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Despite the essential role of litter decomposition in carbon (C) and nutrient cycle in terrestrial ecosystems, some
uncertainties remain about how this fundamental process is affected by increasing nitrogen (N) deposition. Based
on a large dataset comprising 1108 observations from 162 studies, we conducted a meta-analysis to explore the
effect of N addition on litter decomposition rate under three kinds of litter decomposition experiments (i.e.,
common litter experiment (litter collected from control plot is decomposed in N addition plots); common site
experiment (litter collected from N addition plots is decomposed in control plot); in situ experiment (litter
collected from control and N addition plots is decomposed in situ)). In general, N addition significantly decreased
litter decomposition rate by 2.3% across the three kinds of litter decomposition experiments. However, litter
decomposition rate responded differently to N addition among different kinds of litter decomposition experi-
ments. N addition significantly decreased litter decomposition rate by 5.1% in common litter experiment. In
contrast, N addition significantly increased litter decomposition rate by 9.2% and 10.3% in common site and in
situ experiments, respectively. The response of litter decomposition rate to N addition was positively correlated
with initial N and phosphorous (P) concentrations, but negatively correlated with initial C:N and lignin:N ratios
of plant litter in common litter experiment. For common site and in situ experiments, the N-induced increase in
litter decomposition rate was attributed to the increased N and P concentrations and decreased C:N and lignin: N
ratios of plant litter under N addition. Collectively, our results suggest that common litter experiment might
underestimate the positive effect of N addition on litter decomposition. By contrast, the overall stimulatory effect
of N addition on litter decomposition rate under in situ experiment should be more realistic, and its adoption
could improve the prediction of ecosystem consequences of increased anthropogenic N deposition.

1. Introduction

Litter decomposition is a fundamental process that governs the
cycling of carbon (C) and nutrients in terrestrial ecosystems (Gessner
et al., 2010; Paul, 2016; Gill et al., 2021). It is known that litter quality
and soil biota play vital roles in regulating the decomposition process at
the local scales (Strickland et al., 2009; Prescott, 2010; Garcia-Palacios
et al., 2016). These control factors of litter decomposition, without
exception, are highly sensitive to nitrogen (N) deposition (Treseder,
2008; Niu et al., 2016; Liu et al., 2016; Zhang et al., 2018a). Given the
significant increase in the atmospheric deposition of reactive N over the
past decades, it is regarded as an important global change driver
(Galloway et al., 2008; Niu et al., 2016). Therefore, comprehensive
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knowledge about the effect of N addition on litter decomposition is
crucial for predicting ecosystem consequences of increasing anthropo-
genic reactive N deposition.

Despite numerous investigations on the effect of N addition on litter
decomposition, the research outcomes were inconsistent. Many studies
reported the suppression effect of N addition on litter decomposition
rate (Magill and Aber, 1998; Tu et al., 2014; Peng et al., 2022). While,
several others suggested insignificant (Liu et al., 2010; Jacobson et al.,
2011; Xia et al., 2018) or faster litter decomposition rate in response to N
addition (Vivanco and Austin, 2011; Schuster, 2016; Hou et al., 2021).
The different response of litter decomposition rate to N addition could
be partly explained by the different litter decomposition methods that
were used in different studies. In general, there are three commonly used
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methods for investigating the effect of N addition on litter decomposi-
tion. First, litter collected from control plot is decomposed in N addition
plots (common litter experiment). This kind of experiment focuses on
how N addition influences litter decomposition through its effect on soil
environment or microbial properties (Keeler et al., 2009; Zhang et al.,
2016; Peng et al., 2022). Second, litter collected from N addition plots is
decomposed in control plot (common site experiment). This experi-
mental design intents to figure out how N addition affects litter
decomposition via its effect on litter quality (Henry and Moise, 2014; Li
et al., 2020). Third, litter collected from control and N addition plots is
decomposed in situ (in situ experiment). Such experiment is conducted
to investigate how N addition affects litter decomposition through its
integrated effect on soil environment and litter quality (Liu et al., 2010;
Hou et al., 2021).

