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The theoretical understanding of scaling laws of entropies and mutual 
information has led to substantial advances in the study of correlated states 
of matter, quantum field theory and gravity. Experimentally measuring 
von Neumann entropy in quantum many-body systems is challenging, 
as it requires complete knowledge of the density matrix, which normally 
requires the implementation of full state reconstruction techniques. Here 
we measure the von Neumann entropy of spatially extended subsystems 
in an ultracold atom simulator of one-dimensional quantum field theories. 
We experimentally verify one of the fundamental properties of equilibrium 
states of gapped quantum many-body systems—the area law of quantum 
mutual information. We also study the dependence of mutual information 
on temperature and on the separation between the subsystems. Our work 
represents a step towards employing ultracold atom simulators to probe 
entanglement in quantum field theories.

The study of quantum information measures is central to a wide range 
of areas in physics, from condensed matter and atomic physics to high 
energy physics and gravity1–12. Some of the most commonly studied 
quantities in quantum information are the (entanglement) entropy and 
the quantum mutual information. If a system described by a density 
matrix ϱ is composed of subsystems A and B, then the von Neumann 
(vN) entropy of subsystem A is defined as

SA = −Tr (ϱA ln (ϱA)), (1)

where ϱA = TrB(ϱ)  is the reduced density matrix of subsystem A. If the 
state ϱ is pure (Tr (ϱ2) = 1 ), then the vN entropy is a measure of  
entanglement between A and B, thus called entanglement entropy, 
where SA = SB. For mixed states (Tr (ϱ2) < 1), the vN entropy captures 
both classical and quantum correlations, and it is no longer a good 

measure of entanglement. For mixed states, several other measures 
and witnesses of entanglement have been studied, with the positivity 
of the partial transpose criterion and quantum discord being prominent 
examples1,13. In cases where, rather than entanglement, the shared 
amount of information between two subsystems A and B is of interest, 
the quantum mutual information (MI)

I(A ∶ B) = SA + SB − SA∪B (2)

is a central object of study. It measures the total amount of correlation 
between the two subsystems, including all higher-order correlations 
for both pure and mixed states. For pure states, the value of the MI is 
equal to twice the entanglement entropy of one of the subsystems.

Information theory measures reveal one of the fundamental  
properties of quantum many-body systems, the area laws3,14. It was 
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The single-particle tunnelling rate J between the two condensates is 
adjusted by changing the amplitude of the radiofrequency fields24.

To prepare a state in thermal equilibrium, we directly cool down 
an atomic cloud of 87Rb in a strongly coupled double well, using the 
standard techniques of laser cooling and evaporative cooling25. The 
quantum fields describing each condensate can be written in phase–
density representation as ψn(z) = exp(iθn)√ρn , with n = 1, 2. The spa-
tially resolved relative phase between the two condensates, 
φ(z) = θ1(z) − θ2(z), is extracted from interference images, taken 15.6 ms 
after releasing the atoms from the trap and letting them fall freely. In 
the limit of low energy excitations, the correlations of the relative phase 
are well described by the sine-Gordon Hamiltonian26. Expanding the 
interaction term in the case of high tunnelling rates leads to the massive 
Klein–Gordon (KG) Hamiltonian:

HKG = ∫
L

0
dz [g1Dδρ2(z) +

ℏ2n1D
4m (∂zφ(z))

2 + ℏJn1Dφ2(z)], (3)

where L is the length of a system with uniform averaged 1D density n1D, 
g1D is the 1D interaction strength, m is the mass of an atom, and the 
relative density, δρ(z) = [ρ1(z) − ρ2(z)] /2,  is the conjugate field of the 
relative phase, fulfilling [φ(z), δρ(z′)] = iδ(z − z′) . A direct measure-
ment of δρ(z) is unfeasible in our current experimental set-up. Hence, 
to reconstruct the full covariance matrix of the initial state

Γ = [
Q R

RT P
] (4)

we use a tomography procedure27. Here, Qij = ⟨φ(zi)φ(zj)⟩, 
Pij = ⟨δρ(zi)δρ(zj)⟩ and Rij = ⟨ 1

2
{φ(zi), δρ(zj)}⟩, with i, j ∈ {1, …, N}, where  

zi denotes different points on a discrete grid with N points. The upper 
limit for N is given by the resolution of the imaging system, which lim-
its our access to higher momentum modes (larger than N) and enforces 
an ultraviolet (UV) cutoff.

