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Anxiety disorders are a major public health concern and current treatments are inad-
equate for many individuals. Anxiety is more common in women than men and this
difference arises during puberty. Sex differences in physiological stress responses may
contribute to this variability. During puberty, gonadal hormones shape brain structure
and function, but the extent to which these changes affect stress sensitivity is unknown.
‘We examined how pubertal androgens shape behavioral and neural responses to social
stress in California mice (Peromyscus californicus), a model species for studying sex dif-
ferences in stress responses. In adults, social defeat reduces social approach and increases
social vigilance in females but not males. We show this sex difference is absent in juve-
niles, and that prepubertal castration sensitizes adult males to social defeat. Adult gona-
dectomy does not alter behavioral responses to defeat, indicating that gonadal hormones
act during puberty to program behavioral responses to stress in adulthood. Calcium
imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that
social threats increased neural activity and that prepubertal castration generalized these
responses to less threatening social contexts. These results support recent hypotheses
that the BNST responds to immediate threats. Prepubertal treatment with the nonaro-
matizable androgen dihydrotestosterone acts in males and females to reduce the effects
of defeat on social approach and vigilance in adults. These data indicate that activation
of androgen receptors during puberty is critical for programming behavioral responses
to stress in adulthood.

puberty | androgens | stress | extended amygdala | anxiety

Anxiety disorders are one of the most frequently diagnosed categories of mental illness,
with over 28% lifetime prevalence in the United States (1). Treatments are available but
a large fraction of those seeking treatment do not improve (2). Determining the underlying
mechanisms of symptoms has been an effective strategy for developing new treatments
for many health conditions. Psychosocial stress is an important risk factor for anxiety
disorders, and there is strong evidence for sex differences in stress responses. Sex differences
in stress responses are thought to contribute to sex differences in the anxiety risk (3-5),
as anxiety rates are higher in women vs. men (6-11). Sex differences in anxiety diagnoses
emerge during puberty (12—15). Puberty is a key developmental stage characterized by
changes in physiological stress responses (16) as well as cortical and subcortical reorgan-
ization (17-19). Preclinical studies show that during puberty, stressors have stronger
behavioral effects on behavior in females than males (20-22). Although the cause of these
differences is unknown, other studies show that gonadal hormones shape brain structure
(23-26), function (27), and gene expression networks (28) that could influence stress
responses. Human imaging studies show that neural circuits affected by anxiety change
during puberty (29, 30), and gonadal hormones are thought to contribute to these changes
(31). The extended amygdala, which includes the bed nucleus of the stria terminalis
(BNST), is especially sensitive to steroid hormones (28).

Functional MRI studies in humans show that activity within the BNST is correlated
with trait anxiety (32) and is increased in response to unpredictable threats (33). These
studies have limited temporal resolution (~3 s) and participants must remain immobile
during observations (34). Thus, it is unclear if BNST activity more closely tracts threats
or behavioral responses to threats. In contrast in vivo calcium imaging has subsecond
temporal resolution that can link neural activity more closely with specific behaviors (35).
Fiber photometry allows for data collection in freely moving animals (36), expanding the
behavioral repertoire that can be studied. Previous work in California mice (Peromyscus
californicus) shows that social defeat stress has stronger effects on BNST structure and
function in adult females than males (37, 38) and that these changes drive stress-induced
social avoidance and social vigilance (39-41). It is unknown whether stress-induced
increases in BNST activity occur during proximity to social threats or during avoidance
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of a threat. It is also unknown what causes these sex differences.
In adults, sex differences in behavioral responses to defeat are
independent of gonadal hormones (42, 43), suggesting that sex
differences are organized during development. California mice are
an ideal species for studying sex differences in stress responses (44)
and have a slower pace of development compared to other rodents
(45, 46). Here, we use a combination of pubertal hormone manip-
ulations, calcium imaging, and immunohistochemistry to demon-
strate that androgens act during puberty to reduce behavioral and
neural responses to social defeat stress, thus serving as a key mech-
anism regulating developmental programming.

Results

Late Onset of Pubertal Development in California Mice. Pubertal
development is multifaceted (47, 48), so we used complementary
methods to assess this process in California mice (Fig. 14 and
SI Appendix, Fig. S1A). In males, testosterone levels did not
increase significantly from postnatal day (PN)35 until PN90
(Fig. 1B, Fs,5 = 6.51, P < 0.01, Cohen’s d = 1.9) while testes
weight did not increase significantly until PN70 (SI Appendix,
Fig. S14, F|,, = 112.3, P < 6.9¢-11) In females, progesterone

levels did not increase from PN35 levels until PN70 (Fig. 1B,
Fs,6 = 2.56, P = 0.05, d = 1.7) while uterine weight increased
at PN50 (87 Appendix, Fig. S1B, F, 5, = 6.99, P = 0.01). In both
males and females, there was no evidence for preputial separation
or vaginal opening (external genitalia) before PN50 (87 Appendix,
Fig. S1 Cand D).