It is widely accepted that N addition could reduce microbial biomass
(Treseder, 2008; Zhang et al., 2018a), decrease the abundance of lig-
ninolytic fungi (Entwistle et al., 2018; Moore et al., 2021) and inhibit the
activity of ligninolytic enzymes (Jian et al., 2016; Chen et al., 2018).
Consequently, the decomposition of lignin-like substrates can be sup-
pressed (Entwistle et al., 2018; Argiroff et al., 2021). Thus, for common
litter experiments, N addition usually reduces the litter decomposition
rate (Magill and Aber, 1998; Tu et al., 2014; Peng et al., 2022), espe-
cially for long-term decomposition experiments (Magill and Aber, 1998;
Peng et al., 2022). N addition also affects litter decomposition by
altering litter quality. Long-term N addition appears to increase litter N
and phosphorus (P) concentration (Li et al., 2017; Hou et al., 2021), but
decrease litter lignin and cellulose content (Hou et al., 2018). As aresult,
the C:N and lignin:N ratios can decline with N addition. Faster decom-
position rates are often positively correlated with higher initial litter N
and P concentrations and lower C:N and lignin:N ratios (Prescott, 2010;
Li et al., 2017). Hence, for common site experiment, N addition can
generally increase litter decomposition rate (Liu et al., 2010; Li et al.,
2020). However, neither common litter nor common site experiments
can reasonably reflect the real effect of N addition on litter decompo-
sition. Since litter decomposition is the result of a complex interaction
between litter chemistry and decomposer community (Bhatnagar et al.,
2018; Osburn et al., 2022), in situ experiment could be more realistic.
However, the effect of in situ experiment on litter decomposition is more
complicated. It depends on the trade-off between the negative effect of
inhibited microbial activity and the positive effect of improved litter
quality. (Liu et al., 2010; Hou et al., 2021). Hou et al. (2021) found that
the improved litter quality was the dominant factor in controlling the
higher decomposition rate under in situ experiment. Liu et al. (2010)
found that N addition had little effect on litter decomposition rate
because the positive effect of improved litter quality was offset by the
negative effect of increased soil N. Moreover, there were also several
meta-analyses had investigated the effect of N addition on litter
decomposition rate (Knorr et al., 2005; Zhang et al., 2018b; Su et al.,
2021). However, they merged these three kinds of litter decomposition
experiments together, the results may not be convincing enough. To
compare the effects of these three kinds of litter decomposition experi-
ments on litter decomposition, and also to comprehensively and accu-
rately assess the effect of N addition on litter decomposition, there is a
need to summarize the results of these three kinds of litter decomposi-
tion experiments, respectively.

Given the diversity of biome types, litter quality and edaphic con-
ditions across individual site-based studies, it is necessary to summarize
the responses of litter decomposition to N addition in these three kinds
of litter decomposition experiments on a global scale to reach general
conclusions. To this end, we conducted a meta-analysis using 1108
paired observations from 162 individual studies to investigate the
response of litter decomposition rate to N addition. The main objectives
of this study are to (1) quantify the direction and magnitude of the effect
of N addition on litter decomposition in three kinds of litter decompo-
sition experiments (i.e., common litter, common site and in situ exper-
iments); (2) explore the drivers of the response of litter decomposition
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rate to N addition in these three kinds of litter decomposition experi-
ments. We hypothesize that: (1) N addition would reduce litter
decomposition rate in experiments that only considered how N addition
affected litter decomposition via its effect on soil or microbial properties
(common litter experiments) because of the decrease in microbial
biomass and activity under N addition (Jian et al., 2016; Zhang et al.,
2018a; Entwistle et al., 2018); (2) N addition would increase litter
decomposition rate in experiments that only explored how N addition
affected litter decomposition through its effect on litter quality (com-
mon site experiment) because of the improved litter quality under N
addition (Niu et al., 2016; Hou et al., 2021); (3) N addition would have
little effect on litter decomposition rate in experiments that considered
the combined effect of litter quality and soil environment (in situ
experiment) because the negative effect of inhibited microbial activity
may offset the positive effect of improved litter quality.

2. Materials and methods
2.1. Data collection and extraction

In this study, we used two databases: Web of Science (https://www.
webofscience.com/) and China National Knowledge Infrastructure
(CNKI) (https://www.cnki.net/) to search for the pre-reviewed articles
published before May 31, 2022. To investigate the effect of N addition
on litter decomposition rate, we set the search terms as follow: (“ni-
trogen deposition” OR “nitrogen addition” OR “nitrogen enrichment”
OR “nitrogen loading” OR “nitrogen fertilization” OR “nitrogen appli-
cation” OR “nitrogen elevated” OR “nitrogen supply”’) AND (litter OR
leaf OR foliar OR aboveground) AND (decomposition OR decay OR
breakdown). Appropriate studies were selected according to the
following criteria: (1) litter decomposition rate was measured through
litterbag method; (2) only field experiments were included and labora-
tory studies were excluded; (3) litter decomposition rate (k value) were
calculated by the single-pool exponential decay model (Olson, 1963);
(4) for studies that didn’t reported the decomposition rate directly, the
percent litter mass remaining or loss for at least three time points
throughout the litter decomposition period must be reported; (5) the
experiment designed must be side-by-side paired-plot treatments
including N addition and control treatment at the same time; (6) for
multifactorial studies, we only selected data from the N addition and
control treatment to avoid the influence of interaction from other fac-
tors; (7) studies should report the mean, sample size and standard de-
viation (SD). If the SD was not reported, SD was calculated from SE (SD
= SE v/N). When neither SD nor SE was reported, SD was estimated
based on the average coefficient of variation (CV) of the datasets with
known SD (Zuber and Villamil, 2016; Dai et al., 2018). Based on the
abovementioned criteria, a total of 162 individual studies with 1108
paired observations were obtained for further analysis. PRISMA Flow
Diagram (Fig. S1) was drawn to show the procedure of the article
selection.

