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Abstract Melt ponds forming on Arctic sea ice in summer significantly reduce the surface albedo and
impact the heat and mass balance of the sea ice. Therefore, their areal coverage, which can undergo rapid
change, is crucial to monitor. We present a revised method to extract melt pond fraction (MPF) from Sentinel-2
satellite imagery, which is evaluated by MPF products from higher-resolution satellite and helicopter-borne
imagery. The analysis of melt pond evolution during the MOSAIC campaign in summer 2020, shows a split

of the Central Observatory (CO) into a level ice and a highly deformed ice part, the latter of which exhibits
exceptional early melt pond formation compared to the vicinity. Average CO MPFs are 17% before and 23%
after the major drainage. Arctic-wide analysis of MPF for years 2017-2021 shows a consistent seasonal cycle in
all regions and years.

Plain Language Summary In the Arctic summer, puddles of surface melt water, called melt ponds,
form on the sea ice. These melt ponds reduce the ability of the surface to reflect the sunlight. Instead, they
absorb more solar energy and pave the way into the ocean beneath where the energy is also absorbed. Thus, it is
important to know where these melt ponds develop and what fraction of the surface they cover. To investigate
this, we present a classification algorithm that is used to extract the areal fraction of melt ponds from satellite
measurements. The special focus of this study is the MOSAiC campaign in summer 2020, where the research
vessel Polarstern drifted with an ice floe for 1 year. We can see a separation of this floe into two parts. One of
them shows melt pond formation much earlier than the other. This is because of different ice age and surface
properties. Additionally, we use the classification algorithm to analyze the differences of melt pond fraction
between different dates and regions in the Arctic.

1. Introduction

During the Arctic summer, melting of snow and sea ice forms pools of melt water on top of the sea ice
(Untersteiner, 1961). The areal fraction of sea ice covered by these melt ponds is called melt pond fraction
(MPF) and exhibits high temporal and spatial variability (Perovich et al., 2002; Polashenski et al., 2012).
Peak MPFs of 60%—-80% (Eicken et al., 2004; Maykut et al., 1992) depend on ice type, topography, and loca-
tion (Istomina, Heygster, Huntemann, Marks, et al., 2015; Polashenski et al., 2012). Typical values of MPFs
in summer in the central Arctic range from 15% to 40% (Istomina, Heygster, Huntemann, Marks, et al., 2015;
Rosel & Kaleschke, 2011). Melt ponds on sea ice significantly reduce its broadband and spectral albedo (Light
et al., 2022; Malinka et al., 2018) affecting the heat and mass balance due to an increase of solar absorption
within and an enhancement of transmission through the ice into the Arctic Ocean (Light et al., 2008; Nicolaus
et al., 2012). However, global climate models still lack a comprehensive representation of melt ponds (Dorn
et al., 2018; Hunke et al., 2013; Zhang et al., 2018). This is caused by the complexity and variability of melt pond
formation and evolution and the mismatch between true and observational scales.

There are numerous efforts to advance the understanding of melt pond physics based on in-situ (e.g., Light
et al., 2008; Nicolaus et al., 2012), airborne (e.g., Buckley et al., 2020; Miao et al., 2015), and high resolution
(O(m)) satellite measurements (e.g., Istomina, Heygster, Huntemann, Marks, et al., 2015; Markus et al., 2002).
Due to the limited availability of observational data, most research is focused on case studies and is often used for
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validation purposes of medium-resolution and low-resolution satellite observations, which cover larger areas and
longer time periods (e.g., Peng et al., 2022; Zege et al., 2015).

We have generalized an algorithm by Wang et al. (2020) to extract MPF from a data set of 31 optical satellite
measurements of the Copernicus Sentinel-2 mission. Using the generalized approach, we (a) analyzed the MPF
along the track of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from
June 14 to July 27, 2020, (b) produced more data sets of MPF in the Arctic, for example, for validation purposes
of lower resolution MPF products or evaluation of models, and (c) studied the local and temporal variability of
MPF in the Arctic.

2. Study Sites and Data Sets
2.1. Study Sites

In 2019-2020, the year-long Arctic research expedition MOSAIC of the research vessel Polarstern measured
and analyzed sea ice, atmospheric, ocean, bio-geochemical, and ecological processes throughout a full seasonal
cycle (Nicolaus et al., 2022; Rabe et al., 2022; Shupe et al., 2022). Webster et al. (2022) present a detailed
analysis of melt pond evolution on the MOSAIC Central Observatory (CO) primarily based on in-situ transect
measurements. Krumpen et al. (2021) show the first insights into optical satellite imagery of the CO. We expand
on these investigations by analyzing the full available Sentinel-2 data set covering the drifting position of the
MOSAIC CO, from June to July 2020. For the investigation of the classification algorithm performance and the
presentation of pan-Arctic MPF variability, satellite measurements of other locations are included in our analysis
for 2017 to 2021.

