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Abstract. While a common trend in disease modeling is to develop models of increasing com-
plexity, it was recently pointed out that outbreaks appear remarkably simple when viewed in the
incidence vs. cumulative cases (ICC) plane. This article details the theory behind this phenomenon
by analyzing the stochastic Susceptible, Infected, Recovered (SIR) model in the cumulative cases
domain. We prove that the Markov chain associated with this model reduces, in the ICC plane, to a
pure birth chain for the cumulative number of cases, whose limit leads to an independent increments
Gaussian process that fluctuates about a deterministic ICC curve. We calculate the associated vari-
ance and quantify the additional variability due to estimating incidence over a finite period of time.
We also illustrate the universality brought forth by the ICC concept on real-world data for Influenza
A and for the COVID-19 outbreak in Arizona.

Key words. epidemics, stochastic modeling, complexity reduction, Gaussian process, cumulative
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1. Introduction: Outbreaks beyond the time domain and the ICC per-

spective. As evidenced by the COVID-19 pandemic, societies throughout the world
are highly vulnerable to disease outbreaks [13]. To understand the mechanism in-
volved in disease spread and eventually provide a framework for effective public health
guidance, scientists have developed numerous mathematical, statistical, and computa-
tional models of infectious disease dynamics [10, 23]. But a dilemma quickly emerges:
because disease spread is inherently complex, realistic descriptions commonly rely on
a large number of parameters that are often unidentifiable or difficult to estimate,
thereby leading to huge uncertainty in associated forecasts [5]. As is typically the
case with nonlinear systems, reducing the dynamics to a core nonlinear model and
quantifying the associated uncertainty should provide a viable compromise between
complexity and simplicity. The incidence vs. cumulative cases (ICC) approach [12,
11] introduces such a framework and, as illustrated in Figure 1, uncovers what appears
to be a generic property of outbreak data.
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2037

Fig. 1. Top row, left: Weekly incidence \scrI / \^C\infty plotted as a function of time for influenza A

(H3N2) outbreaks that took place in the US between 1998 and 2019 and were of final size \^C\infty > 3, 000
cases. Each curve corresponds to one flu season in an HHS region. Time is measured in weeks
from epidemiological week 31 of each year. The data were downloaded from the CDC Fluview
database using the R cdcfluview package [15]. Top row, right: The same curves plotted in the ICC

plane, showing \scrI / \^C\infty as a function of scaled cumulative cases C/ \^C\infty . Bottom row, left: EPI
curves for 5, 997 runs of a stochastic SIR model with size N = 2, 500 and R0 = 2. Bottom row,
right: Corresponding ICC curves, showing \scrI / \^C\infty as a function of C/ \^C\infty . The white dashed curve
corresponds to (2.1), scaled to the expected final size C\infty of the outbreak (C\infty /N is the nonzero
root of the right-hand side of (2.1) with c0 set to 0). For the stochastic SIR model, \scrI is defined as
the random variable \beta IS (see text for details).

In most instances, the independent variable underlying the course of an epidemic
is time: health authorities report numbers of new cases and deaths per day or week,
forming what is commonly called an epidemiological (EPI) curve (see examples in the
top left panel of Figure 1); and modelers fit their models to this same EPI curve. How-
ever, time---as we measure it---is not intrinsic to the spread dynamics of the pathogen.
As such, focusing on temporal aspects obscure relevant properties of these dynamics,
thereby making it more difficult to fit models to data. The ICC viewpoint [12, 11] sug-
gests replacing time with a monotonic, nonlinear function thereof: cumulative cases.
Therefore, in contrast to EPI curves, which describe how humans perceive outbreaks
as time unfolds, ICC curves emphasize the pathogen's perspective centered on the
number of people infected (i.e., the resources that have been consumed so far).

Figure 1 illustrates how these ideas can reveal important traits shared by different
outbreaks associated with the same pathogen. The left plot of the top row shows the

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2038 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

EPI curves of the 24 Inluenza A (H3N2) outbreaks that took place in US HHS regions
between 1998 and 2019 and led to more than 3,000 confirmed cases. No specific prop-
erties of these curves are readily observable, because the peak timing and peak height
vary between seasons. However, when the same curves are plotted in the ICC plane, a
structure emerges (top right panel), revealing similarities between each season that, as
we will see, are characteristic of the disease itself. To emphasize that such properties
are generic, the bottom row of Figure 1 shows similar results for multiple realizations
of a stochastic Susceptible, Infected, Recovered (SIR) model via simulations on a
complete graph. Again, the universality normally hidden behind classical EPI curves
(Figure 1, bottom row, left) becomes evident once time is removed from the picture
and the independent variable is replaced with cumulative cases (Figure 1, bottom
row, right). Incidence is defined as \beta IS, which for the deterministic SIR model equals
dC/dt. Here, \beta is the microscopic contact rate of the disease, I is the number of in-
fected individuals, S is the number of susceptible individuals, and C is the cumulative
number of cases. The parameter \beta represents the probability that a given susceptible
individual will encounter a specific infected individual in a population of size n and
therefore scales like 1/n. Below we will introduce the population-level contact rate,
\beta P = \beta n, which remains finite as n \rightarrow \infty . For deterministic systems, an ICC curve
is therefore the graph of dC/dt as a function of C. In a discrete setting, the reported
incidence is the number of new cases \Delta C that occurred over a fixed period of time \Delta 
and the incidence per unit of time is \Delta C/\Delta . Because disease incidence is a function
of time and cumulative cases are monotonically increasing with time, the ICC curve,
like the EPI curve, is always the graph of a function defined on integer values of C.
In addition, because incidence decreases to zero between separate waves of disease
spread, and consequently the cumulative cases plateau during the same periods of
time, each wave of an outbreak corresponds to one ``hump"" (as shown in the right
column of Figure 1) of the ICC curve. One of the results of the present work is that
the ICC curve of an outbreak described by the stochastic SIR model (corresponding
to any of the black curves in the bottom right panel of Figure 1) fluctuates about a
mean ICC curve given by the deterministic SIR model (leading to the white dashed
line in the same panel).

Dynamical systems theory has long promoted such a phase portrait perspective
as displayed in the right panels of Figure 1, since it can provide both intuitive insights
and analytical approaches not easily identified under the time domain description.
In [12], Lega and Brown advocated for the relevance of this viewpoint in disease
modeling; they pointed out that in many instances epidemiological data appear to
follow a parabolic ICC curve, thereby suggesting that the logistic equation is a good
model for the overall dynamics of C as a function of time. This provided context to
earlier works, in which the relevance of the logistic equation to the spread of Ebola
in Africa had been noted [4, 14]. In [11], Lega proved that the deterministic SIR
compartmental model [10] has an exact ICC curve, whose shape is almost parabolic.
The present work goes beyond the macroscopic picture provided by deterministic
approaches. We analyze the statistical properties of the stochastic SIR model and
explain the origins of the ICC curve from microscopic stochastic interactions.

