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INTRODUCTION: Gene expression is regulated
by transcription factor (TF) proteins that bind
DNA-regulatory elements in the genome. De-
spite decades of research catalogingTF “motifs,”
these do not fully explain observed genomic
binding in cells. Many TFs bind regions lack-
ing motifs, whereas other regions with appar-
ently strong motifs remain unoccupied, and
emerging evidence suggests that the DNA se-
quence context surrounding motifs can strong-
ly affect binding (see the figure, panel A). Short
tandem repeats (STRs, consecutively repeated
units of one to six nucleotides) provide a good
example of these sequence contexts. STRs com-
prise ~5% of the human genome (compared
with 1.5% for all protein-coding genes) and are
enriched in enhancers. Variations in STR length
have been associated with changes in gene ex-

pression and implicated in several complex
phenotypes, such as schizophrenia, cancer, au-
tism, and Crohn’s disease. However, the mech-
anism by which STRs affect transcription
remains unknown.

RATIONALE: One mechanism by which STRs
could affect gene expression is by altering the
affinity and/or kinetics of TF binding to reg-
ulatory DNA (see the figure, panel A). To inves-
tigate this, we used various high-throughput
microfluidic binding assays (i.e., MITOMI,
k-MITOMI, and STAMMP) and bioinformatic
analyses to systematically quantify the impacts
of different sequence contexts on TF binding.
Wemeasured affinities (Kds) and kinetics (koffs)
for two basic helix-loop-helix TFs that bind a
CACGTGE-boxmotif (Pho4 from Saccharomyces

cerevisiae and MAX from Homo sapiens) to
DNA sequences with or without an E-box motif
surrounded by random sequence or multiple
different types of STRs (see the figure, panel B).

RESULTS: Measured binding constants (Kds)
for 609 distinct TF-DNA combinations re-
vealed that different STRs can alter binding
affinities by >70-fold (see the figure, panel C),
approaching or exceeding effects from mutat-
ing the consensus motif. Preferred STRs dif-
fered for Pho4 and MAX TFs, demonstrating
that motifs are not sufficient to predict pre-
ferred STRs. Gel-shift assays and additional
experiments using TF truncation constructs
established that TFs directly bind STRs (see
the figure, panel C) through their DNA-binding
domains in the presence or absence of motifs.
Although not predicted by standard mono-
nucleotide models, the observed STR binding
is well explained by a simple partition func-
tion model from statistical mechanics in which
multiple repeated weak binding sites contrib-
ute additively to binding affinity (see the fig-
ure, panel D). Measured apparent dissociation
rates (koffs) for 106 TF-DNA combinations and
kinetic modeling suggested that STRs primar-
ily alter macroscopic apparent association rates
and increase the local density of DNA-bound
TFs. Finally, neural networks trained only on
in vivo genome-wide chromatin immunopre-
cipitation data predict effects identical to those
measured in vitro, suggesting that STR pref-
erences play a substantial role in properly lo-
calizing TFs in cells.

CONCLUSION: Analysis of previously published
protein-binding microarray and SELEX data
suggests that ~90% of eukaryotic TFs prefer-
entially bind at least one type of STR (see the
figure, panel E). Because STRs are highly mu-
table, we propose that they should be consid-
ered an easily evolvable class of cis-regulatory
elements. Preferred STRs need not resemble
known motifs, suggesting a mechanism by
which TF paralogs can be recruited to different
regulatory regions and regulate distinct target
genes. Although STRs maximize the number
of potential weak binding sites, we anticipate
that nonrepetitive sequence contexts contain-
ing many low-affinity binding sites should
similarly increase binding. Thus, we propose
that STRs function as “rheostats” to tune local
TF concentration and binding responses to
regulate gene expression in disease, develop-
ment, and homeostasis.▪
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STRs directly bind TFs to alter gene expression. (A) Schematic of enhancers, motifs, and STRs.
(B) Schematic of TFs and DNA libraries tested in this study. (C) Favorable STRs alter energetic landscapes
by directly binding TF DNA-binding domains. (D) Favorable STRs maximize potential preferred sites and
contribute additively to binding energies. (E) STR binding by TFs is widespread.
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Short tandem repeats bind transcription factors
to tune eukaryotic gene expression
Connor A. Horton1†, Amr M. Alexandari2‡, Michael G. B. Hayes1‡, Emil Marklund1‡,
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Ariel Afek6,7,8, William J. Greenleaf1, Raluca Gordân6,7,9,10, Julia Zeitlinger5,11,
Anshul Kundaje1,2, Polly M. Fordyce1,3,4,12*

Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene
expression, yet how they regulate transcription remains unknown. We found that STRs modulate
transcription factor (TF)–DNA affinities and apparent on-rates by about 70-fold by directly
binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif
mutations. STRs maximize the number of weakly preferred microstates near target sites,
thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming
that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies
predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially
bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target
TFs to genomic sites.

S
hort tandem repeats (STRs), consisting of
1– to 6–base pair (bp) units repeated con-
secutively, comprise 5% of the human
genome (figs. S1 to S3), compared with
1.5% for protein-coding genes (1, 2), with

a median STR length of 29 bp (fig. S4). STRs
are enriched in cis-regulatory elements across
eukaryotic genomes (3), including in humans
[~25% of enhancers contain an STR (4, 5);
fig. S5], and can activate or repress transcrip-
tion in Homo sapiens (5–21), Mus musculus
(22, 23), Saccharomyces cerevisiae (3), Dro-
sophila melanogaster (24, 25), and others (26).
Dinucleotide STRs are associated with broad
activity of cis-regulatory elements across cell
types in D. melanogaster (27), and variation in
STRs has been proposed to account for “miss-
ing heritability” in genome-wide association
studies (5, 28). Finally, population-level ge-

nomic studies have linked noncoding STR
polymorphisms to autism (29, 30), schizophre-
nia (31), height (31), and Crohn’s disease (5).
Despite their widespread prevalence and doc-

umented effects on gene expression, the physical
mechanismbywhich STRs affect transcription
remains unclear. STRs have been proposed to
modulate transcriptionby changing the intrinsic
affinity of histone proteins for DNA, thereby
changing nucleosome occupancy (3, 22, 24, 32).
However, STRs have not been shown to di-
rectly alter chromatin accessibility other than
the example of nucleosome-disfavoring poly(A)
tracts (33). Alternatively, polymorphisms in
STR length could alter distances between
multiple motifs or between motifs and core
promoter elements, disrupting regulatory gram-
mar (34–36). However, genome-wide studies
suggest that the syntax of cooperative tran-
scription factor (TF) interactions at enhancers
is unlikely to be perturbed by changes inmotif
spacing (37–39). Theoretical work has sug-
gested that “sequence symmetries” (i.e., repet-
itiveness) alone contribute to nonspecific TF
binding, with maximum effects for homopoly-
mer sequences (40, 41), and in vitro binding
measurements and bioinformatic analyses
have suggested that STRs affect TF-DNA bind-
ing in the absence of specific base pair recog-
nition (40, 42–46). Nevertheless, prevailing
models of TF specificity do not predict ob-
served specific binding to STRs (42), and the
magnitudes of their energetic effects and
potential impacts on binding kinetics remain
unexplored. Here, we used multiple high-
throughputmicrofluidic bindingassays [MITOMI
(47, 48), k-MITOMI (49), and STAMMP (50)] to
systematically investigate how STRs influence

equilibrium binding and kinetics for two dif-
ferent basic helix-loop-helix (bHLH) TFs.