To apply this tomographic method, we ramp up the barrier 
between the two strongly coupled condensates in 2 ms, and let them 
evolve independently in the uncoupled double well (J = 0). We then 
directly measure the phase–phase correlations for different evolu-
tion times after the quench. The post-quench dynamics follow the 
Tomonaga–Luttinger liquid (TLL) Hamiltonian. Over time, the initial 
eigenmodes of the relative density rotate into the phase quadrature 
and vice versa, enabling us to access the information about these 
eigenmodes by fitting the initial second-order correlation functions 

first noticed in gravitational physics that, surprisingly, the entropy of 
a black hole is proportional to the surface area of its event horizon and 
not its volume11. Interestingly, a similar property was found in quantum 
many-body systems: the vN entropy of ground states of systems with 
a gapped Hamiltonian scales with the surface area of the subsystem 
and not its volume14. Even more generally, thermal states of systems 
with a gapped Hamiltonian exhibit an area law of MI15. This means 
that the information shared between parts of a quantum many-body 
system is only considerable over a short distance, set by the correla-
tion length. In particular, such a bound on the required information 
to model a many-body system provides the foundations for the over-
whelming success of tensor network-based methods2. In contrast, it 
is known that critical systems described by conformal field theory 
exhibit a logarithmic scaling instead of the area law9. In thermal states, 
although the mutual information has an area or a log law, the vN entropy 
will exhibit a volume law, where it is proportional to the volume of  
the subsystem.

Extracting quantum information measures in quantum many-body 
systems has been the aim of several experiments16–20. Calculating the 
vN entropy requires access to the density matrix of the full system, ϱ, 
which usually requires a full state tomography in different experimental 
platforms. Instead of ϱ, several techniques have been developed to 
measure the purity, Tr (ϱ2) , which enables the calculation of 
second-order Rényi entropy, S2 = − ln(Tr (ϱ2)). These methods can be 
based on the interference of two identical copies of a quantum system17 
or randomized measurements on a single copy20. Note that, in these 
examples, the purity is directly measured but the full state is not recon-
structed, so the calculation of vN entropy is not feasible.

Nevertheless, several optical lattice set-ups are able to measure 
the vN entropy, which is obtained either from a single-site reduced 
density matrix or as a classical thermodynamic entropy of the whole 
system16,19. In special cases, when the system is diagonal enough, even 
many-body vN entropy can be accessed21. However, the measurement of 
vN entropy between extended spatial subsystems has so far remained 
elusive, as has verification of the predicted area-law scaling of the MI.

In this article we address these challenges and study the scal-
ing of the vN entropy and the MI with subsystem size in a continu-
ous quantum many-body system. Our set-up is composed of a pair of 
tunnelling-coupled quasi-one-dimensional (1D) ultracold Bose gases 
(Fig. 1a), cooled down and trapped below an atom chip22. Along the 
longitudinal axis z, the clouds are confined in box-like potentials with 
hard walls, created by superposing magnetic and optical dipole poten-
tials23. In one of the transverse directions, the atoms are trapped in a 
double-well potential, created by dressing with radiofrequency fields. 
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Fig. 1 | Schematic of the experimental protocol. a, The experimental protocol 
starts by cooling down a pair of tunnelling-coupled superfluids in a double-well 
potential with a finite single-particle tunnelling rate J, typically ~2π × 1 Hz. The 
radial trapping frequency is ω⊥ = 2π × 1.4 kHz and the typical linear densities 
are n1D ≈ 70 μm−1. b, Immediately after the cooling process, the tunnelling rate is 
changed to zero in 2 ms. At t = 0, the two condensates are already uncoupled and 

their independent evolution following the TLL Hamiltonian starts. The measured 
phase correlations at different times are used to fit the full covariance matrix Γ.  
c, To calculate the vN entropy for a subsystem, S(ΓA), we use the correlations in 
that specific region (yellow shaded area). Note that Q, R and P have different 
units and the ranges of the colour axis are different. All tomography results are 
presented and discussed in Supplementary Information.
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of phase–density and density–density to the measured evolution of 
the phase–phase correlations in the momentum space. A thorough 
explanation of the reconstruction process is given in Methods, and 
the results are shown in Supplementary Information.