The rest of this article is organized as follows. Section 2 introduces the stochastic
SIR model and establishes that, in the limit of large populations, a single realization
of this model fluctuates about the deterministic SIR ICC curve. Section 3 builds
on these results to prove that the stochastic SIR model defines a Gaussian process
with independent increments in the ICC plane. We quantify the associated variance,
provide an elegant way of recovering a known formula for the distribution of the final
size of an outbreak, find the distribution of incidence at expected disease peak, and
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2039

discuss the added variability due to the difference quotient nature of the reported
incidence. Section 4 illustrates what some of the ideas discussed in this manuscript
mean for real outbreak data. Section 5 summarizes our results and reviews their
potential applications to the analysis of outbreak data.

2. The stochastic SIR model and a functional law of large numbers.

The SIR model consists of three compartments representing individuals susceptible
to catching the disease (S), those who have the disease and are infectious (I) and
those who have recovered (R) and can no longer infect others. In the stochastic
version, the size of each compartment evolves according to a continuous time Markov
process [2] involving the two transitions described in Table 1. Here, n is the number of
individuals in the population, nS , nI , and nR are the number of susceptible, infective,
and recovered individuals, respectively, and nC = nI + nR = n - nS is the number of
cases. The parameters \beta and \gamma are the individual contact and recovery rates of the
disease, respectively. As mentioned above, \beta scales like 1/n.

The ICC curve was developed to determine a direct relationship between incidence
and the number of cases. For the deterministic SIR model, it reads [11]

dc

dt
= \beta P

\biggl( 

c+
1

R0

ln (1 - c) - 1

R0

ln (1 - c0)

\biggr) 

(1 - c) = G(c, c0),(2.1)

where c = nC/n. The population-level contact rate \beta P is the individual-level contact
rate \beta times the population size n. R0 is the basic reproductive number, and c0, the
initial condition for c, is positive and small. Both \beta P and R0 = \beta P /\gamma are independent
of n and therefore remain finite in the limit of large population sizes. The goal of this
section is to prove that a relationship analogous to (2.1) can be found by representing
the stochastic SIR model as a multiparameter random time change (see [6, section
6.2]).

2.1. Multiparameter random time change representation. A time-
homogeneous pure-jump Markov process on a finite state space can be represented
using an appropriate number of independent rate one Poisson processes, one for each
type of jump. The rate associated to any given Poisson process is random and based on
the current state of the process. Consequently, the multiparameter time change rep-
resentation for the stochastic SIR model requires two Poisson processes, Yi, i = 1, 2,
one for infection and one for recovery . Thus, we write the stochastic SIR model
(NS , NI , NR) as

NS(t) = NS(0) - Y1

\biggl( 
\int t

0

\beta NS(u)NI(u)du

\biggr) 

,(2.2)

NI(t) = NI(0) + Y1

\biggl( 
\int t

0

\beta NS(u)NI(u)du

\biggr) 

 - Y2

\biggl( 
\int t

0

\gamma NI(u)du

\biggr) 

,

NR(t) = NR(0) + Y2

\biggl( 
\int t

0

\gamma NI(u)du

\biggr) 

.

Table 1

Continuous-time Markov process associated with the SIR model. The parameter \beta scales like
1/n, where n = nS +nI +nR is the total population size, whereas the recovery rate \gamma is independent
of n.

Event Transition Rate

Infection (nS , nI , nR) \rightarrow (nS  - 1, nI + 1, nR) \beta nSnI

Recovery (nS , nI , nR) \rightarrow (nS , nI  - 1, nR + 1) \gamma nI

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2040 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

As shown in section 6.4 of [6], the system of equations in (2.2) has a unique solution
and is the SIR model introduced in Table 1. The cumulative number of cases NC(t) =
NI(t) +NR(t) satisfies

NC(t) = NC(0) + Y1

\biggl( 
\int t

0

\beta NS(u)NI(u)du

\biggr) 

= NC(0) + Y1

\biggl( 
\int t

0

\beta (n - NC(u))NI(u)du

\biggr) 

.

Now, taking advantage of the independent increments of the Poisson process, we may
write

NC(t+\Delta ) - NC(t)(2.3)

= Y1

\Biggl( 

\int t+\Delta 

0

\beta (n - NC(u))NI(u)du

\Biggr) 

 - Y1

\biggl( 
\int t

0

\beta (n - NC(u))NI(u)du

\biggr) 

= \~Y1

\Biggl( 

\int t+\Delta 

t

\beta (n - NC(u))NI(u)du

\Biggr) 

,

where \~Y1 is also a unit rate Poisson process. As a consequence, we have the following
lemma.

Lemma 2.1. The rate of increase in the expected number of cases

\.C(nC) =
d

d\Delta 
E[NC(t+\Delta ) - NC(t)| NC(t) = nC ]

\bigm| 

\bigm| 

\bigm| 

\Delta =0

satisfies the equation

\.C(nC) = E[\beta NI(t)(n - nC)| NC(t) = nC ] = \beta E[NI(t)| NC(t) = nC ](n - nC).(2.4)

Proof. The conditional mean of the increment in (2.3) is given by

E[NC(t+\Delta ) - NC(t)| NC(t) = nC ]

= E

\Biggl[ 

\~Y1

\Biggl( 

\int t+\Delta 

t

\beta (n - NC(u))NI(u)du

\Biggr) 

\bigm| 

\bigm| 

\bigm| 
NC(t) = nC

\Biggr] 

=

\int t+\Delta 

t

\beta E[(n - NC(u))NI(u)| NC(t) = nC ] du.

Now divide by \Delta and let \Delta \rightarrow 0.

Lemma 2.1 relates \.C(nC) to the conditional expectation of \beta nI(n  - nC) =
\beta nI nS . We call the random variable \scrI = \beta nI nS the ``macroscopic incidence.""
Our next step is to find a formula for E[NI(t)| NC(t) = nC ], the mean number of
infective individuals given the number of cases. This relationship can be understood
by examining the underlying discrete time Markov chain.

2.2. Underlying discrete time Markov chain. By the Doob--Gillespie algo-
rithm [8] and [3, section 15.6], a time-homogeneous pure-jump Markov process consists
of two independent parts:

1. The length of time that the process remains in its current state is exponen-
tially distributed with parameter value depending only on the current state,
equal to the sum of the rates listed in the above table.

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2041

2. The jumps form an underlying time-homogeneous discrete time Markov chain.
For the SIR model, the underlying discrete time Markov chain has two transitions,

with probabilities listed in the table below.

Event Transition Probability

Infection (nS , nI , nR) \rightarrow (nS  - 1, nI + 1, nR) \beta nS nI/(\beta nS nI + \gamma nI)
= \beta nS/(\beta nS + \gamma )

Recovery (nS , nI , nR) \rightarrow (nS , nI  - 1, nR + 1) \gamma nI/(\beta nS nI + \gamma nI)
= \gamma /(\beta nS + \gamma )

Note that the probabilities in the last column do not depend on nI when nI > 0.
Choosing state space variables nC and nI , we recast the Markov chain transitions in
terms of the total population n and the number of cases nC , leading to the following
table.