Juvenile Male and Female California Mice Reduce Social
Approach and Increase Social Vigilance after Defeat. California
mice are weaned at PN30, after which we waited 3 d (PN34-306)
before randomly assigning juveniles to social defeat stress or
control conditions. In adults, sex differences in the effects of social
defeat endure for several weeks (50). Here, mice were tested 2
wk after the completion of social defeat in a social interaction
test at PN50 (Fig. 1C), before the onset of puberty. In contrast
to adults, social defeat reduced social approach (Fig. 1D, F, ,; =
47.09, P<0.001) in both males (? < 0.001, Cohen’s d = 3.0) and
females (P < 0.001, d = 2.4). Defeat also increased social vigilance
(Fig. 1E, Kruskal-Wallis = 16.33, P < 0.001) in males (” = 0.03,
d = 1.6) and females (P = 0.02, d = 1.8). These results contrast with
observed sex differences in adults, which show that social defeat
decreases social approach (38, 42, 43, 51) and increases social
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Puberty in California mice is a period of sexual differentiation of behavioral stress responses. (A) Summary of pubertal development in California mice.

(B) In males, testosterone levels are not increased until PN90 while in females, progesterone levels increase at PN70 (n = 4 to 5 per time point). (C) Prepubertal
California mice were exposed to social defeat or control conditions after weaning and tested as juveniles at PN50. (D and E) Social defeat reduced social approach
and increased social vigilance in both males and females (n = 6 to 8 per group). (F) Females investigated an empty cage during the acclimation phase more than
males. (G) There were no differences in locomotor behavior in the open-field phase. *P < 0.05, **P < 0.01, ***P < 0.001 vs. PN 35. *P < 0.05, **P < 0.01, ***p <
0.001 vs. same sex control. P < 0.05 vs. males. Data available at DOI: 10.6084/m9.figshare.23681493 (49).
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vigilance (40) in females but not males. During the acclimation
phase, females spent more time investigating an empty cage than
males (Fig. 1F, F, ,; = 6.64, P = 0.016) with no effects of stress.
There were no differences in locomotor behavior in the open-field
phase (Fig. 1G), time spent in the center (S Appendix, Fig. S2A4),
or vigilance behavior during the acclimation phase (S Appendix,
Fig. S2B). Together with previous work, these results suggest
that developmental changes during puberty contribute to sex
differences in stress response in adults.

Gonadal Hormones Reduce Susceptibility to Defeat in Adult
Males. To assess the impact of gonadal hormones during puberty,
males were randomly assigned to prepubertal castration, sham
surgery, or no-surgery between PN35-40 (Fig. 24). Gonadectomy
affected social approach only in males that were exposed to social
defeat as adults (Fig. 2B, trt*stress F, 4 = 3.32, P < 0.05). Castrated
males exposed to defeat had reduced social approach vs. controls
(P < 0.0001, d = 2.6), whereas there was no effect of defeat
in sham or no-surgery males. Similarly, social defeat increased
social vigilance in castrated (Fig. 2C, Mann—Whitney U = 23.5,
P <0.01, d = 1.6) but not sham or no-surgery mice. There were
no differences in behavior during the acclimation (Fig. 2D
and SI Appendix, Fig. S3A) or open-field phases (Fig. 2E and
SI Appendix, Fig. S3B). The results contrast sharply with previous

results that showed no effect of adult castration or ovariectomy on

stress-induced social avoidance in California mice (43) and point
to gonadal hormones acting during puberty as a key mechanism of
sexual differentiation. These data suggest that pubertal hormones
play an organizing role in the brain to diminish the effects of
social defeat on social approach and social vigilance in males.
The BNST plays a key role in modulating stress-induced social
avoidance and social vigilance in males and females (38, 40, 41).
Since prepubertal castration did not affect behavior in unstressed
mice, we used fiber photometry to assess the effects of castration
on BNST neural activity in males exposed to defeat.

