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A B S T R A C T   

Experiments manipulating a single global change factor (GCF) have provided increasing evidence that global 
environmental changes, such as eutrophication, precipitation change, and warming, generally affect the tem
poral stability of grassland productivity. Whether the combined impact of global changes on grassland stability 
increases as the number of global changes increases remains unknown. Using a meta-analysis of 673 observations 
from 143 sites worldwide, including 7 different GCFs, we examined the responses of grassland temporal stability 
of productivity to increasing numbers of GCFs. We quantified the links between community stability, biotic 
factors (i.e., species richness, species stability, and species asynchrony), and abiotic factors (i.e., aridity index, 
experimental duration, and experimental intensity). Although inconsistent responses of community stability 
were found with different GCF types and combinations, when integrating existing GCFs studies and ignoring the 
identity of GCFs, we found a general decrease in community stability as the number of GCFs increases, but the 
main drivers of community stability varied with the numbers of GCFs. Specifically, one GCF mainly reduced 
species stability through species richness and thus weakened community stability. Two GCFs weakened com
munity stability via independently weakening species stability and species asynchrony. Three GCFs reduce 
community stability mainly via independently weakening species asynchrony. Moreover, for single factor, the 
impact of GCFs on community stability was weaker under dryer conditions, but stronger when two or three 
factors were manipulated. In addition, the negative effect of GCFs on community stability was weaker with 
increasing experimental duration. Our study reveals that reduced community stability with increasing numbers 
of GCFs is caused by a shift from reduced species stability to reduced species asynchrony, suggesting that 
persistent global changes will destabilize grassland productivity by reducing asynchronous dynamics among 
species in response to natural environmental fluctuations.   

1. Introduction 

Terrestrial ecosystems are facing multiple global changes caused by 
human activities, such as precipitation alteration, eutrophication, global 
warming, and increased CO2 concentration (Hallett et al., 2014; Hautier 
et al., 2014; Zelikova et al., 2014; Wu et al., 2020). Many experiments 
have been conducted in grasslands during the last decades to investigate 
the impact of these global environmental changes on biodiversity usu
ally measured as the number of plant species (Reich et al., 2001; Isbell 
et al., 2013) and temporal stability of grassland productivity, usually 
measured as the ratio of the temporal mean of productivity to its 

temporal variation (Tilman et al., 2006; Hautier et al., 2014; Hautier and 
Van Der Plas, 2022). However, while anthropogenic global changes 
generally co-occur (Zhou et al., 2023) and can have interactive effects on 
biodiversity and ecosystem stability (Harpole et al., 2016; Yue et al., 
2017a; Zhang et al., 2017; Wu et al., 2020), our knowledge on whether 
and how grassland stability responds to increasing the number of global 
change factors(GCFs) mainly derived from studies manipulating a single 
GCF. 

Previous experiments have shown that GCFs often show divergent 
impact on grassland community stability (Koerner et al., 2016; Dijkstra 
et al., 2018; Liu et al., 2019; Muraina et al., 2021; Ke et al., 2022). For 
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example, increased precipitation and warming often promote the com
munity stability in grassland (Hallett et al., 2014; Ma et al., 2017), while 
the addition of nitrogen (N) and elevated CO2 concentrations often 
reduced it (Zelikova et al., 2014; Zhang et al., 2016; Zhang et al., 2017). 
The interactive effects of global changes on community stability usually 
can be divided into three patterns: synergistic, additive, and antago
nistic effects (Berlinches De Gea et al., 2022). For instance, warming and 
N addition had additive, negative effects on the stability of community 
productivity in a desert steppe in northern China (Wu et al., 2020). A 
global meta-analysis found that water and nutrient addition increased 
community productivity more than the sum of their individual effects, 
creating synergistic effects (Demalach et al., 2017). Instead, previous 
manipulative experiment found that elevated CO2 alleviated the nega
tive effects of N enrichment on community diversity, resulting in 
antagonistic effects (Reich, 2009). Hence, with increasing number of 
GCFs, the response of community stability would be more complex. 
Recent studies proved that increasing the number GCFs reduced plant 
diversity, microbial biodiversity, and soil functions (Rillig et al., 2019), 
and eliminated the effects of soil microbial diversity on ecosystem 
functions (Yang et al., 2022), but enhanced community productivity 
(Speiβer et al., 2022). These results suggest that single factors in GCFs 
may have relatively minor impacts on the ecosystem, whether positive, 
negative, or neutral, and that the increase in the number of GCFs will 
have directional impacts on biodiversity and ecosystem functioning 
(Rillig et al., 2023). However, whether the directional impact of the 
number of GCFs on grassland stability will occur remains unclear at the 
global scale. Filling this knowledge gap is critical, as the stable provision 
of ecosystem services is essential for both the human world and nature, 
especially in the face of growing concerns about the widespread envi
ronmental conditions caused by anthropogenic impacts. 