Event Transition Probability

Infection (nC , nI) \rightarrow (nC + 1, nI + 1) p(nC) = \beta (n - nC)/(\beta (n - nC) + \gamma )
Recovery (nC , nI) \rightarrow (nC , nI  - 1) 1 - p(nC) = \gamma /(\beta (n - nC) + \gamma )

Since n is given, the above probabilities only depend on nC , the number of cases
that have occurred since the beginning of the outbreak. Using the expression for the
basic reproduction number, R0 = n\beta /\gamma = \beta P /\gamma , we can also write

p(nC) =
R0(n - nC)/n

R0(n - nC)/n+ 1
.

Consequently, we can denote the underlying Markov chain by Cj , j = 0, 1, . . . for
the total number of cases at the jth event. The ability to cast the Markov chain for
cases alone with the number of infectives playing no role mirrors the property that
the dynamics of the deterministic SIR model is completely described by a first order
differential equations for C(t) [11]. Note that Cj is a pure birth chain with a jump
up with each new infection. This Markov chain has a single parameter, namely, R0,
which is a characteristic of the outbreak and independent of the population size n. In
terms of statistical inference, the ratio that leads to the probabilities p(nC) shows that
the parameter \beta is ancillary to the dynamics (see [7] for the properties of ancillary
statistics).

2.3. The mean for the number of infected individuals. We are now pre-
pared to investigate properties of the distribution of Ij , the number of infected indi-
viduals at the jth event, when the number of cases is known. To this end, note that
with Cj = nC ,

Ij = nC  - (j  - nC) = 2nC  - j,(2.5)

since there have been nC infections in j steps, and thus j  - nC recoveries. Also note
that the nature of the chain is such that C0 = 0 and C1 = 1. Next, let

\tau nC
= min\{ j;Cj = nC\} 

denote the number of steps in the discrete Markov chain needed to reach nC cases,
which is also known as a hitting time of the Markov chain. Then,

I\tau nC
= 2nC  - \tau nC

.

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2042 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

This shows that if we can determine the distribution of \tau nC
, then we can also determine

the distribution of I\tau nC
.

Theorem 2.2. The expectation of \tau nC
satisfies

lim
n\rightarrow \infty 

1

n
E\tau nC

= c - 1

R0

ln(1 - c),

and consequently,

lim
n\rightarrow \infty 

1

n
EI\tau nC

= c+
1

R0

ln(1 - c),

where c = nC/n.

Proof. A pure-birth Markov chain remains in a given state m for a geometric
number of steps before making the transition to the state m+ 1. With this in mind,
we can write

\tau nC
= \sigma 1 + \cdot \cdot \cdot + \sigma nC - 1(2.6)

as the sum of independent random variables \sigma m \sim Geom1(p(m)), where the sub-
script 1 in Geom1(p(m)) indicates that the the state space is \{ 1, 2, . . .\} (rather than
\{ 0, 1, 2, . . .\} ). Thus, E\sigma m = 1/p(m). Write

E\tau nC
=

nC - 1
\sum 

m=1

1

p(m)
=

nC - 1
\sum 

m=1

R0(n - m)/n+ 1

R0(n - m)/n
= (nC  - 1) +

n

R0

nC - 1
\sum 

m=1

1

n - m
.

Then,

1

n
E\tau nC

= c - 1

n
+

1

R0

n c - 1
\sum 

m=1

1

1 - m/n

1

n

\rightarrow c+
1

R0

\int c

0

1

1 - q
dq = c - 1

R0

ln(1 - c) as n \rightarrow \infty .

Corollary 2.3. The scaled rate of increase in the expected number of cases, \.c
(see Lemma 2.1), satisfies

\.c = lim
n\rightarrow \infty 

1

n
\.C([nc]) = \beta P

\biggl( 

c+
1

R0

ln(1 - c)

\biggr) 

(1 - c).(2.7)

Proof. The theorem above shows that

lim
n\rightarrow \infty 

1

n
E[NI(t)| NC(t) = n c] = c+

1

R0

ln(1 - c) = mI(c),

where the last inequality defines mI(c). Now substitute into (2.4) and recall that
\beta P = n\beta .

We therefore have recovered the ICC curve (2.1) as the mean of the macroscopic
incidence \scrI in the limit as n \rightarrow \infty . We now turn to a description of how individual
realizations of \scrI in the stochastic SIR model fluctuate about the mean ICC curve.
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2043

3. The statistics of fluctuations about the ICC curve. In this section,
we establish a functional central limit theorem in which the limit is an independent
increments Gaussian process.

The ingredients for a Gaussian process are a mean function and a variance-
covariance function. Thus, the next task is to determine the variance structure
that arises as a limit for the pure-birth Markov chain Cj . Recall that we set \sigma m \sim 
Geom1(p(m)), the number of steps that the chain remains in a given state m. Because
the \sigma m are independent, we can use (2.6) and write the variance of \tau nC

as follows:

Var(\tau nC
) =

nC - 1
\sum 

m=1

Var(\sigma m) =

nC - 1
\sum 

m=1

1 - p(m)

p(m)2
(3.1)

=

nC - 1
\sum 

m=1

1/(R0(n - m)/n+ 1)

((R0(n - m)/n)/(R0(n - m)/n+ 1))2

=

nC - 1
\sum 

m=1

R0(n - m)/n+ 1

R2
0(n - m)2/n2

=
n

R0

nC - 1
\sum 

m=1

1

n - m
+

n2

R2
0

nC - 1
\sum 

m=1

1

(n - m)2
.

Consequently, using the relationship in (2.5),

Var(I\tau nC
) = Var(\tau nC

) =
n

R0

nC - 1
\sum 

m=1

1

n - m
+

n2

R2
0

nC - 1
\sum 

m=1

1

(n - m)2
.

Theorem 3.1. Set c0 = nC0
/n and c = nC/n,

lim
n\rightarrow \infty 

1

n
(Var(I\tau nC

) - Var(I\tau nC0

)) =
1

R0

ln

\biggl( 

1 - c0
1 - c

\biggr) 

+
1

R2
0

c - c0
(1 - c)(1 - c0)

.

Proof. Take the expression (3.1), divide by n, and notice that the two sums are
Riemann sums. Take the limit to obtain the corresponding integral, which can be
evaluated explicitly.

3.1. Functional central limit theorem. We can turn the calculations above
into a functional central limit theorem. To start, define

\=Ic =
1

n
I\tau nC

, \=\tau c =
1

n
\tau nC

.

Due to the fact that they are derived from sums of independent geometric random
variables, both \=Ic and \=\tau c have independent increments. In particular, set c = nC/n
and define \scrF c to be the \sigma -algebra generated by \{ Cj ; j \leq \tau nC

\} . Then for c0 < c1, \=\tau c1  - 
\=\tau c0 and \scrF c0 are independent and by the basic properties of conditional expectation,

E[\=\tau c1  - \=\tau c0 | \scrF c0 ] = E[\=\tau c1  - \=\tau c0 ] = E\=\tau c1  - E\=\tau c0 .