Calcium Imaging of BNST Activity in Castrated and Intact Males.
Previous immediate early gene analyses shows that social stress
increases neural activity within the BNST (53, 54). These analyses
provide a snapshot of overall activity during about 1 hr, so it is
impossible to determine whether increased activity occurs during
brief episodes of contact with social threats or during periods
of avoidance. We used the subsecond temporal resolution of
GCaMPO6f calcium imaging to evaluate activity in the ventral
BNST during discrete behavioral episodes and to determine how
this activity was modulated by prepubertal castration (Fig. 3 A4
and B). Using DeepLabCut (Fig. 3 C and D) we determined
orientation (55) and distance between focal mice and target mice
with (aggressor) or without (naive) prior experience winning
aggressive encounters. Increased GCaMP6f fluorescence response
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Fig.2. Prepubertal castration increases sensitivity to social defeat in adulthood. (A) Timeline of prepubertal castration and behavioral testing in adults. (B and C)
Social defeat decreased social approach and increased social vigilance in castrated males but not sham or no-surgery controls (n =7 to 8 per group). (D and £)
No differences were observed during the acclimation or open-field phases. (F) Representative heatmaps for the interaction phase showing reduced time spentin
the interaction zone forcastrated males exposed to social defeat. **P < 0.01, ***P < 0.001 vs control. Data available at DOI: 10.6084/m9.figshare.22782959 (52).
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(AF/F) in BNST was observed when focal mice were within one
body length (8 cm) of target mice and within the central (Fig. 3D,
0°>40° B =-0.438, z=-9.783, P> 0.001) or peripheral visual
fields (40° > 100°, p = -0.486, z = -10.356, P> 0.001) but not if
the focal mouse was facing away from target mice (100° > 180°).
We then examined AF/F in specific behavioral contexts.
Intriguingly, the most robust changes in AF/F occurred after
close contact with aggressor target mice. After engaging in
nose-to-nose sniffing with aggressors, both castrated and sham

Castration or Sham Fiber Implant +

males showed a delayed increase in BNST AF/F (Fig. 3E, p =
10.22, z = 2.05, P = 0.04). In contrast, after engaging in
nose-to-nose sniffing with nonaggressive naive mice, castrated
males showed a larger increase in BNST AF/F than sham males
(Fig. 3E, p = 13.2, z = 2.23, P = 0.03). These results suggest that
BNST AF/F is enhanced by social threats and that this response
is more generalized in prepubertally castrated males. There were
no acute or delayed changes in AF/F following bouts of freezing
(Fig. 3F), which was robustly induced by aggressor targets
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Fig. 3.

Prepubertal castration increases BNST neural activity and sensitivity to social defeat in adulthood. (A) Experimental timeline for fiber photometry

observations of GCaMP6f in the ventral BNST of prepubertally castrated or sham surgery California mice. (B) Photomicrographs of GCaMP in BNST at low (B)
and high (B) magnification. The magenta box indicates position of the fiber. (C) Representative images showing DeepLabCut tracking of mice in proximate and
distant conditions. (D) DeepLabCut tracking of body midpoint and nose of the focal mouse was used to determine the orientation of the focal mouse to the
target mouse nose (green triangle). GCaMP6f signals were significantly stronger when the focal mouse was within 8 cm of the target mouse but only when the
target mouse was in central vision (0° = 40°) or peripheral vision (40° = 100°). (F) Nose-to-nose sniffing with a naive target mouse induced a delayed increase in
AF/F in castrated but not sham males. In contrast nose-to-nose sniffing with an aggressor target mouse increased AF/F in both sham and castrated males. (F)
There were no changes in AF/F following bouts of freezing. (G) Anogenital sniffing of naive target mice increased AF/F in castrated but not sham males. (H) When
castrated males were attacked by aggressor target mice, increased AF/F was observed. Sham males were not attacked enough for analysis. *P < 0.05, **P < 0.01
vs sham. ***P < 0.001 vs proximate, TP < 0.05 vs. baseline. ac= anterior commissure. Data available at DOI: 10.6084/m9.figshare.23664543 (56).
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(SI Appendix, Fig. S4) and to a lesser extent by naive targets. We
next examined bouts of anogenital sniffing, which were less fre-
quent and primarily limited to nonaggressive naive target mice
(81 Appendix, Fig. S4). Castrated mice also showed a larger delayed
increase in AF/F in BNST than shams (Fig. 3G, f = 6.12,
z = 2.06, P = 0.04). Finally, when castrated males were attacked
by aggressor target mice, there were acute (Fig. 3H, f = 14.66,
z=2.56, P=0.01) and delayed (p = 15.25, z = 2.67, P = 0.008)
increases in AF/F. To assess the impact of defeat stress on BNST
activity, we performed calcium imaging before and after social
defeat stress in intact adult male mice (Fig. 44).

