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The local explanation provides heatmaps on images to explain how Convolutional Neural Networks (CNNs)
derive their output. Due to its visual straightforwardness, the method has been one of the most popular
explainable AI (XAI) methods for diagnosing CNNs. Through our formative study (S1), however, we captured
ML engineers’ ambivalent perspective about the local explanation as a valuable and indispensable envision in
building CNNs versus the process that exhausts them due to the heuristic nature of detecting vulnerability.
Moreover, steering the CNNs based on the vulnerability learned from the diagnosis seemed highly challenging.
To mitigate the gap, we designed DeepFuse, the first interactive design that realizes the direct feedback
loop between a user and CNNs in diagnosing and revising CNN’s vulnerability using local explanations.
DeepFuse helps CNN engineers to systemically search “unreasonable” local explanations and annotate the
new boundaries for those identified as unreasonable in a labor-efficient manner. Next, it steers the model
based on the given annotation such that the model doesn’t introduce similar mistakes. We conducted a
two-day study (S2) with 12 experienced CNN engineers. Using DeepFuse, participants made a more accurate
and “reasonable” model than the current state-of-the-art. Also, participants found the way DeepFuse guides
case-based reasoning can practically improve their current practice. We provide implications for design that
explain how future HCI-driven design can move our practice forward to make XAI-driven insights more
actionable.
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1 INTRODUCTION
As the societal impact of Computer Vision (CV) models grows [33, 43, 58], it has become crucial
to find an effective way to steer Convolutional Neural Networks (CNNs) to align their behaviors
with users’ mental model [29, 31]. Using Explainable AI (XAI) techniques can be the first step to
steering Machine Learning (ML) models, as spotting repeating cases that “surprise” ML engineers
for a similar reason can help the engineers to generalize the cases to a bigger pattern that signals
the vulnerability of their model [19, 53, 89, 94]. While XAI techniques are increasingly becoming
essential for revising ML models, there are relatively fewer options available for CNNs [7]. Among
few, local explanation–the technique that overlays a saliency map on a single image to visualize the
attentive areas that the model referred to–has been widely used by tremendous ML engineers due
to its visual straightforwardness [12, 62, 79]. By seeing the attention of a model, a user can assess
whether the rationale behind the prediction is reasonable [29].

Checking the reasonableness of CNN’s “attention” through local explanation can improve CNN’s
performance in two ways. First, checking the attention can help ML engineers to identify the bias
of a dataset used in training. In diagnosing a gender classifier, for example, if a model is attentive
to contextual objects, such as “snowboard” to predict a man [39] or “shopping cart” to infer a
women [104], it means that these contextual objects often appear with a specific gender class
in the training dataset. As a result, such an imbalanced distribution of contextual objects causes
the model attention to be biased towards contextual objects rather than focusing on the person
in the image to classify the gender [4]. Using a biased dataset can induce a model to reference
contextual objects in prediction, which is defined to be unfair [83]. Therefore, diagnosing CNNs
using local explanation can reduce bias ingrained in a training set, leading the forthcoming model
to be fairer [15]. Second, detecting unfair predictions through local explanation can lead to a more
robust and generalizable model with stable accuracy. The repeated occurrence of unfair predictions
is related to the vulnerability of a CNN, which can be essential for defending against malicious
attacks. For example, imagine that an attacker found a gender classifier that tends to classify images
with snowboards as men. In that case, the attacker can prepare counter-contextual examples that
show women riding snowboards in a backdoor attack to drop the model accuracy. Steering CNNs to
fix the found vulnerable patterns can thus yield a model that provides stable accuracy performance
regardless of object types appearing in future images.

In summary, if the dataset used in training is biased [4, 6, 29, 91], the model fails at demonstrating
reasonable attention for specific predictions, which we call to be unfair predictions [6, 29, 39, 94].
Such unfair cases, in turn, make the CNNmodel vulnerable [23, 87, 98]. Collectively, the phenomenon
of a CNN shifting attention in an unreasonable way due to biased data refers to the problem of
contextual bias [29]. While contextual bias has become a highly crucial issue in ML and beyond [29,
40, 56, 75, 83, 104], spotting the vulnerability and steering the model is highly challenging or not
even feasible [39] even for experienced ML engineers [43]. Detecting unreasonable attention
through local explanation can be “just noticeable” from human eyes, but the current solutions are
predominantly a machine-centric approach with limited human involvement [67].
In Human-Computer Interaction (HCI) and Computer Supported Cooperative Work (CSCW),

despite the rich body of research dedicated to better supporting ML engineers [22, 34], little effort
has been made to design interfaces that can efficiently and effectively steer CNNs to mitigate
contextual bias. Further, while there exists a breadth of empirical studies focused on understanding
the ML engineers’ practice, challenges, and design opportunities(e.g., [43, 89, 100]), it is not well
understood how ML engineers apply local explanation in steering CNNs to mitigate contextual
bias or what are the practical challenges. Through this work, we aim to bridge the technical and
empirical gaps we identified in the problem of contextual bias. Specifically, we aim to create a novel
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interactive system that can empower ML engineers to leverage local explanations in diagnosing the
vulnerability of CNNs and steer them. To inform our design based on real practice, we conducted
a formative study (S1) with five industry CNN experts who have more than 5 years of model
development. We sought to understand how they use local explanations, what the limitations
of existing tools are, and how the new design can practically help their practice. As a result, we
identified 3 challenges and 3 desires that we were able to use to streamline their process in our
new design.
Based on the findings, we devised DeepFuse, the first interactive system that realizes a direct

feedback loop that connects a user and a CNN using local explanations for model steering. First,
DeepFuse enables a user to systematically categorize unreasonables—the images that have overlaps
between the model attention and contextual objects—among images used in validation. Next, for the
categorized unreasonables, DeepFuse suggests the “reasonable” attention boundary that excludes
contextual objects to help a user effortlessly finish the annotation task required for steering. Third,
using the user-confirmed boundary input, DeepFuse steers the target model by optimizing both the
prediction loss and attention loss (minimizing prediction errors and shifting the model’s attention
towards confirmed “reasonable” areas). Finally, DeepFuse helps a user to see what has been changed
before and after steering. In particular, DeepFuse provides the evaluation results regarding (1) how
the attention quality has become reasonable and (2) how the improved model attention quality
affected the model accuracy performance. In the summative study (S2), we evaluated DeepFuse with
12 experienced CNN builders, asking them to revise a gender classifier across two days. We found
using DeepFuse enabled every participant to boost their model accuracy performance and model
attention quality than applying state-of-the-art techniques. Meanwhile, after using DeepFuse, we
also found that over 80% of the participants perceived that using DeepFuse would improve their
capability regarding model vulnerability assessment and performance improvement. Based on the
two studies, we provide implications for design on Beyond XAI—how the future design can convert
XAI-driven insights into actionable steering plans such that the AI’s behavior can gradually be
aligned to the human mental model.

This work offers the following contributions:

• S1: Understanding How Local Explanation Is Used in Improving CNNs: We extend our
knowledge about how field practitioners apply local explanations when working on CNNs and
what the challenges are. Based on the analysis, we suggest how new design can mitigate their
difficulties in steering CNNs.

• Design Contribution: We devise and instantiate DeepFuse, a novel, end-to-end, and interactive
design that enables ML engineers to practice a systematic case-based vulnerability diagnosis and
model steering.

• S2: Understanding the Effect of DeepFuse: Through the study with 12 experienced CNN
developers, we understand how the new design can make a difference in building more accurate
and robust CNNs.

• Implications for Design for Steerable AI: Based on the results of S1 and S2, we provide how
the HCI and CSCW communities can contribute to converting XAI-driven insights more useful
and actionable through steerable AI design.

2 RELATEDWORK
In this review, we first dive deeper into understanding the problem of contextual bias and explain
how unreasonable model attention can detrimentally affect CNN’s model performance. Second, we
review landmark XAI-driven systems in HCI devised for diagnosing Deep Neural Networks (DNNs)
and discuss how the findings can be applied to resolve the problem of contextual bias through
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an interactive system. Next, we cover how the recent advance in explanation-guided steering
techniques can be applied to implement an interactive and integrated model steering environment.
Then we highlight the remained technical and empirical challenges in HCI.