Rearranging terms,

E[\=\tau c1  - E\=\tau c1 | \scrF c0 ] = \=\tau c0  - E\=\tau c0 ,(3.2)

where we have used E[E\=\tau c1 | \scrF c0 ] = E\=\tau c1 and E[\=\tau c0 | \scrF c0 ] = \=\tau c0 .

Theorem 3.2. Define

Mn
c =

\surd 
n(\=Ic  - E \=Ic) =  - 

\surd 
n(\=\tau c  - E\=\tau c)
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2044 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

and

An
c = nVar(\=Ic) = nVar(\=\tau c) = Var(Mn

c ).

Then, Mn
c and (Mn

c )
2  - An

c are mean zero martingales.

Proof. The fact E[Mn
c1
| \scrF c0 ] = Mn

c0
follows directory from (3.2), showing that Mn

c

is a mean zero martingale.
Using the mean zero and independent increments properties again, we find

E[(Mn
c1

 - Mn
c0
)2| \scrF c0 ] = Var(Mn

c1
 - Mn

c0
| \scrF c0) = Var(Mn

c1
 - Mn

c0
) = An

c1
 - An

c0
.

Also,

E[(Mn
c1

 - Mn
c0
)2| \scrF c0 ] = E[(Mn

c1
)2| \scrF c0 ] - 2Mn

c0
E[Mn

c1
| \scrF c0 ] + (Mn

c0
)2

= E[(Mn
c1
)2| \scrF c0 ] - (Mn

c0
)2.

Combining the above, we have

E[(Mn
c1
)2| \scrF c0 ] - (Mn

c0
)2 = An

c1
 - An

c0
i.e E[(Mn

c1
)2  - An

c1
| \scrF c0 ] = (Mn

c0
)2  - An

c0

showing that

(Mn
c )

2  - An
c

is also a martingale.

We may therefore state the following theorem.

Theorem 3.3. Mn
c converges in distribution as n \rightarrow \infty to a continuous indepen-

dent increments Gaussian process with mean zero and variance function \sigma 2
I (c).

Proof. The martingale central limit theorem has three ingredients:

1. A sequence of martingales, here the sequence of stochastic processes Mn
c .

2. A sequence of positive processes An
c that compensate for (Mn

c )
2 so that

(Mn
c )

2  - An
c is a martingale.

3. An
c converges to a deterministic function continuous in c. Here the An

c are
themselves deterministic and converge to \sigma 2

I (c) as n \rightarrow \infty , where

\sigma 2
I (c) =  - 1

R0

ln(1 - c) +
1

R2
0

c

1 - c
.

We have set c0 = 0 in the asymptotic expansions derived in Theorem 3.1 to
obtain an expression in terms of c only.

Since 1, 2, and 3 hold, then the sequence of martingales converges to a mean zero
independent increments Gaussian process (see [6, section 7.1]).

Remark 3.4. As a consequence of Theorem 3.3, the mean of the scaled infected
satisfies

E \=Ic \simeq mI(c) = c+
1

R0

ln(1 - c)

and the variance

nVar(\=Ic) \simeq \sigma 2
I (c),

with equality in the limit as n \rightarrow \infty .
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2045

Remark 3.5. Because Var(\=Ic) \rightarrow 0 as n \rightarrow \infty , the convergence of expectations in
Theorem 2.2 can, by Theorem 3.3, be replaced by convergence in mean square.

Remark 3.6. We can recover the number of recovered at the hitting time \tau nC
by

noting that

R\tau nC
 - R\tau n0

= (\tau nC
 - \tau n0

) - (nC  - n0) =  - (I\tau nC
 - I\tau n0

) + (nC  - n0)

and thus

1

n
(R\tau nC

 - R\tau n0
) =  - 1

n
(I\tau nC

 - I\tau n0
) + (c - c0) =  - (\=Ic  - \=Ic0) + (c - c0).

Corollary 3.7.The scaled limit of \=Rc = R\tau nC
/n converges to an independent

increments Gaussian process. The mean of the increment from c0 to c is

mR(c) - mR(c0) =
1

R0

ln

\biggl( 

1 - c0
1 - c

\biggr) 

.

The variance satisfies \sigma 2
R(c) = \sigma 2

I (c). The limiting processes for the scaled infective
and recovered individuals have correlation  - 1.

Remark 3.8. For large n and c0 > 0, the distribution of increment \=Ic  - \=Ic0 can
be approximated using a deterministic time change of standard Brownian motion, B.

\=Ic  - \=Ic0 \approx mI(c) - mI(c0) +
1\surd 
n

\bigl( 

B(\sigma I(c)) - B(\sigma I(c0))
\bigr) 

.

This allows for easy and very accurate simulation of the independent increments
Gaussian process.

3.2. Functional central limit theorem for the macroscopic incidence.

We now turn to the macroscopic incidence scaled to the population size n, defined as

\scrI 
n

= \scrI n = (\beta n)\=Ic(1 - c), \scrI = \beta nI nS ,

where \scrI was introduced at the end of section 2. Note that as n \rightarrow \infty , the population
contact rate \beta P = \beta n remains constant for fixed R0 = (\beta n)/\gamma = \beta P /\gamma . A central
limit theorem similar to the one established in the previous section applies to \scrI n. The
mean scaled macroscopic incidence is obtained from the scaled number of infections

m\scrI (c) = (\beta n)mI(c)(1 - c),

and so is its variance, as stated below.

Corollary 3.9. The scaled limit of \scrI n converges to an independent increments
Gaussian process, of mean

G(c, 0) = G(c) = (\beta n)

\biggl( 

c+
1

R0

ln(1 - c)

\biggr) 

(1 - c)(3.3)

= \beta P

\biggl( 

c+
1

R0

ln(1 - c)

\biggr) 

(1 - c)

and variance
1

n
\sigma 2
\scrI 
(c), where

\sigma 2
\scrI 
(c) = (\beta n)2\sigma 2

I (c)(1 - c)2 = \beta 2
P

\biggl( 

 - 1

R0

ln(1 - c) +
1

R2
0

c

1 - c

\biggr) 

(1 - c)2.(3.4)
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2046 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

The expression for G in (3.3) is the same as in (2.1) with c0/n set to 0, showing
agreement between the deterministic result and the mean of the stochastic model
in the limit of large populations. This is the reason why we called \scrI = \beta nInS the
macroscopic incidence. The above calculations have immediate consequences for the
distribution of two quantities relevant to public health: the fraction of the population
infected at peak incidence and the final size of the outbreak. We state these results
in the next section.

3.3. Final population size and peak incidence. Important properties of a
disease outbreak are given at critical values c\ast of the fraction of cumulative cases
c = nC/n. Two particularly relevant examples of c\ast are

1. c\wedge , the fraction of the population that will have been infected at expected peak
incidence, i.e., when G\prime (c\wedge ) = 0, and

2. c\infty , the expected final size of the outbreak , i.e., the mean fraction of the
population that will have been infected by the time the outbreak ends.

