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Reference‑free lossless 
compression of nanopore 
sequencing reads using 
an approximate assembly approach
Qingxi Meng 1,2*, Shubham Chandak 1,2*, Yifan Zhu 1,2 & Tsachy Weissman 1

The amount of data produced by genome sequencing experiments has been growing rapidly over the 
past several years, making compression important for efficient storage, transfer and analysis of the 
data. In recent years, nanopore sequencing technologies have seen increasing adoption since they are 
portable, real-time and provide long reads. However, there has been limited progress on compression 
of nanopore sequencing reads obtained in FASTQ files since most existing tools are either general-
purpose or specialized for short read data. We present NanoSpring, a reference-free compressor for 
nanopore sequencing reads, relying on an approximate assembly approach. We evaluate NanoSpring 
on a variety of datasets including bacterial, metagenomic, plant, animal, and human whole genome 
data. For recently basecalled high quality nanopore datasets, NanoSpring, which focuses only on the 
base sequences in the FASTQ file, uses just 0.35–0.65 bits per base which is 3–6× lower than general 
purpose compressors like gzip. NanoSpring is competitive in compression ratio and compression 
resource usage with the state-of-the-art tool CoLoRd while being significantly faster at decompression 
when using multiple threads (> 4 × faster decompression with 20 threads). NanoSpring is available on 
GitHub at https://​github.​com/​qm2/​NanoS​pring.

The rapid decrease in the cost of genome sequencing has led to an explosion in the amount of data produced by 
these experiments, with the raw data usually requiring the most space for storage. The raw sequencing data is 
obtained in the form of reads with sequencing depth/coverage often being 30× or higher. A typical human whole 
genome sequencing experiment can produce 100 s of GBs of data in FASTQ files. Given the high sequencing 
depth, there is much redundancy to be exploited in the reads, and several specialized compressors like SPRING1 
and PgRC2 have been developed for this data. The typical approach used by these compressors is to efficiently 
build an approximate assembly using the reads and then store this assembly along with the encoding of the reads 
with respect to the assembly.

While the existing compressors have been mostly built for short-read sequencers such as Illumina, in recent 
years, nanopore sequencing, specifically using Oxford Nanopore Technologies (ONT) sequencers3, has seen 
increasing adoption since it is portable, real-time and provides long reads. However, there has been limited 
progress on compression of nanopore sequencing reads. Most existing works like SPRING and PgRC operate 
under the assumption that the reads are short ( ∼ 100 s of bases) and low-error (with most errors being substitu-
tions). On the other hand, nanopore reads are much longer (often over hundreds of thousands of bases long), 
and have a much higher error rate, including substitution, insertion, and deletion errors from the basecalling 
process that converts the raw current signal to the read sequences4. However, the error rate has fallen dramatically 
in the recent years with the advent of deep learning based basecallers which achieve median error rate close to 
5% or better5, suggesting that a similar approximate assembly approach with some adaptations can be applied 
to nanopore sequencing reads.

There have been a few works on compression of nanopore FASTQ data in recent years. ENANO6 focuses 
mostly on quality score compression, and uses a context-based model followed by arithmetic coding for read 
sequences. Note that while quality scores occupy a significant amount of space even after compression, we focus 
on read sequences due to the relative lack of research in this area, and since quality scores are often ignored by 
downstream tools like minimap27. Quality scores have also been compressed lossily without an impact on the 
downstream performance for short-read technologies8,9 and more recently for nanopore itself10,11. RENANO12 
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is a recent reference-based compressor that achieves significantly better compression for read sequences, but 
is limited to aligned data with a reference available. Most recently, CoLoRd10 included both a reference-free 
and reference-based compressor using overlap graph based approach, achieving significant improvement over 
ENANO in the reference-free mode at the cost of higher resource usage. The read sequence compression in 
CoLoRd is based on construction of a similarity graph across reads using k-mer anchors, followed by differential 
encoding of reads with respect to the closest neighbor. In addition, CoLoRd also includes analysis of lossy quality 
value compression showcasing that the impact on downstream performance is minimal.