In the experiment, we prepare initial states that are thermal  
equilibrium states of the KG Hamiltonian. The quadratic form of this 
Hamiltonian, as shown in equation (3), implies that the prepared initial 
states are Gaussian. After a fast quench of J to zero, the initial state 
evolves under another quadratic Hamiltonian, ensuring that the state 
remains Gaussian under evolution28. To confirm Gaussianity, we meas-
ure the normalized, averaged connected fourth-order correlation func-
tion, M(4), and show that the higher-order correlations are negligible. 
Note that the tomography process does not include any restrictions 
regarding the Gaussianity of the reconstructed state.

Having Gaussian states greatly simplifies the calculation of the 
quantum information measures—an otherwise highly non-trivial task 
in quantum field theory29. Gaussian states are fully described by their 
covariance matrix Γ. Its symplectic spectrum is obtained by diagonal-

izing i𝒥𝒥Γ , where 𝒥𝒥 = [0 I
−I 0 ]

 is the symplectic unit. The symplectic 

spectrum consists of pairs ±γn, n ∈ {1, …, N}. It encodes the complete 
information that is contained in the covariance matrix14. Consequently, 
it can be used to reconstruct the full density matrix of the state and the 
measures of quantum information. In particular, the vN entropy is  
given by

S(Γ ) =
N
∑
n=1

[(γn +
1
2 ) ln (γn +

1
2 ) − (γn −

1
2 ) ln (γn −

1
2 )]. (5)

For non-Gaussian states, neglecting higher-order correlations and 
estimating the vN entropy based on the covariance matrix gives a lower 
bound to the actual entropy30.

Having the reconstructed initial covariance matrix at hand, we 
use equation (5) to calculate the vN entropy of any subsystem A, SA(ΓA) 
(Fig. 1c). Using equation (2), the MI between two subsystems A and B 
is calculated. To observe the scaling of the vN entropy and the MI, we 
calculate the vN entropy of subsystems with different lengths and 
consecutively the MI with the complement subsystems, as illustrated in  
Fig. 2a. As expected for thermal states, the vN entropy is in the 
volume-law regime, depending linearly on the size of the subsys-
tem (Fig. 2b and Extended Data Fig. 1a). Measuring the vN entropy 
allows us to study the scaling of the mutual information. We find 
an area law for MI, with a plateau forming in the bulk of the system 
(Fig. 2c and Extended Data Fig. 1b). Our results represent an experi-
mental verification of one of the elementary features of quantum  
many-body systems15.

We continue by studying the dependence of MI on the distance 
between two subsystems. In this case, we calculate the MI of two subsys-
tems A and B, separated by a gap of length d. The results are presented in 
Fig. 3. As expected, the MI decreases as the two subsystems get further 
apart. We can extract a decay length by fitting an exponential function 
to the experimental data. The fitted decay length, lfit = 5.1 (3.7, 8) μm 
agrees with the correlation length lC = 6.8 (6, 7.7) μm calculated based 
on the experimental parameters (Methods). The intervals in parenthe-
ses represent the 95% confidence intervals obtained via bootstrapping.

For the typical temperatures of our experiment, the vN entropy 
depends linearly on the temperature. The linear dependence changes 
to a logarithmic dependence by introducing a finite UV cutoff, as shown 
in the inset of Fig. 4 (dashed lines). As the temperature increases, the 
symplectic eigenvalues grow, and the calculated entropy using a finite 
number of modes saturates. The MI, however, regardless of the UV 
cutoff, reaches a finite asymptotic value given by the classical cor-
relations31. Reducing the number of modes reduces the asymptotic 
value due to the limited available information in the modes taken 
into account, as presented in the inset of Fig. 4 (solid lines). In Fig. 4, 
the measured vN entropy and MI for three different temperatures are 
presented, along with theoretical predictions. The measurements 
agree with the theory calculated for the extracted parameters and 
N = 7 lowest modes.