The first may be obtained implicitly by solving G\prime (c\wedge ) = 0 for c\wedge .

0 = G\prime (c\wedge ) = (\beta n)((mI
\prime (c\wedge )(1 - c\wedge ) - mI(c\wedge ))

= (\beta n)

\biggl( \biggl( 

1 - 1

R0

1

1 - c\wedge 

\biggr) 

(1 - c\wedge ) - 
\biggl( 

c\wedge +
1

R0

ln(1 - c\wedge )

\biggr) \biggr) 

= (\beta n)

\biggl( \biggl( 

(1 - c\wedge ) - 
1

R0

\biggr) 

 - 
\biggl( 

c\wedge +
1

R0

ln(1 - c\wedge )

\biggr) \biggr) 

= (\beta n)

\biggl( 

1 - 2c\wedge  - 1

R0

(1 + ln(1 - c\wedge )

\biggr) 

=\Rightarrow c\wedge =
 - 1

2R0

(1 + ln(1 - c\wedge )) +
1

2
.

The value of c\wedge may then be found numerically for specific values of R0. In addition,
the expression for \sigma \scrI (c\wedge ) may be applied to estimate the distribution of the scaled
macroscopic incidence when c = c\wedge . The bottom row of Figure 2 shows c\wedge (left) and
\sigma \wedge = \sigma \scrI /(\beta n) (right) as functions of R0, whereas Table 2 displays their numerical
values for typical values of R0.

The second requires the variant of the delta method applied to hitting times (see
[6, section 11.4]). This approach uses propagation of error to give a valuable extension
of the central limit theorem. We state the result in the form of a theorem below.

Theorem 3.10. Define

\^c\infty = inf\{ c > 0; \=Ic = 0\} .

Then, \^c\infty is approximately normally distributed, with mean c\infty such that mI(c\infty ) = 0
and standard deviation

\sigma (\^c\infty ) \approx 1

| m\prime (c\infty )| 
\sigma I(c\infty )\surd 

n
=

\sigma \infty \surd 
n
.

Proof. Because \=Ic \rightarrow mI(c) in L2 as n \rightarrow \infty and mI is continuous, we have
\^c\infty \rightarrow c\infty . By the central limit theorem (Theorem 3.3 of the previous section),

\surd 
n(\=I\^c\infty  - mI(\^c\infty )) \rightarrow W,
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2047

Fig. 2. Functional dependence of select outbreak characteristics on the basic reproduction num-
ber R0. Top row, left: Mean c\infty of the fraction of the population that eventually becomes cases,
\^c\infty . Top row, right: Behavior of \sigma \infty , where \^c\infty has standard deviation \sigma \infty /

\surd 
n. Bottom row, left:

Fraction of cumulative cases at expected peak infection c\wedge . Bottom row, right: Behavior of \sigma \wedge ,
where \scrI n(c\wedge ) has standard deviation (\beta n)\sigma \wedge /

\surd 
n.

Table 2

Values for the means of the fraction of the population that eventually becomes cases \mu \^c\infty = c\infty ,
and the fraction of cases at peak infection \mu \^c\wedge = c\wedge . For a population of size n, the standard
deviation for \^c\infty is \sigma \infty /

\surd 
n. The standard deviation of \scrI /n at c = c\wedge is (\beta n)\sigma \wedge /

\surd 
n. The final

column gives the ratio of means and shows the universality of the ICC curve over a range of values
for R0.

R0 \mu \^c\infty = c\infty \sigma \infty \mu \^c\wedge = c\wedge \sigma \wedge c\wedge /c\infty 

1.2 0.314 3.708 0.152 0.434 0.485
1.5 0.583 1.835 0.273 0.448 0.468
2.0 0.797 0.913 0.363 0.386 0.455
2.5 0.893 0.547 0.403 0.335 0.452
3.0 0.941 0.357 0.426 0.297 0.453
3.5 0.966 0.245 0.440 0.268 0.455
4.0 0.980 0.174 0.450 0.246 0.459
4.5 0.988 0.126 0.457 0.229 0.462
5.0 0.993 0.094 0.462 0.214 0.465

where W \sim N(0, \sigma 2
I (c\infty )), a normal random variable with mean 0 and variance

\sigma 2
I (c\infty ). Next, recall that mI(c\infty ) = \=I\^c\infty = 0, and thus

\surd 
n(\=I\^c\infty  - mI(\^c\infty )) =

\surd 
n(mI(c\infty ) - mI(\^c\infty )) \simeq 

\surd 
nmI

\prime (c\infty )(c\infty  - \^c\infty ).

Consequently, \^c\infty is approximately normally distributed, with mean c\infty and standard
deviation

\sigma (\^c\infty ) \simeq 1

| m\prime (c\infty )| 
\sigma I(c\infty )\surd 

n
=

\sigma \infty \surd 
n
.

Thus, the standard deviation is multiplied by a propagation of error which is inversely
proportional to the slope of mI(c\infty ). The error is expanded when the slope is shallow
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2048 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

and contracted when the slope is steep. An expression for c\infty may be found implicitly
as a function of R0.

0 = mI(c\infty ) = c\infty +
1

R0

ln(1 - c\infty ), i.e., c\infty =  - 1

R0

ln(1 - c\infty ).

Substituting into the variance formula, we have

\sigma 2
I (c\infty ) =  - 1

R0

ln(1 - c\infty ) +
1

R2
0

c\infty 
1 - c\infty 

= c\infty +
1

R2
0

c\infty 
1 - c\infty 

.

In addition, the derivative

m\prime 
I(c\infty ) = 1 - 1

R0

1

1 - c\infty 

leads to

\sigma 2
I (c\infty )

m\prime 
I(c\infty )2

=
c\infty + 1

R2
0

c\infty 
1 - c\infty 

\Bigl( 

1 - 1

R0

1

1 - c\infty 

\Bigr) 2
=

R2
0c\infty (1 - c\infty )2 + c\infty (1 - c\infty )

(R0(1 - c\infty ) - 1)2

=
c\infty (1 - c\infty )(R2

0(1 - c\infty ) + 1)

(R0(1 - c\infty ) - 1)2
.

The square root of this expression gives \sigma \infty , from which one can calculate \sigma (\^c\infty )
for specific values of n. The top row of Figure 2 shows c\infty (left) and \sigma \infty (right) as
functions of R0. Selected numerical values are displayed in Table 2.

Remark 3.11. The central limit theorem for c\infty is known (see [16, 17]), but the
proof presented here is new.

As the graphs associated to c\infty show, the course of the pandemic looks more
and more deterministic as R0 grows, with an increase in cases and reduction in the
standard deviation \sigma \infty . The value of c\wedge increases with R0 from 0.152 to 0.462 as
R0 increases from 1.2 to 5.0 while the standard deviation \sigma \wedge decreases for R0 > 1.5.
Notably, the ratio c\wedge /c\infty is nearly stable between 0.45 and 0.49 over a large range of
values for R0, reflecting the universal properties of the shape of the ICC curve.

