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We perform numerical simulations of active ideal and self-avoiding tethered membranes. Passive
ideal membranes with bending interactions are known to exhibit a continuous crumpling transition
between a low temperature flat phase and a high temperature crumpled phase. Conversely, self-
avoiding membranes remain in an extended (flat) phase for all temperatures even in the absence
of a bending energy. We find that the introduction of active fluctuations into the system produces
a phase behavior that is overall consistent with that observed for passive membranes. The phases
and the nature of the transition for ideal membranes is unchanged and active fluctuations can be
remarkably accounted for by a simple rescaling of the temperature. For the self-avoiding membrane,
we find that the extended phase is preserved even in the presence of very large active fluctuations.

1 Introduction
Membranes are two dimensional structures embedded in a higher
dimensional space. They are ubiquitous in nature and they have
a fundamental role in the biology of the cell. They partition com-
plex biochemical environments where different biological pro-
cesses need to take place and regulate the intracellular traffic in
eukaryotic cells1. Biological membranes that are generated by
self-assembly of phospholipids form a double-layered film a few
nanometers in thickness. These amphiphilic molecules can freely
diffuse on the membrane surface. In vitro, these membranes can
be modeled as fluid films whose elastic properties are properly ac-
counted for with the Helfrich free energy which includes a surface
tension and a bending energy term2.

Their morphological and elastic properties in vivo depend,
however, not only on thermal fluctuations, but also on the way
the membranes interact with or are coupled to their environ-
ment. For instance, the membranes enveloping red blood cells
are known to be strongly coupled to the cell’s inner cytoskeletal
structure, the tethered nature of which, significantly impacts their
elastic and morphological properties3–5. Furthermore, biological
membranes are typically subject not just to thermal, but also to
active fluctuations generated, by ATP consumption6–9, cascading
biochemical reactions, pushing and pulling of actin filaments1,
and more in general they develop as a result of metabolic energy
consumption in living cells.

Fluctuations of giant vesicles are also known to be enhanced
by embedding a light-activated protein bacteriorhodopsin within
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the phospholipid bilayer10. Active fluctuations are known to
keep these systems highly dynamic and away from their equilib-
rium state by energy dissipation that can produce strong non-
equilibrium effects on the scale of the system11–13.

In this paper, we are interested in understanding the role of
active fluctuations on the behavior of elastic, tethered mem-
branes. Unlike their fluid counterparts, the elements constitut-
ing tethered membranes are permanently linked to each other,
and therefore resist shear strain and cannot flow4. Beyond the
actin–spectrin networks of red blood cell cytoskeleton14,15, other
examples of tethered membranes are: cross-polymerized mem-
branes16, gels17, membranes made of close-packed nanoparti-
cles18, graphene and graphite-oxide sheets19,20 polymer films21

and pollen grains22.

The behaviour of equilibrated tethered membranes is rather in-
teresting23,24. In the absence of self-avoidance, thermal fluctua-
tions play an important role in determining the equilibrium struc-
ture of tethered membranes. A continuous transition between a
flat (extended) and a crumpled phase is observed depending on
the relative strength of the thermal fluctuations and the bending
energy25. Curiously, self-avoiding tethered membranes, robustly
remain in the flat phase at all temperatures26–28. The stabil-
ity of the flat phase is due to the non-linear coupling between
the in-plane and out-of-plane modes of deformation of the mem-
brane which renormalizes its bending rigidity in a way that the
membrane becomes stiffer as its size increases29–31. We refer the
reader to reference4 for a comprehensive review of the physics of
tethered membranes. Crucially, for self-avoiding membranes in
equilibrium, the flat phase is observed even in the absence of any
bending rigidity. Although the crumpled phase is not theoreti-
cally expected when the embedding dimension d ≤ dc = 432,33,
the crumpling of the membrane is possible in higher dimen-
sions as self-intersections become increasingly rare. This result
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Fig. 1 a) A sketch of edge sharing triangular plaquettes with normals
ηηη l ,ηηηm. The spheres centered at the nodes represent self-avoiding parti-
cles of diameter σ (reduced in size for visual clarity). b) Snapshots of
simulations (spherical particles at the nodes are not shown) exhibiting the
flat/extended phase and the crumpled phase of an ideal active tethered
membrane. For easier visualization, the crumpled phase is enlarged by
300%. The system size is N = 13530.

was tested using different numerical models, including a triangu-
lated network of hard spheres imposing different degrees of self-
avoidance34,35 and a plaquette model, where the hard spheres
are removed and self-avoidance is imposed by explicitly prevent-
ing triangle-triangle intersections among any discrete parts of the
membrane surface24.