When CNNs are not trained properly with generalized and representative datasets, there can
be various kinds of bias that can introduce several weaknesses in the model performance [29, 83].
Imagine that one engineer is preparing a set of images for training a dog detection model. In
preparation of data, 50% of the images would show a dog to balance positive and negative cases [91].
The problem can start when some contextual objects, such as a ball, appear more frequently in
positive cases than negative [39]. Using such a biased dataset, a model would establish a “spurious”
correlation between a dog and a ball [75]. In such a case, the model’s attention visualized through
local explanation is on the ball rather than a dog [83]. Consequently, when bringing an image
that shows a ball, the model may likely say that it detected a dog by seeing a ball regardless of
a dog appearing in the image [104]. As such, this phenomenon of “contextual bias” refers to the
case where a model’s attention is shifting to contextual objects which are not directly relevant to
the model’s goal [83]. Consequently, using this potential vulnerability, an attacker may be able to
drastically decrease model accuracy by showing the ball images without dogs [83]. Furthermore,
CNN’s shifting the focus to a contextual object incurs the fairness issue [29, 40]; While model
accuracy is accepted as a “golden standard” in modern ML research for evaluation, there is growing
concern that putting insufficient emphasis on the quality of model explanation can lead us to have
a technical debt [61]. This aspect of a CNN’s blind decision made by referring to contextual objects
has become crucial in the Fairness, Accountability, and Transparency (FAccT) community and
beyond [28].
In handling contextual bias, several studies outside of HCI commonly apply mathematical

approaches rather than incorporating human input [75, 83]. For example, Singh et al. used Class
Activation Maps as a “weak” automatic attention annotation [83]. Feature augmentation [56] is
another technique proposed for de-biasing using disentangled representation. Hirota et al. provided
a way to analyze skewed data distributions to attain unbiased human-like reasoning [40].While each
method has its pros and cons, there has been no ideal breakthrough. In recent years,ML communities’
approaches are gradually shifting towards involving more human inputs [10, 28, 29, 49, 63]. Aligning
with this direction, local explanations, such as Grad-CAM [79], started to catch attention as an
XAI technique that can mitigate contextual bias. It enables a user to spot the unreasonable model
attention at a glance, and perhaps this aspect makes the technique the most widely used XAI
technique for investigating CNNs [79].

Meanwhile, in HCI and CSCW, despite the wide range of novel systems proposed for helping ML
engineers [13, 24, 35, 103], we didn’t recognize a system directly focusing on handling contextual
bias. When we scope the approaches related to Deep Neural Networks, we found the two perspec-
tives useful in handling contextual bias through local explanation. The first takeaway is that a
bottom-up approach—the design that helps users understand the vulnerable patterns by exploring
specific cases through local explanation [12, 85]—can provide a more straightforward and intuitive
flow than a top-down approach which aims at helping a user to understand global structure or
rules to explain how DNNs make a prediction [1]. Prospector [54] and What-if tool [95] belong to
the bottom-up design that can help ML engineers to see the instance-level of prediction cases to
gradually realize a set of patterns for making prediction [19, 53]. On the other hand, top-down
approaches include XAI techniques and visual analytic components to help a user to understand
the “landscape” of prediction rules, structure, and decision boundaries. For instance, Squares [74]
and Blocks [5] are some of the earliest designs that explain how DNNs predict the multi-class
problem. MLCube Explorer [48], TwoRavens [30], and Visus [77] present the model comparison
feature, helping ML engineers more easily decide the model they would like to deploy. ActiVis [47],
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RuleMatrix [65], CNN explore [93], ExplainExplorer [18], DeepEyes [73], RNNVis [64], NeuroCar-
tography [71], and Dodrio [92] fall into visual analytic approaches. The second takeaway is that
by including every feature required for assessing and steering in a single, end-to-end systems can
reduce the cost of switching the context between the diagnosis to the refinement [3]. EnsembleMa-
trix [88], ModelTracker [3], Tenserflow Graph Visualizer [96], and explAIner [86] present end-to-end
environments that combine diagnosis and model refinement.
This review concludes that local explanations can help a user to easily diagnose the model

vulnerability for easing contextual bias in a bottom-up fashion. Meanwhile, including both diagnosis
and steering in a single system can further help ML engineers. In realizing this design goal, the first
technical challenge is understanding how to steer a CNN upon finding the unreasonable model
attention. In recent years, new techniques have enabled steering the AI’s behavior using human
input through local explanation. For example, Attention Branch Network [25, 66] is a pioneering
method that allows humans to directly adjust the boundary of model attention. More advanced
techniques, such as GRADIA [29], RES [28], and GNES [27] have been proposed. While they can be
potentially effective, they have never surfaced or been used by ML engineers through interactive
systems.

The second challenge is the lack of studies aimed at understanding how ML engineers practice
and perceive local explanations in their CNN building workflow. There has been a series of empirical
studies aimed at learning the workflow of ML engineers and data scientists. The directions include
understanding how they use XAI tools [43], how ML beginners learn XAI tools to work on their
model building [99, 100], howML experts view the automated AI [89], howML experts collaborate in
using XAI tools, and beyond [53, 102]. Despite the popularity of local explanations, we didn’t identify
the work specifically focusing on understanding ML engineers’ current practices and challenges.
So, we believe that an interactive system is essential to bridge the gap between computational
techniques and human-centered design to diagnose and resolve contextual bias. Since diagnosing
and steering a CNN is a deep cognitive process that requires dense and repetitive interaction with a
system, conducting a formative study in advance would higher the chance of yielding a practically
useful design [37, 69].

3 STUDY 1: FORMATIVE STUDY
Through the reviews, we defined our specific goal of designing an interactive system that can
mitigate contextual bias embedded in CNNs. In doing so, we learned that local explanation provided
through bottom-up fashion could help a user to efficiently and effectively examine CNN’s vulnerable
patterns and steers it. To situate our design considerations based on real practice, we conduct a
formative study with industry practitioners.

3.1 Method
We conducted open-ended, semi-structured interviews with professional CNN developers. In
recruiting them, we first provided a flyer to a company bulletin and communicated with industry

PID Occupation Age ML experience (years) Local explanation usage Model goal(s)
P1 ML engineer 28 3 Occasionally Fake receipt detection
P2 AI research engineer 25 5 Occasionally Face detection; Face alignment
P3 ML engineer 37 8 Frequently Multi-class classification (over 4,000 classes)
P4 AI research engineer 27 5 Always Classification; Pixel-level localization
P5 Data science advisor 40s 5 Occasionally Video and image object detection

Table 1. Study 1 participants’ demographics.
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acquaintances who use local explanations. As a result, we recruited five experts with an average of
over 5 years of experience building state-of-the-art CNN solutions in their field (see Table 1).

In shaping the detail of the interview, we strictly followed the interview methodology in HCI [78].
First, in scoping our directions of inquiry, we motivated participants to focus on sharing their
lived experiences, specifically about their practice and perception of local explanation but not
discouraging them from connecting their story about local explanation with other experiences.
Consequently, in designing our questions (shown in Appendix A), we started from their general
background and workflow in the early phase as follows. In particular, we asked about their (1) roles
and areas of expertise, the (2) CNNs they build, and (3) their development settings and tool belts.
Then we moved to their local-explanation-related questions aiming to learn their (4) workflows,
(5) reasons-of-use, (6) challenges in using local explanation, and (7) their wish lists. Second, to
construct an appropriate dialogue with our participants, two authors—who completed HCI-centered
training in their PhDs and currently working on a specialized domain of Human-AI Interaction and
Deep Learning in academia and industry, respectively—participated in every interview. One author
proceeded with the interview with questions, while the second author asked follow-up questions
to gain more specific insights. In our interview, we collected 4 hours and 31 minutes of video. On
average, each interview lasted 54 minutes, ranging from 37 minutes to 67 minutes in total.
In our analysis, we used a qualitative coding process [76] which entails two authors’ coding,

diagramming, and consensus-based theme generation. First, the two authors each created, using the
interview records, initial sets of codes, and memos [55]. Second, they shared the codes and analyzed
the emerging commonalities and discrepancies related to their perceived challenges and desires.
For the matters of discrepancies, the two authors discussed the reasons for the disagreement and
decided each matter could be agreed upon or annexed in existing commonalities. Finally, after
thinking about others’ code choices, they reviewed all our coded text, quotes, and memos to tweak
and derive the final structure.