3.4. The stochastic ICC curve. Section 3.1 focused on the relationship be-
tween the fraction of infective individuals and the fraction of cumulative cases. This
casting of the question has been shown to remove time from the analysis and with it
the parameter \beta , the time rate of infections.

We now bring time back into the picture by examining discrete incidence as a
function of cases. Discrete, or reported, incidence \scrI \Delta is the number of new cases that
occur over a given period of time \Delta . We shall see how the variance for \scrI \Delta depends
on \Delta in a nontrivial manner. To understand this dependence, we return to (2.3) and
continue our analysis by computing the variance of the increment of the number of
cases from time t to time t+\Delta .

Var(NC(t+\Delta ) - NC(t)| NC(t) = nC)

= Var

\Biggl( 

\~Y1

\Biggl( 

\int t+\Delta 

t

\beta (n - NC(u))NI(u)du

\Biggr) 

\bigm| 

\bigm| 

\bigm| 
NC(t) = nC

\Biggr) 

,

where \~Y1 is a rate-1 Poisson process.
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2049

To simplify notation, denote the conditional expectation EnC
= E[\cdot | NC(t) = nC ]

and conditional variance VarnC
= Var(\cdot | NC(t) = nC). Define the random variables

\zeta =

\int t+\Delta 

t

\beta (n - NC(u))NI(u)du and \eta = \~Y1(\zeta ).

Then, \eta \sim Pois(\zeta ). Because the parameter in a Poisson random variable is both its
mean and its variance, EnC

[\eta | \zeta ] = VarnC
(\eta | \zeta ) = \zeta . By the law of total variance,

VarnC
(\eta ) = EnC

[VarnC
(\eta | \zeta )] + VarnC

(EnC
[\eta | \zeta ]) = EnC

[\zeta ] + VarnC
(\zeta ).(3.5)

The first term of (3.5) has order \Delta . Corollary 2.3 shows that after dividing by \Delta , its
limit as \Delta \rightarrow 0 is

\beta (n - nC)E[NI(t)| NC(t) = nC ].(3.6)

Expression (3.6) is the ICC curve. The second term is O(\Delta 2). So, dividing by \Delta 2,

1

\Delta 2
VarnC

(\zeta ) = VarnC

\Biggl( 

1

\Delta 

\int t+\Delta 

t

\beta (n - NC(u))NI(u)du

\Biggr) 

(3.7)

\rightarrow VarnC
(\beta (n - nC)NI(t)) = \beta 2(n - nC)

2Var(NI(t)| NC(t) = nC),

as \Delta \rightarrow 0. In the limit of large populations, expression (3.7) is the variance of the
macroscopic incidence given by Var(\scrI ) = n\sigma 2

\scrI 
, where \sigma 2

\scrI 
is defined in (3.4).

Because the second term in the law of total variance is O(\Delta 2), we will need to
determine the second order term for EnC

[\zeta ] to complete our analysis. To this end,
we first rewrite the continuous time Markov SIR model with the number of cases nC

and the number of infective individuals nI as state variables (see Table 3).

Table 3

Continuous-time SIR Markov process model with number of cases and number of infective as
state variables.

Event Transition Rate

Infection (nC , nI) \rightarrow (nC + 1, nI + 1) \beta (n - nC)nI

Recovery (nC , nI) \rightarrow (nC , nI  - 1) \gamma nI

The information in Table 3 is also conveyed using the generator G of the Markov
process,

Gh(nC , nI) =\beta (n - nC)nI

\bigl( 

h(nC + 1, nI + 1) - h(nC , nI)
\bigr) 

+ \gamma nI

\bigl( 

h(nC , nI  - 1) - h(nC , nI)
\bigr) 

.

Proposition 3.12. The O(\Delta 2) term in the expansion of EnC
[\zeta ] is

1

2
\beta 2(n - nC)

\biggl( 

\Bigl( 

n - nC  - 1 - n

R0

\Bigr) 

EnC
[NI(t)] - EnC

[NI(t)
2]

\biggr) 

.(3.8)

Proof. Set g(nC , nI) = \beta (n  - nC)nI . Then subtract the O(\Delta ) term (3.6) from
EnC

[\zeta ] as defined in (3.5).
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2050 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

EnC

\Biggl[ 

\~Y1

\Biggl( 

\int t+\Delta 

t

g
\bigl( 

NC(u), NI(u)
\bigr) 

du

\Biggr) 

 - g
\bigl( 

nC , NI(t)
\bigr) 

\Delta 

\Biggr] 

= EnC

\Biggl[ 

\int t+\Delta 

t

g
\bigl( 

NC(u), NI(u)
\bigr) 

du - g
\bigl( 

nC , NI(t)
\bigr) 

\Delta 

\Biggr] 

= EnC

\Biggl[ 

\int t+\Delta 

t

\Bigl( 

g
\bigl( 

NC(u), NI(u)
\bigr) 

 - g
\bigl( 

nC , NI(t)
\bigr) 

\Bigr) 

du

\Biggr] 

=

\int t+\Delta 

t

EnC

\Bigl[ 

g
\bigl( 

NC(u), NI(u)
\bigr) 

 - g
\bigl( 

nC , NI(t)
\bigr) 

\Bigr] 

du.

Divide by \Delta 2 and take a limit using, successively, l'H\^opital's rule and the definition
of the generator.

lim
\Delta \rightarrow 0

1

\Delta 2

\int t+\Delta 

t

EnC

\Bigl[ 

g
\bigl( 

NC(u), NI(u)
\bigr) 

 - g
\bigl( 

nC , NI(t)
\bigr) 

\Bigr] 

du(3.9)

= lim
\Delta \rightarrow 0

1

2\Delta 
EnC

\Bigl[ 

g
\bigl( 

NC(t+\Delta ), NI(t+\Delta )
\bigr) 

 - g
\bigl( 

nC , NI(t)
\bigr) 

\Bigr] 

=
1

2
EnC

\Bigl[ 

Gg
\bigl( 

nC , NI(t)
\bigr) 

\Bigr] 

=
1

2
E
\Bigl[ 

Gg
\bigl( 

nC , NI(t)
\bigr) 

\bigm| 

\bigm| 

\bigm| 
NC(t) = nC

\Bigr] 

.

To evaluate the generator G on g, note that

g(nC + 1, nI + 1) - g(nC , nI) = \beta (n - nC  - nI  - 1),

g(nC , nI  - 1) - g(nC , nI) =  - \beta (n - nC).

So,

Gg(nC , nI) = \beta (n - nC)nI\beta (n - nC  - nI  - 1) - \gamma nI\beta (n - nC)

= \beta (n - nC)nI

\bigl( 

\beta (n - nC  - nI  - 1) - \gamma 
\bigr) 

= \beta (n - nC)
\Bigl( 

\bigl( 

\beta (n - nC  - 1) - \gamma 
\bigr) 

nI  - \beta n2
I

\Bigr) 

= \beta (n - nC)
\Bigl( 

\beta 
\bigl( 

(n - nC  - 1) - n
1

R0

\bigr) 

nI  - \beta n2
I

\Bigr) 

.