Male California mice are aggressive in novel environments (58),
and we found that during prestress testing aggression was initiated
by focal mice (SI Appendix, Fig. S4). Both aggression-naive and
experienced aggressor target mice responded by attacking focal mice
(SI Appendix, Fig. S4). Although social defeat stress increased AF/F
when naive target mice were in the center of the visual field and
within 8 cm (Fig. 4B, p = 0.73, 2z = 5.33, P < 0.001), other analyses
suggested that the effects of stress were less robust. Before stress,
there was no increase in AF/F when focal mice were attacked by
naive target mice. After stress, attacks by naive target mice induced
an acute increase in AF/F (Fig. 4C, p = 2.81, P = 0.045) with no
change in activity during the delayed (3 to 6 s) period. More robust
increases in AF/F were observed when focal mice received aggres-
sion from experienced aggressors. Pre- and post-stress mice exhib-
ited acute (Fig. 4C, p = 9.63, z = 3.89, P < 0.001) and delayed
(Fig. 4¢, $=9.16,2=3.70 P<0.001) increases in AF/F after attacks
by experienced aggressors. There were no changes in AF/F during
bouts of freezing (Fig. 4D) and no changes in AF/F when prestress
focal mice engaged in anogenital sniffing with naive target mice
(81 Appendix, Fig. S5). In this study, stress-induced acute increases
in AF/F after attacks by naive target mice, but attacks by experi-
enced aggressors induced both acute and delayed increased in AF/E
Importantly, increased AF/F induced by aggressors were not stress
dependent. To assess the extent to which prepubertal castration
impacted neuronal activity in other circuits modulating social
approach, we used c-fos immunohistochemistry.

Gonadal Hormones Reduce Neural Activity in PVN Oxytocin
Neurons. Social defeat stress increases c-fos expression in oxytocin
neurons in the Paraventricular Nucleus of the Hypothalamus
(PVN) (37), a response that has been associated with heightened
immediate early gene expression in the anteromedial BNST (40).
We used oxytocin/c-fos immunohistochemistry (Fig. 5 A and B) to
examine anterior and posterior PVN, which differ in connectivity
(59) and stress sensitivity (37). In anterior PVN, prepubertal
castration increased oxytocin/c-fos colocalizations when compared
to sham (Fig. 5C’, Mann—Whitney U = 38, P = 0.01) mice that
had undergone social defeat. Oxytocin/c-fos colocalizations were
negatively correlated with social approach (Fig. 5C", Spearman p
=-0.55, P < 0.01) and positively correlated with social vigilance
(ST Appendix, Fig. S6A, p = 0.59, P < 0.01). In the posterior PVN
castration increased oxytocin/c-fos colocalizations regardless of
stress status (Fig. 5D, Mann—Whitney U = 113.5, P = 0.04)
and oxytocin/c-fos colocalizations were negatively correlated with
social approach (Fig. 5D", p = -0.41, P = 0.04) but not social
vigilance (SI Appendix, Fig. S6B). We also examined the effects
of prepubertal castration on c-fos in the anteromedial BNST,
where oxytocin induces social avoidance and social vigilance
(41). Prepubertal castration increased the number of c-fos positive
neurons in anteromedial BNST (Fig. 5, $5D, F,,, = 4.51,
P =0.046), regardless of stress status. The number of c-fos cells was
negatively correlated with social approach (Fig. 5E”, p = -0.46,
P =0.02) but not social vigilance (SI Appendix, Fig. S6C).
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Fig.4. Exposure to aggressor targetincreases BNST activity in pre- and post-
stress intact males. (A) Timeline of surgery and behavioral testing in adults. (B)
DeeplabCut tracking of body orientation of the focal mouse showed that social
defeat increased GCaMP6f signals to aggression received by naive target mice
in the center of the visual field compared to prestress. (C) Aggression received
from naive target mouse induced an acute increase in AF/F in poststress but
not prestress males. In contrast aggression received from the aggressor
target mice increased acute and delayed AF/F in both pre- and post-stress
males. (D) There were no changes in AF/F following bouts of freezing. P <
0.05 vs. pre-stress, ***P < 0.001 vs. baseline. Data available at DOI: 10.6084/
m9.figshare.23983032 (57).