In this work, we present NanoSpring, which is a lossless reference-free compressor for nanopore sequencing 
reads. NanoSpring uses an approximate assembly approach partly inspired by existing assembly algorithms but 
adapted for significantly better performance, especially for the recent higher quality datasets. On recent human 
whole genome datasets, NanoSpring achieves close to 3-6x improvement in compression as compared to general 
purpose compressors and ENANO. NanoSpring is competitive in compression ratio and compression resource 
usage with the state-of-the-art tool CoLoRd while being significantly faster at decompression. NanoSpring is 
available as an open-source tool on GitHub, requires only a FASTQ file as input for compression, and does not 
compress read identifiers or quality values.

Results and discussion
NanoSpring algorithm overview.  NanoSpring is a lossless compressor for nanopore read sequences 
and does not require an external reference for compression. NanoSpring relies on an approximate-assembly 
approach, where we first assemble the reads into contigs, obtain the consensus sequence for each contig, and 
finally store the consensus sequence and encode the reads with respect to the consensus sequence. Parts of the 
algorithm were inspired by the MinHash-based assembler MHAP13, with suitable adjustments to the parameters 
to achieve orders of magnitude speedup over the assembler while still obtaining a sufficiently accurate assembly 
for compression purposes.

NanoSpring first converts the reads into an efficient 2 bits/base representation on disk (ignoring read identi-
fiers and quality values in the FASTQ file). Next, NanoSpring indexes the reads using MinHash which enables 
efficient lookup of reads overlapping a given sequence, effectively handling substitution, insertion, and deletion 
errors. Once the index is constructed, NanoSpring attempts to build contigs consisting of overlapping reads. The 
contigs are represented using consensus graphs with each read corresponding to a path on the graph. The contig 
is built by greedily searching the MinHash index for reads that overlap with the current consensus sequence 
of the graph, and adding the candidate reads to the graph using minimap27 alignment. Finally, the consensus 
sequence and the errors in the reads with respect to the consensus sequence are written to separate streams and 
compressed using general-purpose compressors. This process is illustrated in Fig. 1a. Any reads that remain 
left out of this process (lone reads) are simply encoded directly. The decompression process is quite simple: the 
decompressor first obtains the consensus sequence and error streams using the general-purpose decompressor. 
Then it applies the errors to the appropriate parts of the consensus sequence to obtain the reads, using disk based 
sorting to recover the reads in the original ordering while minimizing memory usage. More detailed description 
of the various stages, design choices and parameters is available in Methods.

Experiments and results.  We tested NanoSpring on several real datasets that cover a variety of organ-
isms with different genome lengths sequenced at varying depths of coverage. We compare NanoSpring to the 
current state-of-the-art reference-free compressors for nanopore FASTQ files, ENANO6 and CoLoRd10 and to 
pigz (https://​zlib.​net/​pigz/) which is a multithreaded version of the general-purpose compressor Gzip. While 
ENANO compresses the entire FASTQ file including the read sequences, quality values and read identifiers, we 
only focus on the compressed size for the read sequences. We note that ENANO supports multiple compression 
levels, and we use the default one since it is significantly faster than the maximum compression level with mini-

Figure 1.   (a) Consensus graph for a contig showing the consensus sequence (path shown in red) and two 
reads. The read with the path shown in green has index 41 in the FASTQ file, and has a substitution compared 
to the consensus sequence. The read with the path shown in blue has index 123 in the FASTQ file, is reverse 
complemented (RC) with respect to the consensus sequence, and has a deletion and an insertion. (b) The 
encoding of the contig into multiple streams. Note that the error position is 0-indexed and delta coded, and the 
error base needs to be stored only for insertions and substitutions.

https://zlib.net/pigz/
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mal difference in read sequence compression ( � 1% ). We ran reference-free CoLoRd in the balanced mode with 
quality and read identifier compression mode set to none. All experiments were run on an Ubuntu 18.04.5 server 
with 40 Intel Xeon processors (2.2 GHz) and 260 GB RAM. The tools were run with 20 threads unless specified 
otherwise. Details on installing and running the various tools are provided in Supplementary data.