2.2. Sentinel-2 Satellite Imagery

We use Top-of-Atmosphere (TOA) reflectances supplied by the Sentinel-2A and 2B satellites operated by the
European Space Agency (https://scihub.copernicus.eu/dhus/). The satellites provide coverage of latitudes up to
82.8° with a swath width of 290 km and revisit time of 5 days. However, the availability of suitable scenes is
compromised by prevalent cloud contamination typical for the Arctic summer. Thus, the number of available
Sentinel-2 scenes during MOSAIC is strongly limited. The MultiSpectral Instrument (MSI) measures TOA radi-
ances in 13 spectral bands in the visible and near-infrared (NIR) range (440-2,200 nm) with a spatial resolution
of 10-60 m (10 m for bands used). These are post-processed to Level-1C TOA reflectances, which are provided
in orthorectified quality with correction for the disparity of the incoming solar radiation and a distinctive cloud
mask.

For this study, Sentinel-2 scenes are only considered if the cloud percentage provided with the product is less than
1%. In addition, a combination of bands 8 and 11 (842 and 1,610 nm) is used to check for cloud contamination
following the criteria described in Istomina et al. (2010). In two cases (July 7 and July 27), a manual correction
is applied to account for a constant offset which likely was caused by thin fog. The pool of suitable Sentinel-2
imagery is split into a development set (10 scenes) for tuning the classification algorithm, and another set (21
scenes) for unbiased testing. An overview of all scenes used, their acquisition times, locations, and purposes can
be found in Table S5 in Supporting Information S1.

2.3. OSSP Melt Pond Product From SkySat Satellite Imagery

One product used for the classification algorithm evaluation is based on high-resolution (0.5 m) satellite
imagery obtained by the Planet SkySat (courtesy of Planet Labs, Inc.) satellite platform. The SkySat mission
comprises 21 satellites circling in a non-sun-synchronous orbit at an altitude of 450 km to achieve a spatial
resolution of 0.5 m of the orthorectified product, which has a minimum swath width of 5.5 km. The data
contain measurements of the reflected radiance in four spectral bands. These cover the wavelengths required
for RGB imagery and the NIR. Based on the Open Source sea ice Processing (OSSP) algorithm (Wright &
Polashenski, 2019), Wright et al. (2021) provide a classification of these data into four surface type classes:
(a) open water, (b) melt ponds and submerged ice, (c) thin ice, and (d) thick ice. For the comparison with the
Sentinel-2 data, classes (c) and (d) are combined into one sea ice class, and (b) corresponds to the melt pond
class.
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2.4. Airborne Imagery-Based Melt Pond Product

The helicopter-borne sea ice surveys conducted during the summer of the MOSAIC campaign provide
high-resolution RGB imagery acquired with a Canon EOS 1D Mark III camera with wide-angle lens. This
imagery is stitched and provided as orthomosaics with a resolution of 0.5 m (Neckel et al., 2022). The main
classes deduced from the RGB imagery are (a) open water, (b) melt ponds, (c) submerged ice, and (d) snow
and ice. For our purpose, classes (b) and (c) are summarized as “melt pond” class for the comparison with the
products derived from SkySat and Sentinel-2 satellite imagery and class (d) corresponds to the “ice class.” The
estimated error of the product is 2%. Further information about the processing is given in Text S1 in Supporting
Information S1.

3. Methodology
3.1. Classification of Sentinel-2 Imagery

Melt pond sizes on sea ice range from cm? to km? (Perovich et al., 2002) with a majority smaller or in the range of
the Sentinel-2 footprint of 10 m pixel size. For this reason, a binary classification is not sufficient and a spectral
unmixing approach is necessary to estimate the MPF. In this paper, MPFs are computed as the pond area divided
by the ice (ponded plus not ponded) area.

The LinearPolar Algorithm by Wang et al. (2020) was developed for extracting MPF from small subsets (less
than 2 km edge length) of Sentinel-2 scenes. We generalized the fundamental approach for the application to
extended regions (larger than 50 km length) and a wider variability of scenes.