Results
Quantitative measurements establish STRs alter
TF binding affinities

The bHLH TFs Pho4 [a yeast TF involved in
the phosphate starvation response (51, 52)] and
MAX [a human TF involved in cell prolifera-
tion, differentiation, and apoptosis (53, 54)]
each bind anE-box regulatory element (Fig. 1A
and table S1). To test the impact of STRs on
binding, we quantified the binding of each
TF to 17 DNA sequences containing either a
moderate-affinity extended E-box sequence
(GTCACGTGAC) or a random sequence (“no
motif”) flanked by 13 bp of either random se-
quence or STRs previously shown to enhance
binding (42) (Library 1; Fig. 1B and table S2)
through MITOMI microfluidic binding assays
(Fig. 1C, figs. S6 to S9, and table S3). Measured
binding for each DNA sequence over multiple
concentrations can be combined with calibra-
tion curves (figs. S10 and S11 and table S4) to
extract the dissociation constant (Kd) by quan-
tifying concentration-dependent TF binding
and globally fitting Langmuir isotherms (Fig.
1C; see the materials and methods).
Measured Library 1 DDGs spanned ~2.6 and

3.1 kcal/mol with a mean root mean squared
error (RMSE) between replicates of ~0.53 and
0.31 kcal/mol for Pho4 and MAX, respectively
[Fig. 1D, figs. S12 to S21; see additional data at
(55)]. DNA sequences with amotif surrounded
by STRs were consistently bound 0.23 to
0.90 kcal/mol tighter than those with a motif
surrounded by random sequences, correspond-
ing to an ~1.5- to 4.6-fold change in predicted
affinity (Fig. 1, D and E). Distributions of mea-
sured DDGs for sequences containing STRs
were statistically significantly different from
those with random sequences (as assessed by
bootstrap hypothesis testing with a Bonferroni-
corrected significance threshold; fig. S22 and
table S5), and these effects scaled with STR
length (fig. S23).MeasuredDDGs did not change
with ~5-fold differences in protein concentra-
tion, confirming that DNA was in vast excess
of available protein (figs. S24 and S25). Mea-
sured DDGs were also consistent when using
either wheat germ extract or Tris-buffered
saline (TBS) as a binding buffer (fig. S26), and
negative control experiments assessing bind-
ing to enhanced green fluorescent protein
(eGFP) alone showed no variability above
the background RMSE (maximum deviation
of ±0.5 kcal/mol; fig. S27). Linear mono-
nucleotide specificity models such as the
position-specific affinity matrix (PSAM) pre-
dicted a <0.1 kcal/mol effect for all flanking
sequences but one (“Motif + GT/AC repeat
2”) (fig. S28), establishing that the measured
effects are not due to cryptic consensus sites
in flanking sequences.
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Fig. 1. Repetitive flanking sequences alter TF-DNA binding affinities in a
sequence-specific manner. (A) Crystal structures and PSAM logos (47) for Pho4
[Protein Data Bank (PDB) ID: 1a0a] and MAX (PDB ID: 1hlo). (B) Library 1: 17
DNA sequences with either an extended (10-bp) E-box motif (dark gray) or random
(light gray) sequence surrounded by 13 bp on either side of repetitive (red) or
random (light gray) sequence. (C) MITOMI microfluidic device (left) and zoomed-in
view of three chambers (top right) showing solubilized DNA during incubation
(prewash A647), immobilized TFs (eGFP), and TF-bound DNA after washing
(postwash A647). Bottom right shows representative concentration-dependent
binding for DNA sequences containing an extended E-box surrounded by either
repetitive (red) or random (gray) flanks. (D) Measured DDG values across all Library
1 sequences for Pho4 (left) and MAX (right). DDGs were calculated relative to the
overall median value for oligonucleotides bearing an E-box consensus surrounded by

random flanking sequence. Light gray dots show all measurements; red circles
indicate median values per oligo. (E) Median values (black markers and box plots)
for all sequences containing either repetitive (red) or random (gray) flanking
sequences for Pho4 (left) and MAX (right). (F) Library 2: 10 DNA sequences
containing a central extended (10-bp) E-box motif surrounded by 60 bp on either
side of listed homopolymeric, dinucleotide, or tetranucleotide repeats. (G) Measured
DDG values across all Library 2 sequences for Pho4 (gold) and MAX (blue). DDGs
were again calculated relative to the overall median value for oligonucleotides
bearing an E-box consensus surrounded by random flanking sequence. Gray bars
indicate magnitude of effects predicted by PSAMs. (H) Observed effects on DDG for
mutating single nucleotides within the CACGTG core E-box (core) (47) versus
altering flanking sequence within Library 2 (distal) for Pho4 (left, gold) and MAX
(right, blue) overlaid on boxplots (gray).
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Magnitude of STR effects on affinity depends on
STR sequence
To determine how STR sequence alters bind-
ing, we designed a DNA library containing
either an extended consensus E-box motif or
a random sequence surrounded on each side
by 60-bp flanks (the approximate mean length
of STRs in humans and budding yeast; fig. S4)
composedof randomsequenceorhomopolymer,
dinucleotide, or tetranucleotide STRs (Li-
brary 2; Fig. 1F and table S6; CG/AT indicates
a CG repeat on one side of the motif and an
AT repeat on the other). Because repetitive
sequence extension can be technically chal-
lenging, we visualized extension through de-
naturing gel electrophoresis (fig. S29) and
quantified binding affinities only for sequences
that extended successfully (Fig. 1G, figs. S30 to
S36, and table S6). The observed effects ranged
from increasing affinity by 1.7 kcal/mol (18-fold)
to reducing affinity by 0.8 kcal/mol (4-fold).
Whereas ATGC STRs enhanced binding for
both Pho4 and MAX, other STRs (AT/AT,
ATCG/ATCG, and AG/CT) were deleterious
for MAX only (Fig. 1G, figs. S37 and S38, and
table S7). As for Library 1, the distribution of
measured DDGs for multiple sequences with
STRs differed significantly from those with
different random sequences (fig. S39 and table
S8), results did not change with surface pro-
tein density (figs. S40 and S41), no sequence-
specific binding was detected for an eGFP-only
negative control (fig. S42), and the observed
effects were inconsistent with PSAM-based
models of specificity (Fig. 1G). Effects also di-
verged significantly for Pho4 and MAX (Fig.
1G), signifying that “consensus” binding mo-
tifs are insufficient to predict STR preferences.
Energetic contributions of flanking sequences
approached or exceeded those associated with
mutating core consensus residues (47), partic-
ularly for MAX, suggesting that STRs could
play a significant role in proper TF localization
in vivo (Fig. 1H).

STRs alter affinities by directly binding TFs

The observed STR effects suggest two possi-
ble mechanistic models (Fig. 2A). In the first,
STRs could enhance TF binding to the core
consensus site, perhaps by altering local DNA
“shape” (56–60) (Fig. 2A, top). This model pre-
dicts that STRs should only alter binding in
the presence of a core motif and that TF-DNA
stoichiometry should not depend on flanking
sequence. The secondmodel is that STRs could
represent additional binding sites (Fig. 2A,
bottom). Thismodel predicts that STRs should
enhance binding regardless of whether they
flank a consensus motif and that multiple TFs
will bind oligonucleotides containing STRs.
Concentration-dependent binding for Pho4

and MAX was clearly stronger for sequences
containing favorable STRs even in the absence
of a motif (Fig. 2, B and C). Moreover, ener-

getic effects of STRs did not correlate with
predicted DNA shape parameters (figs. S43
and S44), and circular dichroism spectroscopy
ruled out enhanced binding resulting from
STR-dependent structural transitions between
B- and Z-form DNA (fig. S45). Finally, electro-
phoretic mobility shift assays (EMSAs) using
Alexa Fluor 647–labeled double-stranded DNA
(dsDNA) and increasing concentrations of eGFP-
tagged (Fig. 2D and fig. S46) or untagged MAX
(fig. S47) revealed supershifted bands at higher
MAX concentrations for DNA sequences con-
taining STRs, consistent with multiple TFs
binding a single DNA molecule. Together, these
experiments demonstrate that STRs modu-
late TF-DNA affinity by directly binding TFs
in vitro.