Worries that global change compromises stability have led to a 
growing number of theoretical and experimental studies investigating 
how GCFs influenced stability (Zelikova et al., 2014; Isbell et al., 2015; 
Hautier and Van Der Plas, 2022). Higher community stability can be 
achieved through two processes. First, community stability can be 
maintained via higher average temporal stability of all species in the 
community (species stability) because of the low annual variation in the 
production of individual species (Thibaut and Connolly, 2013; Wang 
et al., 2019). Second, community stability can be maintained via more 
asynchronous temporal dynamics among species in response to envi
ronmental fluctuations (species asynchrony), as declines in productivity 
of some species are compensated by increases in others over time 
(Thibaut and Connolly, 2013; Wang et al., 2019). Additionally, plant 
diversity can stabilize community productivity by increasing species 
stability and species asynchrony (Hautier et al., 2020; Yan et al., 2021). 
Previous shown that increasing GCFs number usually increase commu
nity productivity but decrease plant diversity (Speiβer et al., 2022). 
Higher GCFs number may therefore stabilize community stability by 
increasing the temporal mean of productivity or destabilize community 
stability through the reduction in species stability and species asyn
chrony. In addition, GCF numbers may destabilize community stability 
by weakening the stabilizing effect of plant diversity on community 
productivity (Yang et al., 2022). However, as the number of GCFs in
creases, it is currently unclear whether the contribution of diversity to 
grassland community stability will increase, or decrease as reported in a 
previous study (Hautier et al., 2014). To our knowledge, only one recent 
study examined the effects of GCF number on plant biodiversity and 
ecosystem functioning (Rillig et al., 2019). That study showed that 
higher numbers of GCFs lead to a decrease in biodiversity and an in
crease in productivity. Whether these effects propagate to impact on 
community stability is not clear. 

In addition, there is increasing evidence that abiotic factors (climatic 
conditions, treatment intensity, and experimental duration) can influ
ence plant community responses to GCFs (Komatsu et al., 2019; Song 
et al., 2019; Gilbert et al., 2020; Li et al., 2022; Su et al., 2022; Wagg 
et al., 2022). Recently, a meta-analysis presented direct evidence that 

these abiotic factors play an essential role in ecosystem stability through 
biodiversity effects (Su et al., 2022). For example, reduced precipitation 
tends to reduce community stability more because plants in wetter areas 
are less resistant to drought (Wilcox et al., 2020; Su et al., 2022). 
Similarly, high grazing intensity is more destabilizing to grassland sta
bility than low grazing intensity (Tang et al., 2020). The effect of pre
cipitation increase on community stability increases as the experimental 
period increases, but the effect of nutrient addition on community sta
bility is relatively minor (Su et al., 2022). However, we know little about 
whether the effects of abiotic factors varied with the number of GCFs, 
which will hamper the predictions of grassland stability in the real 
world. 

Here, we conducted a meta-analysis to assess the effects of GCF 
numbers (including single, two, and three GCFs) on grassland temporal 
stability at the global scale, using the published literature from 143 
globally distributed field-manipulated experiments in grasslands. Spe
cifically, our study addressed three questions: 1) whether the impact of 
global changes on community stability decreases as the number of GCFs 
increases, 2) whether the main drivers of community stability vary with 
GCF number, 3) whether the effects of abiotic factors on community 
stability vary with increasing the number of GCFs. 