Except for the decomposition rate value (k), we also collected the
related information from the original case studies or relevant studies.
The information included: (1) environmental variables: latitude and
longitude, mean annual temperature (MAT) and mean annual precipi-
tation (MAP); (2) N addition regime: N addition amount (kg ha!
year’l), N form, duration of N addition (year); (3) Initial litter quality:
the concentration of C, N, P, cellulose, hemicellulose and lignin (g kg’l),
C:N and lignin:N; (4) other information: litter decomposition time
(year), number of species (single and mixture), litter source (grass, shrub
and tree) and mycorrhizal type (arbuscular mycorrhizal (AM), ectomy-
corrhizal (EM)). The mycorrhizal type of plant was confirmed according
to the published plant-specific mycorrhizal associations (Wang and Qiu,
2006; Soudzilovskaia et al., 2020). Data was directly obtained from the
tables or extracted from the graphs by using the GetData Graph Digitizer
(version 2.24, http://getdata-graph-digitizer.com, Russian Federation).
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2.2. Meta-analysis

We used a natural log response ratio (RR) (Hedges et al., 1999) to
evaluate the magnitude the direction of the N addition effect on
decomposition rate and other variables. The RR was calculated as
follows:

RR=1n (3 ) ~10(X) ~ In () o)

c

where X; and X, are the mean values of each variable for the N addition
treatment and the control treatment, respectively. Its variance (v) is
calculated as:

2
V= S(’iJr SL 2
nX?  nX?

where S; and S, are the SD of the concerned variable for the N addition
treatment and the control treatment, respectively. n; and n. are the
sample sizes of the concerned variable for the N addition and the control
treatment, respectively.

The weighting factor (w) of each observation was calculated as the
inverse of the variance:

wo=1/v ()]

Because some studies contained two or more observations, in order
to eliminate or reduce the disproportionate effect of individual studies
with large numbers of observation on global means, we adjusted the
weights on the basis of the total number (n) of the observations per study
(Bai et al., 2013; McDaniel et al., 2019). The final weight (') used in the
analyses was:

o =w/n (€)]
The weighted response ratio RR’ was calculated as:

RR’ =o' x RR 5)

The overall weighted response ratio RR for all observation was
calculated as:

T ©)

= 7

Wi

where RR; and o, are weighted response ratio and adjusted weighting
factor of the ith observation, respectively.

Final weighted response ratio and 95% bootstrapped confidence
interval (CI) were calculated by using MetaWin 2.1 (Rosenberg et al.,
2000). All calculation of weighted response ratio and categorical com-
parisons conducted in MetaWin were set on random-effect model. The
95% bootstrapped CI was calculated with 9999 iterations. If the 95%
bootstrapped CI values of weighted response ratio for a variable did not
overlap zero, the effect of N addition on this variable was deemed as
significant. For a better explanation, the weighted response ratio was
transformed back to the percentage change caused by N addition:

Change (%) = [exp(ﬁ) —1] x 100% 7)

The total heterogeneity (Qr) between observations was calculated
and tested against a y?—distribution with n—1 degrees of freedom
(Rosenberg et al., 2000). In addition, the heterogeneity between
observation was also calculated with the I (Higgins and Thompson,
2002). Our analysis showed that the y? values were significant (p <
0.05), and all 2 indexes were larger than 50% (Table S1). These results
revealed that the variability in the observed effect size is larger than one
expected based on sampling variability (Rosenberg et al., 2000; Zhang
et al., 2022). This may be explained by differences between studies ac-
cording to one of several factors (i.e., N addition regime, climate),
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meaning that potential moderator variables can be sought to explain this
variability and further investigation with subgroup analysis is appro-
priate (Higgins and Thompson, 2002).

A categorical meta-analysis was conducted to evaluate the response
of decomposition rate to N addition among sub-groups for different
conditions. In order to assess whether N addition influences litter
decomposition via its effects on soil environment, litter quality or their
combined, the litter decomposition experiment was divided into three
kinds: common litter experiment, common site experiment and in situ
experiment. The following categorical meta-analyses were applied to the
three kinds of litter decomposition experiments, respectively.