Statistical mechanical models integrating data
across experimental platforms accurately
predict STR effects

Universal protein-binding microarray (uPBM)
experiments measure binding of fluorescently
tagged TFs to surface-immobilized DNA du-
plexes containing all possible 8-mer DNA
sequences, providing comprehensivemeasure-
ments of TF-DNA specificity in an alternate
(flipped) experimental configuration relative
to MITOMI (61–64). To determine whether
previously published uPBM measurements
also reveal enhanced binding of Pho4 andMAX
to specific STRs, we calculated the median in-
tensity for all probes containing each of the
65,538 possible DNA 8-mers and then calcu-
lated a Z score for each 8-mer relative to this
distribution (Fig. 2, E and F). As expected,
probes containing 8-mer variants of the known
E-box CACGTG consensus were bound very
strongly by Pho4 and MAX, with Z scores of
40 to 80 (Fig. 2F). Consistent with MITOMI
results, favorable repeats were bound statis-
tically significantly above background after
Bonferroni correction for bothMAX (ATGC,
Z= 15.1,P= 4× 10−127; CG, Z= 8.3, P= 5 × 10−40;
andAC,Z=5.0,P= 1× 10−15) and Pho4 (ATGC,
Z = 10.7, P = 7 × 10−72; GC, Z = 3.9, P = 3 × 10−11;
and AC, Z = 5.4, P = 9 × 10−20; Fig. 2F).
Next, we combined information from the

PBM and MITOMI experiments to determine
whether partition function models from sta-
tistical mechanics improve binding predictions
by accurately accounting for flanking sequence
effects (Fig. 2, E and G). MITOMI-measured
DDGs and log-transformed gcPBM intensities
for MAX binding to 32 probes (figs. S48 to S51
and tables S9 and S10) were strongly anticor-
related (Rp

2 = 0.89) over awide dynamic range
(2.5 kcal/mol) (fig. S52), confirming reports
that PBM intensities can report on affinities
(62, 65–68). This allowed us to compute a par-
tition function from intensities and predict
Pho4 andMAX DDGs for all DNA Library 1 and
2 sequences (Fig. 2G; see the materials and
methods). For DNA Library 1, which contains

intact, mutated, or ablated E-box consensus
sequences surrounded by 13-bp variable flank-
ing sequences, partition function–based pre-
dictions significantly improve agreement with
measured DDGs over standard PSAM predic-
tions (Rp

2 = 0.91 versus 0.66 and Rp
2 = 0.93

versus 0.74 for Pho4 and MAX, respectively)
(fig. S53). For DNA Library 2, in which all se-
quences contain an E-box but differences in
flanking sequences can changemeasured DDGs
by up to 1.6 and 2.5 kcal/mol for Pho4 and
MAX, partition function–based calculations
were substantially better correlated with mea-
surements than PSAMmodels (Rp

2 = 0.71 ver-
sus 0.09 and Rp

2 = 0.81 versus 0.02 for Pho4
and MAX, respectively) (Fig. 2G and fig. S54).
Returned fit parameters from these linear re-
gressions allow calibration of partition function–
based predictions in energetic space with as
few as nine thermodynamic measurements
(Kds or DDGs; fig. S55; see the materials and
methods).
To determine whether sequencing-based se-

lection experiments also reveal binding for
MAX to the same STRs, we quantified the fre-
quency with which each 8-mer DNA sequence
appeared within the TF-bound fractions in the
SMiLE-seq (69) and SELEX-seq (70) datasets,
converted frequencies to Z scores, and again
used these Z scores in a partition function to
predict binding to DNA Library 1 and 2 se-
quences. Predicted binding was well corre-
latedwith observations for both libraries (Rp

2 =
0.86, 0.75 for Library 1 and Rp

2 = 0.59, 0.81
for Library 2 for SMiLE-seq and SELEX-seq,
respectively; figs. S56 and S57).

Even weakly preferred STRs enhance binding by
increasing the number of preferred microstates

Preferred repeats for Pho4 and MAX (e.g., CG
and ATGC) do not resemble the known E-box
consensus, as evidenced by a failure of PSAM-
based models to predict the observed effects
(Figs. 1H and 2G and figs. S28 and S53). Why,
then, do repeats recruit TFs? By virtue of being
repetitive, STRs createmultiple identical bind-
ing sites that are equally probable binding
microstates (Fig. 2H), and STRs (in particular,
homopolymers)maximize binding entropy and
therefore minimize Gibbs free binding energy
when enthalpy is kept constant (see the sup-
plementary text). To estimate the energetic
magnitude of this statistical effect, we con-
ducted Monte Carlo simulations that random-
ly sample from observed energy distributions
to mimic either random or homopolymeric
sequences (fig. S58; see the materials and
methods). These simulations revealed that in-
creasing repetitiveness alone can contribute
up to0.3 kcal/molmeanbinding energy through
entropic effects for sequences <60 bp (fig. S58).
However, effects are considerably stronger for
STRs with affinities only slightly above back-
ground binding: 57-bp dinucleotide STRs with
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intensity Z scores of 1 to 2 or 5 to 10 are pre-
dicted to enhance binding by 0.6 and 1.4 kcal/
mol (10-fold), respectively (fig. S58). Further
validating these effects, partition function–

predicted energy distributions for Pho4 and
MAX binding 10,000 simulated sequences con-
taining E-box consensus sites flanked by either
random sequence or STRs showed that the

most-favorable STRs boundmore strongly than
all 10,000 random sequences (fig. S59), a result
not predicted by analogous simulations using
mononucleotide models (fig. S60). A partition
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Fig. 2. STRs are directly bound by TFs with observed affinities that can be
accurately predicted by statistical mechanics. (A) Models explaining how
repetitive flanking sequences could enhance TF binding affinities. (B) Representative
concentration-dependent binding for Pho4 (left) and MAX (right) interacting with
DNA sequences containing either repetitive (red) or random (gray) sequences in the
absence of an E-box motif. (C) Box plots of relative binding energies (DDGs) for
Pho4 and MAX binding to oligonucleotides with repetitive (red) or random (gray)
sequence flanking an extended E-box consensus (dark gray) or random sequence
(light gray); black and red dashed lines indicate median overall affinities. (D) EMSAs
for increasing concentrations of eGFP-tagged MAX interacting with Alexa Fluor
647–labeled dsDNA duplexes containing a central extended E-box surrounded by
random (left) or repetitive (right) sequences. Blue boxes highlight TF complexes

bound to the core motif; red boxes highlight supershifted species with additional
bound TFs. Native gel electrophoresis reveals MAX alone runs as three bands, likely
representing MAX homodimers, MAX monomers, and eGFP-only truncation
constructs (fig. S46). (E) Pipeline for calculating 8-mer intensity Z scores from
universal PBM data and calibrating partition function scores to predict binding
(see the materials and methods). (F) Log-linear histograms of intensity Z scores for
all 8-mers for Pho4 (left) and MAX (right). Inset shows linear-linear plots that
highlight background binding distributions and Z scores of the STRs measured in this
study (red bars, top). (G) Scatter plots, linear regressions, and correlation
coefficients for measured DDGs versus calibrated partition function–predicted
scores across all measured repeats for Pho4 (left) and MAX (right). (H) Schematic
showing possible microstates as a function of sequence.
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function model is purely additive, and addi-
tional mechanisms of cooperativity [e.g., al-
lostery, avidity, and allovalency (71)] are not
necessary to explain effects of STRs on in vitro
binding.