2. Materials and methods 

2.1. Data collection 

In order to investigate the effects of multiple GCFs on community 
stability as GCFs increased, we collected all peer-reviewed publications 
between 1980 and 2021 using ISI Web of Science (isiknowledge.com) 
and the China National Knowledge Infrastructure (CNKI, https://www. 
cnki.net). The keywords and terms used were as follows: (“production” 
OR “productivity” OR “biomass”) AND (“stability”) AND (“diversity” OR 
“climate change” OR “warming” OR “rising temperature” OR “increase 
temperature” OR “rainfall” OR “precipitation” OR “drought” OR “water” 
OR “N addition” OR “nitrogen addition” OR “nitrogen enrichment” OR 
“nitrogen deposition” OR “eutrophication” OR “P addition” OR “phos
phorous addition” OR “fertility” OR “graze” OR “grazing”) AND 
(“grassland” OR “steppe” OR “alpine” OR “meadow”). The following 
criteria were applied to select studies: (1) experiments conducted in the 
field that reported the effects of GCFs on community stability; and (2) 
experiments that had at least one pair of data points relationship be
tween biotic factors (e.g., richness, species asynchrony and species sta
bility) and community stability and that reported standard deviations/ 
errors or numbers of replicates. Means, standard deviations/errors and 
sample sizes were extracted from tables or digital graphs using GETDATA 
GRAPH DIGITIZER (v.2.24; http://www.getdata-graph-digitizer.com/). The 
WorldClim database at http://world clim.org was used to extract mean 
annual precipitation (MAP) and mean annual temperature (MAT) using 
the location information (latitude and longitude). Given that some 
publications investigated site within a study across different period, the 
number of study sites (143; Fig. 1) was lower than the number of pub
lications (155; Fig. S1 and Table S1). Overall, based on a total of 143 
sites (Fig. 1), 4 biotic factors (Fig. S2) and 7 GCFs (Fig. S3) were reported 
in our meta-analysis. 

For each study, we extracted the data in terms of community sta
bility, mean of productivity/ biomass, standard deviation (SD) of pro
ductivity/ biomass, species richness, species stability, abundance, 
reference ecosystem types, experimental duration (year), treatment in
tensity, treatment type, longitude and latitude from the original papers. 
We derived the sample sizes corresponding to each observation based on 
the number of independent experimental units. We divided the reference 
GCFs combinations into three groups: single factor (106 sites), two 
factors (32 sites), and three factors (5 sites) (Fig. 1). We examined the 
potential influence of publication bias on our results via Egger's test 
(Fig. S2) with the “metabias” function in R 3.5.1 (R Core Team, 2018). 
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2.2. Data analysis 

In order to assess the effects of GCFs on community stability and its 
underlying mechanisms (species richness, species asynchrony and spe
cies stability, temporal mean and SD of productivity) under various GCF 
numbers, we used the techniques described by (Hedges et al., 2018) and 
(Gurevitch et al., 2018). The following formula was used to calculate the 
logarithmic response ratio (lnRR): 

lnRR = ln
(

xt

xc

)

(1)  

where x‾c and x‾t are the means of the variable in control treatment and 
reference global change treatment, respectively. R 3.5.1 (R Core Team, 
2018) was used to estimate the weighted average response ratios using 
random-effects models (Cooper et al., 2009). According to sample sizes 
and between-sample variability (Chen et al., 2019), weights for lnRR 
(WR) were estimated: 

WR =

(
Nt × Nc

Nt × Nc
+ τ2

)−1

(2)  

where Nc and Nt are the sample sizes for the variable in control treat
ment and reference global change treatment, respectively, τ2 is the total 
amount of heterogeneity, and QM test was conducted to estimate the 
significance of the differences in the RRs among different numbers of the 
GCFs (Hedges et al., 2018; Fig. 2 and Fig. S3). 

Using model-selection analysis in the R package “glmulti” (Terrer 
et al., 2016), explored the relative effects of multiple variables on 
community stability responses at different numbers of GCFs (Fig. 3). The 
relative importance for each variable was determined as the total of the 
Akaike weights for all the models in which the variable was included 
(Terrer et al., 2016). In order to distinguish between important and 
unimportant predictors, a cut-off of 0.8 was established. MAT, MAP, 
mean aridity index, treatment types, experimental duration, species 
stability, species richness, and species asynchrony were included in the 
model-selection. RR were grouped based on the numbers of the GCFs. 