The role of active fluctuations on ideal and self-avoiding poly-
mers has been studied intensely over the last decade, resulting
in a variety of novel phenomenological behaviour36–41,41–52. We
also refer the reader to53 for a recent review on active polymers.

More recently a significant effort has been put forward to un-
derstand the behavior of active fluid vesicles54–58, and it was re-
cently suggested that the well known phenomenon of flickering
observed in red-blood cells − the tethered counterpart to fluid
membranes − breaks down the fluctuation-dissipation relation
and can only be explained by the presence active, non-equilibrium
forces59. It is therefore important to understand the behavior of
tethered membranes under the presence of active forces, not only
for their biological relevance but also because of their possible
applications in materials engineering.

While the behavior of stiff self-avoiding membranes immersed
in an active bath have been numerically investigated60, the prob-
lem of how the crumpling transition of ideal tethered membranes
or the stability of the flat phase of the corresponding self-avoiding
system is affected by active fluctuations still remains open. This
paper addresses both questions.

2 Model and methods

We model the elastic surface using a standard triangulated fishnet
network representation61 embedded in three dimensions. The
rest shape of the membrane is circular, and apart from the bound-
ary nodes, every inner node is six-coordinated. See Fig. 1 for a
sketch of the membrane model and snapshots of the membrane in
the flat and crumpled phase. To enforce self-avoiding interactions
in a membrane with N number of nodes, we place a spherical par-
ticle of diameter σ at each node. Each of these node particles are
connected to their nearest neighbors with a harmonic potential.

If we denote the three dimensional coordinate of the ith node
particle as rrri, then the overall Hamiltonian of the system can be

written as,

H = K ∑
<i j>

(Ri j −σ)2 +κ ∑
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+4ε ∑
i j

[︄(︃
σ

Ri j

)︃12
−
(︃

σ

Ri j

)︃6
+
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4
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where Ri j ≡ |rrri − rrr j|. The first term accounts for the harmonic
bonds between nearest neighbor particles and the equilibrium
distance is set to σ . For this membrane immersed in a solvent
of temperature T0, the spring constant K = 1500kBT0 is suitably
set to a large value so that there is no appreciable stretching of
the membrane. Here, kB is the Boltzmann constant. The sec-
ond term is the bending energy where κ is the bending constant
and (ηηη l ,ηηηm) represent the normal vectors of any two adjacent
triangles (plaquettes) sharing an edge (see Fig. 1 for a sketch of
the model). The third term only applies to self-avoiding mem-
branes, and models the excluded volume interaction between the
node particles using the Weeks-Chandler-Andersen (WCA) poten-
tial cut off at Ri j = 21/6σ and set to zero beyond that distance.
When considering ideal membranes, we set ε = 0 ∀Ri j, otherwise
we keep ε = kBT0.

Activity is introduced in the system by adding a self-propelling
force of constant magnitude vp to each of the node particles. The
system dynamics is resolved using Brownian motion according to

drrri(t)
dt

=
1
γ

fff i + vp n̂n̂n̂i(t) +
√

2Dξξξ (t),

dn̂n̂n̂i(t)
dt

=
√︁

2Dr ξξξ r(t)× n̂n̂n̂i(t),

(2)

where i is the particle index and the unit vector n̂n̂n̂ is the axis of
propulsion. The conservative forces on each particle are denoted
by fff i = −∂H/∂ rrri. The translational diffusion coefficient D, tem-
perature T0 and the translational friction γ are constrained to fol-
low the Stokes-Einstein relation D = kBT0γ−1. Likewise, the rota-
tional diffusion coefficient is constrained to be Dr = kBT0γ−1

r , with
Dr = 3Dσ−2. The Gaussian white-noise terms induced by the sol-
vent for the translational ξξξ and rotational ξξξ r motions are charac-
terized by the relations ⟨ξξξ (t)⟩= 0 and ⟨ξm(t)ξn(t ′)⟩= δmnδ (t − t ′).

We perform molecular dynamics (MD) simulations using the
numerical package LAMMPS62 and the units of length, time and
energy respectively are set to be σ , τ = σ2D−1 and kBT0. All sim-
ulations were run with a time step less than ∆t = 2×10−5τ. The
strength of the active forces is quantified by the Péclet number
defined as Pe = vpσ/D.