N addition amount was grouped by < 50, 50—150 and > 150 kg ha~!
year™!, which represent low, medium and high N addition levels,
respectively (Deng et al., 2020; Chen et al., 2020). N addition form was
split into five groups: NH4-N, NO3-N, NH4NOs3, urea (organic N) and a
mixture of inorganic N and urea (Deng et al., 2020; Yang et al., 2022).
Duration of N addition was divided into two groups: short-term (<5
years) and long-term (>5 years) N addition experimental durations. The
cutoff of 5 years aligned with several previous meta-analyses (Chen
etal., 2020; Wu et al., 2022). Given the response of litter decomposition
rate to N addition depends on decomposition stage or decomposition
time (Gill et al., 2021), in order to more clearly reveal the effect of
decomposition time, it was divided into different groups year by year
(for instance, decomposition time <1 year; 1 year < decomposition time
<2 years, 2 years < decomposition time <3 years and so on). Addi-
tionally, the climatic zone was divided into five groups: Tibet plateau,
cold temperate, warm temperate, subtropical and tropical zones. Litter
species was partitioned into single and mixed species. Litter source was
divided into three groups: grass, shrub and tree. Mycorrhizal type was
split into two group: AM and EM. Between-group Q statistical test
(expressed as Qy value) was applied to compare the heterogeneity of the
weighted response ratio of the different groups for each categorical
variable listed above. Significant Xz values (p < 0.05) indicated that the
effects within a category were significantly heterogeneous (Table S2).

We assessed publication bias in the studies by funnel plots and
Egger’s regressions (Rosenberg et al., 2000; Rothstein et al., 2005). The
funnel plot showed symmetrical shapes both by visual inspections and
Egger’s regression tests (Fig. S2; Tables S3 and S4). Thus, the effects of
publication bias on our result of meta-analysis were absent, and our
calculated effect sizes were robust.

3. Results

3.1. General pattern of the effect of N addition on litter decomposition
rate

Across the three kinds of litter decomposition experiments, N addi-
tion significantly decreased the litter decomposition rate by 2.3% (95%
CI, —3.8— —0.9%) (Fig. 1). Specifically, N addition decreased litter
decomposition rate by 5.1% (95% CI, —6.9— —3.4%) in common litter
experiment (Fig. 1). In contrast, N addition significantly increased litter
decomposition rate by 9.2% (95% CI, 4.4—14.1%) and 10.3% (95% CI,
7.6—12.9%) in common site and in situ experiments, respectively
(Fig. 1).

3.2. Effects of different categorical variables on litter decomposition rate
under three litter decomposition experiments

The responses of litter decomposition rate to N addition were
divergent in the same categorical groups under three different litter
decomposition experiments (Figs. 2-4). In particular, the negative effect
of N addition on litter decomposition increased with N addition amount
in common litter experiment (Fig. 2a). On the contrary, the positive
effect of N addition on litter decomposition increased with N addition
amount in common site and in situ experiments (Fig. 2b and c). Inor-
ganic N addition significantly decreased litter decomposition rate, while
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Fig. 1. Effects of N addition on litter decomposition rate in three kinds of litter
decomposition experiments. Error bars represent 95% confidence interval (CI).
The asterisk indicates a significant difference from zero (p < 0.05). The values
next to the bars are the corresponding number of observations.

organic and mixture of inorganic and organic N addition increased it in
common litter experiment (Fig. 2a). Organic N addition increased litter
decomposition rate in common site experiment, and NH4NO3 and
organic N addition increased litter decomposition rate in in situ exper-
iment, while other types of N addition had no influence on litter
decomposition rate in these two experiments (Fig. 2b and c). For all
three experiments, the effect of N addition on litter decomposition rate
was unrelated to the duration of N addition (Fig. 2).

The decomposition time had significant effect on the responses of
litter decomposition rate to N addition under these three kinds of litter
decomposition experiments (Fig. 3). Specifically, the inhibitory effect of

Common litter experiment

Common site experiment
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N addition on litter decomposition rate was more significant when the
decomposition time beyond 5 years in common litter experiment
(Fig. 3a). The stimulatory effect of N addition on litter decomposition
rate disappeared when the decomposition time was longer than 1 year in
common site experiment and 2 years under in situ experiment, respec-
tively (Fig. 3b and c). In common litter experiment, N addition
decreased litter decomposition rate in subtropical and tropical zones,
increased it in Tibetan Plateau and had no effect on it in temperate zone
(Fig. 3a). In common site experiment, the litter decomposition rate
exhibited positive response to N addition in warm temperate and sub-
tropical zones, but no responses in other climatic zones (Fig. 3b). While
for in situ experiment, N addition raised litter decomposition rate in all
climatic zones (except for subtropical zone) (Fig. 3c). Litter species also
exerted influence on litter decomposition rate under these three kinds of
decomposition experiments. In common litter experiment, N addition
decreased litter decomposition rate of single species, but had little effect
on the decomposition rate of mixed litter (Fig. 3a). While, for common
site experiment, the decomposition rate of single species responded
positively to N addition, but the decomposition rate of mixed litter
showed no response (Fig. 3b). For in situ experiment, N addition
increased the decomposition rate of mixed litter to a greater extent,
compared with the effect of N addition on the decomposition rate of
single species (Fig. 3c).

