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Information on plant species is fundamental to forest ecosystems, in the context of biodiversity monitoring and
forest management. Traditional methods for plant species inventories are generally inefficient, in terms of cost
and performance, and there is a high demand for a quick and feasible approach to be developed. Of the various
attempts, remote sensing has emerged as an active approach for plant species classification, but most studies
have concentrated on image processing and only a few of them ever use hyperspectral information, despite the
wealth of information it contains. In this study, plant species are classified from hyperspectral leaf information
using different machine learning models, coupled with feature reduction and selection methods, and their per-
formance is optimized through Bayesian optimization. The results show that including feature selection and
Bayesian optimization increases the classification accuracy of machine learning models. Among these, the
Bayesian optimization-based support vector machine (SVM) model, combined with the recursive feature elimi-
nation (RFE) feature selection method, yields the best output, with an overall accuracy of 86% and a kappa
coefficient of 0.85. Furthermore, the confusion matrix revealed that the number of samples correlates with
classification accuracy. The support vector machine with informative bands after Bayesian optimization out-
performed in classing plant species. The results of this study facilitate a better understanding of spectral
(phenotype) information with plant species (genotype) and help to bridge hyperspectral information with

ecosystem functions.

1. Introduction

Information about plant species is fundamental to our knowledge of
forest biodiversity and ecosystems and is an inevitable requirement for
natural ecosystem conservation and sustainable management (Dalponte
etal., 2012; Santos et al., 2019). The ability to identify and classify plant
species is, therefore, essential for the automatic mapping of vegetation
composition, distribution, and forest dynamics. A traditional plant
species survey approach, however, involves a lot of laborious, costly,
and time-consuming fieldwork, which is commonly localized and can
rarely be extended to cover large scales (Cho et al., 2009; Ribeiro da Luz,
2006). As a result, effective and accurate techniques for comprehen-
sively classifying plant species are in high demand.

Among various attempts, the remote sensing technique offers a
practical approach for classifying plant species, especially at large scales
(Alonzo etal., 2014; Liu et al., 2021; Mayra et al., 2021). Several types of
remotely sensed data have been reported in previous studies for plant
species classification, ranging from multispectral, hyperspectral, light
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detection and ranging to their combinations (Avina-Hernandez et al.,
2023; Fassnacht et al., 2016; Heinzel and Koch, 2012; Zhang et al.,
2020b). Among the diverse remote sensing information, hyperspectral
leaf reflectance contains a number of continuous narrow spectral bands
for the finer discrimination of spectral properties and should have the
potential to classify plant species (Cavender-Bares et al., 2016; Hennessy
et al., 2020; Omeer and Deshmukh, 2021; Prospere et al., 2014). Dif-
ferences between the spectra relate closely to differences in biochemical
composition, pigments, and water content, as well as structures (Curran,
1989; Nakaji et al., 2019), contributing to the ability to distinguish plant
species. What is more, studies have demonstrated that spectral diversity
can be used as a surrogate for functional or phylogenetic diversity (Frye
et al., 2021; Schweiger et al., 2018), which provides a solid foundation
for plant species classification using spectroscopy. So far, leaf spectral
differences in different species have been confirmed in previous studies
(Castro-Esau et al., 2006; Jin et al., 2020), implying the possibility of
classifying species based on leaf hyperspectral signatures. In truth,
several previous studies have already demonstrated that there is a great
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potential for spectrally discriminating plant species (Hycza et al., 2018;
Ullah et al., 2021).

Classifying plant species from hyperspectral information relies on a
number of classification approaches, including both parametric and
non-parametric models. The most commonly and continuously used
method is discriminant analysis, e.g. linear discriminant analysis (LDA)
(Fisher, 1936), which is a parametric classifier. There is an assumption
of a normal distribution and it yields good results for species classifi-
cation in various ecosystems, particularly in tropical forests (Clark et al.,
2005; Féret and Asner, 2011). However, the use of non-parametric
classifiers, such as the k-nearest neighbor algorithm (KNN), random
forest (RF), and support vector machine (SVM), has gradually increased
to classify plant species in recent years (Khan et al., 2022; Maxwell et al.,
2018; Omeer and Deshmukh, 2021). These non-parametric classifiers
are effective for classifying complex and high-dimensional data and
have achieved good classification accuracies in previously reported
studies (Ferreira et al., 2016; Grabska et al., 2020). To the best of our
knowledge, however, few studies have ever conducted a direct com-
parison of different approaches, with most previous reports focused only
on each specific classification method. As a result, the potential gener-
alizability of classification models has yet to be fully evaluated.

