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The theoretical understanding of scaling laws of entropies and mutual
information has led to substantial advances in the study of correlated states
of matter, quantum field theory and gravity. Experimentally measuring
von Neumann entropy in quantum many-body systems is challenging,
asitrequires complete knowledge of the density matrix, which normally
requires the implementation of full state reconstruction techniques. Here
we measure the von Neumann entropy of spatially extended subsystems
inan ultracold atom simulator of one-dimensional quantum field theories.
We experimentally verify one of the fundamental properties of equilibrium
states of gapped quantum many-body systems—the arealaw of quantum
mutual information. We also study the dependence of mutual information
ontemperature and on the separation between the subsystems. Our work
represents a step towards employing ultracold atom simulators to probe
entanglementin quantum field theories.

The study of quantum information measuresis central toawide range
ofareasin physics, from condensed matter and atomic physics to high
energy physics and gravity' 2. Some of the most commonly studied
quantitiesin quantuminformation are the (entanglement) entropy and
the quantum mutual information. If a system described by a density
matrix ¢ is composed of subsystems A and B, then the von Neumann
(VN) entropy of subsystem A is defined as

Sa=-Tr(g In(g,)). @

where ¢, = Trp(¢) is the reduced density matrix of subsystemA. If the
state ¢ is pure (Tr(¢?) = 1), then the vN entropy is a measure of
entanglement between A and B, thus called entanglement entropy,
where S, = S;. For mixed states (Tr (¢?) < 1), the vN entropy captures
both classical and quantum correlations, and it is no longer a good

measure of entanglement. For mixed states, several other measures
and witnesses of entanglement have been studied, with the positivity
of the partial transpose criterion and quantum discord being prominent
examples. In cases where, rather than entanglement, the shared
amount ofinformation between two subsystems A and Bis of interest,
the quantum mutual information (MI)

I(A . B) = SA +SB _SAUB (2)

isacentral object of study. It measures the total amount of correlation
between the two subsystems, including all higher-order correlations
for both pure and mixed states. For pure states, the value of the Ml is
equal to twice the entanglement entropy of one of the subsystems.
Information theory measures reveal one of the fundamental
properties of quantum many-body systems, the area laws>". It was
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Fig.1|Schematic of the experimental protocol. a, The experimental protocol
starts by cooling down a pair of tunnelling-coupled superfluids in a double-well
potential with afinite single-particle tunnelling rate/, typically ~2mt x 1Hz. The
radial trapping frequency is w, =21 x 1.4 kHz and the typical linear densities

are n;, ~ 70 pm™. b, Immediately after the cooling process, the tunnelling rate is
changed to zeroin2 ms. At ¢t = 0, the two condensates are already uncoupled and

Full state reconstruction
via tomography

theirindependent evolution following the TLL Hamiltonian starts. The measured
phase correlations at different times are used to fit the full covariance matrix I".

¢, To calculate the vN entropy for a subsystem, S(7’,), we use the correlations in
that specific region (yellow shaded area). Note that Q, R and P have different
units and the ranges of the colour axis are different. All tomography results are
presented and discussed in Supplementary Information.

first noticed in gravitational physics that, surprisingly, the entropy of
ablack holeis proportional to the surface area of its event horizon and
notitsvolume. Interestingly, asimilar property was found in quantum
many-body systems: the vN entropy of ground states of systems with
a gapped Hamiltonian scales with the surface area of the subsystem
and not its volume'. Even more generally, thermal states of systems
with a gapped Hamiltonian exhibit an area law of MI”. This means
that the information shared between parts of a quantum many-body
system is only considerable over a short distance, set by the correla-
tion length. In particular, such a bound on the required information
to model a many-body system provides the foundations for the over-
whelming success of tensor network-based methods? In contrast, it
is known that critical systems described by conformal field theory
exhibitalogarithmicscalinginstead of the area law’. In thermal states,
althoughthe mutualinformationhasanareaoraloglaw, the vN entropy
will exhibit a volume law, where it is proportional to the volume of
the subsystem.