Datasets.  The datasets used for experiments are listed in Table 1. These include bacterial, metagenomic, ani-
mal, plant, and human datasets. Further details on obtaining these datasets are provided in the Supplementary 
Data. We included some standard datasets including the NA12878 dataset (hs1) and the Zymo microbial stand-
ard (zymo). We also include a mix of datasets with different basecalling qualities, including datasets basecalled 
with more recent tools that provided much higher quality and better scope for compression, including a R10.4 
dataset (hs4). To further test the impact of the basecaller on the compression rate, we basecalled the S. aureus 
dataset using three modes and compare the results later. We also looked into the impact of coverage on the com-
pression ratio for the M. acuminata (banana) and CHM13 dataset (hs3) which were available at a high initial 
coverage (results shown later).

Compression results.  Table 2 shows the compression results for Gzip, ENANO, CoLoRd, and NanoSpring on 
the datasets. We observe that Gzip and ENANO perform consistently across the datasets, achieving around 2.2 
and 1.9 bits/base, respectively (with ∼ 2 bits/base being achievable with a fixed-length encoding). NanoSpring 
provides much better compression, getting below 0.7 bits/base for the human datasets (hs2, hs3) and to 0.35 bits/
base for hs4, which is around 3–6× better than Gzip and ENANO. Although CoLoRd generally provides better 
compression results than NanoSpring, NanoSpring is competitive for the recent human datasets with low error 
rates (e.g. hs2, hs3, hs4). In absolute terms, NanoSpring compresses the 84 GB hs2 dataset to less than 7 GB. 
For most other datasets, NanoSpring achieves close to 2 × improvement over the Gzip and Enano. Note that the 
compression results for the hs1 dataset are significantly worse, although NanoSpring still outperforms Gzip and 
ENANO. This can be explained by the fact that this dataset was obtained using an older basecaller with appreci-
ably higher error rates. Given the steady improvement in basecaller quality over the years4, we can expect the 
performance of NanoSpring to improve further in the future (the impact of basecaller error rate on NanoSpring 
performance is discussed below).

Table 1.   Datasets used for experiments. The uncompressed size refers to the file size obtained by removing the 
quality scores and sequence identifiers from the FASTQ files. N50 is a robust measure for read lengths, with 
the reads with length above the N50 metric capturing 50% of the data. The zymo dataset was obtained from 
a bonito basecalling of the Zymo sample (details at https://​github.​com/​Kirk3​gaard/​2020-​05-​20_​ZymoM​ock_​
Q20EA). The hs2 and hs4 datasets were was obtained from the ONT Open Datasets (https://​labs.​epi2me.​io/​
gm243​85_​2020.​09/ and https://​labs.​epi2me.​io/​gm243​85_​q20_​2021.​10/, respectively).

Dataset name Species Sample
Genome size 
(Mbp) Coverage

Number of reads 
(M)

Average read 
length (kb) N50 (kb)

Uncompressed 
size (GB) Source

sa S. aureus CAS28_02 2.9 84× 0.01 21.99 24.8 0.24 4

zymo Metagenomic SAMEA8172073 – – 5.44 3.30 4.9 18.0 See caption

snail C. squamiferum SAMN10963494 356 139× 7.45 6.65 7.3 49.5 14

banana M. acuminata SAMEA6104609 523 177× 5.19 17.9 31.6 92.7 15

hs1 H. sapiens NA12878 3200 42× 15.7 8.48 13.6 132.9 3

hs2 H. sapiens GM24385 3200 26× 3.44 24.5 46.5 84.2 See caption

hs3 H. sapiens CHM13 3200 23× 5.90 12.6 58.7 74.2 16

hs4 H. sapiens GM24385 3200 40× 9.6 12.3 22.4 117.6 See caption

Table 2.   Compression results for read sequences using Gzip, ENANO and NanoSpring.