In common litter experiment, N addition increased the decomposi-
tion rate of grass litter, but had no effect and decreased the decompo-
sition rate of shrub and tree litter, respectively, (Fig. 4a). Similarly, the
decomposition rate of grass litter showed positive response to N addi-
tion, but the decomposition rate of tree litter showed no response in
common site experiment (Fig. 4b). For in situ experiment, N addition
increased the decomposition rate of grass litter to a greater extent (Qy =
12.59, p < 0.01), compared with the effect of N addition on the
decomposition rate of tree litter (Fig. 4c). For all these experiments, the
effect of N addition on litter decomposition rate was unrelated to
mycorrhizal type (Fig. 4).

3.3. Factors driving the responses of litter decomposition rate to N
addition under three decomposition experiment

N addition significantly increased N and P concentrations of plant
litter, but decreased C:N and lignin:N ratios of plant litter in common
site and in situ experiments (Fig. 5a and b).

In common litter experiment, the response of litter decomposition

In situ experiment
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Fig. 2. Effects of N addition amount, form and duration on litter decomposition rate in (a) common litter experiment, (b) common site experiment and (c) in situ
experiment. Error bars represent 95% confidence interval (CI). The asterisk indicates a significant difference from zero (p < 0.05). The values next to the bars are the

corresponding number of observations.
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Fig. 3. Effects of N addition on litter decomposition rate in (a) common litter experiment, (b) common site experiment and (c) in situ experiment as related to
decomposition time, climatic zone and number of species. Error bars represent 95% confidence interval (CI). The asterisk indicates a significant difference from zero
(p < 0.05). The values next to the bars are the corresponding number of observations.
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Fig. 4. Effects of N addition on litter decomposition rate in (a) common litter experiment, (b) common site experiment and (c) in situ experiment as related to litter
source and mycorrhizal type. Error bars represent 95% confidence interval (CI). The asterisk indicates a significant difference from zero (p < 0.05). The values next to
the bars are the corresponding number of observations. Abbreviations: AM, arbuscular mycorrhizal; EM, ectomycorrhizal.

rate to N addition was positively correlated with the initial C, N, P and
hemicellulose concentrations of plant litter, but negatively correlated
with the initial C:N and lignin:N ratios of plant litter (Table 1). For
common site and in situ experiments, the response of litter decomposi-
tion rate to N addition was positively correlated with the responses of N
and P concentrations of plant litter to N addition, but negatively
correlated with the responses of C:N and lignin:N ratios of plant litter to
N addition (Table 2).

4. Discussion

Although numerous studies have investigated the effect of N addition
on litter decomposition, the results varied widely (Vivanco and Austin,
2011; Hou et al., 2021; Peng et al., 2022; Su et al., 2022). Litter quality
(Knorr et al., 2005), different decomposition stage (Gill et al., 2021) and
N addition regime (i.e., N addition amount and form) (Dong et al., 2019;
Fu et al., 2022) were found could regulate the effect of N addition on
litter decomposition. However, the underlying mechanisms need further

study. Based on 1108 observations (903, 51 and 154 observations for
common litter, common site and in situ experiments, respectively), our
meta-analysis conducted the first systematic assessment of the response
of litter decomposition rate to N addition under these three kinds of litter
decomposition experiments (Fig. 6). Our results clearly demonstrated
that different litter decomposition methods could also affect the results
of N addition on litter decomposition: N addition significantly decreased
litter decomposition rate in common litter experiment, but significantly
increased it in common site and in situ experiments. These findings
provided new insight into the understanding of N addition on litter
decomposition. Next, we discussed the possible underlying mechanisms
for the observed patterns of the response of litter decomposition rate to
N addition under the three litter decomposition experiments.

4.1. N addition decreased litter decomposition rate in common litter
experiment

Consistent with the first hypothesis, N addition lowered the litter
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Fig. 5. Effects of N addition on several litter proper-
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Table 1

Pearson’s correlation coefficients (r) between the response ratios of decompo-
sition rate to N addition and the initial litter quality in common litter
experiment.

Decomposition Initial Correlation Significance Number of
rate m coefficient p) observations
® (n)
RR(k) C 0.20%* < 0.01 581
N 0.18** < 0.01 654
P 0.30%* < 0.01 499
Cellulose 0.04 0.39 411
Hemicellulose ~ 0.24** < 0.01 188
Lignin 0.06 0.18 496
CN —0.22%* < 0.01 603
Lignin:N —0.10* < 0.05 497

Abbreviations: C, carbon concentration of plant litter; N, nitrogen concentration
of plant litter; P, phosphorus concentration of plant litter; C:N, the carbon to
nitrogen ratio of plant litter; Lignin:N, the lignin to nitrogen ratio of plant litter.