The algorithm uses band 2 (blue, B2) and 8 (NIR, BS8) of the Sentinel-2 instrument with central wavelengths of
490 and 842 nm, respectively. This is because of the significant difference between the spectral behavior of ice,
melt pond, and open water surfaces at these wavelengths (Rosel et al., 2012; Wang et al., 2020). Note that the
sensor measures spectral reflectance and there is a conceptual difference to albedo. In the following, however,
the term albedo is used for consistency with other literature. Whereas melt ponds have a much lower albedo
in the NIR (0.1-0.2) than in visible wavelengths (0.4-0.7), unponded ice shows little changes in albedo in the
range of B2 (0.7-1.0) and only a slight decrease toward B8 (0.6—0.9) (Istomina, Heygster, Huntemann, Schwarz,
et al., 2015; Malinka et al., 2018). This spectral behavior is dictated by the amount of liquid water in the surface
layer. Water is quite transparent below 500 nm and increasingly absorbing above, defining the albedo's sensi-
tivity to the scattering properties of the underlying ice (Grenfell & Maykut, 1977; Perovich, 1996). This leads
to a considerable variability of the albedo of ice surfaces depending on the melt progress. Open water shows a
constant albedo of less than 0.1 (Pohl et al., 2020) in the visible and NIR range. Based on these differences, the
scatterplot in Figure la displays three major modes. The most confined one is the open water mode with low
values for both B2 and the difference between bands 2 and 8 (B2-BS), due to its constant spectral behavior. The
largest mode presents all types of ice surfaces featuring a large variability due to the differences in ice scattering
properties and in the amount of liquid water. However, there is a straight line defining an upper limit where the
brightest pixels of pure, unponded ice are located. The third mode exhibits another edge where the pixels with
100% ponds are aligned. Based on those modes two lines, named ice axis and pond axis, are defined serving as
principal components for a coordinate transformation. Fixed axes are used for the whole data set to ascertain a
robust classification independent of the image details and subset size. The choice of the axes is conducted on a
set of 10 scenes, which comprise a variety of melt stages and feature different compositions of the surface constit-
uents. The Sentinel-2 scenes used for defining the axes, thus forming the training data set of the classification
algorithm, are marked with a D in the purpose column in Table S5 in Supporting Information S1.

Subsequently, the two-dimensional Cartesian scatterplot is transformed into polar coordinates. The trans-
formation is based on the approach by Wang et al. (2020) and explained in Text S2 in Supporting Informa-
tion S1. This leads to the two axes becoming parallel, as visualized in Figure 1b 6 is associated with the MPF
of each pixel, assuming a linear transition between the 100% axes for ponds and ice. r relates to the different
spectral behavior of darker and brighter ice surfaces or pond types. Thus, the distinct mode of dark, open
water can be clearly identified at low values of r and a cutoff value for open water areas is defined. All pixels
with values r smaller than the water cutoff value are set to 0 MPF and are excluded from the assignment of
MPF linearly depending on the value of . This yields an estimate of the open water area. The open water
cutoff value can be clearly identified for every single scene. However, it can vary between scenes depending
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Figure 1. Left: Two-dimensional density plots of Sentinel-2 reflectances of (a) band 2 (B2) and the difference between bands 2 and 8 (B2—B8) and (b) the transformed
coordinates r and . The color scale indicates the frequency of the appearance of value pairs. The ice and pond axes are marked in black and red, respectively. The open
water cutoff threshold is denoted by the gray vertical line in (b). This example shows the results for scene T31XEL on June 30, 2022. Middle and right: MPF maps
derived from Sentinel-2 ((c) and (g)) and down-scaled MPF maps from SkySat ((d) and (h)) and Helicopter observations ((e) and (i)) together with histograms of the
MPF distributions ((f) and (j)). The dashed lines in (f) and (j) mark the mean MPFs. Panels (c)—(f) show measurements from June 30 (Sentinel-2 and Helicopter) and
July 1 (SkySat), before the drainage of the ponds started. Panels (g)—(j) show measurements from July 22, after the major drainage period. The colored frames of the
maps indicate the different data sets according to the colors in the histograms.
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on the existence of open water and the dominant ice types. Therefore, a default value for the cutoff is set to
r=0.35. The suitability of this threshold is checked for each sample individually. An adjustment of 0.30-0.38
is made if there is a significant amount of pixels with 8 > pond axis but r < water cutoff that can not be
assigned to open water areas.