Dataset Name Coverage Uncompressed size (GB)

Compressed size in bits/base

Gzip ENANO CoLoRd NanoSpring

sa 84× 0.24 2.29 1.89 0.48 0.49

zymo – 18.0 2.33 1.96 0.49 0.60

snail 139× 49.5 2.14 1.80 0.95 1.06

banana 177× 92.7 2.28 1.93 0.91 1.08

hs1 42× 132.9 2.24 1.89 1.13 1.47

hs2 26× 84.2 2.20 1.87 0.60 0.67

hs3 23× 74.2 2.18 1.86 0.59 0.68

hs4 40× 117.6 2.18 1.86 0.33 0.35

https://github.com/Kirk3gaard/2020-05-20_ZymoMock_Q20EA
https://github.com/Kirk3gaard/2020-05-20_ZymoMock_Q20EA
https://labs.epi2me.io/gm24385_2020.09/
https://labs.epi2me.io/gm24385_2020.09/
https://labs.epi2me.io/gm24385_q20_2021.10/
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Time and memory usage.  Tables  3 and 4 show the time and peak memory usage for the compression and 
decompression using the four tools, all running on 20 threads. We note that ENANO does not provide a mode 
for compressing only the read sequences, and so the time and memory usage numbers include the compression 
of quality scores and read identifiers. Despite this, we see that ENANO significantly outperforms CoLoRd and 
NanoSpring in terms of compression time/memory and decompression memory. Gzip also uses much less time 
and memory than CoLoRd and NanoSpring. Among the approximate assembly based compressors, we observe 
that CoLoRd generally does a bit better than NanoSpring on compression time and memory usage. On the other 
hand, NanoSpring is faster and more memory efficient during decompression as compared to CoLoRd, requir-
ing around 11 minutes and 5.6 GB peak memory for a 26x human dataset (hs2). Figure 2 visually compares the 
compression and decompression speeds for CoLoRd and NanoSpring for the different datasets. We see that the 
decompression speed slightly decreases for worse compression rate for NanoSpring due to the entropy decod-
ing of lone reads taking up more time. We observe that NanoSpring is typically ~ 4× faster than CoLoRd at 
decompression, which is largely explained by the efficient use of multithreading (CoLoRd does not support mul-
tithreading during decompression due to their archive structure10). In terms of compression speed, NanoSpring 
is around 1–1.5× slower than CoLoRd for the human datasets.

The high resource usage for NanoSpring during compression is due to the approximate assembly process 
which provides the gains in compression, and is on a similar scale as previous works following this approach for 
short reads1,2. The memory usage consists of the MinHash index and the consensus graph. We typically observed 
that the time and memory usage scaled linearly with the dataset size, although there is some variability in the 
contig generation stage. For the 26× human dataset hs2, NanoSpring requires ∼ 3 h ( ∼ 70 CPU hours) and 18.1 
GB memory, which is an order of magnitude smaller than the requirements for genome assembly. For example, 
wtdbg217, a recent efficient assembler requires over 1000 CPU hours and 200 GB memory for nanopore human 
datasets with ∼ 35× coverage.

Contribution of streams to compressed size.  Figure 3 shows the contribution of the various streams to the total 
compressed size for the datasets from Table 1. We focus on the consensus sequence, the error streams (position, 
type, erroneous base) and the lone reads (i.e., reads for which no matches were found). The remaining streams 
contribute less than 1% to the total size and are omitted here for clarity. We first note that the error streams 
take up close to 0.5 bits/base for most datasets, while the contribution of the consensus sequence is smaller. The 
contribution of the lone read stream varies a lot between datasets and is quite high for the snail, banana and 
hs1 datasets where NanoSpring has relatively worse compression performance. We believe that this is associated 
with the data quality since we see a drastic reduction in the lone reads for datasets basecalled with the latest 
basecallers (sa, hs2, hs3 and hs4). For the high-quality hs4 dataset where we get out best performance, the con-
tribution of lone reads is negligible. Finally, we note that datasets with higher coverage have a smaller contribu-

Table 3.   Time and peak memory requirements for compression. *ENANO figures include the time/memory 
usage to compress the entire FASTQ file including read sequences, quality values and read identifiers.