On the other hand, it is well known that hyperspectral data has the
disadvantage of high data dimensionality and multicollinearity and thus
contains redundant information, resulting in overfitting and decreasing
the performance of the classification models (Fassnacht et al., 2014;
Zhang et al., 2020a). Consequently, using feature reduction and selec-
tion algorithms to select optimal latent factors for summarizing and the
optimal subset from the original hyperspectral data, such as principal
component analysis and recursive feature elimination (Demarchi et al.,
2020; Kalacska et al., 2007), is a critical step to addressing such short-
comings. Nevertheless, limited knowledge of how feature selection im-
pacts the accuracy of classification methods greatly confined our
understanding. Appropriate feature selection strategies for deriving
critical hyperspectral bands for accurate species classification should be
examined.

Importantly, machine learning models are highly sensitive to the
choice and values of the hyperparameters involved; ways of optimizing
these hyperparameters are considered to be one of the most critical steps
in machine learning models (Agrawal, 2021; Bischl et al., 2023).
Commonly applied hyperparameter optimization techniques, such as
grid search and random search, typically involve discretizing the
parameter space and implementing an iterative search procedure to
approximate the optimal hyperparameter (Bergstra and Bengio, 2012;
Yang and Shami, 2020). Recently, the Bayesian optimization (BO) al-
gorithm has gradually captured the attention of many fields and
emerged as an efficient method for hyperparameter tuning because of its
superiority to conventional methods (Snoek et al., 2012; Yang and
Shami, 2020). This method views the hyperparameter tuning process as
the optimization of a black-box function and determines the next hyper-
parameter value based on the previously-obtained results, avoiding
numerous unnecessary evaluations (Eggensperger et al., 2013; Malu
etal., 2021). Therefore, it may be worthwhile trying to use the algorithm
to optimize hyperparameters for machine learning models on plant
species classification from hyperspectral leaf information.

Furthermore, most previously reported studies on plant species
classification only explored specific species grown in limited environ-
ments. Very few studies have ever been conducted to encompass a wide
range of species belonging to different plant functional types, growing in
varied environments or ecosystems. As reported in previous studies,
large variations between and within the species could influence the
performance of classification models (Clark and Roberts, 2012; Hesketh
and Sanchez-Azofeifa, 2012), hence a comprehensive representation of
plant species is necessary. In addition, no consensus has yet been
reached on which classification models should be applied in discrimi-
nating plant species.

This study, therefore, aims to investigate different classification
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Table 1
Descriptions of the datasets used in this study.
Dataset Location Date Spectroradiometer Spectral
range
(nm)
ANGERS  Angers, France 2003 ASD FieldSpec 400-2450
Perkin Elmer
LOPEX Ispra 1993 Lambda 19 400-2500
Cedar Creek
FAB LTER, USA 2018 psr + 3500 350-2500
NEON Eastern USA 2017 ASD FieldSpec/psr+ 350-2500
Blackhawk
BHI Island, WI 2018 psr + 3500 350-2500
Nakakawane, 2014-2019, .
NAKA Japan 2021 ASD FieldSpec 350-2500

methods to classify plant species using hyperspectral leaf information,
using a relatively comprehensive dataset compiled from several publicly
available datasets covering different species from different locations.
Specific objectives include: 1) examine the feasibility of classifying plant
species using machine learning models; 2) assess the impact of feature
selection algorithms and hyperparameter optimization on classification
accuracy; and 3) evaluate how the classification accuracy for specific
species is sensitive to sample size.

2. Materials and methods
2.1. Data used in this study

The data used in this study were compiled from a number of inde-
pendent datasets covering various species and plant functional types
from different locations, each of which contained hyperspectral leaf
reflectance. In detail, the publicly available datasets included those
from: ANGERS (National Institute for Agricultural Research) (Jacque-
mound et al., 2003), LOPEX (Joint Research Centre) (Hosgood et al.,
1993), FAB (Cedar Creek LTER, East Bethel, MN, USA) (Kothari et al.,
2018), NEON (University of Wisconsin Environmental Spectroscopy
Laboratory) (Wang, 2017a, 2017b), and BHI (Blackhawk Island) (Chlus
and Townsend, 2018). In addition, another dataset from Nakakawane
Forest in Japan (NAKA) (138°06’E, 35°04'N) was also used in this study,
in which samples of Acer nipponicum, Acer shirasawanum, Betula grossa,
Fagus crenata, Pterostyrax hispidus, and Stewartia pseudocamellia
(collected from 2014 to 2019 and then 2021) were considered. The
detailed descriptions of these datasets are presented in Table 1.