3.2. Validation With High-Resolution Imagery

The Sentinel-2 MPF is compared with MPFs derived from helicopter-borne and higher-resolution SkySat satellite
imagery, which both have a resolution of 0.5 m. The higher resolution three-class products are scaled down to the
resolution of 10 m of Sentinel-2 and converted into an MPF by taking the average of the binned pixels. For the
collocation of the different data sets, the ice drift within the time offset between the acquisition times is approx-
imated using the GNSS position of Polarstern. However, the open water area can change considerably even in
short time periods. The position of the research vessel is then used as reference point to define the areas to be
compared. Figure 1 displays the Sentinel-2 melt pond classification results in comparison with the MPF prod-
ucts from SkySat and airborne imagery for two dates: before and after the major drainage (Webster et al., 2022)
during which meltwater flushed vertically through the ponded ice. In Figure S3 in Supporting Information S1, the
comparison for July 7, where melting has progressed, is presented. The results shown in Figures 1c—1f combine
June 30 (Sentinel-2 and Helicopter) and July 1 (SkySat). Sentinel-2 imagery is available for both days showing
little changes. Thus the combination of these days for a pre-drainage comparison of melt pond classification
results is feasible. The post-drainage MPFs all stem from the same day, July 22. This results in time differ-
ences (relative to the Sentinel-2 acquisition) of +28:37 hr and —6:05 hr pre-drainage and +5:23 hr and +1:13 hr
post-drainage, for SkySat and helicopter-borne measurements, respectively.

In both cases, the dominant sea ice and pond features are clearly visible in all products and agree well regard-
ing the MPFs. It is evident that the higher-resolution products resolve more small-scale pond features even
with the downsampled resolution shown here. This is the reason the histogram of Sentinel-2 MPF shows a
significantly higher peak at minimum MPF values before the drainage (Figure 1f). After the drainage, the
probability for pixels with minimum MPF values in the Sentinel-2 product is much lower than for the other
products (Figure 1j). Due to the overall shift of surface conditions from ice partly covered with distinct ponds
to a water-saturated surface with smaller unponded ice areas, this is attributed to the resolution difference as
well. With ponds draining and advanced melt, the surface conditions become more spatially complex, with
small-scale alternation of surface types causing higher uncertainties in MPF. However, the agreement shown
visually and by statistics is excellent with the mean difference being smaller than 7%. We conclude that imple-
menting the above described classification algorithm to Sentinel-2 reflectance measurements is reasonable with
an uncertainty increasing with melt due to the spatial heterogeneity of surface conditions. From the differences
between Sentinel-2 MPFs, and higher resolution evaluation MPFs, the uncertainty of the product is estimated to
be maximum of 6%. Before melt ponds start draining, the uncertainty is even below 4% as the melt pond features
are more distinct and better resolvable.

4. Results and Discussion
4.1. Case Study—Melt Pond Fraction Along MOSAIiC Drift Track

Figure 2a shows true color composites and their classification of all the Sentinel-2 observations with little or no
cloud contamination along the MOSAIC drift track in summer 2020. The MPF maps are presented for the small
segment of the MOSAIC CO (1.2 km X 1.4 km) and for an extended area of 3 km X 3.5 km centered on the floe.
On July 1, the extent of the cloud-free scene is limited. In Figure S4 in Supporting Information S1, four more
dates with observations that are disturbed by clouds and thus not useful for quantitative analysis are displayed for
the visual impression of MPF evolution.

At the time of the first observation (June 21), shown in Figure 2a, the MOSAIC CO already features large, distinct
melt ponds of different colors whereas the neighboring ice floes scarcely exhibit melt ponds. Earlier observations
from Sentinel-2 are not available as the MOSAIC site was at latitudes higher than the limitations of the satellite
mission. Webster et al. (2022) date the melt onset on the CO to the end of May with melt ponds visible on the
whole floe on May 28. The short melt period was accompanied by rainfall and followed by a period of freezing
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Figure 2. Melt pond fraction (MPF) evolution along the MOSAIC drift track. (a) Upper row: Sentinel-2 true color composites of the MOSAiC Central Observatory
(CO) area with the Polarstern position marked by the red triangles. The red line on June 22 marks the observed split of the CO. Middle row: MPF classification results
in % for the CO. Bottom row: MPFs of the CO's vicinity, displayed in the same colorscale as above. The indicated CO area is excluded from the comparison. (b)
Probability density functions of the MPF distribution for the CO area (blue) and vicinity (orange). The circles mark the mean MPFs for the two areas, with the values
given aside. The dashed lines mark the medians and upper and lower quantiles.