We also tested whether defeat-induced social avoidance and
social vigilance in juvenile mice were dependent on oxytocin
receptors (Fig. 5F) as in adults (40). In both males and females,
treatment with 5 mg/kg i.p. (intraperitoneal) of the oxytocin
receptor antagonist 1-368,899 30 min before testing increased
social approach (Fig. 5G, main effect of dose F,,, = 8.42,
P<0.001) and decreased social vigilance (Fig. 5H, Kruskal-Wallis
=15.36, < 0.009). There were no differences in behavior during
the acclimation (87 Appendix, Figs. S5F and SGE) or open-field
(SI Appendix, Figs. S5H and S6G) phases. Together, these results
suggest that stress-induced social avoidance and social vigilance
in both male and female juvenile mice is dependent on oxytocin
receptor activation, as seen in adult females. Additionally, the
results indicate that male pubertal hormones program these cir-
cuits to be less active in adulthood.
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Fig.5. Sexualdifferentiation of oxytocin-dependent circuits of social avoidance
occurs during puberty. (A) Experimental timeline for immunohistochemistry
analyses in prepubertally castrated or intact California mice. (B) Overlay of
oxytocin (green) and c-fos (magenta) immunostaining in the PVN. Arrows
indicate colocalizations in oxytocin (B) and c-fos (B”) images. (C) In the
anterior PVN, social defeat increased colocalizations (n = 6 to 7 per group)
in prepubertally castrated males but not intact males (C) and that social
approach was negatively correlated with oxytocin/c-fos colocalizations (C”).
(D) In the posterior PVN, castration increased oxytocin/c-fos colocalizations
regardless of stress status (D) and social approach was negatively correlated
with colocalizations. (£) In anteromedial BNST, where oxytocin receptors drive
social avoidance, prepubertal castration increased c-fos immunoreactivity
regardless of stress status (£) and c-fos positive cells were negatively correlated
with social approach (E£”). (F) Experimental timeline for examining effects of
oxytocin receptors on social behavior. (G and H) In both males and females
exposed to social defeat, an i.p. injection of 5 mg/kg of the oxytocin receptor
antagonist L368,899 increased social approach and decreased social vigilance
(n=7to 9 per group). *, **P < 0.05, control/vehicle. /P < 0.05 vs. intact. Data
available at DOI: 10.6084/m9.figshare.23929644 (60).

Androgens Reverse the Effects of Prepubertal Castration
on Behavior. To test the impact of androgen replacement at
puberty, juvenile males were prepubertally castrated and randomly
assigned to receive a silastic implant containing testosterone, the

https://doi.org/10.1073/pnas.2306475120

nonaromatizable androgen dihydrotestosterone (DHT), or sealant
only (Fig. 64). These implants produce plasma hormone levels
within the physiological range of adult male California mice (61).
Between PN90-92, mice were exposed to defeat stress and then
2 wk later tested in a social interaction test. Results demonstrated
that hormone replacement altered social approach (Fig. 6B, F, ,, =
6.2, P<0.01) and social vigilance (Fig. 6C, Kruskal-Wallis = 13.13,
P < 0.001). For social approach, both testosterone (P = 0.002, d =
1.7) and DHT (P = 0.002, d = 1.0) treatment yielded significantly
higher levels of social approach compared to males treated with
empty implants. Similarly for social vigilance, both testosterone-
(P<0.001,d = 3.1) and DHT (P = 0.049, d = 1.1)-treated males
had lower social vigilance than males treated with empty implants.
‘There was a nonsignificant trend for testosterone-treated males to
have lower social vigilance than DHT-treated males (P = 0.078,
d = 1.0). During the acclimation phase, testosterone and DHT
treatment increased approach to an empty cage (SI Appendix,
Fig. S7A, F, ,, = 5.02, P < 0.02) and there were no differences in
behavior during the open-field phase (S7 Appendix, Fig. S7B and C).
We also tested whether DHT treatment at puberty could impact
female behavior (Fig. 6D). In social interaction tests performed before
stress exposure, there were no differences in social approach (Fig. 6E),
social vigilance (Fig. 6F), acclimation (S Appendix, Fig. S7D), or
open-field behavior (S/ Appendix, Fig. S7 E and F). Importantly, after
social defeat, hormone treatment altered social approach (Fig. 6,
F,,; = 3.76, P = 0.04) with DHT increasing social approach vs.
empty implants (P = 0.02, d = 0.1). Effects on social vigilance were
weaker (Kruskal-Wallis = 5.04, = 0.08), with a post hoc test
indicating lower levels of social vigilance in DHT-treated mice vs.
empty implant (Mann-Whitney = 11, P = 0.028, d = 1.2). After
stress exposure, DHT treatment increased approach to an empty
cage (SI Appendix, Fig. S7D, F, 55 = 5.32, P=0.01) while there were
no differences in the open-field phase (S/ Appendix, Fig. S7 E and F)