It is important to stress that the only assumption we make to  
calculate the vN entropy and the MI is that the post-quench dynamics 
follow a TLL Hamiltonian, which has been confirmed in a previous 
work28. Our measurements do not rely on any assumption related to 
the Gaussianity of the initial state. We rather confirm that the initial 
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Fig. 2 | Area law of MI and volume law of vN entropy. a, A system of size 
L = 49 μm is divided into a subsystem A of length l and its complement subsystem 
of length (L − l). b, The experimental results for I(A:AC), SA and SAC , calculated 
based on N = 7 modes, are plotted as circles, with error bars representing the 95% 
confidence intervals obtained via bootstrapping34 with 999 samples. The shaded 
areas show the 95% confidence interval for the theory predictions, considering 
the uncertainty in the estimated temperature and tunnelling rate J. c, Close-up of 
the measured MI from b.
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Fig. 3 | Shared information content between two spatially separated 
subsystems. We calculate the MI of two disjoint subsystems with the same 
length, l/L = 0.15, as a function of the distance between them, d. As demonstrated 
in the inset, while the subsystem A is kept fixed on the left edge of the system, B is 
shifted away to the other edge. Circles and shading represent experimental and 
theoretical data for I(A:B), respectively (see Fig. 2 for more details on the error 
bars and shaded area). The solid black line is an exponential fit with lfit = 5.1 μm. 
The finite bias b results from estimating a positive quantity, MI, using finite 
statistics.
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state is Gaussian by measuring the higher-order correlations. Even for 
non-Gaussian initial states, our results would represent a lower bound 
to the entropy of the full state.

The results presented here are a step towards the more ambi-
tious goal of measuring many-body entanglement in a continuous 1D 
quantum system. Reconstruction of the full covariance matrix enables 
us to calculate any entanglement measure applicable to both pure 
and mixed states, such as logarithmic negativity. However, there are 
two main limiting factors preventing us from detecting the entangle-
ment. The entanglement can only be detected if a sufficient number 
of momentum modes are measured whose mode occupation numbers 
are close to the ground state. In our current experiments, the non-zero 
temperature (10–100 nK) of the Bose gas keeps the occupation num-
bers of the lower momentum modes too high above the value of the 
ground state. At the same time, the finite optical resolution introduces 
a soft cutoff that not only prevents us from measuring higher momen-
tum modes but also modifies the lower modes that can be measured. 
Improving any of these two aspects would make the measurement of 
the entanglement possible.

Another promising direction for future work is to go beyond quad-
ratic models and detect entanglement in an interacting model. It has 
already been demonstrated that atom chip experiments can success-
fully simulate the sine-Gordon model, and higher-order correlation 
functions can be measured26. Developing a tomography procedure 
for this setting would give us access to entanglement properties in 
interacting many-body quantum systems32,33.

Online content
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Methods
Experimental realization and measurements
We realized a pair of strongly tunnelling-coupled 1D superfluids by 
cooling down 87Rb atoms in a double-well potential in an atom chip 
set-up. The initial state was prepared by cooling the atoms directly 
into a double-well potential. The initial state in this case is a thermal 
equilibrium state with typical temperatures of 30–120 nK and linear 
atomic densities of ~70 μm−1 in a box-like potential with length ~50 μm.

To achieve lower effective temperatures, we first cooled down the 
atoms in a dressed single-well potential, where the first excited state 
was in the vacuum state. Slowly splitting the cloud into two parts maps 
the ground state and the first excited state to two states with a smaller 
energy gap and symmetric and antisymmetric wavefunctions. The 
resulting prethermalized state has a lower effective temperature in 
the antisymmetric modes (relative degrees of freedom)35. This method 
has been deployed in the measurement with effective temperature 
Teff = 14 nK presented in Fig. 4 and Extended Data Fig. 1.

To probe the system, we turned off all the traps and let the atoms 
fall freely for 15.6 ms. We measured the projected 2D atomic density 
distributions via absorption imaging, from which we extracted the 
relative phase between the two condensates for different points along 
the 1D direction, z. Due to the destructive nature of the imaging pro-
cess, we repeated the measurement hundreds of times to accumulate 
statistics. Thus, all the expectation values calculated are obtained 
through ensemble averaging.

Quantum field simulation using coupled quasi-1D superfluids
As has been discussed in several earlier works (for example,  
refs. 26,28,36), low-energy excitations of coupled parallel 1D gases of 
weakly interacting atoms can be utilized as a quantum-field simulator 
of the sine-Gordon Hamiltonian:

HsG = ∫
L

0
dz [g1Dδρ2 +

ℏ2n1D
4m (∂zφ)

2 − 2ℏJn1D cos(φ)]. (6)

This model describes the relative phase, φ, and the relative density 
fluctuations of two superfluids (Fig. 1a). These two fields are the canoni-
cal conjugate of one another, that is, [φ(z), δρ(z′)] = −iδ(z − z′).  In equa-
tion (6), m is the atomic mass, n1D is the uniform atomic density of the 
condensates, g1D is the inter-atomic interaction, and J is the 
single-particle tunnelling rate.