Dataset name

Compression time Peak compression memory (GB)

Gzip ENANO* CoLoRd NanoSpring Gzip ENANO* CoLoRd NanoSpring

sa 2.2s 6.3s 29.3s 29.0s 0.015 0.39 1.8 7.2

zymo 2m39s 1m51s 34m12s 1h21m 0.015 0.37 11.1 18.5

snail 7m28s 6m49s 58m36s 2h53m 0.015 0.43 11.5 21.0

banana 15m12s 23m32s 2h45m 3h42m 0.015 0.43 18.4 20.9

hs1 20m45s 32m49s 3h35m 3h59m 0.015 0.46 26.3 25.0

hs2 12m51s 12m37s 2h19m 3h16m 0.015 0.43 23.6 18.1

hs3 10m48s 7m38s 3h34m 3h55m 0.015 0.37 23.3 22.5

hs4 18m17s 26m15s 3h58m 4h54m 0.015 0.42 24.7 26.0

Table 4.   Time and peak memory requirements for decompression. *ENANO figures include the time/memory 
usage to decompress the entire FASTQ file including read sequences, quality values and read identifiers.

Dataset name

Decompression time Peak decompression memory (GB)

Gzip ENANO* CoLoRd NanoSpring Gzip ENANO* CoLoRd NanoSpring

sa 0.9s 7.6s 7.8s 1.3s 0.0025 0.44 0.55 0.15

zymo 1m28s 2m55s 8m54s 2m3s 0.0025 0.49 1.31 5.43

snail 5m9s 11m32s 41m09s 7m34s 0.0025 0.54 3.19 5.64

banana 10m54s 26m47s 1h23m 14m32s 0.0024 0.54 5.62 5.59

hs1 15m21s 42m39s 2h26m 25m40s 0.0025 0.56 8.75 5.78

hs2 7m26s 20m27s 50m00s 11m45s 0.0024 0.55 6.64 5.58

hs3 6m57s 13m30s 52m59s 8m8s 0.0025 0.49 6.42 5.63

hs4 13m38s 30m54s 48m01s 12m27s 0.0025 0.54 6.29 5.46
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tion from the consensus sequence (e.g., the zymo dataset which has extremely high average coverage across the 
bacterial species). This is expected theoretically since the genome size is a fixed constant while the error streams 
grow linearly as we get more reads.

Impact of varying coverage.  To understand the impact of sequencing coverage on the performance of Nano-
Spring, we tested it on two datasets subsampled to multiple coverage values. We used the banana dataset with 
177× coverage, and the CHM13 dataset (used to obtain hs3 in Table 1) with 126× coverage. The compressed 
sizes are shown in Fig. 4, where we see that the compression improves with coverage for both datasets even 
though the two datasets have significantly different compression levels (likely due to the differing basecalling 
qualities). This is expected since higher coverage datasets have more redundancy. For the CHM13 dataset, we 
get compressed sizes of 0.83, 0.68, 0.60, 0.57 and 0.56 bits/base for coverage values of 12× , 23× , 46× , 69× and 
126× , respectively, with diminishing returns as the coverage increases. We observe that even at the low coverage 
of 12× , NanoSpring achieves more than two times better compression ratio than ENANO or Gzip for the high 
quality CHM13 dataset.

Impact of basecalling error rate. 
To understand the impact of the basecaller error rate on the performance of NanoSpring, we basecalled the S. 
aureus dataset with three modes of the Guppy basecaller (version 6.1.2) by ONT: fast, hac (high-accuracy) and 
sup (super-accurate) (where we used the hac mode to obtain the sa dataset in Table 1). As shown in the Table 5, 
there is significant impact of the basecaller mode on the mean error rate and the compressed size. The compres-
sion time stays roughly constant while the memory usage increases for higher accuracies possibly because we 
get larger contigs in that case. For the sup mode with mean error rate below 4%, the compressed size is close to 
0.4 bits/base, showing the potential for better compression as the basecaller quality continues to improve in the 
near future.

Methods
MinHash indexing.  We use MinHash18 for indexing the reads allowing for efficient lookup of reads over-
lapping with any given sequence. During the construction of the index, we first extract substrings of length k 
(k-mers) from a read and compute n pseudorandom hash functions of the k-mers (the MinHash sketch of the 
read). For each hash function, we find the k-mer with the minimum hash value, referred to as the MinHash of 
the read. The basic theoretical property underlying MinHash is that the fraction of shared MinHash values (out 
of n) between two sequences is a good estimator for the fraction of shared k-mers between the sequences, and 
the estimator accuracy increases with increasing n. Since we can expect overlapping sequences, potentially with 
substitution/insertion/deletion errors, to have common k-mers (for sufficiently small k), MinHash provides us 
a way to efficiently estimate the similarity of sequences and to rapidly look up overlapping reads (as described 
next).