Discussion

Sex differences in stress sensitivity emerge at puberty in both
humans (63, 64) and other animals (20-22), coinciding with an
increased incidence of anxiety in women (10, 12, 14, 15). However,
lictle is known about the underlying mechanisms. Our study fills
a gap in knowledge by establishing a causal link between androgens
and reduced impact of social stress on approach and vigilance
behaviors. Previous studies showed that social stress increased neu-
ral activity within the BNST, but the precise timing of this activity
in relation to threats and defensive responses was unknown. Here,
calcium imaging data showed that ventral BNST neural activity
increased when focal mice interacted with aggressor target mice,
but no changes were observed during freezing. Prepubertal castra-
tion generalized BNST responses to less threatening social inter-
actions with nonaggressive mice. These data inform current debates
on BNST function (65) and are consistent with reports of increased
reactivity of the BNST in humans diagnosed with anxiety disorders
(66). Our findings show that androgens play an organizational role
during puberty to attenuate behavioral and neural responses of the
BNST to social stress in adulthood.

BNST Neurons Respond to Social Threats. Immediate early
gene analyses in rodents (37, 67-70) and neuroimaging work
in primates (71) and humans (32) show that stressful social
contexts increase neural activity within the BNST. However,
these approaches have coarse temporal resolution, impeding the
assessment of how threat proximity drives BNST responses. This
is reflected in alternative hypotheses for BNST function. Early
work suggested that the BNST encodes diffuse or remote threats
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m9.figshare.23664546 (62).

(72) while more recent work suggests that the BNST is highly
responsive to immediate threats (65). Our calcium imaging data
show that ventral BNST calcium transients were reliably triggered
when receiving aggressive attacks while activity was no different
from baseline during bouts of freezing or when aggressive target
mice were more than 8 cm away from focal mice. Across both
studies, our results support the hypothesis that ventral BNST
responds to immediate threats.

Prepubertally castrated males exposed to defeat exhibited more
freezing and heightened BNST calcium transients in the presence

PNAS 2023 Vol.120 No.44 e2306475120

of naive target mice. Prepubertal castration also increased avoid-
ance and social vigilance toward novel naive target mice, similar
to stressed adult females (43, 73). These data suggest that male
gonadal hormones act during puberty to reduce negative valence
assessments of novel social contexts, an important function of the
BNST (74, 75). Thus, androgens may impede overgeneralization
of threat, which is a key characteristic of anxiety disorders (76).
Our results align with imaging studies in nonhuman primates
(77) and humans (66) reporting stronger BNST responses in indi-
viduals with elevated anxiety-related behaviors. Intriguingly,

https://doi.org/10.1073/pnas.2306475120 7 of 11


https://doi.org/10.6084/m9.figshare.23664546
https://doi.org/10.6084/m9.figshare.23664546

Downloaded from https://www.pnas.org by UNIVERSITY OF CALIFORNIA DIGITAL LIBRARY on December 8, 2023 from IP address 169.237.90.177.

8 of 11

androgens can reduce neuronal excitability in both adult (78) and
pubertal rodents (79-81). These findings are in line with our
observations that prepubertal castration led to increased
c-fos/oxytocin colocalizations in the PVN and c-fos expression in
anteromedial BNST. Oxytocin neurons in the PVN project to the
BNST (82), suggesting that these outcomes could be functionally
linked. Our results suggest that androgens acting during puberty
may reduce the excitability of circuits that are affected by social
defeat. Defeat stress increased acute BNST responses in intact
males after attacks by naive target mice. At first glance, this out-
come appears inconsistent with observations in the castration
study that implicate gonadal hormones in preventing the gener-
alization of threat responses. In the prestress social interaction test,
intact focal mice were attacked by naive target mice in the testing
arena. After defeat stress, focal mice were tested in the same arena.
Focal mice may have learned that naive target mice or the testing
location were threatening, which may explain the effect of defeat
stress on acute BNST responses. Future work is needed to assess
the extent to which androgens modulate the perception of threat.

An open question is which BNST cell types respond to social
threats. This is further complicated by the fact that the BNST exhib-
its heterogeneity in neural responses, even within genetically defined
cell populations (83-85). This variation could be explained by
projection-specific populations within a cell type (86). This is sup-
ported by optogenetic studies showing the projection-specific effects
of BNST neurons on behavior (87-90). Future research considering
genetic and projection-specific populations during neuronal record-
ing of activity in different social contexts will be informative. Future
studies could also consider whether effects of pubertal hormones are
dependent on prenatal or neonatal (91, 92) surges in testosterone.