The shape of the fluctuating membrane is assessed using the
shape tensor63,

Sαβ =
1

2N2

N

∑
i=1

N

∑
j=1

(riα − r jα )(riβ − r jβ ), (3)

where α,β = {x,y,z} (the three Cartesian coordinates) and i, j
are the particle indices. The trace of the shape tensor is the
square of the radius of gyration. This symmetric tensor is diago-
nalized into three principal directions with corresponding eigen-
values λα where α = 1,2,3 such that λ1 ≥ λ2 ≥ λ3. The scaling of
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Fig. 2 (a) Size dependence of the three eigenvalues of the shape tensor for an ideal active tethered membrane in the flat phase. In this case Pe = 20
and κ = 10. The largest two eigenvalues of the shape-tensor scale linearly with the size of the membrane, N, which confirms the flat phase of the ideal
membrane. The smaller eigenvalue is compatible with a roughness exponent of 0.64. The dashed lines show the reference power laws for the passive
system. (b) Logarithmic size dependence of the three eigenvalues of the shape tensor for an ideal active membrane in the crumpled phase. The plot is
in a Log-Linear scale. In this case Pe = 100 and κ = 0. The solid lines represents fits to the data, and λ̄ α ≡ λα − cα , where cα is an additive constant
included to the power law fits.

the time-averaged eigenvalues with membrane size, ⟨λα ⟩ ∼ Nβα ,
determines the phase of the membrane.

For ideal membranes, the flat phase is characterized by a lin-
ear growth of the two largest eigenvalues with its overall size N.
This implies β1 = β2 = 1, while the third eigenvalue is associated
with the roughness exponent ζ , which accounts for the height
fluctuations h of the membrane and scales as

⟨︁
h2⟩︁ = Nζ , where

ζ ≃ 0.64(4). In the isotropic crumpled phase, all three eigenval-
ues have a logarithmic dependence on N 25.

Self-avoiding membranes lack a crumpling transition and are
found in an extended state for all temperatures. Its extended
phase is characterized by exponents βα compatible with those as-
sociated with the flat phase of the ideal membrane64. Adding
attractive forces between the node particles on a self-avoiding
membrane lead to the formation of a compact/folded phase with
size exponent βα = 2/3 ,∀α 35.

To estimate the size exponents in our numerical simulations,
we fit the average eigenvalues of the shape tensor over six system
sizes in the range of N ∈ {1142,13530}. We start with a flat initial
configuration of the tethered membrane and allow 108 MD steps
for the system to reach the steady state. Configurations of the
membrane are extracted every 105 MD steps and the averaging
of the eigenvalues is done over a minimum of 3000 configura-
tions for the self-avoiding case and a minimum of 6000 config-
urations for the ideal tethered membranes. The standard errors
of the eigenvalues about their averages are used as the error bars
for our data. To extract the shape exponents βα , we perform
the least squares fit to the eigenvalues using a power law with
and without an additive constant i.e. we fit λα = bα Nβα + cα

and λα = bα Nβα , as well as including a logarithmic correction
λα = bα Nβα + cα log(N). This is done to control for possible sub-
leading corrections24. The error on the exponents accounts for
the range of values obtained with this fitting procedure.

3 Ideal membranes
We first consider the case of ideal membranes, i.e. tethered net-
works with no self-avoiding interactions (ε = 0 in Eq. 1). Since
the spring constant of the bonds is very large, effectively making
the membrane unstretchable, the only relevant elastic parameter
controlling the shape of the surface is the bending constant κ.
In the competition between bending energy which favors a flat
phase and entropy which favors a crumpled phase, ideal mem-
branes are found in a flat phase at low temperatures and collapse
into a crumpled phase at high temperatures. The phase transition
is continuous and for a fixed value of the bending constant κ, the
critical point occurs when κ/(kBTc) = 0.334, here Tc is the critical
temperature.

We study the effect of active fluctuations on the phases of the
membrane, the location of the transition point and the nature of
the transition itself. For a given set of bending constants κ, this is
done by studying the conformational properties of the membrane
as a function of Péclet number Pe.