Table 2

decomposition rate in common litter experiment (Fig. 1). In most eco-
systems, litter decomposition is primarily regulated by the activities of
microorganisms and animals which breakdown the organic matter into
simpler forms, so as to gain energy and matter to build and maintain
their own biomass (Bradford et al., 2016). In common litter experiments,
previous studies mainly examined the influence of N addition on litter
decomposition via its effect on soil microorganisms. A number of mi-
crobial mechanisms have been proposed to explain the decline in litter
decomposition rate in response to N addition. First, N addition might
reduce litter decomposition rate by reducing the biomass of the
decomposing microbes. It is known that N addition could decrease mi-
crobial biomass (Treseder, 2008; Zhang et al., 2018a). N addition could
cause soil acidification, loss of base cations and increased solubility of
hydrolyzing cations, which could in turn result in microbial base cation
limitation and toxic effects of increased AI** on microbes (Averill and
Waring, 2017), and subsequently, reduce microbial biomass and
decomposition rate. Second, plenty N supply could stimulate the
biosynthesis of hydrolase, but reduce oxidase (i.e., peroxidase, phenol

Pearson’s correlation coefficients (r) between the response ratios of decomposition rate to N addition and the response ratios of litter quality to N addition in common

site and in situ experiments.

Decomposition rate Variable Correlation coefficient (r) Significance Number of observations (n)
()]

RR(k) in common site experiment RR(C) 0.51%* < 0.01 25
RR(N) 0.39%* < 0.01 45
RR(P) 0.41* < 0.05 28
RR(Cellulose) —0.45** < 0.01 27
RR(Hemicellulose) —0.02 0.94 17
RR(Lignin) -0.11 0.50 38
RR(C:N) —0.35* < 0.05 35
RR(Lignin:N) —0.36* < 0.05 38

RR(k) in in situ experiment RR(C) —0.33** < 0.01 68
RR(N) 0.18* < 0.05 142
RR(P) 0.19* < 0.05 116
RR(Cellulose) —0.19 0.11 68
RR(Hemicellulose) —0.01 0.99 42
RR(Lignin) 0.03 0.81 94
RR(C:N) —0.22* < 0.05 98
RR(Lignin:N) —0.30* < 0.05 94

Abbreviations: C, carbon concentration of plant litter; N, nitrogen concentration of plant litter; P, phosphorus concentration of plant litter; C:N, the carbon to nitrogen

ratio of plant litter; Lignin:N, the lignin to nitrogen ratio of plant litter.
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oxidase) production (Jian et al., 2016; Chen et al., 2018). This is because
microorganism does not need to depolymerize recalcitrant substrate
such as lignin to mine N, since oxidative enzyme production is high
energy cost (Jian et al., 2016). Additionally, N addition could accelerate
the release of manganese (Mn) (Peng et al., 2022). Since Mn is an
essential element for enhancing ligninolytic enzyme activity and
oxidizing lignin (Entwistle et al., 2018; Whalen et al., 2018; Jones et al.,
2020), ligninolytic enzyme activity and litter decomposition would be
suppressed when Mn is limited. Finally, fungal biomass, richness,
especially the abundance of ligninolytic fungi which have the ability to
completely decompose lignin could also be reduced by N addition
(Entwistle et al., 2018; Moore et al., 2021). The abundance of functional
genes involved in the depolymerization of a variety of complex substates
was also reduced by N addition (Fisenlord et al., 2013). The reduced
abundance of functional microbial groups and genes could also
contribute to the decreased litter decomposition rate under N addition.

Nevertheless, N addition might not always reduce litter decomposi-
tion rate in common litter experiment. Specifically, N addition had little
effect on litter decomposition rate in low amount (<50 kg ha~! year™!)
of N addition experiment (Fig. 2a), decomposition experiment that
conducted in temperate zone and mixed litter decomposition experi-
ment, respectively (Fig. 3a). The low sensitivity of litter decomposition
rate to low amount N addition was probably because of insignificant
effect of lower amount of N addition on the activity of decomposer
(Zhou et al., 2017). The plants and microbes are all N-limited in high
latitude and altitude regions, such as cold temperate zone or Tibetan
Plateau (Soong et al., 2020; Du et al., 2020). By adding N into N-limited
ecosystems, plant uptake can reduce the inhibitory and toxic effects of
excessive N on microorganism. Thus, N addition may have little effect on
litter decomposition rate or even promote it in N-limited ecosystems.
The unchanged litter decomposition rate of mixed litter in response to N
addition maybe due to that litter mixtures represent resources of
different quality for decomposers. The more diverse litter types could
provide more compensatory resources and diverse habitats, and then
recruit more diverse decomposers (Gessner et al., 2010). The higher
diversity of decomposers might enhance the ability of ecosystem to resist
environmental change (Saleem et al., 2019), such as N addition. How-
ever, further studies are needed to explore the underlying mechanisms.
Moreover, litter decomposition rate was significantly increased by
organic and mixture of inorganic and organic N addition (Fig. 2a), and
the decomposition rate of grass litter was also enhanced by N addition in
common litter experiment (Fig. 4a). Our findings are supported by the
regional meta-analysis conducted in China (Su et al., 2021). Since
organic N is more readily bioavailable and a preferential N source for