Now, put this in the expression for the limit in (3.9).

Theorem 3.13. The variance of the incidence over a time interval \Delta is to order
\Delta 2,

1

n
Var(NC(t+\Delta ) - NC(t)| NC(t) = nC)

\simeq \beta P (1 - c)mI(c)\Delta 

+ \beta 2
P (1 - c)

\biggl( 

1

2

\biggl( \biggl( 

1 - c - 1

R0

\biggr) 

mI(c) - mI(c)
2

\biggr) 

+ (1 - c)\sigma 2
I (c)

\biggr) 

\Delta 2

+O(\Delta 3)

as \Delta \rightarrow 0, with equality in the limit as n \rightarrow \infty .

Proof. Recall that \beta P = n\beta , R0 = \beta P /\gamma , and c = nC/n. We take the three
expressions (3.6), (3.8), and (3.7) arising from (3.5) in order.
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1. O(\Delta ) for EnC
[\zeta ].

1

n
\beta (n - nC)E

\bigl[ 

NI(t)| NC(t) = nC

\bigr] 

=\beta P (1 - c)E

\biggl[ 

1

n
NI(t)

\bigm| 

\bigm| NC(t) = nC

\biggr] 

\rightarrow \beta P (1 - c)mI(c)

as n \rightarrow \infty by the proof of Corollary 2.3.
2. O(\Delta 2) for EnC

[\zeta ].

1

2n
\beta 2(n - nC)

\biggl( 

\Bigl( 

n - nC  - 1 - n

R0

\Bigr) 

EnC
[NI(t)] - EnC

[NI(t)
2]

\biggr) 

=
1

2
\beta 2
P (1 - c)

\biggl( 

\Bigl( 

1 - c - 1

n
 - 1

R0

\Bigr) 

EnC
[NI(t)/n] - EnC

\bigl[ 

(NI(t)/n)
2
\bigr] 

\biggr) 

=
1

2
\beta 2
P (1 - c)

\biggl( 

\Bigl( 

1 - c - 1

n
 - 1

R0

\Bigr) 

EnC
[NI(t)/n]

 - 
\Bigl( 

\bigl( 

EnC
[NI(t)/n]

\bigr) 2
+VarnC

\bigl( 

NI(t)/n
\bigr) 

\Bigr) 

\biggr) 

\simeq 1

2
\beta 2
P (1 - c)

\biggl( 

\Bigl( 

1 - c - 1

n
 - 1

R0

\Bigr) 

mI(c) - 
\Bigl( 

mI(c)
2 +

\sigma 2
I (c)

n

\Bigr) 

\biggr) 

\rightarrow 1

2
\beta 2
P (1 - c)

\biggl( 

\Bigl( 

1 - c - 1

R0

\Bigr) 

mI(c) - mI(c)
2

\biggr) 

,

where the last two lines stem from Remark 3.4.
3. O(\Delta 2) for VarnC

(\zeta ).

1

n
\beta 2(n - nC)

2Var
\bigl( 

NI(t)| NC(t) = nC

\bigr) 

= \beta 2
P (1 - c)2nVarnC

\bigl( 

NI(t)/n
\bigr) 

\rightarrow \beta 2
P (1 - c)2\sigma 2

I (c),

as n \rightarrow \infty , by Theorem 3.3.

Remark 3.14. Let's examine the implications for these terms.

1. The first order term in \Delta for EnC
[\zeta ] (shown in dashed blue in Figure 3, left)

indicates that over a short time interval, the incidence is dominated by the
Poisson arrival of new cases and thus the variance is \Delta times the ICC curve.

2. The second order term in \Delta arising from VarnC
(\zeta ) reflects the uncertainty

in the number of infected over the time interval under consideration (shown
in dash-dotted red in Figure 3, left). It corresponds to the variance of the
macroscopic incidence \scrI .

3. The second order term in \Delta for EnC
[\zeta ] (shown in dotted yellow in Figure 3,

left) is a small perturbation of the second order term in VarnC
(\zeta ).

4. The first order term depends on \beta P and \Delta through their product, the dimen-
sionless term \beta P\Delta . Correspondingly the second order terms depend on these
quantities through \beta 2

P\Delta 
2, the square of their product.

5. The ratio of the first and second order terms (shown Figure 3, right, with
R0 = 2) is relatively constant over a large range of values for c. For example,
for R0 = 2, this ratio lies between 0.5 and 0.6 for c \in [0, 0.5].

6. Thus, the first order terms dominates the variance when \beta P\Delta \gg \beta 2
P\Delta 

2 or for
short time intervals for which \Delta \ll 1/\beta P . The second order term dominates
for longer time intervals when these inequalities are reversed. Both terms
play a significant role for values of \Delta between these two extremes.
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Fig. 3. Left: Graphs for the terms in the variance in the stochastic ICC curve (R0 = 2).
Dashed blue curve times \beta P\Delta is the first order term from EnC

[\zeta ]. Dash-dotted red curve times
(\beta P\Delta )2 is the second order term from VarnC

(\zeta ). Dotted yellow curve times (\beta P\Delta )2 is the second
order term from EnC

[\zeta ]. The sum of second order terms is shown in solid violet. Right: The graph
times \beta p\Delta is the ratio of the second to the first order terms.

Fig. 4. Norms of the numerically evaluated variance \sigma 2 = Var(\scrI \Delta /n) (yellow circles), of
the macroscopic variance Var(\scrI n) (solid red curve), and of the correction term to order \Delta 2 (blue
stars), for 20, 000 simulations with N = 10, 000 and different values of \Delta . The theoretical estimate
described in Theorem 3.13 (dots) matches the numerical simulations (yellow circles) over a broad
range of values of \Delta .

Figure 4 summarizes these results for 20,000 Markov chain simulations, analogous
to the results of the complete graph networked simulations of Figure 1. The \ell 2 norm
of \sigma 2 = Var(\scrI \Delta /n), where \scrI \Delta =

\bigl( 

NC(t +\Delta )  - NC(t)| NC(t) = nC

\bigr) 

/\Delta , is calculated
numerically and compared to the expressions shown in Theorem 3.13 for different
values of \Delta . This is a discrete norm since it is estimated at discrete values of c. Good
agreement is observed for a range of values of \Delta , with the macroscopic term, Var(\scrI n),
becoming dominant for larger values of \Delta .