3.2 Results
From every participant, we heard strong reasons why they apply local explanations in their practice.
The overarching reason they apply explanation in their workflow is predominantly related to
retaining the “generalizability” of their model. The generalizability explains the degree to which
the model would “shake” when it sees unexpected, different cases they didn’t see in the past. P5
mentioned: “we strongly believe that that’s the way to go, those sorts of visualizations are clearly the
path towards understanding how to improve the model. I think it’s a required envision. If the mistake
is turned out to be unreasonable, I’m going to explore my data and see why it’s not robust enough.”
P4 shared his interesting observation that accurate prediction and reasonable attention might be
somewhat correlated. He believed it was more crucial for a model to focus on the right gaze to make
it robust for unexpected cases than optimizing performance on the test set, as we could not prepare
the perfect dataset that represents every case equally. All participants shared their experiences
about the cases of spotting unreasonable attention in checking the vulnerability to remove the
model’s weakness. P3 mentioned that he uses local explanation in the model comparison task
mainly because it can be a good indicator of how robust the model can be: “I see model behaves
very differently task-by-task. ResNet works very well in one task, and VGG works well in a different
task. I have no idea why. And the local explanation tells me why.”

While attaining a CNN’s generalizability has been discussed in previous literature, our findings
extend the existing in two directions. First, we identified the three practical challenges they are
encountering when applying local explanation in their workflow every day. Second, we also
identified the three future desires that the current local explanation-driven techniques cannot
realize but could be achieved with future solutions.
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3.2.1 Challenges. C1. Iterative and Exhaustive Diagnosis: In diagnosing their model through
local explanation, participants expressed the process as “nothing is given”. In detecting vulnerable
patterns using local explanation, participants seemed to have proactive and iterative shaping of their
assumption and collecting the cases. Generally, participants went for several rounds of iterative
target image selection and local explanation generation. This generation was made based on their
dense inductive and deductive reasoning. The aspect of iterative case-based reasoning seemed
to entail nontrivial labor, which exhausts ML engineers. P1 mentioned: “I wish I could check the
(saliency) maps for every case. But coding to layout multiple maps takes some effort and does not
become feasible as the dataset gets bigger. In the end, I normally have to compromise, just checking
instances in an inaccurate category if I’m lucky, or even fewer.” P3 developed a multi-classifier that
has 4,000 to 5,000 classes. He mentioned that the required mental effort for detecting vulnerable
attention grows exponentially as the number of classes increases. In the end, he can only consider
a few “major” classes. Many of our participants remarked that their model vulnerability analysis
using local explanation is mostly a group effort, and sharing insights with colleagues also adds
up even more time. For P2’s case, his group made a web-based tool where the team member can
upload image groups and show the local explanation results for discussion due to the complexity
of coding and positioning on a screen.

C2. Ad-Hoc Diagnosis Leads to Uncertainty: The next challenge that our participants men-
tioned was the uncertainty they had to cope with in determining the vulnerable patterns. They
seemed to suffer from two types of vulnerability. Since finding the vulnerable patterns stems from
their intuition, our participants mentioned that there is no guarantee that their selection covers
every major and minor vulnerability type. In addition, upon spotting the local explanations that
gaze at unreasonable objects, they had to decide if cases sow merely noise or the signal that leads
to a vulnerable pattern. Often, our participants’ vulnerability determination process was done on
their “gut feeling”, which made them perceive the process as heuristic and ad-hoc. P2 mentioned: “I
feel like showing the pros and cons of model’s attention using local explanation is cherry picking, in
many cases. Even if someone says the quality of model attention is good or bad with some examples,
there is no ground one can say the cases represent a real pattern or merely subtle noise that won’t
likely happen in the future.” P3 also shared similar difficulties that increasing classes could result in
more bad-attention cases. Even though these problematic cases were identified, they might likely
reoccur in the future. P4 said that the hardship in verifying the severity of the vulnerability is
closely related to the fact that there is no measure that we can rely on to see the “impact of the
detected cases” from the perspective of the whole dataset. There was a minor opinion that their
feeling of uncertainty in the process was connected to the doubt about the diagnosis results. For
instance, P1 mentioned that he doesn’t believe he can completely remove the bias no matter how
much effort he may put in or what tools he may use.
C3. Hard to Steer as Intended: Every participant agreed that changing the model’s future

behavior from learned insights is challenging or often not feasible. P5 mentioned that the insights
were not actually insightful as they are often unactionable: “Surprisingly, it wasn’t really insightful
when we looked at the mistakes our model made, and the saliency map was totally unreasonable. It
was like it doesn’t know what to do here, something is missing, architectural leap or something I don’t
know, we didn’t quite solve a lot of the failure cases.” He also shared his “dream tool” idea for instant
attention adjustment, which could be some drawing applications that he could manually guide
CNNs to focus on previously missed features of images and retrain through backpropagation. P1
mentioned his current struggle to fix a model by fortifying the training set, such as adding more
data to counterbalance the failure class. He still looked for alternative methods as the performance
was not promising.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 338. Publication date: October 2023.



338:8 Tong Steven Sun et al.

3.2.2 Desires. D1. The Way to Interact: Beyond Command Line: Some mentioned that local
explanation could not fully realize their potential with command line interfaces as the way to create
them requires some work. This aspect is connected to C1; participants feel making multiple queries
for selecting images and examining model attention can become arduous. From the interaction
design’s perspective, shifting the command line-based interface to a directly manipulatable GUI
can streamline the process. P1 remarked: “I feel like a complex task like this (vulnerability diagnosis),
we would mostly benefit from GUI rather than a tool with a command line. It takes too long to create
saliency maps. Showing the maps with different selection criteria and sorting can be super helpful.”
By lowering the cost of creating local explanations, participants could more effectively examine a
bigger volume of model attention than the current design. Some also mentioned the necessity of
reorganizing results after each search, which was not easy with the current tools. P4 always looked
for failure cases manually but struggled when there were too many cases. He suggested some
summarization or pre-filtering features that prioritize interesting cases. This finding indicates it is
worth considering designing an interactive analytic system that enables a user to easily formulate
the query and see the results.
D2. Evaluating Model: Model Accuracy and Beyond: We had multiple chances to hear

participants’ voices regarding what they care about when it comes to evaluating their models. In
particular, we found that our participants shared the consensus regarding the model accuracy as a
gold standard metric that should not be sacrificed even though the purpose of revision is not for
boosting model accuracy (e.g., mitigating contextual bias). For instance, P4 was very curious to
see whether improving model attention could improve model accuracy, and if the model were not
improved, he would care less about attention quality improvement. P5 also mentioned the tension
between fairness and accuracy in model development: “I had much of a concern for fairness in my
practice, it was more the kind of thing where prioritizing fairness connects to increasing failure case.
This would result in my client making less money. If it was a courtroom, there’s a much stronger debate
here. But it’s very serious in industrial cases that fairness is important, but the accuracy is still the
king.” At the same time, they shared their concern that the way the current tools provide the model
accuracy is not enough to understand how accurate and how reasonable their models are. P2 found
it very difficult to check the saliency maps for accurate cases, and he felt uncomfortable making
decisions solely based on overlooking accurate cases since it could penalize model generalizability.
He was less focused on the test set performance than generalizability in the long run. This internal
tension helped us realize the delicate view of the way ML experts see model accuracy. It’s still the
“King” that should not be compromised, but they may still need more than that to make their model
generalizable and trustworthy enough.
D3. A Balance between “Pain” and “Gain”: One aspect we learned from our participants is

that ML engineers are generally more conservative about testing a new feature using a human-
in-the-loop-driven approach than we thought due to its high cost. Regarding the idea of using
human input for steering CNNs, some participants mentioned that the direction has potential but
would only work if the workload is manageable. For instance, P3 mentioned that he might not
likely use the new tool if the expected effort is more than what they are currently investing in
for the model diagnosis. Not surprisingly, many participants mentioned the difficulties in eliciting
data from in-house annotators or workers in crowdsourcing platforms. P5 said: “The workflow of
human-in-the-loop to adjust attention using human help, no one would say it’s a bad idea that you
could include humans and get more data and improve it. This is an obvious virtuous aspect, but it’s
not like you just sign up for data bricks, and you’re done. Getting human labels would probably need a
little bit of training. You don’t want that to be an expense to ML engineers.” This aspect helped us
realize that making a practical tool can be readily adopted. It must automate the vast volume of
work via intelligent automation and minimize the chance for human outsourcing.
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PID C1 C2 C3 D1 D2 D3 DC1 (based on C1, C2, D2) DC2 (based on D3) DC3 (based on C3) DC4 (based on C3, D2)
P1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
P2 ✓ ✓ ✓ ✓ ✓
P3 ✓ ✓ ✓ ✓ ✓
P4 ✓ ✓ ✓ ✓ ✓
P5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2. The support (“✓”) of each participant (“PID”) regarding identified challenges (“C”), desires (“D”),
and design considerations (“DC”).