STRs are directly bound by TF DNA-binding
domains

Our results thus far had established that TFs
directly bind STRs but did not identify which
portion of the TF recognizes them. STRs may
be recognized by intrinsically disordered re-
gions (IDRs) outside of TF DNA-binding do-
mains (DBDs) (72) or by DBDs themselves. To
distinguish between these, we compared bind-
ing for eGFP-tagged full-length Pho4, the DBD
alone, or the non-DBD alone to six DNA se-
quences containing either the extended E-box
motif (GTCACGTGAC) or nomotif surrounded
by random sequence or favorable or moder-
ately favorable STRs (ATGC andCG/AT, respec-
tively; Fig. 3, A to C; figs. S61 to S63; and
tables S11 and S12). Both full-length and DBD-
only constructs showed enhanced binding to
repeats (Fig. 3, A to C, and figs. S61 and S62)
with strongly correlated measured Kd values
(Rp

2 = 0.99; Fig. 3C). Consistent with prior re-
ports that IDRs outside of the DBD can inhibit
DNA binding (73–77), fluorescence intensity
ratios (DNA bound per surface-immobilized
TF) were consistently lower for the full-length
construct (Fig. 3B). By contrast, the Pho4 non-
DBD did not bind DNAwith either random or
the most-favorable ATGC STR flanking se-
quences above background levels, and mea-
suredKds were uncorrelatedwith the full-length
construct (Fig. 3C and fig. S63). Although the
Pho4 non-DBD exhibited detectable binding
to the moderately favorable CG/AT STR (fig.
S63), binding was extremely weak (Kd > 15 mM)
and disappeared in the absence of a CACGTG
motif (fig. S63), inconsistent with observations
for full-length Pho4 (Fig. 2, B and C).
Because MAX has an extremely small non-

DBD (49 residues versus 202 residues for Pho4;
fig. S64A), we anticipated the MAX non-DBD
was unlikely to bind STRs. To test this, we
compared 8-mer Z scores between previously
published uPBM (62) and SELEX-seq (70) data
for full-length MAX and the DBD alone (fig.
S64). If the MAX non-DBD binds STRs, then
we would expect the full-length construct to
return higher Z scores for favorable STRs com-
pared with the DBD alone. Instead, all 8-mer
Z scores were linearly correlated between con-
structs (R2 = 0.72 and 0.90 for uPBM and
SELEX-seq, respectively). Together, these analy-
ses demonstrate that Pho4 and MAX recognize
STRs through their DBDs.
To investigatewhich residueswithin the Pho4

DBDmediateSTRrecognition,weusedSTAMMP
(50) (Fig. 3, D and E) to recombinantly express
and purify 221 Pho4 variants containing sys-
tematic amino acid mutations within and

surrounding the DBD (Fig. 3F and table S13)
and quantify concentration-dependent binding
for each variant interactingwithDNAsequences
containing a motif flanked by either random
sequence or favorable CG dinucleotide STRs
(Fig. 1G). Across nine STAMMP experiments,
214 of 221 variants showed strong expression
(Fig. 3E, figs. S65 and S66, and table S14), and
concentration-dependent binding was well fit
by a Langmuir isotherm across both DNA se-
quences (Fig. 3G and figs. S67 to S72), yielding
6139 individual TF-DNA Kd measurements.
After normalization between experiments, mea-
sured energetic effects were consistent across ex-
periments (<0.48 kcal/mol RMSE) and spanned
>4 kcal/mol (figs. S69 and S72).
We then comparedmeasured DDGs for each

mutant relative to thewild-type (WT) TF across
DNAsequences, reasoning that residues involved
in STR recognition should differentially affect af-
finity upon mutation (Fig. 3H). Nearly all mu-
tants altered binding affinities equally across
DNA sequences, but E259D showed signifi-
cantly enhanced binding to CG dinucleotide–
flanking sequences (Fig. 3H and figs. S73 and
S74; Z score of residual = 6.0, P = 1.7 × 10−9,
DDDG ≈ 0.73 kcal/mol). In the Pho4 crystal
structure, E259 directly contacts nucleotides
from both strands at the CACGTG position
(78) (Fig. 3I), and comparisons of measured
affinities forWTPho4 and E259D revealed that
although the WT Pho4 showed a strong pref-
erence for the canonical E-boxmotif (CACGTG),
E259D showed equal, weak (100-fold lower)
binding to the canonical E-box and a motif
mutated at this position (CACGCG) (50) (Fig.
3J). These observations are consistent with a
model in which increased promiscuity of the
E259D binding energy landscape leads to an
effective increase in preference for CG dinu-
cleotide repeats (Fig. 3K).

STRs increase apparent macroscopic
association rates

To investigate how flanking sequences alter
TF binding kinetics, we leveraged k-MITOMI
(49) (Fig. 4A) to quantify dissociation rates
for Pho4 and MAX interacting with DNA se-
quences containing an extended E-box motif
(GTCACGTGAC) surrounded by 60-bp flanks
composed of random sequence or eight dif-
ferent STRs that extended properly (homo-
polymer: A/A; dinucleotide: AT/AT, AG/CT,
GT/AC; tetranucleotide: ACGT/ACGT, ATCG/
ATCG, ACTG/AGTC, ATGC/ATGC). Specifi-
cally, we iteratively (i) closed valves to trap
TF-bound DNA, (ii) introduced a high-affinity
unlabeled DNA competitor, (iii) opened valves
for 1 to 4 s to allow fluorescently labeled DNA
to dissociate, (iv) closed valves and washed out
unbound material, and (v) imaged all device
chambers (Fig. 4A). Excess unlabeled DNA
competitor outcompeted rebinding to ensure
accurate ratemeasurements. Decreases inmea-

sured Alexa Fluor 647/eGFP (DNA/TF) inten-
sity ratios over time were well fit by a single
exponential for Pho4 andMAX [Fig. 4B and figs.
S75 and S76; see additional data at (55)]; rates
typically varied by <3-fold across experiments
before normalization (figs. S77 and S78). For
both Pho4 and MAX, different 60-bp flanking
STRs changed apparent rates of dissocia-
tion (koff,apparent) from the entire dsDNA se-
quence only slightly (<1.7-fold, less than noise
between experiments) (Fig. 4C and figs. S77
and S78). By contrast, inferred apparent on
rates (kon,apparent = koff,apparent/Kd, calculated
assuming a two-state model in which DNA is
either bound or unbound) were substantially
altered (Fig. 4C and figs. S79 to S83). These
results were consistent across different nor-
malization schemes (figs. S84 to S88), with fa-
vorable STRs increasing macroscopic apparent
on-rates by 7- to 54-fold for Pho4 and MAX, re-
spectively, suggesting that the observed changes
in affinity were primarily caused by altered
macroscopic apparent association rates (Fig.
4C and fig. S87).

STRs increase the density of weakly bound TFs
near target motifs

STRs are enriched near binding sites of stress-
response TFs in budding yeast that likely
require a rapid transcriptional response (3),
suggesting that STRs could reduce search
times in vivo. Tomodel how changes to motifs
and flanking sequences alter TF search be-
havior, we expanded our two-state model (in
which a single TF is either bound or not bound
to any location within the DNA; Fig. 2A) to
a four-state continuous-time Markov Chain
(CTMC) model in which a single TF may be
(i) free (nonspecifically diffusing in the nucleo-
plasm), (ii) testing (near DNA or nonspecifi-
cally bound to DNA), (iii) bound to a motif, or
(iv) bound to the flanks (Fig. 4D; see themate-
rials andmethods). The rate constant for tran-
sitioning between the free and testing states is
given by kon,max (the theoretical upper bound
for the on-rate if all nonspecific TF-DNA inter-
actions result in specific binding); rate con-
stants for transitioning from the motif- or
flank-bound state to the testing state are given
by koff,m,motif and koff,m,flank; and the probabil-
ities of transitioning to the motif or flanks
depend on the likelihood of binding either
sequence (fflank or fmotiff) and on the rate at
which TFs transition from the testing state
back to the free state (koff,M). Together, this
yields a simple expression for the transition
probability from the testing state to either the
flank ormotif (ptesting,x = fx/(1 + fflank + fmotif);
x ∊ {flank,motif}). Assuming that the time
spent in the testing state is negligible, this four-
state model can determine these microscopic
rate constants frommacroscopicmeasurements
of affinities and apparent dissociation rates
for sequences containing a consensus E-box,
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a weak E-box, or a scrambled sequence sur-
rounded by 13-bp flanks composed of either
GT/AC or CG/AT dinucleotide repeats or ran-
dom sequence (DNA Library 1; Fig. 4E and figs.