Extracting quantuminformation measures in quantum many-body
systems has been the aim of several experiments'®~°. Calculating the
vN entropy requires access to the density matrix of the full system, o,
whichusually requires afull state tomography in different experimental
platforms. Instead of ¢, several techniques have been developed to
measure the purity, Tr(¢?), which enables the calculation of
second-order Rényientropy, S, = — In(Tr (¢2)). These methods can be
based ontheinterference of two identical copies of aquantum system"
or randomized measurements on a single copy?’. Note that, in these
examples, the purity is directly measured but the full state is not recon-
structed, so the calculation of vN entropy is not feasible.

Nevertheless, several optical lattice set-ups are able to measure
the vN entropy, which is obtained either from a single-site reduced
density matrix or as a classical thermodynamic entropy of the whole
system'®"’, In special cases, when the system is diagonal enough, even
many-body vN entropy can be accessed”. However, the measurement of
vN entropy between extended spatial subsystems has so far remained
elusive, as has verification of the predicted area-law scaling of the MI.

In this article we address these challenges and study the scal-
ing of the vN entropy and the Ml with subsystem size in a continu-
ous quantum many-body system. Our set-up is composed of a pair of
tunnelling-coupled quasi-one-dimensional (1D) ultracold Bose gases
(Fig. 1a), cooled down and trapped below an atom chip?. Along the
longitudinal axis z, the clouds are confined in box-like potentials with
hard walls, created by superposing magnetic and optical dipole poten-
tials®. In one of the transverse directions, the atoms are trappedin a
double-well potential, created by dressing with radiofrequency fields.

The single-particle tunnelling rate / between the two condensates is
adjusted by changing the amplitude of the radiofrequency fields*.

To prepare a state in thermal equilibrium, we directly cool down
an atomic cloud of ¥Rb in a strongly coupled double well, using the
standard techniques of laser cooling and evaporative cooling®. The
quantum fields describing each condensate can be written in phase-
density representation as ,,(2) = exp(i6,)\/p, , withn =1, 2. The spa-
tially resolved relative phase between the two condensates,
@(2) = 6,(2) - 0,(2), isextracted frominterference images, taken15.6 ms
after releasing the atoms from the trap and letting them fall freely. In
the limit of low energy excitations, the correlations of the relative phase
are well described by the sine-Gordon Hamiltonian®. Expanding the
interactiontermin the case of high tunnelling rates leads to the massive
Klein-Gordon (KG) Hamiltonian:

L 2
o = [ dz|ewsr@+ SR 0.00) + imor@)| G
0

where L isthelength of a system with uniform averaged 1D density n,p,
gpisthe 1D interaction strength, mis the mass of an atom, and the
relative density, 6p(2) = [p1(2) — p»(2)] /2, is the conjugate field of the
relative phase, fulfilling [¢(2), 6p(z')] = i6(z — 2’) . Adirect measure-
ment of 5p(z) is unfeasible in our current experimental set-up. Hence,
to reconstruct the full covariance matrix of the initial state

QR
R" P

I = 4)

we use a tomography procedure”. Here, Q= (@(z)9(z)),
P; = (8p(z)8p(z))and R = <§ {o), 6p(zj)}>, withi,je{l, ..., N},where
z;denotes different points on adiscrete grid with N points. The upper
limit for Nis given by the resolution of theimaging system, which lim-
itsour access to higher momentum modes (larger than N) and enforces
anultraviolet (UV) cutoff.

To apply this tomographic method, we ramp up the barrier
between the two strongly coupled condensates in 2 ms, and let them
evolve independently in the uncoupled double well (/= 0). We then
directly measure the phase-phase correlations for different evolu-
tion times after the quench. The post-quench dynamics follow the
Tomonaga-Luttinger liquid (TLL) Hamiltonian. Over time, the initial
eigenmodes of the relative density rotate into the phase quadrature
and vice versa, enabling us to access the information about these
eigenmodes by fitting the initial second-order correlation functions
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Fig.2|Arealaw of Ml and volume law of vN entropy. a, A system of size

L =49 umisdivided into a subsystem A of length /and its complement subsystem
oflength (L - {). b, The experimental results for /(4:A), S,and S ¢, calculated
based on N=7 modes, are plotted as circles, with error bars representing the 95%
confidenceintervals obtained viabootstrapping>* with 999 samples. The shaded
areas show the 95% confidence interval for the theory predictions, considering
the uncertainty in the estimated temperature and tunnelling rate/. ¢, Close-up of
the measured MIfromb.

of phase-density and density-density to the measured evolution of
the phase-phase correlations in the momentum space. A thorough
explanation of the reconstruction process is given in Methods, and
the results are shown in Supplementary Information.