3.3 Design Considerations
While we found that the local explanation serves as an indispensable tool for diagnosing the
vulnerability of participants’ data and model, they suffered in each stage of C1: detecting cases
that signal vulnerable patterns, C2: verifying them to be “real”, and C3: steering. Meanwhile, we
also found they desire to D1: have an interactive and directly manipulatable design that can cut
down their effort for writing lots of queries and parameters, D2: use the product that can improve
the model accuracy while also improving the quality of model attention to be reasonable, and D3:
enable users to achieve the new feature with a reasonable size of additional labor.
As D1 suggests, we were able to find the reason why the interactive interface can be well

appreciated by ML engineers, especially when completing their task requires deep thinking and
iterative interactions with their tool. In designing the system, we further synthesize our findings
and establish the design considerations as shown below. Table 2 also shows how the participants
(“PID”) support the identified challenges (“C”), desires (“D”), and design considerations (“DC”).
• DC1. Semantic local explanation browser: Seeing the results of local explanations for finding
the cases that signal vulnerable patterns is the first stage to mitigating contextual bias. In this
stage, providing a semantic browser—that users can see, rank, and select the dominant semantic
object types observed within the model’s area of attention for every image—could reduce ML
engineers’ uncertain feelings and save them time. In building a dog detector, this feature may
enable a user query such as “find every image attentive on treat” or “rank every object type by
its occurrence in a dataset.” Descriptive statistics, such as how frequently the object types appear,
can help users understand the degree to which the object grabs the model’s attention. DC1 will
relieve C1, C2, and D2 (based on all 5 participants).

• DC2. Labor-efficient selection of “unreasonables” and adjustment of their attention
boundaries: Using the browser, users can diagnose a CNN by finding the cases that show
unreasonable attention (“unreasonables”, hereinafter). Then the users would annotate the areas
that can make the annotation reasonable. The system would need to provide this annotation
with a lightweight interaction cost. DC2 is related to D3 (based on 2 participants: P3 and P5).

• DC3. The fine-tuning mechanism that can boost both model accuracy and model atten-
tion quality: One of the most evident consensuses among the participants was their difficulties
in steering CNNs. Therefore, the tool must help users to clearly understand how the CNN’s
quality of the model attention visualized through local explanation has been changed based on
the input the users provided. While doing so, the tool must not compromise the model’s accuracy
performance. DC3 is derived from C3 (based on 2 participants: P1 and P5).

• DC4. Evaluation results that show what has been changed: The last stage of the workflow
would be to help users understand how their attempts made a difference. In showing the differ-
ences, providing a set of views that show the difference made regarding the accuracy of model
prediction, the quality of model attention, and the combined view that explain how the changing
of the attention has been related to the accuracy would facilitate users’ understanding of the
impact. DC4 is derived from C3 and D2 (based on 4 participants: P1, P2, P4, and P5).

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 338. Publication date: October 2023.



338:10 Tong Steven Sun et al.

4 DEEPFUSE
Based on the DCs in S1, we designed DeepFuse. DeepFuse is the first interactive system designed
and built to support a CNN engineer’s contextual bias-related tasks based on their practical needs.
The early part of DeepFuse’s workflow is defined based on what we learned from ML engineers:
First, a user prepares the base CNN model and datasets to be used for diagnosis (the “loading
model” and “loading dataset” tabs). Second, a user collects the cases where their gazes are on
unreasonable objects by browsing local explanation results (i.e., the “accessing attention quality”
tab in DeepFuse). The rest of the stages follow the recent literature that proposes model steering
through local explanation [28, 29, 66]. Third, for the collected “unreasonables”, a user corrects the
attention boundary to shift the CNN’s future gaze from contextual objects and starts to fine-tune
the base CNN model with annotations (the “adjusting attention” tab in DeepFuse). Finally, a user
sees how the approaches made the CNN different (the “evaluation” tab in DeepFuse).

4.1 Interacting with DeepFuse
Consider a scenario for Sarah, an ML engineer who has trained a dog classifier built based on a
CNN architecture. She found the model accuracy performance was not enough for deployment and
found a few cases that she could not understand why it failed. She decided to examine her model
using local explanations. First, she created local explanations for a few accurate and inaccurate
cases for multiple rounds to reason what could be wrong. After her search, she found out the
model’s focus sometimes moves to some specific contextual objects, such as balls and treats. To
study if the cases would repeat, she decided to invest her time in generating local explanations for
all the images and checking them serially. She put some effort into coding for loading and saving
files (models, images, and statistics). For the dubious cases, she decided to collect similar datasets
for further testing (C1). Along the path, she started to wonder if the contextual object types she
identified were comprehensive. She decided to examine other object types (C2). Upon confirming
every case and object type that signals the vulnerability of her model, she will need to find a way
to steer the model’s behavior (C3).
Using DeepFuse, her workflow can make better progress with less effort. First, she uploads the

base CNN and the image data she will use for diagnosis. Leveraging the automatic local explanation
object aggregation feature, DeepFuse will provide a list of object types that her CNN is gazing at,
such as dogs, cats, balls, treats, and other object types, with examples. She asks DeepFuse that she
wants to see every case that is attentive to objects other than “dogs”. Based on her specification,
DeepFuse local explanation results are grouped based on object type categories (DC1). She can
quickly skim through each category (e.g., dogs, balls, treats, and cats) and confirm dubious local
explanations as “unreasonables” in a few clicks. DeepFuse will suggest the automatically drawn
“reasonable” boundary for unreasonables’ and asks Sarah to confirm or manually refine (DC2).
Upon her confirmation, DeepFuse will fine-tune the base model such that it won’t make the same
mistakes (DC3). After the fine-tuning, Sarah can check how the models’ performance regarding
model accuracy and model attention quality has changed (DC4).

4.2 Workflow and System Components
DeepFuse supports stage-based workflows to inspect the model. The global navigation bar (see
Fig. 1) on top of the screen provides access to each stage.

4.2.1 Loading Model and Data. DeepFuse allows users to upload their base CNN models and
datasets. In designing the feature for model upload, we considered compatibility with one of the
most widely used Python libraries for building CNNs, PyTorch [72]. Next, the “loading dataset” tab
helps a user to upload the image datasets for diagnosis (a validation set, hereinafter) and a final
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Fig. 1. DeepFuse GUI (“Assessing AttentionQuality” tab): A screen for attention quality assessment with
3 visual options (color-scale, gray-scale, or polygon mask) at the top-right corner (C). The left-hand side (A)
includes a filter module for displaying samples containing relevant/irrelevant objects, which are based on
the user’s specification of object relevance regarding the current model’s goal (as shown, only “person” is
selected as the relevant object to gender classification). By checking the green/yellow progress bar (B) at the
bottom of the screen (the current progress: “17%” reasonables vs. “83%” unreasonables), the user can track
the assessment progress and proceed to the next step when the sum reaches 100%.

evaluation after the fine-tuning (a test set, hereinafter). In particular, the validation set is used for
diagnosing contextual bias in the next stage. Using the test set in the last stage, a user can evaluate
the final model by comparing before and after treatment and more.

4.2.2 Attention Quality Assessment. This stage has two goals. First, helping a user understand
which semantic object types are causing contextual bias by which degree (DC1). Second, helping a
user categorize every image into reasonable or unreasonable (i.e., the images that do not focus or
focus on contextual bias in their local explanation) (DC2), which will be used in the next stage. For
both goals, the core mission is to significantly cut down a user’s labor compared to their current
practice.