Our results show that for small values of Pe, the membrane re-
tains its flat shape as depicted in Fig. 1 (r.h.s) and is characterized
by shape exponents β1 = β2 ≃ 1 and a roughness exponent ζ ≃ 0.6,
within error bar of the value expected for the parent equilibrium
system. All exponents, obtained by fitting the eigenvalues of the
shape tensor to a power law of the form λα (N) = cα +dα Nβα , are
reported in Table 1. In Fig. 2(a), we see the linear dependence of
the two largest eigenvalues λ1,λ2 − a signature of the flat phase

Exponents Ideal Self-avoiding
β1 1.01±0.03 0.91±0.07
β2 1.06±0.04 1.0±0.1
β3 (ζ ) 0.6±0.1 0.67±0.09

Table 1 Shape exponents for ideal (Pe = 20,κ = 10) and self-avoiding
(Pe = 100,κ = 0) active tethered membranes.
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Fig. 3 a) Phase diagram of ideal membranes for different values of bending rigidity and effective active temperature T eff = T0(1+ qPe2). Here,
β0 = 1/(kBT0) and T0 refers to the background temperature of the thermal fluctuations. The phase of the membrane with a bending constant κ is
taken to be flat (blue squares)/crumpled (red disks) if the radius of gyration is greater/less than the critical radius of gyration at the same κ. The
dashed line indicates the boundary between the two phases and follows the slope κ/(kBT eff

c ) = 0.33 when an effective active temperature is defined
with q = 1/42. The system size is N = 3333. (b) Typical behavior of the effective specific heat, defined as dE/dT eff, as a function of T eff for different
values of membrane size N.

− as well as the dependence of the smallest eigenvalue λ3 on the
size of the membrane N. For sufficiently large values of Pe, the
ideal active membrane assumes a crumpled configurations as de-
picted in the bottom-left of Fig. 1. In this case, the membrane
is isotropic and all eigenvalues scale logarithmically with N as
shown in Fig. 2(b) which depicts in a Log-Linear scale the be-
havior of λα as a function of N. Again, this phase is consistent
with that observed for equilibrium ideal membranes. Thus, the
character of the two equilibrium phases for ideal membranes is
preserved under the influence of the active fluctuations.

This nontrivial result suggests that the phase behavior of an ac-
tive membrane may be encapsulated as an effective higher tem-
perature of the system. Interestingly, while this mapping has been
possible for some active problems, such as the sedimentation of
active colloidal suspensions under the influence of gravity65 or
the structure of flexible and semiflexible active polymers within
the framework of dry active matter36,41,48,66, there are many
counterexamples where such mapping is completely inadequate;
the most important one is probably the motility induced phase
separation in a dense fluid of active particles67. Understanding
the conditions under which this mapping can be made for arbi-
trary active systems still remains an open question.

To test the feasibility of this mapping for ideal tethered mem-
branes, we consider the standard functional form for the effective
temperature T eff = T0(1+ qPe2), where q is a system dependent
parameter. We then compute the specific heat per particle, de-
fined as CV ≡ dE/dT eff as a function of T eff. Here E is the average
energy per particle computed from Eq. 1. The peak of CV as a
function of T eff identifies the transition point, T eff

c . By varying the
only unknown parameter q, we check that membranes with differ-
ent values of the bending constant κ = 10,20,35,50 across a range
of Péclet numbers lead to the same transition point characterized
by the ratio κ/(kBT eff

c ) = 0.33 (the passive critical point at room
temperature) for every value of κ. The results of this analysis can
be seen in Fig. 3(a), where we plot the rescaled bending constant

κ as a function of T eff
c . Strikingly, when we select q ≈ 1/42, all

points follow the same line with slope 0.33, making for a strong
case that the physical properties of an active ideal tethered mem-
brane can be properly described by its parent passive system with
an effective higher temperature of T eff ≈ T0(1 + Pe2/42). Fig-
ure 3(b) shows the divergence of CV as a function of T eff at a
given bending constant and different membrane sizes N, indicat-
ing the second order nature of the transition.

4 Self-avoiding membranes

As discussed above, the main difference between ideal and self-
avoiding membranes is that the latter lack the crumpled to flat
transition and tend to remain in an extended state even when the
bending constant is set to zero. While it was argued that the self-
avoidance of the hard balls in the tethered membranes impose a
restriction on the range of the bending angles effectively yielding
a small finite bending rigidity35, it was shown that even the use of
very small spheres on top of the nodes of the lattice34 or enforc-
ing excluded volume with just the second-nearest-neighbors35,
rather than against all membrane particles, is sufficient for teth-
ered membranes to lose the crumpling transition. Furthermore,
simulations with the more computationally expensive impenetra-
ble plaquette model have also indicated the stability of the flat
phase24 for κ = 0, suggesting that passive self-avoiding mem-
branes retain their extended phase for all temperatures26,27.