In order to investigate the relationships between the responses of 
community stability, the responses of biotic factors (i.e., species stabil
ity, species richness, and species asynchrony) (Fig. 4, Fig. S4, and 
Table S2), and the responses of abiotic factors (i.e., MAT, MAP, aridity 
index, treatment, and experimental duration) (Fig. 5 and Fig. S5), we 
performed meta-regressions using the inverse of the variance as the 
weight. Using the “piecewiseSEM” package in R 3.5.1 (Lefcheck, 2016), 
we conducted structural equation models (SEMs) to test the hypotheses 

that biotic and abiotic factors influenced the effects of GCFs on com
munity stability (Fig. 6, Fig. S6, Fig. S7, and Fig. S9). In addition, we 
analyzed the contribution of temporal mean and SD of productivity to 
community stability with increasing GCFs using SEMs (Fig. S9). First, a 
complete model that took into account all potential pathways was taken 
into consideration (Fig. S6). Then, non-significant pathways were 
gradually removed one by one until we attained the final model (Fig. 6). 
Model-fitting statistics were used to evaluate the reliability of models, 
including χ2 tests and p-values for χ2 tests (p > 0.05 represents that the 
model is reliable). 

Fig. 1. Global distribution of selected experiments investigating the effects of global changes on community stability. Different-colored bubbles represent different 
number of global change factors. The size of the bubbles is the number of the samples. 

Fig. 2. Effects of different global change drivers on grassland community sta
bility (a), species richness (b), species asynchrony (c), and species stability (d). 
Error bars depict 95 % confidence intervals. The effects of an individual global 
change driver are considered significant if the CIs do not overlap with zero. QM, 
the heterogeneity in effect sizes associated with moderator variable; 1, 2, and 3 
represent single, two, and three global change factors, respectively. n represents 
the number of studies. 
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3. Results 

3.1. Community stability response to increasing number of GCFs 

Generally, increasing the number of GCFs had a strong impact on 
grassland community stability (Fig. 2a and Fig. S3). Specifically, com
munity stability decreased with increasing number of GCFs considered 
integrating existing studies (Fig. 2a). In addition, the response of com
munity stability depended on the types and combinatorial patterns of 
GCF manipulated (Fig. S3). Species richness and species asynchrony 
decreased under single and two factors, and species stability increased 
under two factors (Fig. 2b, c). But we did not find a significant change in 
these biotic factors under three factors (Fig. 2d). Besides, temporal mean 
and SD of productivity enhanced with increasing number of GCFs 
(Fig. S8). 

3.2. Factors regulating community stability responses to increasing 
number of GCFs 

The model-selection analysis showed that species stability, treat
ment, and MAT were the most important predictors for community 
stability responses to a single GCF, species asynchrony and species sta
bility were the most important predictors under two GCFs, and species 
asynchrony was the most important predictor under three GCFs (Fig. 3). 
Meta-regression showed that community stability was positively 

associated with species richness and species stability under single GCF; it 
was positively associated with species asynchrony and species stability, 
but negatively associated with species richness under two GCFs; com
munity stability was positively associated with species richness under 
three GCFs (Fig. 4). Furthermore, the drivers of community stability 
varied with type of GCFs (Fig. S4 and Table S2). In general, the com
munity stability responses to global changes were affected by climatic 
conditions, treatment intensity, and experimental duration (Fig. 5 and 
Fig. S5). Specifically, the effect of global changes on community stability 
was negatively associated with aridity index under a single GCF, but was 
positively associated with aridity index under two GCFs (Fig. 5a). The 
negative effect of global changes increased logarithmically with exper
imental duration under single GCF (Fig. 5b). 

3.3. The mechanisms of stability driven by biotic factors responses to the 
increasing number of GCFs 

We finally used SEM to quantify the direct and indirect impacts of 
biotic factors and abiotic factors on community stability under multiple 
GCFs (Fig. 6, Fig. S6, Fig. S7, and Fig. S9). When abiotic factors were 
included, we did not find their role in driving grassland stability 
(Fig. S6), and we subsequently removed these abiotic factors and 
analyzed the mechanisms whereby biotic factors drive community sta
bility (Fig. 6 and Fig. S7). We found that under overall scenarios, SEM 
revealed that the number of GCFs contributed to greater community 

Fig. 3. Model-averaged importance of the predictors for the effects of global change on community stability at different number of factors. The relative importance 
value is based on the sum of the Akaike weights derived from the model selection using corrected Akaike's Information Criteria. Cutoff is set at 0.8 to differentiate 
between essential and nonessential predictors. MAP, mean annual precipitation; MAT, mean annual temperature. 