S89 to S97; see the materials and methods).
Consistent with recent work on E. coli LacI
binding to various operator sequences (79),
meanmicroscopic dissociation rates (koff,m) for

sequences with a consensus E-box or a weak
E-box were similar, but affinities and micro-
scopic association likelihoods differed by 12-
or 16-fold (figs. S98 to S100). Systematically
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Fig. 3. Mutations within TF DBDs alter repeat sensitivity. (A) Schematic
illustrating MITOMI experiment quantifying binding of full-length, DBD-only, and non-
DBD–only Pho4 constructs to DNA sequences either containing or lacking motifs
surrounded by either random sequence or favorable STRs. bHLH indicates the bHLH
DBD within Pho4. (B) Measured concentration-dependent binding for full-length,
DBD only, and non-DBD–only Pho4 constructs. Markers denote measured intensities
from individual chambers; lines indicate Langmuir isotherm fits. (C) Scatter plots
comparing measured Kds for DBD-only Pho4 versus full-length Pho4 (left) and
non-DBD–only Pho4 versus full-length Pho4 (right). Marker bars indicate mean
across all chambers, error bars indicate SD, dashed line indicates linear regression,
and P values indicate the significance of correlation. (D) Experimental pipeline
for STAMMP illustrating steps for recombinant protein expression, surface
immobilization, purification, and measurement of concentration-dependent binding

behavior. (E) Example zoomed-in fluorescence images showing immobilized TFs and
concentration-dependent DNA binding. (F) Schematic of C-terminally eGFP-tagged
Pho4 and location of scanning mutants. (G) Example concentration-dependent
binding measurements and Langmuir isotherm fits for WT Pho4 and two mutants
(L270V and R263L) interacting with “Motif + random 1.” (H) Effects of TF mutations
on relative DNA-binding affinity for an extended E-box consensus flanked by CG
repeats versus random sequence. Black dashed line indicates 1:1 relationship,
red dashed line indicates linear regression, and color bar indicates Z score of
residuals from linear regression. (I) Zoomed-in crystal structure showing contacts
between the WT E259 and E-box consensus (PDB ID: 1a0a). (J) Affinities for
Pho4 WT and E259D mutants interacting with consensus E-box and five single-
nucleotide substitutions. (K) Reaction coordinate diagram of binding specificity
landscapes for Pho4 WT and E259D.
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Fig. 4. Repetitive flanking sequences increase macroscopic association rates
and reduce mean first passage time. (A) Experimental pipeline for k-MITOMI
(see the materials and methods). (B) Example dissociation curves for MAX
interacting with DNA Library 2 sequences showing per-chamber measurements
(markers), per-chamber single-exponential fits (lines), and the average of returned
fit parameters (annotation) for each sequence. (C) Measured koff,apparent (left)
and calculated kon,apparent (right) values as a function of flanking sequence for Pho4
(yellow) and MAX (blue) interacting with DNA Library 2 sequences (all of which
contain a core motif). (D) Proposed four-state model and associated microscopic
rate constants for TF binding to sequences with a central core motif surrounded by
different flanking sequences. (E) Average measured koff,apparent (circle markers,
left axis) and calculated kon,apparent (diamond markers, right axis) values versus
measured affinities (Kds) for Pho4 (yellow) and MAX (blue) interacting with all
sequences from DNA Library 1. (F) Sample TF trajectories from Gillespie simulations
modeling 2600 TFs interacting with a single DNA sequence containing a consensus

motif flanked by either repetitive (top, red) or random (bottom, gray) flanks. DNA can
be unbound, associated with TFs in a “testing” state, bound by a TF at the motif,
bound by a TF at the flanking sequence, or bound by TFs at the motif and flanking
sequence simultaneously. (G) Log-linear distribution of TF dwell times across 1000
simulations for sequences with a consensus motif flanked by CG repeats, GT repeats,
or random sequence. Inset shows mean dwell times by sequence. (H) Log-linear
distribution of the lengths of time a DNA sequence is bound by at least one TF across
1000 simulations for sequences with a consensus motif flanked by GC repeats,
GT repeats, or random sequence. Inset shows mean time occupied by sequence.
(I) Mean first passage time {black markers, left axis; units relative to fastest possible
search time, 1/[kon,max*(TF)]}, mean motif occupancy (blue markers, right axis),
mean flank occupancy (red markers, right axis), and mean total DNA occupancy
(purple markers, right axis) as a function of the likelihood of binding flanking sequence.
Gray box indicates the range of affinities for random flanks; pink and red boxes
correspond to fflank values for GT and CG repeats, respectively.
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quantifying how changes inmicroscopic rate
constants affect macroscopic observables (Kd

and koff,apparent) reveals combinations that can
differentially affect affinity and kinetics [e.g.,
alteringkon,max does not change overall dissocia-
tion rates but can alter affinity when microsco-
pic dissociation from the motif (koff,m,motif) is
slow; figs. S101 and S102]. Because fitted mi-
croscopic rate parameters are often found at
locations in phase space where concomitant
variation in two parameters differentially tunes
binding (figs. S101 and S102), STRs may max-
imize regulatory tunability (32, 80–83).
Using these microscopic rate parameters in

Gillespie stochastic simulations to predict be-
havior for 2600 TFs [the estimated number of
Pho4 copies in S. cerevisiae (84)] binding DNA
within the yeast nucleus yielded individual TF
trajectories that recapitulated the observed
experimental trends (fig. S103) and showed
that sequences with favorable flanking STRs
were frequently occupied bymultiple TFs (Fig.
4F and figs. S104 and S105). Although theDNA
dwell time for any individual TF was largely
independent of flanking sequence identity
(Fig. 4G and fig. S106A), as expected with the
absence of an observed macroscopic off-rate
effect (Fig. 4, C and E, and fig. S87), DNA se-
quences with preferred flanking STRs were
occupied by at least one TF for substantially
more time (Fig. 4H and fig. S106B). Mean be-
havior across 100 simulations showed that as
the relative affinity for flanking STRs increased,
total DNA occupancy increased, creating a lo-
cally concentrated pool of TFs (Fig. 4I and fig.
S106C). Although variations in the relative
motif/flank affinity ratio did not affect the
mean first passage time (MFPT) to the motif
(the mean time for a TF to move from the free
state to themotif state) or motif occupancy (as
expected), changing this ratio altered the ef-
fective TF concentrations at which flanks were
occupied (figs. S107 and S108). Even for this
simplemodel that does not consider proximity
between the motif and flanks, favorable STRs
thus reduceMFPT to the entire DNA sequence
(motif and flanking sequences) (Fig. 4I and
figs. S109 and S110), consistentwith a hypothe-
sized role for STRs in regulating stress re-
sponses (3) and with previous work showing
that favorable STRs can act as “antennae” to
enhance TF target search (85).

STRs alter gene expression by tuning TF
occupancies in vivo

Although STRs have repeatedly been associ-
ated with changes in gene expression in cells,
and the length of STRs in the genome exceeds
the length required for an in vitro effect (figs.
S4 and S23), our results thus far did not elu-
cidate whether STRs alter TF occupancies
in vivo. Directly quantifying the impacts of
STRs on TF binding in cells is technically chal-
lenging, because the lower-affinity binding ex-

pected for STRs is unlikely to yield distinct
peaks within chromatin immunoprecipitation
data. To sensitively quantify effects of STRs
in vivo, we trained the BPNet (37) neural net-
work (NN) on in vivo chromatin immunopre-
cipitation sequencing (ChIP-seq) data with
5-fold cross-validation to predict TF binding
profiles from DNA sequence with nucleotide
resolution and then appliedAffinityDistillation
(AD) (86) to predict log-transformedmean read
counts [Dlog(counts)], which were previously
shown to correlate with measured thermody-
namic energies (DDGs). If STRs alter gene ex-
pression in vivo by changing TF occupancies,
thenwewould expect BPNet to learn that they
affect TF binding and AD to predict sequence-
dependent read count changes that mirror
DDGs measured in vitro.
After training on high-qualityMAXChIP-seq

data (87, 88) (Fig. 5A), BPNet accurately pre-
dicted log-transformed read counts for held-
out data (R2 = 0.52), with binding profiles that
reproduced those observed experimentally
(Fig. 5A) (86). Returned contribution weight
matrices (CWMs), which identify short sub-
sequences most predictive of TF binding,
revealed E-box–like motifs (CACGTG) that
sometimes included a flanking preference for
CG dinucleotides, consistent with in vitro pref-
erences (Figs. 5A, 1G, and 2, G and H). Some
CWMs also included an AP1-binding motif
(TGACTCA), consistent with AP1 acting as a
pioneer factor to increase chromatin acces-
sibility for MAX (Fig. 5A) (89). AD-predicted
8-mer Z score distributions showed higher
correlation with distributions calculated from
uPBM data relative to either mononucleotide
or dinucleotide models (Rp