In achieving the first goal, DeepFuse provides a list of semantic object types that can be observed
in the model’s focused area ordered by how frequently they appear. In detecting the semantic object
types, DeepFuse adopts a pre-trained object detection model [38] that is capable of detecting 80
object types defined in the Microsoft COCO dataset [59] (e.g., “person”, “bicycle”, “dog”, etc.). A
user will decide if the semantic object types are relevant or contextual to a CNN’s goal. In a gender
classification problem, for example, the relevant object type can be a human face, while other object
types, such as neckties or bicycles, can be contextual. Second, based on the relevant object types
specified by a user, DeepFuse intelligently suggests if local explanations of the images in a validation
set are reasonable or unreasonable (see Fig. 1, green borders suggest the local explanations are
reasonable while yellow borders suggest unreasonable). The suggestions can reduce a user’s time
for assessing the quality of local explanations. In positioning the results of suggestions, DeepFuse
separates them into two sides: inaccurate images on the left and accurate on the right. This layout
helps determine which semantic object contributes to accurate/inaccurate records by how much.
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Fig. 2. DeepFuse GUI (“Adjusting Attention” tab): A screen for attention adjustment with an attention
drawing panel (top-right corner) for manually annotating an individual local explanation.

When a user encounters a suggestion that is not right, (s)he can flip the suggestion by clicking the
image, the semantic object group, or every of the accurate or inaccurate images. Finally, DeepFuse
provides 3 options for visualizing local explanation results: color-scale, gray-scale, or polygon mask
(see Fig. 1-C).

4.2.3 Adjusting Attention. To support the later part of DC2—correcting the attention boundary of
images categorized as unreasonables, DeepFuse needs an efficient annotation experience, especially
because boundary drawing is an expensive annotation task. In doing so, DeepFuse shows a vis-à-vis
comparison between the current model attention on the left and the suggested attention boundaries
on the right-hand side (see Fig. 2). The suggested boundaries are made based on the Mask R-CNN
model [38] we applied in 4.2.1. If the suggested boundaries are not enough, a user can redraw
manually (see the drawing panel in Fig. 2). In checking the boundary suggestions, a user can
separately examine the images from (1) unreasonables that are accurate (i.e., the images that were
accurately predicted based on the wrong reasons, or by “luck”) and (2) unreasonables that are
inaccurate (i.e., the image group that made an inaccurate prediction potentially because of seeing
wrong contextual objects [29]). Upon finishing the correction for unreasonable, DeepFuse becomes
ready for fine-tuning using adjusted inputs.

4.2.4 Fine-Tuning. This stage is the key to maintaining an overall effective pipeline. Based on
DC3, we implemented a fine-tuning mechanism that can consider attention adjustment as new
guidance for revising a better model and making the process of using boundary adjustment input
straightforward. The existing approach to optimizing a CNN’s model performance in the fine-
tuning process is to minimize only the prediction loss—an error measure between model predictions
and actual values. To boost both the model performance and the interpretability of the black-box
CNN model, we adopted Explanation-guided Learning framework [26] where the model accuracy
performance and local explanation quality are jointly optimized with the prediction loss and
attention loss. Our intention for adding the attention loss during model training is based on the
assumption that the model can learn to pay attention to the right semantic object types for the
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prediction tasks, thus naturally enhancing both the explainability and generalizability. While the
techniques in Explanation-guided Learning are in their early stage, some studies started to validate
how applying both terms of explanation loss and prediction loss can benefit DNN performance
using text data [20, 32, 101], image data [25, 28, 29], and graph-structured data [27].
However, the techniques in Explanation-guided Learning have not been tested by human par-

ticipants in their workflow. Our aim in building DeepFuse is to understand how “real” human
participants can interact with a system to leverage the techniques and if we can find evidence that
using the techniques can practically help users in mitigating contextual bias in their CNN revision
workflow. For the implementation of the explanation objective for DeepFuse, we adopted the most
recent approach called RES [28], which proposed a generic robust framework for learning based
on a user’s boundary adjustment under the assumptions that the human annotation labels can
be (1) not exactly accurate in drawing the boundary, (2) can be incomplete in the region, and (3)
inconsistent with the distribution of the model explanation (i.e., binary annotation vs. the boundary
with alpha channel). Consequently, in the benchmark test, RES outperformed GRADIA [29] and
HAICS [61] in leveraging human annotation boundaries and robust against the aforementioned
annotation noises [16, 17].
In implementing, we utilized two methods from the RES’s GitHub codebase1, “Baseline” as

the conventional state-of-the-art fine-tuning mechanism that applies a prediction loss but not an
explanation loss. This will be used as a baseline to help a user to understand how using DeepFuse
can make a difference in model accuracy and model explanation quality. Next, we implemented
“RES-G” as the experimental attention steering mechanism that jointly optimizes the prediction loss
and explanation loss. Upon using DeepFuse to finish their boundary adjustment, a user will click
fine-tune to activate the fine-tuning process. Typically, our fine-tuning mechanism takes at least a
few hours, and it is not possible to realize a real-time system yet. In the system’s back end, we
built a schedule queue that receives the boundary input one by one. The inputs will be fine-tuned
in order by a system administrator.

4.2.5 Evaluation Dashboard. Model evaluation is the last stage, where a user can check how
the input has changed a model’s varying performances. Based on DC4, we designed this stage
to help a user understand not only how model accuracy has been changed but also how the
quality of local explanation has been shifted. Most importantly, this stage attempt to facilitate a
user’s understanding of how accurate or inaccurate records are reasonable or unreasonable local
explanations are related. In doing so, we adopted Reasonable Matrix [29], an evaluative matrix that
explains the model’s performance using the four groups as follows:
• Reasonable Accurate: The group that has accurately predicted records with reasonable attention.
The bigger the group is, the more generalizable the model is.

• Unreasonable Accurate: The group that has accurate records but is based on unreasonable
attention. Records in this group can be considered “lucky guess”. Reducing this group can increase
model generalizability.

• Reasonable Inaccurate: The group has inaccurate records, but the attention is on the right area.
• Unreasonable inaccurate: The group has inaccurate records while their attention is also on
unreasonable objects. This group can be considered an opportunity group, as shifting the gaze to
reasonable objects can flip the prediction from inaccurate to accurate.
To generate a Reasonability Matrix, it is required to assess if the local explanation results are

reasonable or unreasonable. DeepFuse provides an automatic annotation feature to avoid relying
on human annotation (as D3 suggests). In particular, a user can select from 3 options. Strict: assess

1Available at: https://github.com/YuyangGao/RES
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Fig. 3. DeepFuse GUI (“Evaluation” tab): Screens for evaluation, including performance dashboard views
(2 sub-figures on the left) and a screen for vis-à-vis model attention comparison for every image (right).

local explanation as reasonable if the attention of a record includes only relevant objects and does
not contain irrelevant objects; Moderate: assess reasonable if the majority portion of an image
contains relevant objects while the minor portion includes irrelevant objects; Relaxed: assess
reasonable if the attentive area has any overlap with relevant objects.
After a user selects the Reasonability Matrix creation option, (s)he can start the evaluation. To

help a user understand what has been changed, DeepFuse prepares the three conditions as follows:

• M: the initial model before fine-tuning.
• M𝑏𝑎𝑠𝑒 : the state-of-the-art fine-tuned model usingM without applying attention input.
• M𝑒𝑥𝑝 : the fine-tuned model usingM that uses attention input.