Fig. 4. The associations of commu
nity stability with species richness (a), 
species asynchrony (b), and species 
stability (c). Lines with different 
colors represent different global 
change factor levels. 1, 2, and 3 
represent single, two, and three global 
change factors, respectively, from the 
mixed-effects models with site as 
random intercept. The shade areas 
indicate the 95 % confidence intervals 
for the regression lines. The R2(m) 
and R2(c) represent model variations 
explained by fixed effects and the 
combination of fixed and random ef
fects respectively. Asterisk represents 

that coefficients are significant: **p ≤ 0. 01, *p ≤ 0.05.   
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stability via promoting species stability, while the number of GCFs 
reduced the community stability by decreasing species asynchrony 
indirectly via reducing species richness (Fig. 6a). When considering 
single factor treatments (single scenario), we found that species richness 
contributed to community stability via species stability, and we also 
found species asynchrony contributed to community stability alone 
(Fig. 6b). The positive contribution of species stability and species 
asynchrony to community stability did not link to species richness and 
their contributions were nearly equivalent under two GCFs (Fig. 6c). In 
addition, species asynchrony positively contributed to community sta
bility alone under three GCFs (Fig. 6d). Compared with the number of 
GCFs results, our SEM also revealed the various biotic mechanisms 
among the effects of GCFs on community stability (Fig. S7). Further
more, our SEM also revealed that increased GCFs decreased community 
stability mainly by increasing productivity SD. Specifically, community 
stability was co-driven by temporal mean productivity and its SD under 

single GCF, but was mainly driven by SD of productivity under two and 
three GCFs (Fig. S9). 

4. Discussion 

Many studies have quantified the impact of GCFs on community 
stability based on synthesis analysis and field experiments (Hautier 
et al., 2015; Jia et al., 2022; Ke et al., 2022; Su et al., 2022; Xu et al., 
2022). Unlike previous syntheses, this analysis mainly examined the 
number of GCFs direct and indirect effects on community stability. Our 
results show that an increased number of GCFs weakened community 
stability when ignoring the identity of GCFs. The indirect effect of GCFs 
on community stability is mediated by species richness, species asyn
chrony, and species stability. Most interestingly, the key driver of 
community stability gradually shifted from species stability to species 
asynchrony as the number of GCFs increase. 

4.1. Increasing GCF numbers weakened community stability 

Consistent with previous global studies reporting that increasing 
GCFs numbers weakened ecosystem functions (Rillig et al., 2021; Rillig 
et al., 2023), when integrating existing studies on GCFs and not 
considering GCF identity, we found that increasing the number of GCFs 
reduces the community stability. However, inconsistent responses were 
found with different GCF combinations. In our study, most of single GCF 
(6/7), two GCF combinations (8/10), and all three GCF combinations 
decreased community stability (Fig. S3). These suggest a strong sam
pling effect in our meta-analysis (Speiβer et al., 2022). Another possible 
explanation is that as more GCFs occur simultaneously, less species 
become adaptable (Zandalinas et al., 2021; Speiβer et al., 2022), which 
could lead to the destabilization of intrinsic dynamics within grassland 
communities (Jones et al., 2017; Liu et al., 2018; Komatsu et al., 2019). 
For instance, drought may expose plants to water stress, while warming 
may cause the loss of water from the soil, thereby exacerbating the water 
stress faced by plants (Liu et al., 2018). In addition, existing manipula
tive studies have shown that the increase of GCF number could desta
bilize community productivity via weakening soil microbial diversity 
and its positive impacts on soil function (Wagg et al., 2021; Yang et al., 
2022). Given the tight interaction among soil microorganisms, soil 
functions, and plants communities (Liu et al., 2022), the negative effects 
of increasing numbers of GCFs on soil properties may affect community 
stability via the suppression of nutrient uptake and growth of plants 
(Sokol et al., 2022). 