4. Relevance of the stochastic SIR model to outbreak data. The rele-
vance of the SIR model to outbreaks is illustrated in Figure 5, which shows the daily
COVID-19 incidence in the state of Arizona for the 2020 calendar year, both in the
time domain (top row: standard EPI curve) and in the cumulative cases domain (bot-
tom row: ICC curve). The first arrow marks the end of the initial stay at home period
(03/19/2020--05/15/2020) ordered by the Governor of Arizona [19, 20, 18]; the second
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EPIDEMICS FROM THE EYE OF THE PATHOGEN 2053

Fig. 5. COVID-19 outbreak in the state of Arizona in 2020, from March 1st to December 31st.
Top: Daily incidence as a function of time. Bottom: Daily incidence as a function of cumulative
cases. The inset magnifies the region with less than 30, 000 cumulative cases. The first arrow
corresponds to 05/04/2020, when it was announced that the stay at home order would end [22, 21]
before 05/15/2020 (second arrow). The three waves are well approximated by ICC curves for the SIR
model (black solid lines), whose parameters were found using a range (stars) of smoothed incidence
values (yellow). The nonlinear relationship between cumulative counts C and time is reflected by the
change in spacing between the arrows in the top and bottom plots. COVID-19 case data provided
by The COVID Tracking Project at The Atlantic under a CC BY4.0 license [1].

arrow, on August 31st, indicates the end of the first six months of the outbreak (the
first two cases were reported in Arizona on 03/04/2020); the third arrow marks the
last day the number of cumulative cases in the state was below 300,000. Whereas
the spacing between consecutive dates (108 and 83 days, respectively) is similar in
the time domain (top plot), this is no longer true in the cumulative case domain
(bottom plot), which reveals that about twice as many cases were reported between
05/15/2020 and 08/31/2020 than between 08/31/2020 and 11/22/2020.

The inset displays an enlargement of the ICC curve for the first 30,000 cases (in
the time domain, from 03/04/2020 to 06/10/2020). Three different waves are visible
in the bottom panel of Figure 5, each of which is locally well approximated by an
ICC curve (in black) of the form \=\scrI = N G(c, c0), where c = C/N , c0 = C0/N , and G
is defined in (2.1). Recall that \beta P is the population contact rate of the disease, R0

is the basic reproductive number, and C0 represents initial conditions. In addition,
N should be thought of as an effective population size. The parameters used to fit
each wave vary, indicating an increase in the effective size N (estimated at 49,388
individuals for the first wave, 279,027 for the second, and 1,547,228 for the third) as

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
o
w

n
lo

ad
ed

 1
2
/0

8
/2

3
 t

o
 2

4
.2

.2
0
0
.1

2
6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 C

C
B

Y
 l

ic
en

se
 



2054 F. D. SAHNEH, W. FRIES, J. C. WATKINS, AND J. LEGA

the outbreak unfolds, while the basic reproduction number R0 fluctuates between 1.5
and 2 (respective estimates are 1.56, 1.85, and 1.79). The corresponding values of \beta P

and \gamma = \beta P /R0 are (\beta P , \gamma ) \simeq (0.12, 0.08), (0.21, 0.11), and (0.16, 0.09), respectively.
Figure 5 suggests that each wave of the COVID-19 outbreak in Arizona is, in

trend, well captured by the deterministic SIR model: the black curves, of equation \=\scrI =
N G(c, c0), where G is defined in (2.1), are the exact relationship between incidence \=\scrI 
and cumulative cases C for the deterministic SIR model [11]. In addition, consistent
with the results of this manuscript for the stochastic SIR model, each of the three
waves appears to be independent from the others, and the daily incidence \scrI \Delta , \Delta = 1,
fluctuates about one of the three mean ICC curves.

5. Conclusions. Although not surprising from a dynamical systems point of
view, the ICC perspective [12, 11] presents a fundamentally new way of thinking
about epidemics. This article develops the corresponding theory for stochastic out-
breaks and explains how they relate to deterministic ICC curves. The analysis is done
for the stochastic SIR model, which captures the basic tenets of disease spread. We
prove that, in the limit of large populations, the dynamics of this model in the ICC
plane results from a Gaussian process with independent increments, whose distribu-
tion is concentrated about the deterministic ICC curve (2.1). The variance of \scrI \Delta ,
the incidence over a period of time \Delta , is equal to the variance of the macroscopic
incidence \scrI plus a correction term that depends on \Delta , as described in Theorem 3.13.
In addition, the relevance of the ICC approach becomes apparent in the nature of
the dynamics: the Markov chain and its limit involve a single parameter R0, and the
contact rate \beta P for infections is an ancillary parameter. Both R0 and \beta P are inde-
pendent of the population size. In other words, shifting from the human time-centric
perspective (in terms of EPI curves) to the pathogen's resource-centric perspective
(in terms of ICC curves) isolates ancillary parameters from the statistical analysis of
single outbreaks.

The ability to describe outbreaks as realizations of a Gaussian process with in-
dependent increments presents many advantages. First, any outbreak can easily be
simulated in the ICC plane as a deterministic time change of Brownian motion, as
suggested by Remark 3.8. The discrete equivalent consists in looking at the current
number of cumulative cases C(t), drawing the new number of cases \scrI \Delta from the
appropriate Gaussian distribution, adding this number to C(t), and repeating these
steps until no new infection occurs. Second, parameter estimation is simplified: like-
lihoods naturally factorize into a product of normal densities, leading to a weighted
least-squares minimization problem in the ICC domain. This is much simpler than
the typical MCMC methods used for parameter estimation in the time domain. In
addition, Fisher information can be computed explicitly to give confidence regions
for model parameters, in contrast to computationally intensive simulation-based ap-
proaches. Third, the property of independent increments guarantees that estimates
do not depend on the past history of the epidemic, thereby making it possible, in the
case of evolving outbreaks, to infer time-dependent parameters from local data in the
ICC plane.

Although the stochastic SIR model provides a simplified description of contagion,
we show in section 4 that in the ICC plane, COVID-19 incidence data fluctuate about
a finite number of mean ICC curves, each having the same functional form as G(c),
obtained from the SIR model. Each of these mean ICC curves corresponds to one wave
of the pandemic. We use Arizona as an example, but similar behaviors are observed
in other states and other countries. Moreover, the independent increment nature of
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the process is dramatically illustrated by these data (see Figure 5). Estimates of R0

and N are entirely informed by the local dynamics of the portion of the epidemic
under a given ICC curve. Data associated to the other ICC curves cannot and do not
play any role.

The present analysis also shows that ICC curves can address recent challenges
raised in the literature regarding time-based analysis of epidemics. In 2020, Juul et
al. [9] reported on the issues associated with fixed time statistics and the underesti-
mation of extremes in epidemic curve ensembles. ICC curves circumvent many of the
shortcomings of fixed time statistics because the stochastic ICC process has indepen-
dent increments and thus obviates the issues of long-term correlations. In addition,
the call for ``curve based"" statistics made in [9] is integral to the characterization of the
epidemic as a realization of a Gaussian process. This makes it possible to incorporate
the entire ICC curve in the likelihood associated with any estimation, including for
parameter inference, or for detecting the impact of changes, for instance, in people's
behavior or due to the introduction of a vaccine, and for forecasting.

In summary, the probabilistic analysis described in the present article equips us
with more powerful approaches to understand epidemic dynamics. With a change
of perspective from the human to the pathogen, this article shows that the nearly
century-old Kermack--McKendrick [10] mathematical model is again the foundation
for modern, even more powerful, analytical tools that yield clearer insights into the
nature of an outbreak.
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