Using the three conditions, DeepFuse provides two pairwise comparisons of (1) Before vs. After:
comparing M andM𝑒𝑥𝑝 and (2) State-of-the-art vs. our approach:M𝑏𝑎𝑠𝑒 andM𝑒𝑥𝑝 .
In each pairwise model evaluation, there were 4 types of analytic views that users could do

in-depth evaluations. (1) Overall interpretation: for helping a user to directly understand how
model accuracy and attention quality have been changed, the view presents a Reasonability Matrix
showing percentage changes in 4 sub-groups (see the top-left sub-figure of Fig. 3). The view also
shows numeric comparisons to track the overall model accuracy and attention quality changes (see
the bottom-left sub-figure of Fig. 3). Finally, a user can see the generated performance report and an
attention explorer module to derive insights about the effectiveness of the model conditions (e.g.,
whether the “unreasonable inaccurate” cases have been reduced by attention steering regarding the
test image data). (2) Accuracy-related analysis: this view provides accurate/inaccurate record
bar plots grouped by common objects, helping users understand which semantic object types
contribute to accurate or inaccurate records. (3) Local explanation quality analysis: In this
view, we present IoU distribution charts. IoU (Intersection over Union) helps us to understand the
overlap between the model’s focused gaze and relevant objects. IoU of 0% means the gaze is entirely
located on contextual objects, whereas 100% means the gaze is only on relevant objects. The higher
the IoU score, the better an attention area aligns with the ground truth. In this view, we further
help users browse cases based on IoU values (e.g., show images where IoU is between 40% and
60%). (4) Record-wise attention comparison: the right screen in Fig. 3 contains a comprehensive
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comparison of models’ local explanations, side-by-side for all conditions. This design helps a user
quickly recognize attention quality changes among different conditions.

4.3 Implementation
DeepFuse is a browser-based user interface with a lightweight back end built with Python Flask,
fully compatible with widely used ML and visualization libraries in Python (e.g., PyTorch, Grad-
CAM, OpenCV, Matplotlib, etc.). The front end was developed using HTML, CSS, JavaScript, and
D3.js for creating dynamic and interactive elements (such as the attention-drawing feature) to
communicate between users and models. More detailed technical settings and a live demo of
DeepFuse can be found in our GitHub repository2.

5 STUDY 2: SUMMATIVE STUDY
The core tasks integrated into DeepFuse—(1) diagnosing CNN’s vulnerable patterns through lo-
cal explanation and (2) making the found patterns actionable through direct model attention
adjustment—have not been introduced in the previous work. Further, our “system” has multiple
sub-pieces connected together into a “single working whole” [45] to streamline the target task. Due
to these characteristics, we avoid applying comparison or experimental study where we have a
clear baseline, just like many previous HCI work [22]. Instead, we choose to derive our directions of
inquiry by defining research questions (RQs), then triangulate the way we collect data in multiple
ways to answer the questions. Our goal in S2 is to create reusable pieces of knowledge in terms of
what piece integrated into our system can be useful and understand how the system, as a whole,
can be effective in supporting ML engineers who mitigate contextual bias.
To achieve our goal, we first aimed at understanding the effect of workflow—how our new

workflow of model steering using local explanations introduced through an interactive environment
can make a difference for ML engineers. The research questions (RQs) in this category are: RQ1a.
How has a user’s viewpoint about using attention as a method for model revision changed after
experiencing our workflow? and RQ1b. How has a user’s viewpoint about using attention as a
method for evaluating their model performance changed after experiencing our workflow?
Next, we were curious to learn the effect of using DeepFuse itself as a system—how using
DeepFuse can change the outcomes for mitigating contextual bias? In particular, the RQs regarding
this direction are: RQ2a. How did using DeepFuse in the input phase make participants’model
diagnosis process different? RQ2b. How did using DeepFuse impact the outcome of contextual
bias in terms of model accuracy and attention quality?

5.1 Method
We recruited 12 participants by snowball sampling through our network in industry and academia
or advertising on social media. In defining the S2 sample size, we followed the most common sample
size of the past CHI publications consulted from Caine’s work [11]. The participants were selected
by a screening survey where we asked about their demographics and degree of expertise in building
vision-based models using CNNs, the task goals of vision models if experienced, professional
position, experience in using local explanation, and whether they have heard of and understands
the importance of detecting the “wrong” attention to handle contextual bias. We are aware of
the potential Hawthorne and novelty effects of having overestimated results when participants
are being studied and new to our system [2, 21, 52]. To reduce the effects, we particularly hired
experienced CNN developers who have established their own approaches in CNN fine-tuning.
Later in the study, we asked them to compare the effectiveness between our approach and their

2Available at: https://github.com/TongStevenSun/DeepFuse
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PID CNN expertise Model goal(s) Position DeepFuse duration in minutes
(input + output)

P1 Experienced Multi-class classification Academic researcher 68 (47 + 21)
P2 Experienced Image classification Academic researcher 28 (16 + 12)
P3 Experienced CIFAR image classification; Glass defect classification Academic researcher 24 (14 + 10)
P4 Experienced Adversarial robustness Academic researcher 62 (31 + 31)
P5 Intermediate Image classification Industry practitioner 53 (20 + 33)
P6 Intermediate Visualization between peptide and MHC interaction Industry practitioner 41 (19 + 22)
P7 Experienced 3D modeling and relighting Industry practitioner 56 (31 + 25)
P8 Experienced Acoustic event classification based on images Industry practitioner 59 (33 + 26)
P9 Experienced Face anti-spoofing; Image benchmark classification Industry practitioner 51 (34 + 17)
P10 Experienced Face image classification Academic researcher 44 (25 + 19)
P11 Intermediate Optical character recognition (OCR) Industry practitioner 17 (12 + 5)
P12 Beginner Natural language processing (NLP); Contextual bias Academic researcher 26 (17 + 9)

Table 3. Study 2 participants’ demographics and system usage duration (in input and output sessions).

Fig. 4. Study 2 workflow (top) and star marker distribution in our gender classification dataset (bottom).

current approaches and give reasoning. We recruited 12 qualified participants (2 females and 10
males, aged between 20 and 43) out of 43 who submitted the screening survey. Six participants were
academic researchers, and the other six were practitioners. Eight participants identified themselves
as experienced, three as intermediate, and one as beginner developers in vision-based modeling.
Although the experience distribution was imbalanced due to our consideration of having all genders’
perspectives, there should not be any potential effect of this distribution on the study since all
participants were qualified for the study with a good understanding of handling contextual bias
and wrong reasoning of a model based on its saliency maps. Eight participants out of 12 have
experienced using local explanation to improve model performance in the past (see Table 3).
Figure 4 summarizes the S2 workflow. Participants joined two online sessions, the input and

output sessions, for two consequent days. Participants joined the sessions virtually on Zoom and
shared their screens with us. In the input session, we onboarded participants by explaining the
purposes of the DeepFuse and presenting how model evaluation could be done differently using
local explanations of a standard classifier. Then participants went through a tutorial where they
practiced using the interface with a toy dataset. The onboarding and tutorial took 30 minutes. After
the tutorial, participants performed the early phase of tasks using features introduced in 4.2.1, 4.2.2,
and 4.2.3. After an input session, we fine-tuned the initial model (M) into 2 conditions of models: a
state-of-the-art model without users’ inputs (M𝑏𝑎𝑠𝑒 ) and a model using our users’ attention inputs
in the validation set (M𝑒𝑥𝑝 ). The output session was scheduled one day after the input session since
we cannot make our participants wait until fine-tuning is done. On the following day, participants
joined the output session, where they used the reviewing feature of DeepFuse to assess the model
performance using the features introduced in 4.2.5. After the review, we conducted semi-structured
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interviews with the participants. After finishing two sessions, we provided them with 60 USD as a
token of appreciation.
While the input session took 90 minutes and the output session lasted two hours, as shown in

Table 3, participants used DeepFuse for about 25 minutes on average in the input session (𝑀𝑖𝑛 = 12,
𝑀𝑎𝑥 = 47, 𝑆𝐷 = 10.43) and about 20 minutes in the output session (𝑀𝑖𝑛 = 5,𝑀𝑎𝑥 = 33, 𝑆𝐷 = 8.88).
The average time spent on the system in both sessions was about 45 minutes (𝑀𝑖𝑛 = 17,𝑀𝑎𝑥 = 68,
𝑆𝐷 = 16.83).

5.1.1 Task, Data, and Model. While DeepFuse can work with any classification task, we chose a
binary gender classification problem for the study. We are aware of the limitation of framing the
gender recognition task as a binary classification, which cannot fully represent the viewpoint of
gender diversity. We are aware of the negative aspects of choosing a binary gender classification as
the main task in S2. For instance, automatic gender recognition primarily classifies gender through
physical characteristics, which can disadvantage gender minorities [36]. Also, while we believe
that binary cannot represent the diversity in gender, we chose the task because it is one of the
most widely adopted tasks in the problem of contextual bias [39, 104]. We note that our choice of
the binary classification task is to demonstrate the system’s capability of solving contextual bias
in a relatively simplistic setting with the help of well-annotated datasets used for training CNN
classifiers. We also note that we explained the possible concerns that can stem from the binary
gender classification to our participants at the beginning of the study.