For sufficiently cold gases in the strong coupling regime, that is, 
when the phase coherence length

λT =
2ℏ2n1D
mkBT

(7)

is larger than the healing length of the relative phase (correlation 
length)

lC =√
ℏ
4mJ , (8)

the cosine term in equation (6) can be expanded to second order and 
be approximated by the quadratic KG model. Introducing the sound 
velocity c, Luttinger parameter K and the KG quasi-particle mass, M, 
given in terms of the microscopic parameters by

c =√
g1Dn1D
m (9)

K = ℏπ
2 √

n1D
mg1D

(10)

M = 2m
√

ℏJ
g1Dn1D

, (11)

the KG Hamiltonian can be written as

HKG =
ℏc
2 ∫

L

0
dz [πKδρ

2(z) + K
π (∂zφ(z))

2] + M2c4
2ℏc ∫

L

0
dz K
πφ2(z). (12)

Note that the first two terms in equation (12) are the TLL Hamiltonian. In 
Supplementary Table 1, the relevant parameters for each measurement 
are listed, where ωM = Mc2/ℏ is the KG mass in units of angular frequency.

Reconstruction of the initial full covariance matrix
To extract the full covariance matrix that characterizes the state of the 
system, we use the quantum tomography method developed in ref. 27. 
Given that only one of the two canonical variables (the phase) is acces-
sible through experimental measurements, its canonically conjugate 
variable (the density fluctuations) can be accessed indirectly by letting 
the system evolve under a harmonic Hamiltonian with known mode 
frequencies and measuring the phase at different times. For each of 
the harmonic modes, the dynamics correspond to a rotation in phase 
space, so that, over time, the initial density variance turns into phase 
variance and vice versa. We can thus fully reconstruct the initial covari-
ance matrix from phase measurements at a sufficiently large number 
of different times. This reconstruction is done by first going to Fourier 
space, where the modes evolve independently, and then fitting the 
data for the time evolution of the phase covariance of each mode to 
the known functions expressing this data in terms of the initial phase 
and density correlations.

However, one mode needs special treatment: the zero mode, 
that is, the mode corresponding to zero momentum, therefore zero 
energy. This mode does not rotate in phase space; instead, it moves 
at a constant velocity. This means that the zero-mode phase variance 
does not oscillate in time but grows as a quadratic function of time 
instead, an effect known as phase diffusion37. Moreover, because of the 
compactified nature of the phase field, which means that phases differ-
ing by 2π should be considered identical, even though the phase grows 
in time with no bound, measurements can only observe its growth 
within the interval [−π, +π]. Therefore, the estimation of the initial 
phase and density correlations of the zero mode is different from that 
of the others. For the zero mode, we fit a quadratic function instead of 
an oscillatory function of time, and we restrict the fit to times before 
reaching the upper bound due to compactification.

More specifically, the dynamics are chosen to follow the TLL model 
with Hamiltonian

HTLL = ∫
L

0
dz [g1D(δρ(z))

2 + ℏ2n1D
4m (∂zφ(z))

2]. (13)

For a hard-wall box trap, the vanishing of the particle current at 
the edges of the system means that the effective boundary conditions 
are of Neumann type ∂zφ(x = 0) = ∂zφ(x = L) = 0. In this case, using the 
cosine eigenfunctions

fφn (z) =
⎧⎪
⎨⎪
⎩

2(nℏπ√
n1D
g1Dm

)
−1/2

cos(n π
L
z) , n > 0

1 , n = 0

fδρn (z) =
⎧⎪
⎨⎪
⎩

− 1
L
(nℏπ√

n1D
g1Dm

)
1/2
cos(n π

L
z) , n > 0

− 1
L
, n = 0

, (14)

the Hamiltonian can be diagonalized in terms of cosine Fourier modes:

H = ℏu
2 δρ

2
0 +

∞
∑
n=1

ℏωn
2 [δρ2n + φ2n], (15)
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with

u = 2g1D/ℏL (16)

ωn = ckn. (17)

Furthermore

kn = nπ/L (18)

c = √g1Dn1D/m (19)

g1D = ℏω⟂as
2 + 3asn1D
(1 + 2asn1D)

, (20)

where c is the speed of sound, g1D is the density-broadened 1D 
interaction strength38, as = 5.2 nm is the 3D scattering length39 and 
m = 1.44 × 10−25 kg is the mass of a 87Rb atom.