In the experiment, we prepare initial states that are thermal
equilibrium states of the KG Hamiltonian. The quadratic form of this
Hamiltonian, asshowninequation (3), implies that the prepared initial
states are Gaussian. After a fast quench of / to zero, the initial state
evolves under another quadratic Hamiltonian, ensuring that the state
remains Gaussian under evolution®. To confirm Gaussianity, we meas-
urethe normalized, averaged connected fourth-order correlation func-
tion, M*, and show that the higher-order correlations are negligible.
Note that the tomography process does not include any restrictions
regarding the Gaussianity of the reconstructed state.

Having Gaussian states greatly simplifies the calculation of the
quantum information measures—an otherwise highly non-trivial task
in quantum field theory”. Gaussian states are fully described by their

covariance matrix /". Its symplectic spectrumis obtained by diagonal-
01/

-10
spectrum consists of pairs +y,, n €11, ..., N}. It encodes the complete
information thatis contained in the covariance matrix'*. Consequently,
itcanbe used toreconstruct the full density matrix of the state and the
measures of quantum information. In particular, the vN entropy is
givenby

izing igI", where g = [ ] is the symplectic unit. The symplectic

N

S =73, [(yn + %)ln (Vn + %) - (Vn - %)ln (y,, - %)] )

n=1

For non-Gaussian states, neglecting higher-order correlations and
estimating the vN entropy based on the covariance matrix gives alower
bound to the actual entropy*°.
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Fig.3|Shared information content between two spatially separated
subsystems. We calculate the Ml of two disjoint subsystems with the same
length, [/L = 0.15, as a function of the distance between them, d. As demonstrated
inthe inset, while the subsystem A is kept fixed on the left edge of the system, Bis
shifted away to the other edge. Circles and shading represent experimental and
theoretical data for /(A:B), respectively (see Fig. 2 for more details on the error
bars and shaded area). The solid black line is an exponential fit with [, = 5.1 pm.
The finite bias b results from estimating a positive quantity, MI, using finite
statistics.

Having the reconstructed initial covariance matrix at hand, we
use equation (5) to calculate the vN entropy of any subsystemA, S,(l",)
(Fig. 1c). Using equation (2), the MI between two subsystems A and B
is calculated. To observe the scaling of the vN entropy and the MI, we
calculate the vN entropy of subsystems with different lengths and
consecutively the MIwith the complement subsystems, asillustratedin
Fig. 2a. As expected for thermal states, the vN entropy is in the
volume-law regime, depending linearly on the size of the subsys-
tem (Fig. 2b and Extended Data Fig. 1a). Measuring the vN entropy
allows us to study the scaling of the mutual information. We find
an area law for MI, with a plateau forming in the bulk of the system
(Fig. 2c and Extended Data Fig. 1b). Our results represent an experi-
mental verification of one of the elementary features of quantum
many-body systems®.

We continue by studying the dependence of Ml on the distance
between two subsystems. In this case, we calculate the Ml of two subsys-
temsAand B, separated by agap of length d. The results are presented in
Fig.3.Asexpected, the Ml decreases as the two subsystems get further
apart. We can extract adecay length by fitting an exponential function
to the experimental data. The fitted decay length, ;. =5.1(3.7, 8) pm
agrees with the correlationlength /. = 6.8 (6, 7.7) pm calculated based
onthe experimental parameters (Methods). The intervalsin parenthe-
sesrepresent the 95% confidence intervals obtained viabootstrapping.