The dataset used in the study was selected from the Microsoft COCO dataset [59], one of the most
widely used datasets in ML and computer vision communities. The dataset was chosen because of
its well-structured label formats and abundant 80 object classes co-appearing with humans, and it
has been used for contextual bias studies [104]. The image selection process has three steps. First,
the images were filtered by the segmentation labels of the “person” class for single-person images
only. Second, the images were re-filtered by the gender-related keyword in the captioning labels
(i.e., “male”, “man”, “men”, “female”, “woman”, “women”). Lastly, the filtered images were examined
manually to have the best quality images for the gender classification task, excluding images with
very small human figures that were unidentifiable for classification. In total, we extracted 2,000
images and split them into 1,000 in the training set, 500 in the validation set, and 500 in the test set.

Since we wanted to test the DeepFuse ’s capabilities of detecting and reducing contextual bias, we
needed a model that had a reasonable performance but was vulnerable to contextual bias. We first
manually added contextual objects (i.e., green star markers) on the top-left corners of the images.
The distribution of the star-added images is shown in Fig. 4, bottom. For the training set, 1/3 of
the “male” images (N = 167) were added with stars. For both the validation and test sets, the star
markers were added only on the “female” images (N = 250). Then, we trained a standard ResNet-18
classifier (denoted as “M”) using the biased image data. In deciding on ResNet architecture in S2,
we tested several models built based on ResNet-18 and 50. We found no significant model accuracy
improvement by adding more layers to the ResNet-18 architecture. Therefore, we chose a less
complex model architecture to make DeepFuse lightweight. Since the majority of images in the
training set were original images, the model can achieve a reasonable prediction accuracy of 74% on
regular images without the star markers. We should expect that the model only saw “male” images
have star markers. When we tested the model on the validation set that only has star markers in
the female class, the accuracy dropped to 43.8%, and 77.6% of “female” images were mispredicted.
This showed that the model only used commonly appeared star markers on “male” images as a
feature to make predictions for images with the same contextual objects, meaning the model (M)
was vulnerable to contextual bias.
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In generating local explanations, DeepFuse applies Grad-CAM [79] on the last convolutional layer.
Due to CNN’s hierarchical structure and comparisons of attention maps between layers [68, 79],
earlier layers’ attention maps are more scattered around objects’ edges and corners, whereas the
focus of local explanation gets shape to semantic objects as getting closer to later layers (see Fig. 5
in [50]). Using the last layer, local explanations can create more semantic object-level meanings,
which a human user can easily leverage for adjusting boundaries.

5.1.2 Input Session. At the beginning of the input session, we discussed the idea of using local
explanations for mitigating contextual bias in a binary gender classification task. After the discus-
sion, we demonstrated how participants could upload their models and datasets using DeepFuse.
Then we explained DeepFuse’s model vulnerability diagnosis feature explained in 4.2.1 and 4.2.2.
and attention adjustment feature described in 4.2.3. Upon the end of the tutorial, we gave time
for participants to mimic the whole process using the same toy dataset and ask any questions.
Then, we asked participants to start the main session. We erased all prior input and asked users
to start over the process using a larger dataset (particularly assessing the local explanations of
the validation set) and a base model we provided. During the main session, participants had to
use the system without help. The main session was video-recorded. Once participants finish their
input session, we asked them to fill out an input survey, asking 2 questions for the “absolute” and
“relative” valuations as follows:

• Q1: “[RQ2a, Absolute] I found understanding themodel’s vulnerable aspects using DeepFuse
to be _____.” (A 7-level Likert scale of usefulness. “7” is “extremely useful”.)

• Q2: “[RQ2a, Relative] Using DeepFuse, understanding themodel’s vulnerable aspects was
_____ than my current practice.” (A 7-level Likert scale of difficulty. “7” is “much easier”.)

5.1.3 Output Session. In this session, participants evaluated the performance change of the im-
proved model with the test set. In particular, DeepFuse provided two pairwise comparisons between
M and M𝑒𝑥𝑝 , and M𝑏𝑎𝑠𝑒 and M𝑒𝑥𝑝 ) (see 4.2.5). After the short output session tutorial using a toy
test set, participants started the main output session using the model they fine-tuned from their
input session and the larger test set. Once users were finished with all the analysis and comfortable
with their findings, we moved to the semi-structured exit interview. The interview had 9 question
categories that were made to understand (1) their general perception about DeepFuse, such as the
pros and cons they felt throughout the two sessions, (2) their perception of the specific perspectives,
including (2-a) experiencing local explanation adjustment, (2-b) applying reasonability matrix in
assessing the model performance, (2-c) features they used in day 1, (2-d) features they used in
day 2, and (3) their suggestions for the better DeepFuse in the future. Same as S1, two researchers
attended every interview. After the interview, they completed an output survey with 6 questions
(see Q3 to Q8 below). Lastly, to check the usability of DeepFuse, we asked participants to fill out
the System Usability Scale (SUS) survey [9] (see Appendix B).

• Q3: “[RQ2b, Absolute] I found the capability of DeepFuse regarding improving the model
performance using my input was _____.” (A 7-level Likert scale of effectiveness. “7” is “extremely
effective”.)

• Q4: “[RQ2b, Relative] I found the capability of DeepFuse regarding improving the model
performance was _____ than my current practice.” (A 7-level Likert scale of effectiveness. “7” is
“extremely effective”.)

• Q5: “[RQ1a, Absolute] Adjusting the saliency maps (as DeepFuse guided) can be effective in
building future models.” (A 7-level Likert scale of agreement. “7” is “strongly agree”.)
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• Q6: “[RQ1a, Relative] Adjusting the saliency maps (as DeepFuse guided) can practically
change my model-building practice to a better form in the future.” (A 7-level Likert scale of
agreement. “7” is “strongly agree”.)

• Q7: “[RQ1b, Absolute] On top of a model accuracy performance, using saliency maps (as Deep-
Fuse guided) can provide an effective measure for evaluating my future model performance.”
(A 7-level Likert scale of agreement. “7” is “strongly agree”.)

• Q8: “[RQ1b, Relative] On top of a model accuracy performance, using saliency maps (as
DeepFuse guided) can practically change the way I evaluate my future model performance
to a better form.” (A 7-level Likert scale of agreement. “7” is “strongly agree”.)
For the analysis of the exit interviews, we followed the similar process we applied in analyzing

S1. The difference from S1 was the existence of the video recordings. The recordings were reviewed
multiple times for transcription, code development, and analysis to synchronize with the notes. The
codes and memos were developed by our two authors gradually as we intake more interviews. After
the final interview, each of the authors developed the themes and shared them with each other,
developing the consensus-based diagram that articulates the main insights we learned relevant to
explaining the three RQs.

5.2 Results
In this section, we aggregated all survey and interview responses from the participants for the RQs
we developed. S2 results suggest that (1) the workflow of the local explanation-based attention
steering provided a diverse perspective in diagnosing model vulnerability, (2) the direct steering
design helped the process of model revision straightforward, and (3) every participant enjoyed
improved key model performance measures. Specific sub-tasks, how they are improved, and why the
participants perceived they are improved are in Table 4. We believe these are not merely because of
the Hawthorne and novelty effects since we have subjective evidence of performance improvement
and assessment efficiency. We also organized the aspects that need improvement in Table 5, which
we share in detail in the Discussion section.