2 = 0.42, 0.21, and
0.22, respectively), likely because of an enhanced
ability to accurately predict low-affinity inter-
actions (figs. S111 to S114). AD-predicted log-
transformed read counts for DNA Library 1 se-
quences also strongly correlatedwithmeasured
DDGs (R2 = 0.78) and partition function–
predicted binding energies [Fig. 5B and figs.
S115 to S118; see additional data at (55)]. AD
consistently predicted tighter binding to con-
sensus motifs flanked by preferred STRs (Fig.
5B), and importance scores from DeepSHAP
(90, 91), which identify base pair contributions
to the observed model output, confirmed that
enhanced binding was caused by the flanking
STRs in these synthetic sequences (Fig. 5, C
and D, and figs. S119 to S121). Together, these
analyses suggest that observed in vivo effects of
polymorphic STRs on gene expression can be ex-
plained at least in part by differential TF binding.

STR impacts extend over tens of nucleotides
and mismatches reduce effects

To determine the distance over which STRs
affect binding, we quantified MAX binding af-
finities for DNA containing an E-box motif
surrounded by increasing lengths (15, 30, 45,

or 60 bp) of either disfavored (AG/CT) or fav-
ored (GT/AC) repeats using MITOMI (table
S6). In parallel, we used AD to predict MAX
occupancies and binding profiles for the same
sequences (Fig. 5, E to G, and fig. S122). For
disfavored AG/CT repeats, both MITOMI and
AD revealed that increasing STR lengths mo-
notonically reduced binding, with effects sat-
urating after ~40 bp (Fig. 5G; R2 = 0.80
between predictions and measured DDGs).
Returned DeepSHAP interpretations and cu-
mulative importance scores confirmed a neg-
ative contribution from flanking STRs (Fig. 5,
F and H). Favored GT/AC repeats showed
more complex behavior, with short repeats
(15 to 30 bp) increasing binding and longer
repeats having only minor effects, but predic-
tions were again consistent with experimental
observations (fig. S122; R2 = 0.93).
Nearly 80% of repeated units within the

median human STR match the consensus
repeat exactly, with the remaining 20% con-
taining an indel or mismatched base(s) (see
thematerials andmethods). To investigate how
imperfections within STRs alter binding, we
applied MITOMI and AD to measure and pre-
dictMAXbinding toseven increasingly scrambled
(GT/AC) repeat sequences (Fig. 5I). Even though
the relationship between measured affinities
and repeat imperfection (as quantified by
Shannon entropy) was nonmonotonic, AD accu-
rately predicted energetic measurements (R2 =
0.84), suggesting that the algorithm had learned
that the increased multiplicity of even weakly
preferred STRs enhances binding and that ener-
getic impacts depend not only on nucleotide
composition but also on repeat imperfection
(Fig. 5, J and K).

TF binding to STRs is widespread across
structural families and organisms

To determine whether STR binding is specific
to Pho4 and MAX or more widespread, we
analyzed PBM data for 1291 TFs from 114 spe-
cies, including S. cerevisiae,Arabidopsis thaliana,
D. melanogaster, Caenorhabditis elegans,
M.musculus, andH. sapiens (61, 64, 92) (table
S15). For each experiment for each TF, we
iterated through all 65,536 (48) 8-mers, com-
puted median intensities for all probes con-
taining each 8-mer, and calculated Z scores
relative to this distribution for all 39 non-
redundanthomopolymeric, dinucleotide repeat,
and tetranucleotide 8-mer STRs (Fig. 6A, figs.
S123 and S124; see the materials and meth-
ods). TF preference for STRs was ubiquitous,
with 90% (1158/1291) of all TFs binding at least
one STR with P < 1.3 × 10−3 (the Bonferroni-
corrected threshold for significance; figs. S125
and S126 and table S15), and STR preferences
varied widely across TF families (figs. S127 to
S143). Some families (e.g., nuclear hormone
receptors, T-box, and bZIP) show little prefer-
ence for any STRs, whereas others (e.g., AT
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Fig. 5. NN models trained on in vivo datasets recapitulate repeat effects
observed in vitro and return predictions similar to statistical mechanics
models. (A) Experimental pipeline: AD NN models trained on MAX ChIP-seq data
predict base pair–resolution binding profiles and return hypothetical CWMs
representing binding preferences. Positive and negative numbers represent
nucleotides that favor and disfavor binding, respectively. (B) AD-predicted
binding [Dlog(counts)] versus MITOMI-measured DDGs for 26 DNA sequences
containing an intact motif, a mutated motif, or scrambled sequence surrounded
by either repetitive (red markers) or random (gray markers) flanking sequence.
(C) DeepSHAP interpretations for a motif surrounded by a favored repeat (CG,
top), a disfavored repeat (GT, middle), or random sequence (bottom). The sum
of importance scores across a sequence are equal to the count prediction output
of the NN. (D) Cumulative importance scores as a function of position for a
favored repeat (CG, dark red), a disfavored repeat (GT, light red), or random
sequence (gray). Gray box indicates motif location. (E) Schematic of sequences

with E-box and 15, 30, 45, or 60 bp of disfavored AG/CT repeats. (F) DeepSHAP
interpretations for 15- and 60-bp sequences from (E). (G) AD-predicted change
in log(counts) (blue line, left axis) and –1*MITOMI-measured DDGs (blue
markers, right axis) as a function of repeat length (relative to a sequence with a
motif and random flanks). Markers and error bars show median and SD across
replicates, respectively. (H) Cumulative importance scores as a function of
position for sequences with E-box and 15, 30, 45, or 60 bp of AG/CT repeats. Gray
box indicates motif position. (I) Schematic of sequences with E-box and
increasingly scrambled GT/AC repeats. (J) AD-predicted change in log(counts)
(blue line, left axis) and –1*MITOMI-measured DDGs (blue markers, right
axis) for sequences shown in (I) calculated relative to reference sequence.
Color indicates Shannon entropy. Markers and error bars show median and
SD across replicates, respectively. (K) Cumulative importance scores as a
function of position for reference sequence and sequences 6 and 7. Gray box
indicates motif position.
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hook, E2F, and ARID/BRIGHT families) pre-
fer STRs simply because they resemble the
known consensus (Fig. 6, B and C). Members
ofmultiple families (e.g., AP2, Forkhead, GATA,

homeodomain, Myb/SANT, zinc fingers, and
bHLH) weakly preferred particular STRs (Fig.
6, B and C) that often have little sequence
similarity to the knownmotif (as quantified by

Levenshtein distance; Figs. 6D and fig. S144).
Across all TFs, AATT and CCGG repeats were
themost preferred, largely because these STRs
resemble known motifs for TFs in two most
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Fig. 6. Most TFs show statistically significant binding to repetitive sequences.
(A) Heatmap showing calculated 8-mer intensity Z scores for 1291 TFs (columns)
interacting with 39 nonredundant STR types (rows; i.e., reverse complements are
considered a single sequence). (B) Maximum repeat Z score versus maximum
overall Z score for TFs from four different structural families: AP2, E2F,
homeodomain, and bZIP. (C) Distributions of ratios of maximum repeat Z scores
relative to maximum overall Z scores across TF families. (D) Left: Repeat Z score as
a function of Levenshtein distance from preferred consensus sequence for Arid1a,
Hmga2, Cbf1, and Pho4. Insets show PWM representations of preferred consensus
sequences downloaded from CIS-BP (64). Right: Distributions of Spearman

correlation coefficients between repeat Z score and Levenshtein distance from
consensus across 17 different TF structural families. (E) Bar plot showing
the number of TFs that prefer a particular tetranucleotide repeat shaded by TF
family. (F) Scatter plots, linear regressions, and correlation coefficients for measured
DDGs versus summed Z scores (intensity-predicted binding) across all measured
repeats for Pho4 (left) and MAX (right). (G) PSAM (left) and heat map showing
8-mer Z scores for three NHR paralogs from M. musculus (Erra, Errb, and Errg).
(H) Pairwise comparisons of predicted binding (calculated by summing Z scores)
for consensus motifs surrounded by 50 bp on either side of the tetranucleotide
repeats to Erra, Errb, and Errg.
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abundant structural families [homeodomain
and zinc finger TFs, respectively (93)] (Fig. 6E).
C homopolymers were the most disfavored
(fig. S145).