Microbial .f““gi

activity®
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Fig. 6. Conceptual diagram illustrating mechanisms
N of N addition affecting the decomposition rate in the
addition three experiments. The values behind the variables
indicate the percentage changes caused by N addi-
tion. The upward and downward arrow indicate
positive and negative effect of N addition on the
variables, respectively. Abbreviations: k, litter
decomposition constant; N, nitrogen concentration of
plant liter; P, phosphorus concentration of plant liter;
C:N, the carbon to nitrogen ratio of plant litter;
Lignin:N, the lignin to nitrogen ratio of plant litter.
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microorganisms (Hobbie, 2005), its addition could positively affect
microbial activity compared with inorganic N. Moreover, the mixed
forms of N addition can offer a broader use of N sources for decomposing
microbes to grow on (Dong et al., 2019). The positive response of the
decomposition rate of grass litter to N addition was mainly because that
grass litter is generally characterized with higher litter quality compared
with tree litter (9.9% vs. 22.4% for the percent of lignin in litter; 46.92
vs. 62.21 for C:N ratio, 16.48 vs. 30.40 for lignin:N ratio in this
meta-analysis) because of their larger specific leaf area and leaf N con-
centration (Erdenebileg et al., 2023). Moreover, N addition was found
could stimulate the decomposition of high-quality litter (litter with
lignin that is less than 10%), but inhibit the decomposition of
low-quality litter (litter with lignin that is more than 20%) (Knorr et al.,
2005). Since N addition could suppress lignin-degrading metabolism
(Entwistle et al., 2018; Moore et al., 2021) and the decomposition of
litter with greater lignin contents (Knorr et al., 2005; Xia et al., 2018).
They could both verify the finding that N addition imposed inhibitory
effect on the decomposition of tree litter. The negative relationships
between litter decomposition rate and initial C:N and lignin:N ratios of
plant litter in common litter experiment (Table 1) provided further ev-
idence for this explanation.

4.2. N addition increased litter decomposition rate in common site and in
situ experiments

Consistent with our second hypothesis, N addition significantly
promoted litter decomposition rate in common site experiment. The
increased litter decomposition rate was mainly attributed to the
improved litter quality under N addition (Hou et al., 2021). Remarkably,
both N and P concentrations of plant litter were enhanced by N addition.
While the C and lignin concentrations were unchanged, and conse-
quently, the quality of plant litter (i.e., C:N and lignin:N ratios) was
improved by N addition (Fig. 5a). Litter with high N and P concentra-
tions could decompose faster than litter with low nutrient contents
because high-quality litter can stimulate the growth and activity of
decomposer (Fanin and Bertrand, 2016; Bhatnagar et al., 2018). More-
over, C:N ratio, especially lignin:N ratio of plant litter is the dominant
regulator of decomposition process (Prescott, 2010). In general, higher
decomposition rate is associated with lower C:N and lignin:N ratios
(Prescott, 2010; Lin et al., 2020). The response of litter decomposition
rate to N addition was positively correlated with the responses of N and
P concentrations to N addition, and negatively correlated with the re-
sponses of C:N and lignin:N ratios to N addition in common site exper-
iment (Table 2) confirmed the abovementioned mechanisms. Our result
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confirmed that litter quality is a major determinant of litter decompo-
sition rate (Strickland et al., 2009; Wang et al., 2021).

It is intriguing that N addition also significantly increased litter
decomposition rate through its integrated effect on soil environment and
litter quality (in situ experiment) (Fig. 1), which was inconsistent with
our third hypothesis. Litter quality was also significantly improved in in
situ experiment (Fig. 5b). However, we lack the information about the
influence of N addition on microbial activity in litter decomposition
experiment. Tentatively, we propose that the stimulatory effects of
improved litter quality on litter decomposition rate out-performed the
inhibitory effects of reduced microbial activity on litter decomposition
rate under N addition. Nonetheless, a mechanism which could not be
neglect was that, owing to long-term N addition, soil microbial com-
munities could adapt to the high N environment and litter quality, which
is known as home-field advantage (HFA). The HFA hypothesis states that
leaf litter is often decomposed more rapidly in its habitat of origin than
in other habitats, suggesting the specialization of home soil communities
in decomposing local litter (Freschet et al., 2012; Osburn et al., 2022).
Earlier studies on the three kinds of litter decomposition experiments (i.
e., common litter, common site and in situ experiments) reported that
litter collected from N addition plot decomposed faster in its own soil
than litter from control plot decomposed in N addition plot (Liu et al.,
2010; Henry and Moise, 2014; Li et al., 2017). These results suggested
that the HFA effects may also be applicable to N addition experiments.
Furthermore, N addition was found to increase bacteria to fungi ratio
(Zhang et al., 2018a; Hou et al., 2021), suggesting that N addition would
shift the systems to the bacterial channel of nutrient cycling. As the
nutrient demands and metabolic activities of bacteria are higher than
those of fungi (Strickland and Rousk, 2010), bacterial dominated
decomposer system is characterized by high turnover rates of substrates
(Wardle et al., 2004; Zechmeister-Boltenstern et al., 2015). The higher
quality of plant litter coupled with the dominance of bacteria could yield
higher litter decomposition rate.