For each dataset, spectral outliers were excluded by using principal
component space with a ratio statistic (Dangal et al., 2019) before they
were combined together. Since under-representative data samples have
difficulty meeting the requirement for separation into training and test
data sets in the machine learning classification methods, those species
with <50 spectral samples were also excluded, finally resulting in a total
of 52 species (a total of 8340 spectral samples) for further analysis
(Table 2). Furthermore, as the reflectance spectra of these datasets were
measured using either the ASD Field Spec (Analytical Spectral Devices,
Boulder, CO), Spectral Evolution PSR+, or Perkin-Elmer Lambda 19
spectroradiometer, which cover different wavelength ranges, the spec-
tral range was uniformed to the domain from 400 to 2400 nm in this
study. The distributions of leaf spectra in each combined dataset are
illustrated in Fig. 1.

2.2. Data analysis

The flowchart describing the steps for classifying plant species based
on spectral leaf information and using different machine learning
models, is illustrated in Fig. 2. Hyperspectral data within the domain of
400 to 2400 nm were smoothed using the Savitzky-Golay method first.
Then, four different feature reduction and selection methods were
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Table 2
Plant species list and the number of samples for each species used in this study.
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No Species Species Code Sample Number No Species Species Code Sample Number
1 Acalypha neomexicana ACANEO 72 27 Magnolia acuminata MAGACU 64
2 Acacia saligna ACASAL 147 28 Phacelia austromontana PHAAUS 100
3 Acer nipponicum ACENIP 52 29 Platanus occidentalis PLAOCC 156
4 Acer pseudoplatanus ACEPSE 191 30 Poa tracyi POATRA 72
5 Acer rubrum ACERUB 709 31 Polycarpon depressum POLDEP 90
6 Acer saccharinum ACESAC 627 32 Populus grandidentata POPGRA 160
7 Acer shirasawanum ACESHI 218 33 Prenanthes serpentaria PRESER 60
8 Ailanthus altissima AILALT 58 34 Pterostyrax hispidus PTEHIS 56
9 Andropogon gerardii ANDGER 181 35 Quercus xmacnabiana QUE x MA 90
10 Besseya alpina BESALP 78 36 Quercus xpalaeolithicola QUE x PA 58
11 Betula alleghaniensis BETALL 80 37 Quercus alba QUEALB 665
12 Betula grossa BETGRO 88 38 Quercus falcata QUEFAL 80
13 Betula nigra BETNIG 151 39 Quercus mohriana QUEMOH 86
14 Betula papyrifera BETPAP 120 40 Quercus nigra QUENIG 86
15 Calliandra conferta CALCON 64 41 Quercus phellos QUEPHE 56
16 Calochortus tolmiei CALTOL 134 42 Quercus rubra QUERUB 772
17 Carya cordiformis CARCOR 214 43 Quercus velutina QUEVEL 86
18 Celtis occidentalis CELOCC 87 44 Quercus virginiana QUEVIR 77
19 Digitaria villosa DIGVIL 66 45 Robinia pseudoacacia ROBPSE 74
20 Fagus crenata FAGCRE 320 46 Sophora nuttalliana SOPNUT 68
21 Fagus grandifolia FAGGRA 78 47 Spartina pectinata SPAPEC 81
22 Fraxinus nigra FRANIG 66 48 Stewartia pseudocamellia STEPSE 97
23 Fraxinus pennsylvanica FRAPEN 105 49 Tilia americana TILAME 694
24 Juglans nigra JUGNIG 108 50 Trichomanes davallioides TRIDAV 68
25 Linum striatum LINSTR 122 51 Typha latifolia TYPLAT 68
26 Liriodendron tulipifera LIRTUL 128 52 Ulmus americana ULMAME 112
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Fig. 1. Hyperspectral leaf reflectance of different datasets.

employed to summarize and extract potential informative spectral bands
for later plant species classification using different classification models,
using full bands or the selected informative spectral bands. In the
meantime, the Bayesian optimization algorithm was incorporated into
the machine learning models.