We therefore focus our attention to the specific case of κ = 0,
and we use the computationally efficient spring-and-balls model
discussed above, where we enforce self-avoidance by imposing
the excluded volume among all node particles on the membrane
with diameter σ as discussed in Eq. 1. This choice is justified
because the strength of active fluctuations is much larger than
the effective bending rigidity, which was estimated to be of the
order of 1.13 kBT 35, intrinsic to the model.

It should be stressed that although an effective temperature
can properly describe the active fluctuations of an ideal mem-

4 | 1–8Journal Name, [year], [vol.],



Fig. 4 Size dependence of the three eigenvalues of the shape tensor for an
active tethered self-avoiding membrane. The largest two eigenvalues of
the shape-tensor scale linearly with the size of the membrane, N, which
confirms the flat phase of the self-avoiding membrane. The smallest
eigenvalue is compatible with a roughness exponent of 0.64. In this plot
Pe = 100 and κ = 0. The dashed lines show the reference power laws
for the passive system. The solid lines represents fits to the data, and
λ̄ α ≡ λα −cα , where cα is an additive constant included to the power law
fits.

brane, this may not be necessarily true for the self-avoiding one.
Yet, we find that upon turning on the activity, the self-avoiding
membrane retains its extended phase for the broad range of val-
ues of Pe ∈ [0,100] considered in this study. This is again es-
tablished by studying the size dependence of the eigenvalues of
the shape tensor. The corresponding exponents are shown in Ta-
ble. 1, and indicate that the ones associated with the two largest
eigenvalues are close to unity and the smallest one has a value
compatible with the roughness exponent 0.6, suggesting that the
self-avoiding membrane retains its flat phase under active fluc-
tuations and that this phase is consistent with that observed for
the flat phase of the ideal membrane for Pe < Pec. Snapshots of
conformations of the self-avoiding membrane of size N = 13530 at
Pe = 100 is included in the supplementary section of the paper †.

It is also instructive to measure how the three eigenvalues of
the shape tensor depend on the strength of the active forces, Pe.
To this end, we performed a series of simulations of an active
self-avoiding membrane for different Pe. The results are shown
in Fig. 5(a). The overall trend is that for small values of Pe we
observe a sharp decrease of the two largest eigenvalues of the
shape tensor, accompanied by a corresponding sharp increase of
the smallest eigenvalue. This behaviour is the result of the cou-
pling between the in- and out-of-plane modes of deformation of
the membrane. Upon further increasing the strength of the ac-
tive fluctuations the curves for all eigenvalues tend to plateau and
overall remain very weakly dependent on Pe. It should be stressed
that the thickness of the membrane, associated with λ3, always re-
mains visibly smaller than the in-plane extent of the membrane
associated with the two largest eigenvalues λ1,2. This result rein-
forces that the membrane does not collapse and crumple even for
the largest Péclet numbers, Pe = 100, considered in this study.

As a reference, we also computed the same plot as a function

of temperature, T , for the passive self-avoiding membrane. The
results are shown in Fig. 5(b). The overall behavior is quite sim-
ilar, with the only notable difference in the value of λ2, and λ3,
in the large Pe and T limits. Specifically, λ2 for the active sys-
tems, is almost twice as small as that for its passive counterpart,
whereas the size of the out-of-plane fluctuations, λ3, for the active
membrane are roughly twice the size of those of the passive mem-
brane. A visual inspection of the membrane trajectories suggests
that this is due to much larger fluctuations of the edges for the
active membranes, where partially folded conformations are also
observed together with the typical flat ones. This leads to an over-
all smaller value of the second eigenvalue and correspondingly to
a larger value of λ3.

An analogous plot for the ideal system in reported in the sup-
porting material†. Even in this case we note that the crumpled
phase of the passive membrane is smaller than that of the active
membrane. Furthermore, the crumpling transition of the active
ideal membrane is smoother compared to its passive counterpart.