For the typical temperatures of our experiment, the vN entropy
dependslinearly onthe temperature. The linear dependence changes
toalogarithmic dependence by introducing afinite UV cutoff, as shown
inthe inset of Fig. 4 (dashed lines). As the temperature increases, the
symplectic eigenvalues grow, and the calculated entropy using afinite
number of modes saturates. The MI, however, regardless of the UV
cutoff, reaches a finite asymptotic value given by the classical cor-
relations®. Reducing the number of modes reduces the asymptotic
value due to the limited available information in the modes taken
into account, as presented in the inset of Fig. 4 (solid lines). In Fig. 4,
the measured vN entropy and Ml for three different temperatures are
presented, along with theoretical predictions. The measurements
agree with the theory calculated for the extracted parameters and
N=7lowest modes.

It is important to stress that the only assumption we make to
calculate the vN entropy and the Ml s that the post-quench dynamics
follow a TLL Hamiltonian, which has been confirmed in a previous
work?. Our measurements do not rely on any assumption related to
the Gaussianity of the initial state. We rather confirm that the initial
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Fig.4 | Temperature dependence of Ml and vN entropy. The circles

represent experimental data for S, (left axis) and /(4:A°) (right axis) with N =7
for measurements with three different temperatures, but otherwise similar
parameters. The size of the subsystem A is [/L = 0.4 (Fig. 2a). The error bars show
the 95% confidence intervals achieved via bootstrapping with 999 samples.

The shaded areas represent the calculations based on the theoretical model for
different tunnelling rates, between/ = 21t x 0.1 Hz (dashed lines) and 2mt x 1Hz
(solid lines). Inset: theoretical predictions for S, (left axis) and /(4:A°) (right axis)
for three different values of N, for/ = 21t x 0.4 Hz, without considering the effect
of finite optical resolution (Methods).

stateis Gaussian by measuring the higher-order correlations. Even for
non-Gaussianinitial states, our results would represent alower bound
to the entropy of the full state.

The results presented here are a step towards the more ambi-
tious goal of measuring many-body entanglementin a continuous 1D
quantum system. Reconstruction of the full covariance matrix enables
us to calculate any entanglement measure applicable to both pure
and mixed states, such as logarithmic negativity. However, there are
two main limiting factors preventing us from detecting the entangle-
ment. The entanglement can only be detected if a sufficient number
of momentum modes are measured whose mode occupation numbers
areclose tothe ground state. In our current experiments, the non-zero
temperature (10-100 nK) of the Bose gas keeps the occupation num-
bers of the lower momentum modes too high above the value of the
ground state. At the same time, the finite optical resolution introduces
asoftcutoffthatnot only prevents us from measuring higher momen-
tum modes but also modifies the lower modes that can be measured.
Improving any of these two aspects would make the measurement of
the entanglement possible.

Another promising direction for future work is to go beyond quad-
ratic models and detect entanglement in an interacting model. It has
already been demonstrated that atom chip experiments can success-
fully simulate the sine-Gordon model, and higher-order correlation
functions can be measured®. Developing a tomography procedure
for this setting would give us access to entanglement properties in
interacting many-body quantum systems®*,

Online content
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Methods

Experimental realization and measurements

We realized a pair of strongly tunnelling-coupled 1D superfluids by
cooling down ¥Rb atoms in a double-well potential in an atom chip
set-up. The initial state was prepared by cooling the atoms directly
into a double-well potential. The initial state in this case is a thermal
equilibrium state with typical temperatures of 30-120 nK and linear
atomic densities of 70 um™in a box-like potential with length ~50 pm.

Toachieve lower effective temperatures, we first cooled down the
atoms in a dressed single-well potential, where the first excited state
was in the vacuum state. Slowly splitting the cloud into two parts maps
the ground state and the first excited state to two states with asmaller
energy gap and symmetric and antisymmetric wavefunctions. The
resulting prethermalized state has a lower effective temperature in
the antisymmetric modes (relative degrees of freedom)™. This method
has been deployed in the measurement with effective temperature
T.-=14 nK presented in Fig. 4 and Extended Data Fig. 1.