2.2.1. Feature reduction and selection methods

Several popularly applied feature reduction and selection methods
were used in this study, including principal components analysis (PCA),
recursive feature elimination (RFE), least absolute shrinkage and se-
lection operator (LASSO), and a genetic algorithm for the identification
of a robust subset (GARS). Their brief summaries are presented in
Table 3. These methods have been successfully used together with many

classification algorithms to build robust classification models (Chiesa
et al., 2020; Demarchi et al., 2020; Kalacska et al., 2007). In addition,
the available functions of each method are also shown in Table 3. As for
this study, the scree plot of variance, explained by each component in
PCA, and the cumulative spectral variance were examined to determine
the number of principal components (PCs) in subsequent analyses. The
correlations of selected PCs with each wavelength were then calculated
to evaluate the spectral information they represented. The number of
features in the RFE and GARS methods were retained in the range of 20
to 200. The criteria in the LASSO to select variables was based on the
penalty factor (4). Ten-fold validation was applied in all RFE, LASSO,
and GARS selection methods.
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. Flowchart of the plant species classification procedure in this study.

Table 3
Feature extraction and selection methods, as well as the functions that implement these methods in plant species classification in this study.
Selection method Type Description Package: Parameter
Function
Principal components analysis Feature Transform the data into a set of orthogonal components and maximize the
(PCA) extraction variance to summarize the spectral information (Lever et al., 2017). stats: preomp -
Recursive feature elimination Feature Aim at estimating the features that are most helpful for the classes of interest and caret: tfe feature_range
(RFE) selection recursively eliminate the unimportant features (Guyon et al., 2002). ) (20—200)
Least absolute shrinkage and Feature A popular high-dimensional data analysis method that compresses non-relevant 1 ol lambda (4,
selection operator (LASSO) selection variables to be exactly zero (Tibshirani, 1996). gimnet: gimnet 0.001-0.1)
Genetic algorithm for the An innovative implementation of genetic algorithms for fast and accurate .
identification of a robust subset Feature identification of informative features in multi-class and high-dimensional Bioconductor: feature range
selection GARS_GA (20-200)

(GARS) datasets (Chiesa et al., 2020).

2.2.2. Classification approaches

In this study, the composited data were separated into training (80%)
and testing (20%) datasets following a stratified sampling method based
on species to maintain the same class distribution as the original dataset.
This splitting was conducted using the ‘createDataPartition’ function in
the caret package (Kuhn, 2008). Well-known types of machine learning
classification approaches were considered in this study, such as condi-
tional inference trees (CTree), random forest (RF), support vector

machine (SVM), k-nearest neighbor (KNN), and gradient boosting
(XGBoost: extreme gradient boosting; LightGBM: light gradient boosting
machine). These classification methods were extensively documented in
previous studies classifying plant species and have demonstrated mod-
erate to good performance (Georganos et al., 2018; Sabat-Tomala et al.,
2020; Venkatasubramaniam et al., 2017). The description, implemented
packages, and functions for these classification methods are shown in
Table 4. In this study, the Bayesian optimization (BO) method, as
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Table 4
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Description of different classification methods for plant species classification and the packages and functions used to implement these methods in this study.

Classification method Description

Package: Function Parameter

Conditional inference trees

(CTree) (Hothorn et al., 2006).

Random forest (RF)

Support vector machine

K-nearest neighbor (KNN)

Extreme gradient boosting
(XGBoost)

Light gradient boosting

machine (LightGBM) tree-based learning algorithms (Ke et al., 2017).

It determines the variable to split on based on a measure of association between
each covariate and target, and then calculates the best split point for that variable

It is a congregation of decision trees that are created with subsets which are
selected on a random basis with replacement (Breiman, 2001).

It aims to obtain optimal hyperplanes through the selection of the points that have
(SVM) the largest gaps between different classes (Cortes and Vapnik, 1995).

It searches k samples that are nearest to the point to be classified based on the
distance metrics between different data points (Steinbach and Tan, 2009).

It is a scalable machine learning method for tree boosting that performs
classification based on obtained feature importance (Chen and Guestrin, 2016).