Activation of Androgen Receptors during Puberty Blunts Stress-
Induced Social Avoidance. In adult hamsters, dominant males have
more androgen receptor expression in the medial amygdala (MEA)
than subordinates, and pharmacological inhibition of AR in the
MEA of dominant males increases sensitivity to social stress (93).
Similarly, testosterone can exert acute anxiolytic effects in a variety
of behavioral assays (94-96). Interestingly, in adult California mice,
androgens do not affect social approach regardless of stress exposure
even though they blunt acute corticosterone responses to defeat
(43). Here, we show that androgens act during puberty to influence
how social behavior is impacted by stress, suggesting that even in
species where androgens do not have an overt role in regulating stress
sensitivity in adults, androgens can program behavioral responses
during adolescence. This may be particularly relevant for humans,
where the relationship between gonadal hormones and stress
responses in adults can be inconsistent (97-99). Although pubertal
DHT and testosterone treatment had similar effects on social
approach in stressed males, the effect of DHT on social vigilance
was weaker. Similar effects were observed in females. These results
suggest that estrogen receptors may play a complementary role in
the pubertal organization of stress-induced behavior. Estrogens can
enhance anxiety-related behaviors by activating Esr/ or exerting
anxiolytic effects via Es72 (100). Both receptors are present in the
BNST, and future studies should consider the possible developmental
effects of these receptors on stress-induced social vigilance.

Our studies provide strong evidence for a key role for pubertal
hormone action, but they have a few limitations. Silastic implants
released hormones both during puberty and adulthood. We did
not test whether effects of pubertal androgen exposure were main-
tained in the absence of androgens in adults, as has been done for
sexual behavior in hamsters (101). However, our previous work
clearly demonstrates that adult gonadal hormones have little
impact on stress-induced social avoidance (43, 50). Although

https://doi.org/10.1073/pnas.2306475120

testosterone reduces the impact of stress on social behaviors, social
defeat still has strong effects on male California mice. Social defeat
induces deficits in reversal learning in male but not female
California mice (102), and future work is needed to assess whether
this sex difference is mediated by androgens. Social defeat also
induces a conditioned defeat phenotype in both males and females
(73), similar to hamsters (103). Thus, the extent to which andro-
gens blunt the effects of social defeat on behavior is limited.

Functional Implications. Steroid hormones alter brain development
during puberty (23, 25, 27), and our work indicates that sex
differences in the effects of stress on social behavior are affected by
pubertal androgen exposure. Increased sensitivity to social stress
coincided with more generalized reactivity of BNST neurons during
social engagement. Importantly, the effects of pubertal androgens on
social behavior were only apparent following exposure to social defeat.
‘This demonstrates that organizational effects of pubertal hormones
can cause latent vulnerabilities that are only revealed after stressful
social experiences. Our results suggest that it will be worthwhile
to consider whether testosterone levels during adolescence predict
behavioral or neural responses to stressors in adulthood. Overall, our
research sheds light on how androgens shape the complex interplay
between brain circuits and behavioral sensitivity to stress.

Materials and Methods

Animals. All studies were conducted with California mice (P, californicus) raised in
a colony at UC Davis. Mice were housed in same sex groups (2-4) in clear polypro-
pylene cages with Sani-Chip bedding (Harlan Laboratories, Indianapolis, IN, USA),
Nestlets (Ancare, Bellmore, NY, USA), and Enviro-Dri (Eco-bedding, Fibercore,
Cleveland, OH, USA). Mice were kept on a 16L:8D light cycle and had ad libitum
access to food and water. All procedures were approved by the Institutional Animal
Care and Use Committee at the University of California, Davis and in accordance
with NIH guidelines.

Puberty Quantification. For measures of first vaginal opening, preputial sepa-
ration, weight, and coat color mice were briefly anesthetized (>1 min isoflurane)
before being weighed, photographed, and assessed for vaginal opening/preputial
separation. Aseparate set of mice were euthanized (https://www.avma.org/sites/
default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf) (104) to determine
uterine or testes size. Trunk blood was collected and plasma was obtained and
frozen for hormone assays (S/ Appendix, Supplementary Methods). We also quan-
tified the transition from the juvenile pelage (dark gray) to adult (brown) adult
pelage (105) by quantifying digital images in ImageJ as previously described
(106). All quantifications were done using nonexperimental, unstressed mice.

Juvenile Social Defeat. Male and female juveniles (PN34-36) underwent 3
consecutive days of social defeat stress (or control handling) as described pre-
viously (50). During each episode of defeat, the focal mouse was placed in the
home cage of a novel male-female adult resident pair. The opposite sex resident
mouse was removed from the cage prior to the start of the defeat session. Each
session of defeat lasted for 7 min or until the test mouse received 7 bites. Control
mice were placed into a clean, empty cage for 7 min across 3 consecutive days.

