41 0.38 
PCA 39 0.36 
RFE 41 0.38 
LASSO 38 0.34 
GARS 40 0.37 

KNN 

Full band 52 0.50 
PCA 41 0.38 
RFE 57 0.55 
LASSO 41 0.38 
GARS 53 0.51 

RF 

Full band 64 0.62 
PCA 49 0.46 
RFE 65 0.63 
LASSO 52 0.49 
GARS 62 0.59 

SVM 

Full band 84 0.83 
PCA 61 0.55 
RFE 86 0.85 
LASSO 63 0.61 
GARS 82 0.81 

XGBoost 

Full band 72 0.68 
PCA 51 0.49 
RFE 69 0.67 
LASSO 52 0.50 
GARS 66 0.64 

LightGBM 

Full band 74 0.71 
PCA 53 0.51 
RFE 70 0.68 
LASSO 55 0.53 
GARS 67 0.65  
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Fig. 5. Sensitivity, precision, and F1-score for each species in the Bayesian optimization-based SVM model with the RFE feature selection method.  

Fig. 6. Sensitivity, precision, and F1 of each species in the Bayesian optimization-based SVM model with the RFE feature selection method along with the number 
of samples. 
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