It is a fast and efficient gradient boosting method to perform classification using

minsplit (10-40), minbucket (5-15),

kit: ct
partykit: ctree maxsurrogate (0-5)

mtry (1-(ncol(feature)-1), ntree

randomForest: (200—1000), nodesize (1-(sqrt(nrow
randomForest X

(traindata)))

cost (0.01-100), gamma (0.001-0.1),
caret: svm N

kernel (radial)
class: knn n_neighbors (3-50)

eta (0.1-1), max_depth (4-6),
subsample (0.1-1),

bytree (0.4-1), nrounds (50-200)
learning rate (0.01-1),
max_depth (4-6), bytree (0.4-1),
subsample (0.1-1),

min_data (20), nrounds (50-200)

xgboost: xgb.train

lightgbm: 1gb.train

implemented in the rBayesianOptimization package, was employed to
obtain the optimal values of these hyperparameters (Table 4).

2.3. Classification performance evaluation

All analyses were performed in the R environment on a Windows 10
desktop with 32 GB of RAM, and an NVIDIA GeForce RTX 3060 Ti
graphics card with 8 GB of RAM. The performance of machine learning
models on plant species classification was evaluated using overall ac-
curacy and kappa coefficient (Cohen, 1960), by generating confusion
matrices (Theissler et al., 2022), which provide a comparison between
actual and predicted labels of species and have been a very commonly
used measure for solving classification problems. The correspondence of
specific species was assessed in terms of sensitivity, precision, and F1-
score in the confusion matrices. Sensitivity and precision are the frac-
tions of correctly predicted actual positive classes and predictive posi-
tive classes, respectively. In addition, the higher F1-score (the harmonic
mean of sensitivity and precision) showed a better performance. The
specific formulas for calculating these criteria are given below:

TP
sitivity = ——— 1
Sensitivity P+ FN (@D)]
TP
Precision = ———— 2
recision TP + FP (2)
2 x TP
Fl —score = ————— 3

2 x TP+ FN + FP

where TP, FN, and FP are true positive, false negative, and false positive,
respectively, based on the comparison of the actual and predicted spe-
cies labels.

3. Results

3.1. Informative hyperspectral bands identified by different feature
reduction and selection methods

PCA analysis of spectral leaf data revealed that the first three prin-
cipal components (PCs) explained 94% of the cumulative variance, ac-
cording to the screen plot of variance. Correlations between the
determined PCs and each wavelength are presented in Fig. 3a, clearly
showing that each PC carries information from specific wavelengths. In
detail, the strongest correlations between the first PC and wavelengths
were found in the shortwave infrared (SWIR) regions with a spectral
domain longer than 1600 nm. The second and third PCs had the stron-
gest correlations, with the near-infrared (NIR) domain (800-1100 nm)
and the visible (VIS) domain (500-700 nm), respectively.

The informative hyperspectral bands selected for plant species clas-
sification using RFE, LASSO, and GARS selection methods are illustrated
in Fig. 3b. In detail, 72, 57, and 48 informative bands were selected by
RFE, LASSO, and GARS, respectively. Obviously, much fewer bands
were involved in the GARS selection method and the selected bands
were spread over the whole spectral regions from 400 to 2400 nm. In
comparison, the LASSO selection method selected the bands in specific
spectral regions. Commonly, spectral bands selected by the three se-
lection methods most include the visible region of the spectrum
(400-700 nm); furthermore, the wavelengths around 1900 nm were
consistently selected, irrespective of the selection method.

3.2. Classification models with or without feature reduction and selections

The performance (overall accuracy and kappa coefficient) of each
machine learning classification model (including CTree, KNN, RF, SVM,
XGBoost, and LightGBM) on plant species classification coupling with or
without feature reduction and selections was depicted in Fig. 4 and
Table 5. The Bayesian optimization (BO) algorithm was used for
hyperparameter optimization.

In detail, the SVM model achieved the highest mean accuracy (84%)
and kappa coefficient (0.83) among all the classification models, when it
was without coupling with any feature reduction or selection methods.
This was followed by the LightGBM and XGBoost models, which had the
mean accuracy and kappa coefficient of 74% and 0.71, and 72% and
0.68, respectively. The CTree model performed worst of all and only
yielded a mean accuracy of 41% and a mean kappa coefficient of 0.38.