To probe the system, we turned off all the traps and let the atoms
fall freely for 15.6 ms. We measured the projected 2D atomic density
distributions via absorption imaging, from which we extracted the
relative phase between the two condensates for different points along
the 1D direction, z. Due to the destructive nature of the imaging pro-
cess, we repeated the measurement hundreds of times to accumulate
statistics. Thus, all the expectation values calculated are obtained
through ensemble averaging.

Quantum field simulation using coupled quasi-1D superfluids
As has been discussed in several earlier works (for example,
refs. 26,28,36), low-energy excitations of coupled parallel 1D gases of
weakly interacting atoms can be utilized as a quantum-field simulator
ofthe sine-Gordon Hamiltonian:

L
n’n
Hy = f dz [gmspz + 4—”10(0149)2 —21Jnyp cos(e) |- (6)
0

This model describes the relative phase, ¢, and the relative density
fluctuations of two superfluids (Fig. 1a). These two fields are the canoni-
cal conjugate of one another, thatis, [¢(2), §p(z')] = —i6(z — 2’). Inequa-
tion (6), mis the atomic mass, n,;, is the uniform atomic density of the
condensates, g, is the inter-atomic interaction, and J is the
single-particle tunnelling rate.

For sufficiently cold gases in the strong coupling regime, that is,
when the phase coherence length

_ 2h2nm

Av mkgT

)

is larger than the healing length of the relative phase (correlation
length)

8

the cosine termin equation (6) can be expanded to second order and
be approximated by the quadratic KG model. Introducing the sound
velocity ¢, Luttinger parameter K and the KG quasi-particle mass, M,
givenin terms of the microscopic parameters by

_ [ &mp
c=+/ = 9)

_ hm np

= 10

2\ mgp (10)

M=2m, |- )
SipMip

the KG Hamiltonian can be written as
ne [t T K 21 M2t [t K
_ 2 me 20?
Hxe = = /O dz [Kﬁp @+ 5 (0:02)) ]+ T ](; dz '@, (12

Notethatthefirst two termsinequation (12) are the TLL Hamiltonian. In
Supplementary Table1, the relevant parameters for each measurement
arelisted, where w,, = Mc*/his the KG massin units of angular frequency.

Reconstruction of the initial full covariance matrix

Toextract the full covariance matrix that characterizes the state of the
system, we use the quantum tomography method developedinref.27.
Giventhat only one of the two canonical variables (the phase) is acces-
sible through experimental measurements, its canonically conjugate
variable (the density fluctuations) can be accessed indirectly by letting
the system evolve under a harmonic Hamiltonian with known mode
frequencies and measuring the phase at different times. For each of
the harmonic modes, the dynamics correspond to arotation in phase
space, so that, over time, the initial density variance turns into phase
variance and vice versa. We can thus fully reconstruct the initial covari-
ance matrix from phase measurements at a sufficiently large number
of different times. Thisreconstructionis done by first going to Fourier
space, where the modes evolve independently, and then fitting the
data for the time evolution of the phase covariance of each mode to
the known functions expressing this data in terms of the initial phase
and density correlations.

However, one mode needs special treatment: the zero mode,
that is, the mode corresponding to zero momentum, therefore zero
energy. This mode does not rotate in phase space; instead, it moves
ataconstant velocity. This means that the zero-mode phase variance
does not oscillate in time but grows as a quadratic function of time
instead, an effect known as phase diffusion”’. Moreover, because of the
compactified nature of the phase field, which means that phases differ-
ing by 2mshould be considered identical, even though the phase grows
in time with no bound, measurements can only observe its growth
within the interval [-t, +1t]. Therefore, the estimation of the initial
phase and density correlations of the zero mode is different from that
ofthe others. For the zero mode, we fit a quadratic functioninstead of
an oscillatory function of time, and we restrict the fit to times before
reaching the upper bound due to compactification.

More specifically, the dynamics are chosen to follow the TLL model
with Hamiltonian

L w2
Hrpy = /0 dz [ng(Sp(z))2+ 4’::) (az(/’(z))z .