As mentioned before and reflected in the TLL Hamiltonian in Fou-
rier space (equation (15)), we have to treat the zero mode separately. 
We begin with the harmonic part of the Hamiltonian (n > 0) where the 
time evolution of the modes is given by

δρn(t) = δρn(0) cos(ωnt) + φ0(0) sin(ωnt) (21)

φn(t) = φ0(0) cos(ωnt) − δρn(0) sin(ωnt). (22)

In the experiment, we use matter interferometry to measure the spa-
tially resolved relative phase between two superfluids, from which a 
referenced second-order correlation is calculated for each time step:

Φ
2
ab(t) = ⟨(φ(za, t) − φ(z0, t)) (φ(zb, t) − φ(z0, t))⟩. (23)

Note that subtracting the phase of an arbitrary reference position z0 will 
only remove the zero mode and does not affect any of the higher modes.

Expanding Φ2 with the eigenfunctions of equation (14), gives

Φ
2
ab(t) =

N
∑
j,k=1

f a,bj,k ⟨φj(t)φk(t)⟩, (24)

where

f a,bj,k = (fϕj (za) − fϕj (z0)) (f
ϕ
k (zb) − fϕk (z0)). (25)

Using the equation of motion in equation (22), and defining 
Q̃jk = ⟨φj(0)φk(0)⟩ , ̃Rjk = ⟨ 1

2
{φj(0), δρk(0)}⟩  and ̃Pjk = ⟨δρj(0)δρk(0)⟩ , we 

obtain

Φ
2
ab(t) =

N
∑
j,k=1

f a,bj,k cos(ωjt) cos(ωkt)Q̃jk

+
N
∑
j,k=1

(−f a,bj,k − f a,bj,k ) cos(ωjt) sin(ωkt) ̃Rjk

+
N
∑

j, k=1
f a,bj,k sin(ωjt) sin(ωkt) ̃Pjk

. (26)

Equation (26) stands in the heart of the tomography process: the 
goal is to find the elements of Q̃, ̃R and ̃P  using an optimization process. 
Note that the left-hand side is calculated using phase profiles measured 
in the experiment and, in the right hand side, f a,bj,k  and ωj can be calcu-
lated from the experimental parameters, as shown in equations (14) 
and (17), respectively. The results are presented in Supplementary 
Information. For a more detailed explanation of the tomography pro-
cess, please refer to ref. 27.

Unlike all higher modes, the zero mode, which corresponds to the 
constant in space eigenfunction, is not a harmonic oscillator mode of 
the TLL Hamiltonian (equation (13)). This is because only one of the 
canonical variables, δρ0, is present in the Hamiltonian for the zero 
mode. As a result, the time evolution of the zero mode is given by

δρ0(t) = δρ0(0) = const. (27)

φ0(t) = −uδρ0(0)t + φ0(0), (28)

which means that the phase variance grows with time as

⟨φ0(t)
2⟩ = ⟨φ20⟩t=0 − ⟨{φ0, δρ0}⟩t=0ut + ⟨δρ20⟩t=0u

2t2. (29)

However, because of the compactified nature of the phase field, 
its zero mode component φ0 is not a well-defined, measurable operator. 
Only imaginary exponentials of the form einφ0  for integer n are 
well-defined. Nevertheless, under the assumption that the initial state 
is Gaussian in terms of the zero mode (as also for all other modes too) 
and given that it remains Gaussian under the dynamics following from 
HTLL, we can derive the zero-mode variance from the mean value of einφ0 
using the cumulant expansion formula for the special case of Gaussian 
random variables:

⟨exp (iφ0)⟩ = exp (i ⟨φ0⟩ − ⟨φ20⟩ /2). (30)

From the above, we find

⟨φ20⟩ = −2 log | ⟨exp (iφ0)⟩ |. (31)

Therefore, to extract the zero-mode part of the covariance matrix 
⟨φ20⟩t=0, ⟨δρ

2
0⟩t=0  and ⟨{φ0, δρ0}⟩t=0  in the initial state we calculate the 

zero-mode variance of the phase at each time from equation (30) and 
fit this with the theoretical equation (31).