The accuracy and kappa coefficient of the classification models with
the fewer informative features selected by PCA and LASSO were lower
than the performance of the models without feature reduction and se-
lection methods. However, the performance of classification models
based on the selected features of RFE and GARS was comparable and
even better in comparison to using all features. The SVM model also
outperformed the other models, based on the features selected by PCA,
RFE, LASSO, and GARS methods, with the accuracy and kappa coeffi-
cient ranging from 61% to 86% and 0.55 to 0.85, respectively. More
specifically, after hyperparameter optimization, the SVM model com-
bined with the RFE selection method obtained an accuracy and kappa
coefficient of 86% and 0.85, respectively, which is higher than the
model combined with the GARS (82% and 0.81), LASSO (63% and 0.61),
and PCA (61% and 0.55) methods. Furthermore, the other classification
models combined with the RFE band selection method exhibited a
higher accuracy and kappa coefficient than the PCA, GARS, and LASSO
selection methods. On the other hand, however, the GARS involved
much fewer spectral bands (48) than when based on the RFE selection
method (72). Overall, the SVM model had the highest accuracy and
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kappa coefficient among the classification models which underwent the
Bayesian optimization for hyperparameters in all cases.

3.3. Confusion matrix for individual species classification

The confusion matrix generated from the best model, namely the
SVM model in combination with RFE after Bayesian optimization, was
further evaluated in terms of sensitivity, precision, and F1-score (Fig. 5).
The model very accurately classified ACEPSE (Acer pseudoplatanus),
CARCOR (Carya cordiformis), FAGCRE (Fagus crenata), PHAAUS (Pha-
celia austromontana), QUERUB (Quercus rubra), and POPGRA (Populus
grandidentata) with high sensitivity, precision, and F1 (all >0.95). The
ACERUB (Acer rubrum), ACESAC (Acer saccharinum), ACESHI (Acer
shirasawanum), ANDGER (Andropogon gerardii), QUEALB (Quercus alba),
SPAPEC (Spartina pectinate), and TILAME (Tilia americana) were next
best, with sensitivity, precision, and F1 >0.90. The model was less ac-
curate in the prediction of PRESER (Prenanthes serpentaria) with sensi-
tivity, precision, and F1 <0.50.

Furthermore, the sensitivity, precision, and F1-score were found to
be non-linearly related to the number of samples (Fig. 6). Sensitivity,
precision, and F1-score increased with the number of samples until they
reached about 150 and then they remained relatively constant. Specif-
ically, the sensitivity, precision, and F1-score were all higher than 0.82
in each species with samples >150, mostly within the range of 0.85 to
0.98. The sensitivity, precision, and F1-score in the species with <150
samples mostly ranged from 0.50 to 0.85, except for a few individual
species.

4. Discussion
4.1. Classification approaches

In this study, different non-parametric classification models were

examined, with regard to their potential to classify plant species from
hyperspectral leaf information. The results show that hyperspectral leaf
reflectance has the ability to accurately classify plant species, as has
been reported in previous studies (Clark et al., 2005; Omeer and Desh-
mukh, 2021; Prospere et al., 2014). It has been reported that spectral
leaf reflectance varies considerably due to a variety of factors, such as
seasonality, canopy variations, and environmental variability (Asner
et al., 2014; Hesketh and Sanchez-Azofeifa, 2012; Jin et al., 2020), and
this can restrict the separability of plant species. In our study, the species
were collected from different datasets in various environments, with
seasonal and canopy variations contained in some individual datasets.
Several robust machine learning classification methods were applied to
the plant species classification in this study and obtained moderate to
good results in this study, suggesting a strong potential for classifying
plant species using machine learning models based on leaf-level
hyperspectral information.

Of all the machine learning classification models available, the best
accuracy and kappa coefficient for plant species classification was ach-
ieved by the SVM model after Bayesian optimization, regardless of
whether feature reduction was used or which selection method was
used. The results are consistent with previous studies which reported
that the SVM model obtained superior performance in plant species
classification across the remote sensing fields, owing to the advantage of
handling high-dimensional feature spaces (Cervantes et al., 2020;
Mountrakis et al., 2011). For example, Grabska et al. (2020) demon-
strated that the SVM model outperformed the random forest and
extreme gradient boosting for forest species mapping using a combina-
tion of Sentinel-2 imagery and environmental data. Furthermore, the
SVM model based on informative bands, selected by RFE selection
methods after the Bayesian optimization, obtained the highest accuracy
(86%) and kappa coefficient (0.85) throughout this study. The predic-
tive ability, as shown in this study, is higher than those reported in
previous studies (Cavender-Bares et al., 2016; Hesketh and Sanchez-
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(BO) for the plant species classification.