The MinHash index consists of n tables, one for each pseudorandom hash function. Each table maps MinHash 
values for the corresponding hash function to the list of reads with that MinHash value. During lookup, we are 
given a sequence and first compute the n MinHash values for that sequence (the MinHash sketch). Then we use 
the index to find and return reads matching the sketch for at least t out of n hash functions, where t is a threshold 
parameter. In our implementation, the k-mers (with k ≤ 32 ) and hash values are represented as 64-bit integers, 
and the pseudorandom hash functions are simply computed as hash(kmer ⊕ ri) where hash is a standard hash 
function, and ri for i = 1, . . . , n are pseudorandom integers. To minimize the memory usage, the hash tables are 
built using BBHash19 which is a specialized data structure designed for hash tables that are not modified after 
construction, which applies in our case.

There are three key parameters for MinHash indexing, the k-mer length (k), the number of hash functions 
(n) and the threshold for lookup (t). Increasing n improves the accuracy of MinHash and allows for more reli-
able estimation of sequence similarity but leads to increased computational overhead. The ratio t/n determines 

Figure 2.   Compression and decompression speeds (MB/s) for CoLoRd and NanoSpring plotted against the 
compression rate in bits per base (bpb).
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the threshold for similarity of reads during lookup. Higher values of this ratio can lead to missed potentially 
matching reads, whereas smaller values can increase the number of false positives and hence the computational 
overhead. In addition, very small values can lead to low quality matches which can adversely affect the compres-
sion. Finally, the value of k should be chosen depending on the genome size, the error rate, and the computational 
requirements. At higher values of k, the k-mer is more likely to have an error and finding exact matches becomes 
unlikely. If k is too small, then we can get many spurious matches for large genomes leading to poor computa-
tional performance. By default, we set k = 23, n = 60, t = 6 (see Supplementary Data for a detailed analysis). We 
note that the parameters chosen in this work are different from the parameters used in the MHAP assembler13. 
Specifically, we tuned the parameters for better performance since we only require an approximate assembly in 
our application. We also take into account the fact that the nanopore error rates have reduced significantly over 
the past years making the use of these parameters reasonable.

Construction of contigs.  NanoSpring uses the following pseudocode for constructing contigs of overlap-
ping reads: 

Figure 3.   Contribution of consensus sequence, errors and lone reads to the compressed size across datasets.
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Figure 4.   Compressed size (bits/base) vs. coverage for subsampled banana and CHM13 datasets.

Table 5.   Performance of NanoSpring for the S. aureus dataset under different basecaller modes.

Basecaller mode Mean error rate (%) Compressed size (bits/base) Compression time (s) Peak memory usage (GB)

fast 7.01 0.695 28.7 5.3

hac 4.60 0.486 28.5 7.3

sup 3.68 0.410 27.7 7.2
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1.	 Initialization: Pick an arbitrary read not yet added to a contig, and construct the consensus graph with a 
single read.

2.	 Repeat the following until no matching reads are found: 

(a)	 Obtain substring of the current consensus sequence (by shifting an average read-length sized window 
over the consensus sequence at each step, see below for a detailed explanation).

(b)	 Find candidate overlapping reads to the substring using MinHash index.
(c)	 For each candidate read from previous step (that has not yet been added to a contig): 

1.	 Align read to current consensus sequence using minimap2.
2.	 If alignment succeeds, add read to the consensus graph and recalculate the consensus sequence 

(explained below).

As described in the pseudocode, the contig construction maintains a consensus graph (also referred to as an 
assembly graph) and greedily adds reads to the graph. The graph is directed and acyclic with the nodes repre-
senting the bases and the edges storing the information about the reads passing through that edge. The weight 
of an edge is the number of reads passing through the edge. Initially the graph is just a line graph consisting of a 
single read. As reads get added to the graph, these reads lead to branching out from the line graph due to pres-
ence of errors. The consensus sequence represents the path with the highest weight (where the weight of a path 
is the sum of weights of the edges on the path). Figure 1 illustrates the consensus graph with the reads and the 
consensus sequence, and Fig. 5 shows the overall contig generation procedure. In our implementation, we use a 
greedy algorithm for computing the consensus path: starting at the leftmost node and picking the highest weight 
edge at every step. We use the greedy algorithm instead of the optimal dynamic programming-based algorithm 
due to its simplicity and similar performance in practice.