Having the covariance matrix in the Fourier space for the first N 
modes, we use a discrete Fourier transformation based on the eigen-
functions (equation (14)) to calculate the covariance matrix Γ in real 
space. We chose the cutoff based on the reconstructed occupation 
numbers. We only take into account modes with physical (positive) 
occupation numbers. This covariance matrix is used to calculate vN 
entropy and MI, as discussed in the main text and Fig. 1c.

Covariance matrix of KG model in thermal equilibrium
The theory predictions in our work are calculated based on the covari-
ance matrix of the thermal equilibrium states of KG model (equation 
(3)), which is given by40

Qij =
π
2KL

ℏc
Mc2

coth ( Mc2

2kBT
)

+ π
KL

N
∑
n=1

ℏc
ϵn
coth ( ϵn

2kBT
) cos(knzi) cos(knzj)

(32)

Rij = 0 (33)

Pij =
K
2πL

Mc2

ℏc
coth ( Mc2

2kBT
)

+ K
πL

N
∑
n=1

ϵn
ℏc
coth ( ϵn

2kBT
) cos(knzi) cos(knzj)

(34)

with the dispersion relation ϵn = √ℏ2k2nc2 +M2c4. Here, M is the KG mass, 
L is the system size, K is the Luttinger parameter, T is the temperature, 
N is the UV cutoff, and the rest of the parameters are defined as before. 
The next section will explain how M and T are estimated based on the 
measured data. To include the effect of the finite imaging resolution, 
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we convolve the theoretical calculations with a Gaussian point-spread 
function with a standard deviation σPSF ≈ 3 μm (ref. 38; see next 
section).

Estimation of the temperature and KG mass
To compute theoretical predictions for the mutual information in the 
initial state based on the assumption that these are the thermal states 
of the KG model, we need to estimate two effective parameters—the 
mass and the temperature. We do this by fitting the results of the tomo-
graphic reconstruction for the mode variances to those correspond-
ing to KG thermal states. Given that the modes are decoupled from 
each other both initially and throughout the tomography dynamics, 
estimation of the KG mode frequency can be done independently for 
each mode. Having estimated the mode frequencies, we can then verify 
whether they follow the theoretical dispersion relation of the KG model 
and extract the corresponding mass parameter by a fit.

The relation between the post-quench quadratures and the initial 
(pre-quench) KG state with mode occupation number N0n is given by

⟨φ2n⟩ =
ωn
ω0n

(N0n +
1
2 ) (35)

⟨δρ2n⟩ =
ω0n
ωn

(N0n +
1
2 ), (36)

where ω0n and ωn are the pre- and post-quench mode frequencies, 
respectively. Both ⟨φ2n⟩ and ⟨δρ2n⟩  are achieved via tomography, and ωn 
is given by equation (17). From equations (35) and (36) we can calculate 
both ω0n and N0n:

N0n = √⟨φ2n⟩ ⟨δρ2n⟩ −
1
2 (37)

ω0n = ωn

√√√
√

⟨δρ2n⟩
⟨φ2n⟩

. (38)

Assuming the initial state is thermal, we use the following fit function 
to extract the temperature, T = (βkB)

−1:

Nfit0n = exp (−k
2
nσ2PSF/2) (

1
exp(ℏω0nβ) − 1

+ 1
2 ) −

1
2 . (39)

Note that we also introduce the effect of the imaging system by mul-
tiplying the modes with a Gaussian point-spread function with width 
σPSF, which corresponds to a convolution with a Gaussian point-spread 
function in the real space38. To extract the KG mass, we fit the KG dis-
persion relation,

ωfit0n = √c2k2n +M2c4/ℏ2 (40)

to the calculated ω0n.

Data availability
The experimental raw data containing all the information required to 
extract and calculate the results presented in Figs. 2–4 and Extended 
Data Fig. 1 are available in ref. 41. Sample code for calculating absorp-
tion images from raw data is also available there. All other data are 
available from the corresponding authors upon reasonable request. 
Source data are provided with this paper.
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Extended Data Fig. 1 | Additional results for area law of MI and volume law of vN entropy. a, Experimental results for I(A: AC), SA, and SAC, calculated based on N = 7 
modes (left) and N = 8 modes (right) (see the caption of Fig. 2 for detailed explanation). The extracted parameters including their 95% confidence intervals in 
parenthesis are given above. b, Close-up of the measured MI.
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