Azofeifa, 2012; Prospere et al., 2014), albeit the dataset used in this
study contains the species with different environmental, seasonal, and
canopy variations. The performance was similar to the accuracy of 11
tree species classification (85.6%) using the combination of SVM and
RFE from spectral imagery (Grabska et al., 2020), but was superior to the
most popular multi-layer perception neural network (MLP) (Rawat and
Wang, 2017; Sumsion et al., 2019), which had the accuracy and kappa
coefficient of 0.81 and 0.80, respectively, when the hidden layer con-
sisted of 32 neurons. The results clearly revealed the effectiveness of
feature selection and hyperparameter optimization in machine learning
models for plant species classification.

4.2. Importance of feature selections for plant species classifications

Hyperspectral data contains narrow bands that are correlated with
one another and commonly involve feature reduction and selection al-
gorithms to isolate the most important bands when performing plant
species classification. In this study, with the RFE feature selection, the
classification of these plant species with the Bayesian optimization-
based SVM model resulted in an overall accuracy of 86% and a kappa
coefficient of 0.85, which were relatively higher than other feature
reduction and selection methods, as well as full bands. In comparison to
full bands, the RFE selection method uses much fewer spectral bands. On
the other hand, the PCA, LASSO, and GARS methods reduced the
number of spectral bands during classification, while losing part of the

inherent spectral information, resulting in lower classification perfor-
mance. The results are in line with previous studies, which reported the
effectiveness of the feature selection method in the machine learning
models for species classification based on hyperspectral signatures
(Demarchi et al., 2020; Hennessy et al., 2020).

Within the feature selection methods, the relatively unique spectral
information was further identified for plant species classification. The
spectral regions selected by the RFE selection method were mostly
concentrated in visible light (400-700 nm) and shortwave infrared
(SWIR). The results are consistent with previous studies, highlighting
the classification ability and relatively unique spectral information
contributed by pigment absorption related to the xanthophyll cycle and
chlorophyll (Alonzo et al., 2014). The bands around 1900 nm were
selected consistently in the feature selection methods, which are related
to water absorption and largely influence leaf reflectance (Das et al.,
2021; Skoneczny et al., 2020). These two spectral regions are also
closely related to the phylogenetic structure and signatures, and thus
contribute to species classification (Diniz et al., 2021; McManus et al.,
2016). Nevertheless, fewer near-infrared spectral regions were selected
in this study, in contrast to the study by Clark et al. (2005), which found
that near-infrared (NIR: 700-1327 nm) bands were important spectral
regions for tropical tree species discrimination. The results are in
accordance with the study by Dalponte et al. (2012), which found that
the NIR region was inappropriate for tree species classification, based on
the fusion of spectral images and LiDAR data, due to high within-class
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Table 5

Accuracy and kappa coefficient for species classification of each machine
learning approach without and with feature reduction and selection methods
under Bayesian optimization.

Feature reduction and selection Accuracy (%) Kappa
Full band 41 0.38
PCA 39 0.36
CTree RFE 41 0.38
LASSO 38 0.34
GARS 40 0.37
Full band 52 0.50
PCA 41 0.38
KNN RFE 57 0.55
LASSO 41 0.38
GARS 53 0.51
Full band 64 0.62
PCA 49 0.46
RF RFE 65 0.63
LASSO 52 0.49
GARS 62 0.59
Full band 84 0.83
PCA 61 0.55
SVM RFE 86 0.85
LASSO 63 0.61
GARS 82 0.81
Full band 72 0.68
PCA 51 0.49
XGBoost RFE 69 0.67
LASSO 52 0.50
GARS 66 0.64
Full band 74 0.71
PCA 53 0.51
LightGBM RFE 70 0.68
LASSO 55 0.53
GARS 67 0.65

diversity. The selection of particular spectral domains improved classi-
fication accuracy and computation efficiency, compared to the retention
of whole hyperspectral wavelengths, thereby better classifying plant
species, especially in large datasets.