and fresh snowfall. This event pre-conditioned the surface for later pond formation, visible in the observations
on June 18 (Figure S4 in Supporting Information S1), 21, and 22. In the first two columns in Figure 2, the true
color composite and MPF maps for the latter two dates are presented. The mean values of MPF at the MOSAIC
CO are 8% and 9%, and in the vicinity, 2% and 2%, for June 21 and 22, respectively. By vicinity, we mean the
area shown in the bottom row, excluding the CO floe area shown in the middle row. The difference between the
melt pond development stages of the MOSAIC floe and neighboring floes is even more distinct when inspecting
the statistical distribution of MPF values, presented in Figure 2b. For both, the vicinity and the floe area, the
distribution covers the full range of MPFs with a peak at low MPF values. This peak is narrower for the vicinity
area. Interestingly, the MOSAiC CO can be divided into two regions: one features large melt ponds, the other is
almost pond-free similar to the neighboring floes. The MOSAiC CO was characterized by strong deformation and
high surface roughness in parts of the CO (Nicolaus et al., 2022). While ridges are expected to limit the extent of
melt ponds and thus reduce MPFs (Eicken et al., 2004; Untersteiner, 1961), the deformed region was the one with
large melt ponds and higher MPF. This relation between ice types and pond formation has also been observed by
Webster et al. (2015) and can be attributed to the accumulation of melt water in depressions and the local snow
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distribution. Thus, in the early melting stage, a division of the CO into two parts with highly deformed ice and
more melt ponds, and more level-ice with less melt ponds, as observed here, is reasonable. Nevertheless, later in
the melt season flat ice shows similar high MPFs.

About 1 week later, on June 30 and July 1, melt ponds have extended, the more level region of the MOSAiC CO
is heavily ponded now and also the neighboring floes exhibit enhanced pond formation. The overall appearance
of the surface in the top row of Figure 2a is darker, which may be attributed to the complete melt of snow by June
25 (Lei et al., 2022) leading to an increased humidity of the surface and the emergence of sediment in the ice.
The distribution of MPF (Figure 2b) is broadened and for both areas, tapers above 40%. However, there is a slight
increase toward 100%. The mean values on the MOSAIC CO are 19% and 16% and on the neighboring floes 11%
and 9% for June 30 and July 1, respectively. These differences between the 2 days and regions are smaller than
the estimated uncertainty of the product. However, the classification is self-contained. Thus, relative changes
between days may be detected even below the algorithm uncertainty.

July 7 is the last observation where large, distinct melt ponds are visible. However, ponds close to the floe edge
have already drained. They become connected to the ocean by lateral channels which enable the outflow of
water while the more centered and isolated ponds remain intact (Polashenski et al., 2012; Webster et al., 2022).
By July 18 (Figure S4 in Supporting Information S1) and latest July 22, all large melt ponds have drained. The
ponds become more interconnected and smaller due to the development of vertical drainage channels (Flocco
et al., 2010; Perovich et al., 2021). Most of them cannot be separated anymore at the 10-m resolution, which
darkens the overall appearance of the ice resulting in a broad MPF distribution during this later melt stage. This
darkening might be strengthened by sediments trapped in the ice coming to the surface with advanced melt.
Webster et al. (2022) date the major drainage period between July 10 and 12, which would cause an MPF reduc-
tion. Lei et al. (2022) report an increase of ice/snow melt between July 10 and 20 of +0.14 m. This is in agreement
with the observation of exceptionally warm and moist conditions in July and August 2020 (Rinke et al., 2021).
Despite the high permeability of the ice after drainage, the enhanced surface melt causes a lateral expansion of
existing ponds and thus a slight increase of the mean MPF in the period from July 7 to 27. However, the distribu-
tion of MPF values is changing significantly. Fully pond-covered pixels diminish as well as those pixels with no
ponds at all. The ice becomes water-saturated leading to an overall darkening of the surface (Eicken et al., 2002).