13)

For a hard-wall box trap, the vanishing of the particle current at
the edges of the system means that the effective boundary conditions
are of Neumann type 9,¢(x = 0) = 0,(x = L) = 0. In this case, using the
cosine eigenfunctions

-1/2

2( nim, [ Lo ) cos(n®z), n>0
f:’ﬂ(z) = ( 8ipm ( L )
1, n=0
12 , (14)
—1(117111 o ) cos(nz), n>0
f:?p(l) — L m L
_l ) n=0

the Hamiltonian canbe diagonalized in terms of cosine Fourier modes:

s

0
H:ESPZ_'_Z hw,

2 0 2” [Sp;l +(p%]’

n=1
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with

u=2gp/hL (16)
w, = ck,. 17)

Furthermore
k, = nm/L (18)
¢ =+/gpnp/m 19)

2+ 3agn

g = hw, > (20)

1+ 2asnp)’

where c is the speed of sound, g, is the density-broadened 1D
interaction strength®®, a, = 5.2 nm is the 3D scattering length® and
m=1.44x10"5kgis the mass of a¥Rb atom.

Asmentioned before and reflected in the TLL Hamiltonianin Fou-
rier space (equation (15)), we have to treat the zero mode separately.
We begin with the harmonic part of the Hamiltonian (n > 0) where the
time evolution of the modes is given by

8pn(8) = 8p,(0) cos(wpt) + Po(0) sin(w, ) (21)

©n(8) = @ (0) cos(w,t) — 8p,(0) sin(wpb). (22)
In the experiment, we use matter interferometry to measure the spa-
tially resolved relative phase between two superfluids, from which a
referenced second-order correlation s calculated for each time step:

B2,(0) = (@(2a: ©) — P20, D) (@5, ) — 9(Zo. D). (23)

Note that subtracting the phase of anarbitrary reference position z, will
onlyremove the zeromode and does not affect any of the higher modes.
Expanding @ with the eigenfunctions of equation (14), gives

N
@2, () = rkzﬁk’b (@O D), 4)
=
where
£ = (P = 1@0) (f @)~ L 20)). (25)

Using the equation of motion in equation (22), and defining

Qi = (@,(0)9x(0)), Ry = (5 {#(0), 8p4(0)}) and Py = (8p,(0)8pi(0)), we
obtain

N
P2, (1) = ‘kzl f;’];” cos(w;t) cos(wt)Qy
j, =

N
+ Y (—ff,;b —f;‘,;b) cos(w;t) sin(wgHRy . (26)
= "

lj;"l’(b sin(w;t) sin(wgt)Py

N
+ 2
J k=

Equation (26) standsin the heart of the tomography process: the
goalisto find the elements of Q, Rand P using an optimization process.
Note that the left-hand side is calculated using phase profiles measured
inthe experiment and, in the right hand side, jjf"f and w; can be calcu-
lated from the experimental parameters, as shown in equations (14)
and (17), respectively. The results are presented in Supplementary
Information. For amore detailed explanation of the tomography pro-
cess, please refer to ref. 27.

Unlike all higher modes, the zeromode, which corresponds to the
constant in space eigenfunction, is not a harmonic oscillator mode of
the TLL Hamiltonian (equation (13)). This is because only one of the
canonical variables, 5p,, is present in the Hamiltonian for the zero
mode. As aresult, the time evolution of the zero mode is given by

Spo(t) = 6py(0) = const. (27)
@o(t) = —udpo(0)t + ¢o(0), (28)

which means that the phase variance grows with time as
<¢o(f)2> =(#3),_, — ({90, 8po}),_out +(8p3),_ u?e: (29)

However, because of the compactified nature of the phase field,
itszero mode component ¢, is not awell-defined, measurable operator.
Only imaginary exponentials of the form e for integer n are
well-defined. Nevertheless, under the assumption that the initial state
is Gaussianin terms of the zero mode (as also for all other modes too)
andgiven thatitremains Gaussian under the dynamics following from
Hq,,we canderive the zero-mode variance from the mean value of ei"¢
using the cumulant expansion formulafor the special case of Gaussian
random variables:

(exp (o)) = exp (i (@o) — (#3) /2). (30)
Fromthe above, we find
(@2) = —21og | (exp (igo)) |- @1

Therefore, to extract the zero-mode part of the covariance matrix
<(p§>[:o, (8p§>[:0 and ({po, 8po}),_, in the initial state we calculate the
zero-mode variance of the phase at each time from equation (30) and
fit this with the theoretical equation (31).