Differential STR preferences could allow closely
related paralogs to target distinct genes

Many closely related paralogs with conserved
DBDs and nearly identical consensus motif
preferences bind and regulate distinct gene
targets in vivo (94–96). This differential bind-
ing has been attributed to either subtle dif-
ferences in motif (65) or flanking nucleotide
(57, 67, 97–99) preferences or direct binding by
poorly conserved regions outside of the DBD
(72). As an alternate hypothesis, differential STR
preferences could influence paralog-specific
localization. Global comparisons of preferred
STRs and preferred motifs across paralogs
within a species (quantified through cosine
similarity; see the materials and methods)
revealed many TF pairs with highly similar
motifs but divergent STR preferences (figs.
S146 to S151), particularly for bHLH and nu-
clear hormone receptor (NHR) TF paralogs in
A. thaliana andM.musculus (figs. S152 to S154).
Uncalibrated summed 8-mer Z scores for

Pho4 and MAX binding to DNA Library 2 se-
quences correlated well with measured DDGs
(R2 = 0.66 and 0.71 for Pho4 and MAX, only
slightly worse than for calibrated partition
function–based predictions) (Fig. 6F), suggest-
ing that existing PBM measurements can be
used to estimate binding to arbitrary sequences
evenwithout quantitative affinitymeasurements.
Predicted binding of the Erra, Errb, and Errg
NHR TFs fromM.musculus (which have nearly
identicalmotifs but distinct STRpreferences) to
sequences containing the consensus surrounded
by 50 bp (on either side) of random sequence or
STRswere poorly correlated (R2 =0.01, 0.34, and
0.07, respectively; Fig. 6, G and H), consistent
with the hypothesis that sensitivity to STRs
could differentially localize paralogs.

STRs are associated with active enhancers and
high mutation rates

STRs can enhance or decrease TF binding en-
ergies; however, the lower bound of affinity
imposed by nonspecific, electrostatic-mediated
interactions skews STR effects to predomi-
nantly enhance binding (fig. S124). Consistent
with a primarily activating role, STRs aremost
enriched within the most active enhancers
[RS

2 = 0.67, as measured by CAGE-seq, p300
ChIP, GRO-seq, or similar enhancer activity
assays (100); control datasets shuffling en-
hancer sequences and measured activity show
no significant correlation (RS

2 = 0.16)] (Fig.
7A). STRs are also preferentially enriched in
enhancers that are broadly active across 278
human cell types (RS

2 = 0.85); shuffled nega-
tive control datasets showno enrichment (RS

2 =
0.02) (Fig. 7B). Across various eukaryotic ge-

nomes, mutations in STRs occur several orders
of magnitude more frequently than short in-
sertions and deletions (indels, 1 to 3 bp) and
base substitutions (Fig. 7C), suggesting that
STRs can provide an easily evolvable mech-
anism to tune transcription (3, 12, 101).

Discussion

The role of STRs in transcriptional regulation
hasbeen thoroughly documented, yet themech-
anism by which they alter gene expression is
poorly understood. Here, we present a model
in which STRs directly bind TFs, thus estab-
lishing STRs as a class of regulatory elements.
Our model is consistent with prior work sug-
gesting that STRs tune gene expression bymod-
ulating nucleosome occupancy (3), because TF
binding, especially that of pioneer factors, is
the primary determinant of chromatin acces-
sibility (102–105). However, this model allows
formore sophisticated regulation: Rather than
uniformly altering chromatin accessibility, STRs
can differentially affect binding for even closely
related TFs, serving as rheostats to precisely tune
TF binding at a specific locus (81, 83, 106–108).
Moreover, with relatively few types of STRs
relative to the number of different TFs, STRs
in the absence of known motifs can recruit a
diverse set of TFs, thereby functioning as gen-
eral regulatory elements, consistent with ob-
servations that STR-enriched enhancers are
broadly active across cell types (27) (Fig. 7).
Finally, STRs need not surround a TF con-
sensusmotif to have a regulatory effect; rather,
they may sequester TFs for precise temporal
control of transcription, as is hypothesized for
pericentromeric satellites regulating the tim-
ing of chromosomal replication (109).
In contrast to the canonical model that long

residence times confer specificity and function
whereas TF search is nonspecific and diffusion
limited (110), we found that favorable STRs
surrounding target motifs alter affinities pri-
marily by increasing apparent macroscopic TF
association rates. These results contradict prior
measurements suggesting that DNA sequence
variation primarily affects dissociation rates;
however, prior experiments did not include un-
labeled competitor DNA and therefore likely
observed a convolved process of dissociation
and rebinding (110, 111). Thus, we join other
recent work in challenging the canonical view
that protein–nucleic acid binding affinities are
primarily determined by dissociation rates (79).
Our measurements can be explained by a sim-
ple four-state model showing that STRs en-
hance affinities by increasing the rate of DNA
association. This is consistent with prior work
suggesting that degenerate recognition sites
may serve as “DNA antennae” to attract TFs to a
particular regulatory site (85, 112–115). This four-
state model likely underestimates the true im-
pacts of STRs on target search because it does
not explicitly consider whether TFs can move

from flanking STRs to a central motif through
one-dimensional sliding, hopping, and interseg-
mental transfer (116–119), rather than dissociat-
ing, diffusing, and rebinding. Future experiments
will be required to deconvolve the kinetic con-
tributions of nonspecific, electrostatic-mediated
binding from other “testing” states for different
TF structural classes, to quantify the effects of
facilitated dissociation on the observed mac-
roscopic and inferred microscopic parameters
(111, 120, 121), and to developmore complexmod-
els that consider the contribution of eachmicro-
state to macroscopic kinetic parameters.
Because eukaryotic TFs recruit transcrip-

tional coactivators through “fuzzy,”multivalent
(122–124), and allovalent (71) interactions, the
finding that STRs enhance the local concen-
tration and reducemean first passage time near
genomic target sites raises the intriguing pos-
sibility that dense clusters of loosely bound TFs
could enhance the recruitment of coactivator
proteins to ensure fast transcriptional response
kinetics. This hypothesis is supported by the ob-
servation that STRs in budding yeast are en-
riched near binding sites of stress response TFs
(3), for which a rapid transcriptional response
may be especially advantageous. The smaller
size and operon structure within bacterial and
archaeal genomes suggests a reduced need to
speed TF search. Consistent with this, bacterial
TFs tend to bind long target motifs with high
affinities (108, 125, 126), and STRs comprise a
smaller percentage of bacterial and archaeal
genomes (table S16 and figs. S155 and S156).
This case study of STRs further under-