It was worth noting that when the decomposition time was longer
than 2 years, the litter decomposition rate showed no response to N
addition under in situ experiment (Fig. 3c). It is well supported that N
addition could accelerate initial stages litter decomposition, but slow
later stages litter decomposition (Knorr et al., 2005; Hobbie et al., 2012;
Gill et al., 2021, 2022). The decomposition time (2 < year <3) that had
no effect on the response of litter decomposition rate to N addition could
be a balance period between the positive effect of short-term (<2 years)
and negative effect of long-term (>3 years) decomposition time on litter
decomposition rate. However, long-term in situ litter decomposition
experiments, especially the experiments that are longer than 3 years, are
required to confirm whether N addition could decrease litter decom-
position rate under in situ experiment. Given that the overall stimulatory
effect of N addition on litter decomposition rate was found under in situ
experiments, and in situ litter decomposition experiments can reflect the
effect of N addition on litter decomposition more realistically, tradi-
tional experiments about the effect of N addition on litter decomposition
(i.e., common litter experiments) might underestimate the positive ef-
fect of N addition on litter decomposition rate.

4.3. Uncertainties and implications

Our analysis highlights three crucial knowledge gaps. First, more
than three quarters of studies about the effect of N addition on litter
decomposition only paid attention to the influence of N addition on litter
decomposition rate through its effect on soil environment (common
litter experiment). These previous studies failed to consider the inte-
grated effect of N addition on soil environment and litter quality. To
rigorously investigate the effect N addition on litter decomposition, we
need to prioritize in situ experiments. Second, the information about the
effect of N addition on soil or litter associated microorganisms in com-
mon litter and in situ experiments was rare (Hobbie et al., 2012; Hou
et al., 2021). The lack of information limited our understanding on the
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mechanism of N addition on litter decomposition through its effect on
microbial characteristics. Future litter decomposition studies should
measure litter and microbial properties (microbial functional groups,
genes and enzyme activities) simultaneously. Third, as mentioned in
Prescott (2010), to sequester more C in soil, we need to consider not how
to slow decomposition, but rather how to divert more litter to relative
stable soil organic matter (SOM) pools through microbial and chemical
processes. Future studies should also explore the formation of SOM via
biochemical and physical pathways of litter mass loss under N addition
(Cotrufo et al., 2015). However, our finding of the promoting effect of N
addition on litter decomposition under in situ experiments has impor-
tant implications for the process of soil organic matter formation. The
acceleration of litter decomposition could favor the dissolved organic
matter (DOM)-microbial pathway for the formation of
mineral-associated organic C (MAOC) (Cotrufo et al., 2015). Moreover,
litter with lower C:N ratio under N addition typically could form
mineral-associated organic matter (MAOM) more efficiently through
either microbial transformation or direct sorption to mineral surfaces
(Cyle et al., 2016; McFarland et al., 2019). As such, the increased litter
decomposition following N addition might increase the input of
litter-derived C to more stable SOC pool (i.e., MAOC) (Hobbie, 2015).

5. Conclusions

This global meta-analysis clearly demonstrated that litter decom-
position rate responded differently to N addition among different kinds
of litter decomposition experiments. For instance, N addition decreased
litter decomposition rate in common litter experiment, but increased it
in common site and in situ experiments. In a sense, studies that only
considered the influence of N addition on litter decomposition rate via
its effect on soil environment or microbial properties (common litter
experiment), or synthesis studies which mixed different kinds of litter
decomposition experiments together, might underestimate the promot-
ing effect of N addition on litter decomposition. For in situ experiment,
the increased litter decomposition rate in experiments less than 2 years
could be partially explained by the positive effects of improved litter
quality exceeding the negative effect of inhibited microbial activity.
However, more studies would be needed to further clarify how N
addition affects litter decomposition through its integrated effects on
litter quality and microbial properties under in situ experiment.
Collectively, this meta-analysis advances our comprehensive under-
standing of the effect of N addition on litter decomposition and benefit
the ecosystem models in the accurate projection of C and nutrient cycle
under increasing N deposition.
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