While a recent mesocosm pot experiment reported persistent nega
tive effects of GCFs on plant community properties (Speiβer et al., 2022), 
we found that increasing numbers of GCFs have inconsistent effects on 
species richness, species asynchrony, and species stability in strength 
and direction. This is not surprising that this study incorporated a mix of 
GCFs identity and intensity, grassland types, experimental duration, and 
climate conditions, and it is challenging to observe directional changes 
of these biotic factors when the communities are sensitive to global 
change differently across regions (Seddon et al., 2016). In addition, we 
did not find significant changes in these biotic factors under the three 
GCFs. This may be attributed to the fact that the statistical power was 
limited by the small size data of three GCFs distributing in similar re
gions and containing relatively few grassland types (alpine meadow, 
temperate grassland and desert steppe) in our study (Yue et al., 2017b). 
Overall, our study further extends previous evidence of the aggravated 
impact of increasing numbers of GCFs on ecosystem functioning and 
services reported by integrative analyses at a global scale (Rillig et al., 
2019; Rillig et al., 2023). The results suggest that the effect of global 
change on ecosystem functioning is a multi-factor process but cannot be 
predicted solely based on the effects of single factors, as the overall ef
fect on the community is amplified and complex by their interactions 
(Komatsu et al., 2019). 

Fig. 5. The associations of community stability with aridity index (a) and 
experimental duration (b). The solid and dashed black lines indicate significant 
and insignificant overall relationships, respectively, from the mixed-effects 
models with site as random intercept. The shade areas indicate the 95 % con
fidence intervals for the regression lines. The R2(m) and R2(c) represent model 
variations explained by fixed effects and the combination of fixed and random 
effects respectively. Asterisk represents that coefficients are significant: **p ≤ 0. 
01, *p ≤ 0.05. Lines with different colors represent different global change 
factor levels. 1, 2, and 3 represent single, two, and three global change factors, 
respectively. 
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4.2. Species asynchrony matters more than species stability and richness 
as GCFs increase 

We found extensively documented positive relationships among 
species richness, species asynchrony, species stability, and community 
stability under most global change scenarios (Xu et al., 2015; Liu et al., 
2021; Muraina et al., 2021; Quan et al., 2021; Wang et al., 2021). 
However, there is an inverse link between species richness and com
munity stability under two GCFs, and again, under the P addition 
(Fig. S4), which may be because of the inconsistent response of species 
richness and community stability to specific GCFs (Speiβer et al., 2022), 
and thus determined the response of diversity-stability relationships to 
global change numbers. Furthermore, the model selection analysis in
dicates that species stability or species asynchrony is critical factors 
stabilize community productivity under different numbers of GCFs, 
while the SEM reveals that the effect of species richness on community 
stability was dismantled by species stability, species asynchrony, or a 
combination of both, which may be due to community evenness and 
functional traits play an essential role in mediating species asynchrony 
and species stability in plant communities as theoretical (Thibaut and 
Connolly, 2013) and empirical studies (Xu et al., 2018; Valencia et al., 
2020) report. For example, decreased rare species under global changes 
decreased community species richness significantly but had a minor 
effect on community evenness and functional diversity (Hautier and Van 
Der Plas, 2022; Jiang and Xu, 2022), and thus the impact of species 
richness on community stability could be replaced by community 
evenness and functional traits under different numbers of GCFs. 

Additionally, the SEM analyses showed that biotic factors play a 

greater role than abiotic factors in determining grassland stability 
(Valencia et al., 2020; Fig. S6). The number of GCFs similar to those 
found in single- or multi-site experiments (Zhang et al., 2016; Hautier 
et al., 2020) reduced community stability through decreasing richness- 
mediated asynchrony while enhancing the positive effect of species 
stability. Meanwhile, the number of GCFs may increase the abundance/ 
biomass of stable species by altering the community composition 
(Valencia et al., 2020), which in turn stabilized the communities. 

Most interestingly, the contribution of species asynchrony to com
munity stability becomes remarkably important as more GCFs are 
introduced, especially under the three GCFs. Similar to recent global 
report that species asynchrony is a key factor in stabilizing plant com
munity at the global scale (Valencia et al., 2020), especially in the face of 
multiple global changes. Specifically, single GCF reduced the number of 
stable species with dissimilar ecological characteristics in species-rich 
communities and thus weakened community stability (Hautier and 
Van Der Plas, 2022). Alternatively, single GCF weakened the asyn
chronous dynamics of species (Fig. 2c) probably by weakening inter
specific interactions (Gross et al., 2014; Xu et al., 2021) and causing a 
consistent response of species to environmental fluctuations. Previous 
study has shown that considering species richness alone and ignoring 
species identity often cannot capture the impact of global change on 
communities (Hillebrand et al., 2018). Similarly, our SEM results for two 
GCFs impact community stability confirmed that the negative effect of 
increasing GCFs on community stability may be modified by other 
community attributes (i.e., species identity, species abundance, and 
species turnover) rather than species richness. In addition, the stronger 
environmental filtering effects was found under more GCFs, the 