On PN50, mice underwent a social interaction test. The social interaction test
had 3 phases: open-field, acclimation, and interaction. In the open-field phase,
the mouse was placed into an open area and allowed to explore it for 3 min. In
the acclimation phase, an empty cage was placed at one end of the arena and the
mouse was allowed to explore for 3 min. In the interaction phase, a caged, unknown
adult conspecific replaced the empty cage at one end of the arena, and the mouse
was allowed to explore for 3 min.Time in the interaction zone (8 cm from the cage)
is defined as “social approach” and was scored with AnyMaze software (43). The
duration of social vigilance behavior was hand scored from a video recording. Social
vigilance was defined as any time the test mouse was sitting still, head oriented
toward the target mouse, while outside of the interaction zone (40).

Prepubertal Castration. Male juveniles were randomly assigned to castra-
tion, sham surgery, or no-surgery control between PN35 and PN40 (61). During
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castration, mice were anesthetized with isoflurane and treated with 0.1 mg/kg
buprenorphine and 5 mg/kg of carprofen. Nonsurgery controls were included
to control for possible effects of early life exposure to the anesthesia isoflurane
(107).These mice received no manipulations until the start of social defeat stress/
control handling. At PN90-92, all mice underwent 3 d of either social defeat or
control handling. At PN106, mice were tested in a social interaction test. Brains
were collected 1 h after the social interaction test.

Calcium Imaging of the BNST. In the first study, male juveniles were randomly
assigned to castration or sham surgery after weaning. As adults, all mice received
an injection of AAV9.Syn.GCaMPés at a rate of 100 nL/min for a total volume of
500 nLin the ventral BNST(AP +0.45mm, ML +1.0mm, DV —5.6 mm).The virus
was allowed to diffuse for 10 min before the needle was withdrawn. An optical
fiber(Doric) with a 2.5-mm core and 0.66 NAthreaded through a ceramic ferrule
was implanted at the injection site and the ferrule was secured to the skull with
a layer of C&B Metabond (Parkell), followed by a layer of dental cement to form
a thick headcap. Mice were housed two per cage with a clear, perforated acrylic
divider that allowed auditory, tactile, and olfactory contact.

Mice recovered for 1 wk before undergoing 3 consecutive days of social defeat
stress. Ten days later, mice began 3 consecutive days of patch cord habituation
in which the patch cord was gently coupled to their optical fiber implant. The
mouse then explored a novel cage for 10 min.The next day mice were tested in a
social interaction test with freely moving target mice. The focal mouse was placed
into an empty area (51 x 25.4 x 76 cm) attached to a small box (13 x 10 x 18
cm) with a sliding door for 6 min. Photometry recording was performed with an
isosbestic channel of 405 nm and an excitatory channel of 470 nm, both set to
50 pW output. Photometry data from the acclimation period were excluded from
analysis due to initial bleaching. Next, an unfamiliar, nonaggressive adult male
target mouse was introduced into the arena through the sliding door. Mice were
allowed to freely interact for 3 min. The target mouse was removed, and then a
sexually experienced, aggressive male (from a previous social defeat episode) was
introduced into the arena for 3 min. After testing brains were collected to confirm
viral expression and placement of the fiber. In a second study, we examined cal-
cium transients in intact adult males before and after stress. Surgery for GCaMP
expression and fiberimplantation were performed as described above. After 4 wk
of recovery, all mice were habituated and tested with freely moving target mice
(naive and aggressive) as in the first study. Five days later, mice were exposed to
three episodes of social defeat and then tested again in a social interaction test
1 wk after the last episode of defeat.

We used Deeplabcut to quantify distance and orientation of the focal mouse in
relation to target mice with precision that matched the high temporal resolution
of photometry data (108-110). Video was taken from the side view at a rate of 30
fps.Inaddition, training was performed to track the nose, right ear, left ear, body
midpoint, front leg, back leg, tail base, and tail tip for both the test mouse and
stimulus mouse. The tracking for the nose and body midpoint was used in order
to determine proximity, defined as times when the body midpoint of the two mice
was within 8 cm (the approximate length of a California mouse) of each other.
We determined the direction the test mouse was facing in relation to the stimu-
lus mouse using their coordinate points obtained from the deeplabcut tracking
(test mouse nose, body midpoint, and target mouse nose). We binned angles as
within the test mouse's central vision (0° > 40°), peripheral vision (40° > 100°),
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orfacing away from the stimulus mouse (100° = 180°) (55). All scripts are depos-
ited at https://github.com/bctrainorlab/behavioral_quantification. Nose-to-nose
sniffing, anogenital sniffing, freezing, aggressive behavior directed towards focal
mice, and aggressive behavior directed towards target mice were scored by an
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Pubertal Hormone Manipulation Studies. Male juveniles were castrated and
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