The satellite-derived MPFs exhibit a similar evolution as the in-situ transect measurements conducted by Webster
et al. (2022) but show slightly higher values. The largest difference occurred on June 30 and was 11%. This differ-
ence may be attributable to the fact that both SkySat and Sentinel-2 could sample the largest interior ponds on
the CO, which were 100+ m in diameter (Webster et al., 2022), whereas the transect sampled the edge of the CO,
where melt ponds remained relatively smaller due to continual lateral drainage. A study of MPFs on multiyear
ice by Perovich et al. (2002) shows fast and early (around June 16) evolution of melt ponds and slow development
later in the season. This agrees with our observation for the deformed part of the CO which already features melt
ponds on June 21. On the opposite, Istomina, Heygster, Huntemann, Schwarz, et al. (2015) present MPF evolution
on multiyear and first-year ice for 9 years showing a steeper but slightly later increase of MPF for first-year ice
compared to multiyear ice. However, this study underlines the strong inter-annual variability. The differences in
MPF evolution between the two CO areas, that is, within close vicinity but different ice types, indicate a strong
dependence of the timing of pond evolution on the surface roughness (Webster et al., 2015) besides the expected
impact of limiting the MPF later in the season.

4.2. Spatial and Temporal MPF Variability

With our classification method, the spatial variability of MPF can also be analyzed on a larger scale. Figure 3 presents
the mean MPF values of a set of 30 Sentinel-2 observations at different times and locations in the Arctic. An overall
start of pond formation in mid-June to early July is visible with considerably increasing MPFs in the first week of July
in all three regions: Canadian Arctic, Fram Strait, and Siberian Arctic. In our analysis, the evolution peaks around July
8 and decreases quickly first, and more slowly toward late summer. This temporal evolution is in good agreement with
a comparison of different pan-Arctic melt pond products performed by Peng et al. (2022). Note that the variability in
our time series partly results from combining observations from different years and regions with different conditions
(atmosphere, surface, and ice) which influence pond formation significantly (e.g., Li et al., 2020; Liu et al., 2015).

For the Fram Strait (orange), the data set shows the most continuous evolution (Figure 3) as it monitors the same
ice floes following the MOSAIC drift whose MPF evolution is discussed in Section 4.1. In the Canadian Arctic
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Figure 3. Sentinel-2 derived melt pond fractions (MPFs) plotted against date (a) and on a pan-Arctic map (b). The shape of the markers depicts the year of observation.
(a) The color of the markers shows a regional assignment. (b) The color scale indicates the MPF, the gray circle shows the area where Sentinel-2 is not measuring.

(red), some of the highest MPFs are detected. This is likely because the landfast ice is less deformed enabling the
flooding of large areas once melt ponds have formed (Landy et al., 2014; Yackel et al., 2000). This might also be
the reason for the heavily ponded subset in early summer (June 10) in the Siberian Arctic (blue), which is between
Bolshevik Island and the mainland apart from being at relatively low latitudes. The results for the Siberian Arctic
scatter the most and do not show a gradual evolution over the summer. The scatter between different regions can
be of similar magnitude as the scatter between different years of a particular region. Thus, more satellite scenes
assisted by airborne measurements would be necessary for further analysis.

5. Conclusions

This study expands the spatial component of melt pond evolution observed at the MOSAiC CO, and enables a
discussion of the CO's representation of the broader vicinity. This is a unique time series of MPF evolution on a
regional scale, including different ice types, different roughness areas and their impact on initial melt pond devel-
opment and drainage later in the season. Despite the resolution of 10 m, the overall development and drainage of
melt ponds are well monitored and in agreement with in-situ observations (Webster et al., 2022). However, the
estimated uncertainty of 4% and 6% before and after the pond drainage, eventually exceeds the MPF differences
between days. An increase of uncertainty with the development of lateral and vertical drainage channels can be
assumed. Strong spatial variability is observed even within the MOSAiIC CO based on different ice topography,
showing a segmentation of the CO into two parts: one with level ice and one with highly deformed ice. There is a
large timing offset in melt pond formation between these two areas. Even though an increased surface roughness
limits the spreading of ponds and thus reduces MPF (Eicken et al., 2004) later in the season, in the earlier melt
stage it shows an opposite effect (Webster et al., 2015). The deformed ice exhibits earlier ponding and makes the
MOSAIC floe non-representative for the melting in the vicinity at this stage. The earlier episodic ponding and
refreezing might influence this timing difference in summer pond formation and is to be investigated (Thielke
et al., 2022). At the beginning of July, the mean MPF on the CO amounts to 16% and at the end of July, after pond
drainage, to 24%. The study of pan-Arctic MPF reveals large variability between regions and years underlining
the need of improved MPF data sets. The presented algorithm can be applied to any Sentinel-2 measurements
of sea ice/ocean surfaces to extract melt pond and open water fractions. The presented subsets are available on
PANGAEA and can serve as reference for the validation and evaluation of low-resolution pan-Arctic melt pond
products.
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