Fig. 6. Structural equation model exploring the effects of species richness, species asynchrony, and species stability on community stability under overall (a), single 
(b), two (c), and three (d) global change factors. Solid blue and red arrows represent significant (p ≤ 0.05) positive and negative pathways, respectively. Grey dashed 
arrows represent insignificant pathways (p > 0.05). Standardized path coefficients are given next to each path. 
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potential tipping points for most species in grassland communities may 
shift under multiple GCFs (Polst et al., 2022), which may lead to the 
stability of species independent of less GCFs but closely related to 
grassland types or climate conditions, thus community stability was 
caused by asynchronous dynamics of tolerant species rather than its 
stability. Furthermore, community stability is calculated as the ratio of 
the temporal mean productivity to its SD, which suggests increasing 
GCFs weakened community stability via reducing temporal mean pro
ductivity or increasing SD of productivity (Hautier et al., 2014). We 
found that the decrease in community stability is mainly caused by the 
increase in SD of productivity as GCFs increase. Overall, increased GCF 
number reduces community stability by weakening species asynchrony 
and thus increasing SD of productivity (Hautier et al., 2014). 

4.3. Abiotic factors regulate the effects of GCF numbers on community 
stability 

Previous global synthetic analyses (Komatsu et al., 2019; Berdugo 
et al., 2020), and several manipulative studies (Niu et al., 2018; Quan 
et al., 2021; Wagg et al., 2022) have shown that community dynamics 
are modified by experimental duration, aridity index, and experimental 
intensity. In this study, the aridity index regulated the effects of GCF 
numbers on community stability, which can be explained from two 
perspectives. On the one hand, changes in the aridity index usually 
reflect shifts in climate and soil conditions, as well as plant and micro
bial properties, these changes may moderate the effects of GCF numbers 
on community stability (Wang et al., 2014; Maestre et al., 2015; Berdugo 
et al., 2020; Hu et al., 2021). On the other hand, the identity of GCF 
differentially moderates the effects of the aridity index on community 
stability (Fig. S5a), and the stochastic combination patterns of GCF may 
shape the relationship between aridity index and community stability. 
Similar to previous reports (Komatsu et al., 2019; Seabloom et al., 
2020), we observed that community stability increased with the 
increasing experimental duration under different patterns of a number 
of GCFs, and even if this effect is only significant under single GCFs. 
Global changes can significantly impact environmental conditions and 
plant communities, plants may have become more adaptable to global 
change over time, thereby stabilizing community productivity (Hong 
et al., 2022). However, we did not find evidence that treatment intensity 
modifies the effect of the number of GCFs. This lack of effect may be due 
to regional differences in grassland ecosystem types, climate, and soil 
conditions that affect the sensitivity of local plant communities to the 
various identities of GCF and their treatment intensity (Yue et al., 
2017b; Gilbert et al., 2020). In addition, the inconsistency in experi
mental treatment design may also hinder our ability to detect the 
mediating effect of treatment intensity. 

5. Conclusions 

Our research has comprehensively synthesized the effects of multiple 
GCFs on community stability in global grasslands. Our findings show 
that the response of community stability to types and combinatorial 
patterns of GCFs varied, with the number of GCFs having a significant 
negative impact on community stability when ignoring the identity of 
GCF. Moreover, we discovered that the relationship between community 
stability and biotic factors was altered by increasing GCF numbers and 
that aridity, treatment intensity, and experimental duration under 
different GCF numbers all played a regulatory role in community sta
bility. Notably, our research underscored the crucial importance of 
species asynchrony in maintaining community stability responses to 
increasing global change numbers. While our research has contributed 
important insights, there are several limitations worth noting. Firstly, 
we did not specifically analyze the effects of different GCF combinations 
on community stability. Secondly, we acknowledge that the scarcity of 
experimental data on the three factors in our meta-analysis may have 
limited our understanding of the effects of the three-factor interaction 

on community stability. Finally, we recognize that the inherent differ
ences in experimental conditions may have affected the results of our 
analysis. Therefore, we recommend undertaking more multifactorial 
experiments to better understand how the combined effects of multiple 
factors influence the pathways that maintain community stability. 
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