At every step in the contig generation algorithm, we first pick a substring of the consensus sequence, which 
is used to search for matching reads using the MinHash index. The substring has length equal to the average 
read length of the dataset or the length of the consensus sequence, whichever is smaller. After each iteration, 
we obtain a shifted substring by changing the start position by a quarter of the average read length (shift length 
chosen based on experiments). We first shift the substring to the right until we reach the end, and then shift it 
left till we reach the beginning. This allows us to capture reads overlapping with any section of the consensus 
sequence. Note that the consensus sequence itself is constantly updated, and hence we maintain the position of 
the first read on the consensus sequence as a reference zero coordinate for tracking the substring location. We 
work with the consensus sequence at the current iteration (instead of an individual read) for MinHash lookup 
and alignment since we expect the consensus sequence to have a lower error rate leading to a more efficient and 
accurate process. To handle reverse complemented reads, we search for overlapping reads to both the substring 
and its reverse complement in step 2b and store a flag denoting reverse complemented reads. As a result, reads 
can pass through an edge in either direction.

For each potentially matching read obtained using MinHash, we attempt to align it to the consensus sequence 
using the minimap2 aligner7. We found that previous works on assembly13 used their own implementation of 
the optimal Myers aligner20, but we found that the widely used minimap2 aligner was simpler to use and signifi-
cantly faster. The minimap2 aligner first indexes the reference sequence (the consensus sequence in our case) 
based on minimizers (lexicographically smallest hashed k-mers) of length k in each window of length w (both 
k and w are parameters). Then it attempts to locate these minimizers in the query string (the reads returned by 
MinHash), followed by more accurate alignment in the regions between these minimizers. When alignment 
succeeds, minimap2 returns the CIGAR string consisting of the errors in the query string with respect to the 
reference (we restrict ourselves to the top-scoring alignment returned by minimap2). We use this information to 

Figure 5.   Contig generation process. A substring of the current consensus sequence is used to find matching 
reads from the MinHash index. Each potential match is aligned to the consensus sequence using minimap2 and 
added to the graph if the alignment succeeds. The substring has length l̄  (average read length) and is shifted 
along the consensus sequence at each step to capture all potential matches.
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add the read to the graph, with soft clips treated as a sequence of insertions at the beginning or end of the read. 
We modified the default parameters for minimap2 in order to improve the computational performance, setting 
k = 20,w = 50 and reducing the max-chain-iter parameter controlling the complexity of the chaining 
step in minimap2 to 400 from the default value of 5000. See Supplementary Data for more discussion on the 
impact of these parameters.

Encoding and compression of streams.  The reads in each contig are encoded into multiple streams after 
the contig generation is done. Note that these streams are further entropy coded as discussed later and hence 
the representation, while kept small to reduce temporary disk usage, is not required to be optimally compact. 
We store the consensus sequence of the contig (1 byte/base representation) and then store the representation 
of each read with respect to the consensus. Specifically, we store the start position of the read on the consensus 
sequence, the errors in the read, the reverse complement flag (bool), and the read index (32-bit unsigned inte-
ger) representing the index of the read in the original FASTQ file. The errors are themselves represented using 
three streams: (i) the error type (insertion/deletion/substitution) (char), (ii) the error position on the read (delta 
coded), and (iii) the erroneous base (for insertions and substitutions) (char). These streams are illustrated in 
Fig. 1b. We observed that in many cases, we get multiple insertions at the beginning and end of the reads possibly 
due to adapter sequences (soft clipped in the alignment). For such cases, we simply encode the number of inser-
tions (unsigned varint encoding) and the inserted bases (char) rather than encoding each insertion separately. 
The encoding of the insertions at the start and end of reads is done as part of the error position and erroneous 
base streams, where the error position stream for a read encodes (i) first the number of insertions at start, (ii) 
followed by the other error positions (delta coded), (iii) followed by the number of insertions at end. The cur-
rent implementation combines the start position and error position streams since they share the same datatype 
(unsigned varint encoding) and the start position stream is typically a negligible contributor to the total size.