Having the covariance matrix in the Fourier space for the first N
modes, we use a discrete Fourier transformation based on the eigen-
functions (equation (14)) to calculate the covariance matrix I"in real
space. We chose the cutoff based on the reconstructed occupation
numbers. We only take into account modes with physical (positive)
occupation numbers. This covariance matrix is used to calculate vN
entropy and M, as discussed in the main text and Fig. 1c.

Covariance matrix of KG model in thermal equilibrium
Thetheory predictions inour work are calculated based on the covari-
ance matrix of the thermal equilibrium states of KG model (equation
(3)), whichis given by*°

Q; = I fe ooth (M—CZ>

2KL Mc? 2k T
N (32)

i c €n

+ nzzjl . coth (zk,,r) cos(k,z;) cos(k,z;)
R;j=0 (33)
K Mc* Mc?

P,j = H ; CO (m_)

(34)

N
K €y €y . .
+ - nzzjl P coth ( szr) cos(k,z;) cos(k,z))

withthedispersionrelation e, = 1/ #2k2c? + M2c+.Here, Misthe KGmass,
Listhesystemsize, Kis the Luttinger parameter, Tis the temperature,
Nisthe UV cutoff, and therest of the parameters are defined as before.
The next section will explain how M and T are estimated based on the
measured data. To include the effect of the finite imaging resolution,
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we convolve the theoretical calculations with a Gaussian point-spread
function with a standard deviation o,5; = 3 um (ref. 38; see next
section).

Estimation of the temperature and KG mass
To compute theoretical predictions for the mutualinformationin the
initial state based on the assumption that these are the thermal states
of the KG model, we need to estimate two effective parameters—the
mass and the temperature. We do this by fitting the results of the tomo-
graphic reconstruction for the mode variances to those correspond-
ing to KG thermal states. Given that the modes are decoupled from
each other both initially and throughout the tomography dynamics,
estimation of the KG mode frequency can be done independently for
eachmode. Having estimated the mode frequencies, we can then verify
whether they follow the theoretical dispersion relation of the KG model
and extract the corresponding mass parameter by a fit.

Therelation between the post-quench quadratures and the initial
(pre-quench) KG state with mode occupation number N,, is given by

(@)= o (Nou+ 5 (35)
(8p7) = (‘;—On" (NOn + %) 36)

where w,, and w, are the pre- and post-quench mode frequencies,
respectively. Both (p2)and (6p2) are achieved viatomography, and w,
isgivenby equation (17). From equations (35) and (36) we can calculate
both w,,and N,,:

(37)

(38)

Assuming the initial state is thermal, we use the following fit function
to extract the temperature, 7 = (ﬁkB)_I:

N = exp (—K2a2 /2)(—1 -

9
n%st/2) e p o) =1 * 2 (39)

1

i .
Note that we also introduce the effect of the imaging system by mul-
tiplying the modes with a Gaussian point-spread function with width
0psr, Which corresponds to a convolution with a Gaussian point-spread
function in the real space®®. To extract the KG mass, we fit the KG dis-

persionrelation,
fit _ 2
Woy, =/ C2k; + M2ct k2

(40)
to the calculated w,,,.

Data availability

The experimental raw data containing all the information required to
extract and calculate the results presented in Figs. 2-4 and Extended
Data Fig.1are availablein ref. 41. Sample code for calculating absorp-
tion images from raw data is also available there. All other data are
available from the corresponding authors upon reasonable request.
Source data are provided with this paper.
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Extended DataFig. 1| Additional results for area law of Ml and volume law of vN entropy. a, Experimental results for /(A: A°), S,, and S ¢, calculated based on N =7

modes (left) and N=8 modes (right) (see the caption of Fig. 2 for detailed explanation). The extracted parameters including their 95% confidence intervalsin
parenthesis are given above. b, Close-up of the measured MI.
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