4.3. Impact of Bayesian optimization on classification accuracy

This study aimed to seek a robust classification model that contin-
uously delivers high classification performance when classifying plant
species in datasets with large variations. Thereby, the Bayesian opti-
mization method was applied to determine the optimal hyperparameters
for these machine learning models. So far, the Bayesian optimization
method has captured a lot of attention as an efficient tool for hyper-
parameter tuning (Agrawal, 2021; Malu et al., 2021; Yang and Shami,
2020) and it is essential for models involving black-box functions and
very little prior information. Accordingly, the analysis revealed that a
combination of the Bayesian optimization yielded an overall accuracy
range of 41-84% when the classification models were built without
considering feature reduction and selection methods. The ranges of ac-
curacy in different classification models ranged from 38 to 86% using
the Bayesian optimization method including feature reduction and se-
lection. This result is in line with the previous studies in various fields
(Sameen et al., 2020; Wang et al., 2021), which showed superior per-
formance in the use of Bayesian optimization in machine learning
models for classification problems.

We also explored the performance of classification models using the
grid search optimization method, which is one of the most commonly
employed hyperparameter optimization methods (Injadat et al., 2020;
Yang and Shami, 2020). Using the grid search optimization method
yielded a relatively weak performance, with accuracies ranging from
37% to 70% without considering or including feature reduction and
selection (Fig. 7). Obviously, the hyperparameter tuning with the
Bayesian optimization method in the machine learning models produced
an improved classification of the plant species in all cases, in terms of
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accuracy and kappa coefficient, highlighting the importance of hyper-
parameter optimization using the Bayesian optimization method.
Interestingly, we note that, with the grid search optimization method,
the feature reduction and selection is no longer a critical step, as we
obtained similar or, even, slightly better results (accuracies varied from
37% to 69%, Fig. 7), especially for the LightGBM and XGBoost models.

4.4. Classification performance of individual species and future studies

We divided the species into different plant types, based on xylem
properties, and found that the sensitivity, precision, and F1-score of
herbaceous species (0.88, 0.89, and 0.88) were higher than woody
species (0.79, 0.82, and 0.80). Further separation of woody species into
evergreen broadleaf and deciduous broadleaf revealed that deciduous
species have higher sensitivity, precision, and Fl-score than the ever-
greens, the evergreen broadleaf shrub having the lowest sensitivity
(0.63), precision (0.72), and Fl-score (0.67). In addition, in terms of
individual species, deciduous broadleaf trees (except P. austromontana)
had the highest sensitivity, precision, and Fl-score. For the species
P. austromontana, the villous on the leaf of this species might have
affected the hyperspectral signatures. Overall, our results indicate that
hyperspectral leaf reflectance captured functional differences. Further-
more, we found the classification performance of most individual spe-
cies in the classification models to correlate with the number of samples,
more or less. When the sample numbers are large (>200, see Fig. 6),
their classification accuracies are very high, although some plant species
with small samples also achieved high accuracies.

Relatively high classification accuracy was obtained (for a total of 52
species) in this study when using leaf-level spectra on species classifi-
cation. Even so, it was realized that it may not currently be possible to
simultaneously map all species in biodiverse forests. Expanding the
classification feature space with non-spectral data may be required in
the future, since Castro-Esau et al. (2004) demonstrated that incorpo-
rating leaf chlorophyll content as ancillary data improved the classifi-
cation of lianas and trees, suggesting the potential to include other leaf
parameters into plant species classification. In addition, several studies
have demonstrated that LiDAR data are valuable for identifying
different species with different biophysical characteristics, thereby the
classification accuracy could be further improved in combination with
them (Cao et al., 2021; Dalponte et al., 2012; Liu et al., 2017). As a
result, additional plant species information, such as plants’ biophysical
and biochemical parameters, should help to further differentiate plant
species and improve the interpretability of hyperspectral signatures.

5. Conclusion

Plant species classification has been attempted using machine
learning models from hyperspectral leaf information with a composite
dataset covering a broad range of species and plant functional types,
grown in various environments. The classification accuracy was
considerably influenced by the feature selection and hyperparameter
optimization approaches. The support vector machine, based on infor-
mative bands after Bayesian optimization, performed well in classing
plant species. The results obtained in this study demonstrated the po-
tential of using hyperspectral leaf information to classify plant species,
which can provide a valuable basis for remote species mapping in a
wider variety of ecosystems, even though leaf spectral characteristics
may be influenced by environmental factors. While it remains a major
challenge to collect representative ground data over large and difficult-
to-entry areas, the integration of leaf hyperspectral data with other types
of remote sensing data may improve classification accuracy and the
ability to detect plant species in complex environments. In addition,
future studies should progressively attempt to automate plant species
classification using advanced machine learning and artificial intelli-
gence techniques.
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