In our experiments, we found that the contig generation led to several contigs with only a single read due to 
the greedy procedure and the variation in read quality (with high error reads missed by MinHash). For any such 
contigs with just a single read, we directly write the read sequence using a text representation (1 byte/base) to a 
separate stream for these lone reads. These are not written to the consensus sequence stream.

Finally, these streams are compressed with general-purpose compressors and combined into a single file using 
the tar utility on UNIX. We use two general-purpose compressors which provide improvements over Gzip while 
being computationally efficient. For compressing the stream with the erroneous bases, we use LZMA2 (https://​
github.​com/​conor​42/​fast-​lzma2) which relies on Lempel–Ziv compression21 and arithmetic coding22. For the 
remaining streams we use BSC (https://​github.​com/​IlyaG​rebnov/​libbsc) which relies on the Burrows-Wheeler 
transform (BWT23) and arithmetic coding. As discussed in Supplementary Data, we found this combination of 
compressors led to the best compression ratios.

Additional implementation details.  We made some modifications to the procedure presented above to 
improve the performance on real datasets.

•	 The MinHash indexing, contig generation, stream compression, and the decompression are parallelized to 
improve the wall-clock performance. During contig generation, different threads work on different contigs, 
and we ensure that there are no conflicts using locks. The impact of multithreading is discussed in Supple-
mentary Data.

•	 We found that for certain human datasets, minimap2 took a very long time for aligning highly repetitive 
sequences, usually with tandem repeats (such as GTGTGT . . . ). Therefore, we check the reads for short 
tandem repeats before the contig generation stage and repetitive reads are directly written to the lone read 
stream. We also write reads with length ≤ 32 directly to the lone read stream since they have too few k-mers 
to obtain matches using MinHash.

•	 During compression, we store the reads encoded using 2 bits/base on disk to limit the memory usage. We 
found that the disk based random access to load these reads for minimap2 alignment is sufficiently fast to 
justify the reduction in memory usage (around 22 GB memory reduction for a 30× human dataset).

•	 To limit the memory usage of the consensus graphs during contig generation, especially when working with 
multiple threads, we impose a limit on the number of edges in the graph. Beyond this limit, the contig gen-
eration is stopped and we proceed with a new contig. We found that this simple strategy drastically reduces 
the peak memory consumption while having minimal impact on the compression ratio (see Supplementary 
Data). We also use other low-level optimizations such as periodically calling malloc_trim() to further 
reduce the memory usage.

•	 During compression the reads are encoded in the order they appear in the contigs. Thus the decompressor 
needs to reorder these reads using the stored index to recover the original order of reads in the FASTQ. We 
use efficient disk-based sorting to limit the memory usage of decompression to around 5 GB irrespective of 
the file size.

Discussion
We presented NanoSpring, a reference-free compressor for nanopore sequencing reads, relying on an approximate 
assembly approach. We evaluate NanoSpring on a variety of datasets including bacterial, metagenomic, plant, ani-
mal, and human whole genome data. For recently basecalled high quality nanopore datasets, NanoSpring, which 
focuses only on the base sequences in the FASTQ file, uses just 0.35–0.7 bits per base which is 3–6× lower than 
general purpose compressors like gzip. NanoSpring is competitive in compression ratio and compression resource 
usage with the state-of-the-art tool CoLoRd while being significantly faster at decompression. NanoSpring is 

https://github.com/conor42/fast-lzma2
https://github.com/conor42/fast-lzma2
https://github.com/IlyaGrebnov/libbsc
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open-source and available on GitHub at https://​github.​com/​qm2/​NanoS​pring. Future work includes research on 
the assembly algorithm to get closer to the fundamental limits. Another important direction is to incorporate 
NanoSpring into a full-fledged FASTQ compressor capable of handling quality scores and read identifiers, pos-
sibly by combining the best aspects of ENANO and NanoSpring.

Data availability
All the datasets used in the experiment are publicly available and instructions for accessing the same are provided 
in the supplementary material. In addition, all the tools used for the experiments, including NanoSpring, are 
open source and can be obtained as described in the Supplementary Material.
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