To gain more insight into the shape fluctuations of these sys-
tems we also considered the distributions of the asphericity pa-
rameter for both active and passive membranes. Following63, we
define asphericity as

A =
3
2

λ 2
1 +λ 2

2 +λ 2
3

(λ1 +λ2 +λ3)
2 − 1

2
. (4)

As a reference, this parameter is equal to zero for a fully isotropic
surface (λ1 = λ2 = λ3), it is equal to 1/4 for a perfectly flat sur-
face (λ1 = λ2 and λ3 = 0), and A → 1 for a linear/rod-like object
corresponding to λ2 = λ3 = 0. Figure 6 shows the results of this
analysis for active (top) and passive (bottom) tethered surfaces.
Again, superficially the trend is quite similar. Upon increasing
the strength of the active forces (or the temperature of the pas-
sive system), the average asphericity decreases from around 1/4
for low active/thermal forces, and tend to plateau to a slightly
smaller value of 0.18 for the active and 0.20 for the passive mem-
brane upon increasing the strength of the fluctuations. It is also
quite evident that the distribution of the fluctuations for the ac-
tive system is quite wider, confirming that the active membrane
is capable of exploring shape fluctuations that are much more
isotropic and much more anisotropic than its passive counterpart.
Crucially, despite these differences, the size exponents for the ac-
tive membrane point to an overall flat phase.

5 Conclusions

We performed numerical simulations of ideal and self-avoiding
tethered membranes in the presence of active fluctuations. For
simplicity, we used the standard active Brownian particles whose
direction vectors are free to rotationally diffuse.

We find that the flat and crumpled phases, characteristic of
passive ideal membranes, are retained in the presence of active
fluctuations. Remarkably, the role of active fluctuations on the
transition point of the ideal membrane can be simply mapped to
an equilibrium system with an effective temperature of the form
T eff = T0(1+qPe2) with q = 1/42. Furthermore, the nature of the
crumpling transition remains continuous, as suggested by a di-
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Fig. 5 (a) Eigenvalues of shape-tensor, λα , for active self-avoiding membranes as a function of Péclet number Pe. (b) Eigenvalues of shape-tensor,
λα , for passive self-avoiding membranes as a function of temperature T . In both cases the membrane was built with N = 1142 nodes, the eigenvalues
are sorted by size with λ1 > λ2 > λ3, and the bending constant κ is set to zero.
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Fig. 6 Probability distribution of the asphericity, A, for an active self-
avoiding tethered membrane for different Péclet numbers Pe (top) and
for a passive self-avoiding tethered membrane for different temperatures,
T (bottom)

verging specific heat at the critical effective temperature.
Our results on self-avoiding membranes indicate that even in

the presence of large active fluctuations, Pe → 100, these surfaces
retain their flat phase just as passive self-avoiding membranes re-
main flat at all temperatures. This is despite the fact that active
forces allow for a broader range of shape fluctuations when com-
pared to their passive counterparts as visible from the distribution
function of the surface asphericity. Therefore, our results suggest
that the flat phase of self-avoiding tethered membranes is quite
robust, at least within the range of activities considered in this
study, and the collapse of these surfaces can only be accessible in
the presence of explicit attractive interactions between different
regions of the surface as is the case for passive membranes35,68.

It is also important to point out how the implicit incorpora-
tion of the active fluctuations within the nodes of the membranes
(the approach discussed in this paper) leads to significantly dif-
ferent results with respect to the case when active fluctuations
are induced by the presence of an explicit fluid of active particles

pushing on a passive surface. In the latter case, activity results in
bi-stable folded-to-extended states69. Difference in phenomeno-
logical behavior was also recently observed when measuring the
effective forces between active polymers48 depending upon how
active forces are introduced into the system.

An interesting future direction for the study of active elastic
membranes is to consider the case of closed spherical shells. In
passive systems, we know that thermal fluctuations, when renor-
malized, act as a negative internal pressure which can crumple a
shell70. A recent study71 has been performed on spherical shells
using Monte Carlo simulations that explicitly break detailed bal-
ance to mimic the effect of out of equilibrium fluctuations. Crum-
pling of the shell for different degrees of “activity" was observed.
Nevertheless, it would be interesting to see how explicit active
fluctuations would affect the behavior of such shells, and whether
a mapping of the active fluctuation onto an effective pressure is
also possible in this case. Work in this direction is already under-
way and will be published elsewhere.

While the goal of this paper is to numerically investigate how
non equilibrium active forces can alter the phase behavior of two
dimensional microscopic elastic sheets, our results are likely to
qualitatively capture the behavior of an elastic sheet in a bath
containing active particles, and could be in principle realized ex-
perimentally by laterally cross-linking a two-dimensional conden-
sate of active agents. For instance, one could consider a two-
dimensional condensate of active emulsion droplets tethered with
DNA linkers. Recently this set up was used to form an active chain
of droplets where every droplet can freely perform rotational dif-
fusion despite the tethering72.
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