scores the limitations of motif-based models
in predicting TF occupancy from sequence
(37, 86, 127–130), because STRs composed of
overlapping instances of even low-affinity sites
bearing little resemblance to the known motif
can substantially alter binding. Binding of the
same TF to dissimilar motifs has previously
been reported and attributed to alternate bind-
ing modes driven by either entropic or en-
thalpic effects (131–133). Although previous
reports have identified repeated instances of
motif andmotif-like sequences that bind TFs
and thereby alter gene expression (20, 134, 135),
these observations are well explained by sim-
ple position weight matrix models (136–138)
that do not predict the enhanced binding to
STRs observed here. Here, we show that sta-
tistical mechanical models that explicitly ac-
count for low-affinity binding substantially
improve quantitative binding predictions for
arbitraryDNAsequences relative tomotif-based
approaches. While this effect is particularly
apparent for STRs, we also expect nonrepeti-
tive sequence contexts containing many low-
affinity binding sites to show similar effects. In
future work, small sets of absolute affinitymea-
surements acrossmany TFs could be combined
with statistical mechanical and machine learn-
ing models to enable quantitative predictions
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of how changes in nuclear TF concentration
alter cooperation and competition betweenTFs
to drive specific transcriptional programs.
Because our statistical mechanics framework

is agnostic to the identity of binding partners
and considers only a distribution of binding
energies, we anticipate that the same physical
considerations by which DNA-binding proteins
recognize STRsmay also apply to RNA-binding
proteins. Evidence in the literature already
points to a role for intronic STRs in regulating
splicing (139–150) or promoting the formation
of RNP compartments (151–153). These obser-
vations raise the intriguing possibility that STR-
enriched enhancers could serve a dual function
of binding TFs to regulate transcription and
subsequently recruiting RNA-binding proteins
once transcribed into enhancer RNAs.
STRs are highly evolvable (101, 154), requir-

ing onlymispairing during replication, repair, or
recombination to expand or contract (155–157),
andmay therefore serve as the rawmaterial for
evolving new cis-regulatory elements (101, 158)
and fine-tuning existing regulatorymodules for
sensitive transcriptional programs, such as those
in development (159). This workmaymotivate
future efforts to assess the evolution of reg-
ulatory networks across species by considering
not only conservation of nucleotides within
motifs, but also the types and lengths of STRs
surrounding them. The evolution of regulatory
STRs is likely complemented by the coevolu-
tion of TF binding preferences, consistent with
a model in which DBDs exist as a conforma-
tional ensemble of partially folded states in
which single-residue substitutions alter the dis-
tribution of states within the ensemble and
therefore tune the specificity or promiscuity
of binding (50, 160–163). The observation that
STR polymorphisms disrupt gene expression
by directly altering TF binding may provide
new clinical insights and therapeutic directions
for a variety of STR-associated diseases, from
autism (29, 30) to microsatellite instability–
associated cancers (164, 165) and others yet to
be discovered.

Methods summary
Microfluidic device fabrication and operation
Microfluidic deviceswere fabricated and aligned
to printed oligonucleotide or plasmid DNA ar-
rays as described previously (48, 50). Micro-
fluidic devices were controlled by a custom
pneumatic manifold (166) and imaged with a
fully automated microscope and custom soft-
ware (50, 160).

MITOMI and k-MITOMI experiments

Single-stranded DNA oligonucleotide libraries
were synthesized by Integrated DNA Technol-
ogies (IDT) and fluorescently labeled and
duplexed with a primer extension step. eGFP-
tagged TFswere expressed off-chipwithwheat
germ extract or PURExpress (New England
Biolabs) and purified with anti-eGFP anti-
bodies on the device. Printed fluorescent DNA
was solubilized in TBS or wheat germ extract
and allowed to bind to immobilized TFs for
90min beforewashing out unbound species and
imaging. Binding was quantified as the ratio of
DNA fluorescence to TF fluorescence, and the
resulting data for multiple concentrations of
DNAwere fit to a Langmuir isotherm to extract
Kd and DDG values. For kinetic measurements,
excess unlabeled (“dark”) dsDNA was itera-
tively introduced in solution, and button
valves were opened to allow dissociation. Mac-
roscopic dissociation rates (koff,apparent) were
fit to the ratio of DNA fluorescence to TF fluo-
rescence over several time points to an expo-
nential decay. Apparentmacroscopic association
rates (kon,apparent) were inferred by kon,apparent =
koff,apparent/Kd, assuming a two-state macro-
scopic binding model.

Partition function models of binding

Partition function–based models of binding
are based on 8-mer intensities derived from
previously published uPBM data. uPBM data
and associated Z scores for all possible 8-mers
were downloaded fromCIS-BP (64) and filtered
for data quality. We predicted relative bind-
ing energies for an arbitrary sequence to a

given TF by splitting the sequence into over-
lapping 8-mers and computing the following:

DDG ¼ cblog
X

j
eblogIj � DGref , where b = 1/

(kBT), Ij is the PBM intensity for an 8-mer j,
and c is some calibration constant determined
by a linear fit between PBMandMITOMI data.

STAMMP experiments

Single-stranded DNA oligonucleotides were
synthesized by IDT and fluorescently labeled
and duplexed with a primer extension step.
eGFP-tagged TFs were expressed and purified
on-chip with PURExpress, and increasing con-
centrations of fluorescently labeled dsDNA
were flowed over the chip and allowed to
bind for 50 min before washing and imaging.
Binding was quantified as a ratio of DNA fluo-
rescence to TF fluorescence, and the result-
ing data for multiple concentrations of DNA
were fit to a Langmuir isotherm to extract
Kd and DDG values.

CTMC and Gillespie models

Microscopic kinetic parameters were fit to a
four-state CTMC kinetic model in which a TF
can be free, nonspecifically bound and testing,
bound to the motif, or bound to the flanks
frommean koff,apparent andKd measurements
with a custom MATLAB script. Gillespie sim-
ulations were performed using custom Python
scripts with microscopic parameters fit from
the Pho4 CTMC model and 10,000 iterations
per parameter set with 2600 TFs and 100,000 s
per simulation.

Affinity distillation

ChIP-seq data for MAX were downloaded
from the ENCODE portal (87, 88) with acces-
sion numbers ENCSR000EZM (control) and
ENCSR000EZF (experiment). NN architecture
was adapted from BPNet (37) and trained on
IDR peaks, with regions from chromosomes 8
and 9 used as the test set and regions from
chromosomes 16, 17, and 18 used as the tuning
set for hyperparameter tuning. All NNmodels
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Fig. 7. STRs are associated with active enhancers and have high mutation rates. (A) Enrichment of STRs in enhancers versus shuffled negative controls as a
function of mean enhancer activity. Error bars are 95% confidence intervals. (B) Enrichment of STRs in enhancers versus shuffled negative controls as a function of
the number of cell types within which an enhancer is active. Error bars are 95% confidence intervals. (C) Calculated rate of mutation (per cell division) for base
substitutions, small indels, and STRs in five different model organisms.
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were implemented and trained inKeras (v.2.2.4;
TensorFlow backend v.1.14) (167, 168) using
the Adam optimizer (169). AD scores [Dlog
(counts)] were calculated by inserting a given
sequence at the center of 100 different back-
ground sequences and computing themean of
the differences between the log(count) pre-
dictions for query sequence and background
sequence alone, as described in (86).

Bioinformatic analyses

STRs in the human genome were identified
using Tandem Repeats Finder (170). Genome
annotations used to calculate enrichment of
STRs in enhancers were downloaded from the
Enhancer Atlas (100), FANTOM 5 (171), and
HACER (172) databases. Mutation rates per
cell division were cited or calculated as pre-
viously described (154, 173–175).
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Short tandem repeats bind transcription factors to tune eukaryotic gene
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Editor’s summary
Short tandem repeats (STRs) are common within regulatory elements in eukaryotic genomes. Although changes
in STR lengths often correlate with altered transcription, the mechanism by which they tune gene expression has
remained mysterious. Horton et al. show that many transcription factor (TF) proteins directly bind STRs and that
TF-preferred STRs need not resemble known binding sites (see the Perspective by Kuhlman). This binding can be
explained and predicted by simple additive models in which repeated instances of low-affinity binding sites sum to
have large effects. These findings suggest that STRs provide a regulatory mechanism to tune levels of TF binding and
downstream gene expression. —Di Jiang
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