The behavioral data we collected shows that all participants generated themodel that outperforms
(1) its model accuracy, (2) the overlap between the model’s focus and the relevant object types (IoU),
and (3) the proportion of reasonable attention out of all images in a test set. The average accuracy
of 12 users’ fine-tuned models (M𝑒𝑥𝑝 ) was 82.95%, with an average IoU of 0.39 (“Intersection
over Union” with respect to the attention ground truth of the user-defined gender-related object:
“person”), and the average proportion of reasonable attention was 89.55% (see Fig. 5-A). All these

What was improved How it was improved Why it was improved PIDs & (count)

Diagnosing
CNNs

More diverse and rigorous
perspectives in assessment

Reasonability matrix and IoU density charts provide more “diverse”
and “rigorous” measures for assessing CNNs

P1, P2, P3, P5,
P6, P8, P9, P10,
P11, P12 (10)

Reduced labor for model
assessment

The GUI accelerates local explanation generation and vulnerability
detection without repetitive coding

P2, P3, P5, P6,
P7, P8, P9, P10,
P12 (9)

Revising CNNs Steering CNNs become more
intuitive and straightforward

Direct adjustment using local explanation makes CNN steering
easier in a more intuitive way than current practice

P2, P4, P9, P10
(4)

Outcomes

Model accuracy Shown through behavior data
Shared during interview All (12)

Model attention
Shown through behavior data
Shared during interview All (12)

3 particularly remarked fairness P2, P5, P10 (3)

Model robustness 4 particularly remarked the approach can improve a model’s
robustness against malicious attacks

P1, P2, P3, P4
(4)

Table 4. Study 2 user feedback regarding DeepFuse’s advantages.
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Fig. 5. Model improvement by DeepFuse and user feedback (Study 2): (A) Model performance compar-
ison between three model conditions: M (the initial classifier), M𝑏𝑎𝑠𝑒 (the state-of-the-art fine-tuned model),
andM𝑒𝑥𝑝 (DeepFuse’s fine-tuned model using attention). OnlyM𝑒𝑥𝑝 ’s performance (green bars in (A)) is
averaged from 12 models steered by our 12 participants. (B) User responses in two valuation perspectives
(“absolute” on the first row, and “relative” on the second row) from the input survey (Q1, Q2), the output
survey (Q3 to Q8), and the System Usability Scale (SUS) survey (the green dotted line in the box plot is the
above-average level of 68; Md = 75, M = 76.88, SD = 14.70).

performances outperformed both the initial model (model M: accuracy = 47.6%, IoU = 0.12, attention
reasonability = 51.8%) and the model that applied state-of-the-art fine-tuning method without
attention (modelM𝑏𝑎𝑠𝑒 : accuracy = 79.0%, IoU = 0.26, attention reasonability = 79.4%).
Regarding the attitudinal survey data, every absolute and relative question’s mean was over 4.

In terms of absolute questions, 100% of ratings were above 4-“neutral” (M = 6.19, SD = 0.67). This
indicates that participants were satisfied with the overall quality of the workflow and the system.
Regarding the relative questions, 89.6% of ratings were above 4-“neutral” (M = 5.94, SD = 1.24),
which indicates that they felt applying the workflow and the system can practically improve their
current practice.

5.2.1 [RQ1-a] Workflow: Adjusting model attention as a CNN steering method. After
completing the user studies, the majority of users strongly agree that adjusting local explanations
can effectively improve model performance (Q5 rating: M = 6.42 out of 7-“strongly agree”, SD =
0.64, as shown in Fig. 5-B). Also, people think their current modeling processes can be practically
improved by considering the attention adjustment method (Q6 rating: M = 6.17 out of 7-“strongly
agree”, SD = 1.07).
During interviews, all participants shared their positive impressions about the effectiveness of

attention adjustment in improving model accuracy, which is the primary objective of conducting
model fine-tuning. They also confirmed that the impact of contextual bias was reduced as attention
quality increased by attention steering. By adding a new perspective from humans, a model also
becomes fairer in making predictions for each target class (P2, P5, P10). Participants (P1, P2, P3,
P4) with experience in model attack and defense shared the possibility of using our method to
improve the robustness of the models against backdoor attacks, letting the model ignore small
perturbations on an image and focus on the right area. We learned that after trying our method,
people gained awareness of considering human-in-the-loop and visual-based approaches in model
steering since most of the ML researchers use algorithmic approaches for handling contextual bias,
such as data augmentation, hyperparameter tuning, ensemble methods, etc., rather than extensively
using visualization in the fine-tuning process.
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5.2.2 [RQ1-b] Workflow: Adding quality of model attention in evaluating CNNs. Based
on the feedback, users agree that using an attention evaluation method (e.g., reasonability matrix
as DeepFuse guided, based on Gao et al. [29]) is effective in diagnosing model vulnerabilities (Q7
rating: M = 6.33, SD = 0.47, see Fig. 5-B), and they are very likely to use this method for improving
future practices Q8 rating: M = 6.08, SD = 0.76).

Participants think that the attention assessment features in DeepFuse provide more diverse and
rigorous perspectives in assessing a model’s vulnerabilities, especially the reasonability matrix,
which can be seen as an expansion of the accuracy dimension to understanding “why” a model
underperforms (P1, P3, P5, P6, P8, P9, P10, P12). P1 and P4 endorsed the necessity of equipping
a reasonable matrix assessment step in checking the model’s decision-making. The matrix inter-
pretation was straightforward to most users, as it is related to the widely-used confusion matrix
concept in the data science domain. The dynamic shifts of model vulnerability were well presented
as shown by the reasonability matrix (3 vulnerable sub-groups, “UIA - unreasonable inaccurate”,
“UA - unreasonable accurate”, and “RIA - reasonable inaccurate”). One major task we designed for
users to achieve was the recognition of a backdoor attack in the data (i.e., added green star markers
which may trigger a false prediction by the model), and all participants were able to identify the
impact of the attack by evaluating attention quality using the reasonability matrix.

5.2.3 [RQ2-a] System: How DeepFuse improved CNN diagnosis. After comparing with
people’s current practices, DeepFuse was confirmed as a useful (Q1 rating: M = 5.92 out of 7-
“extremely useful”, SD = 0.76, see Fig. 5-B) and easier tool (Q2 rating: M = 6.0, SD = 1.15) in
understanding model vulnerability, benefiting from the labor-efficient mechanisms.
The step-by-step nature of the assessment process in DeepFuse allows users to systematically

detect both contextual and manipulated bias in the data, making it easier to reduce model vul-
nerability (P3, P9, P12). People believe this GUI design can significantly reduce human effort in
coding and visualization management for comprehensively assessing a CNN (P2, P3, P5, P6, P7, P8,
P9, P10, P12). ML engineers are well aware of the advantages of using visualization to compare
metrics and surface bias, but it is a cumbersome task (e.g., repetitive file creation and loading, lack
of visual-based explorers for local explanations, etc.). Instead, people mostly use command lines
and unintuitive numeric comparisons for checking vulnerabilities.

One important feature that people liked was the local explanation grouping by detected objects
(e.g., “person”, “bicycle”, etc.), which allowed them to check attention quality and accuracy changes
within the common object level (P2, P3, P6, P9, P12). Some users pointed out that having consistent
criteria for annotating attention quality regarding the classification task could be tricky with
subjective uncertainty (P2, P4, P6, P9, P11). P6 mentioned that during the initial exploratory
analysis of some models, users might not have good/bad attention criteria for annotating the
attention. P10 shared an experience in exploring what objects cause contextual bias, and the biggest
challenge was making a reasonable assumption at first and evaluating it over time. This challenge
is critical if the annotation task is outsourced to multiple people.

5.2.4 [RQ2-b] System: How DeepFuse improved CNN revision outcomes. According to
survey responses, people witnessed the highly effective capability of DeepFuse in the performance
steering task (Q3 rating: M = 6.08 out of 7-“extremely effective”, SD = 0.64, see Fig. 5-B). Regarding
the same task, people found it slightly more effective than current approaches (Q4 rating: M = 5.5,
SD = 1.66) as 2 users who preferred their approaches and rated 2-“less effective”.

Aligningmodel attentionwith human perceptions can effectively revise amodel performance, and
with DeepFuse’s adjustment mechanisms (i.e., attention drawing panel and boundary suggestions,
as shown in Fig. 2), people can directly embed their intention and domain knowledge into the
CNN (P2, P4, P9, P10). Regarding model performance comparison, people were able to reveal
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Themes Sub-themes Explanations PIDs & (count)

Existing issues
Insufficient description
about reasonability matrix

It needs more description about how to interpret it for
people who are unfamiliar with reasonability matrix P4, P7, P11 (3)

Ill-formed local explanation
visualization

The local explanation visualization can be improved
(especially the polygon mask) P3, P10, P12 (3)

Future suggestions

Attention adjustment can be
subjective

There could be subjective uncertainty in attention adjustment
which could be avoided by providing deterministic guidelines
with consistent criteria to new users

P2, P4, P6, P9,
P10, P11 (6)

Comparison on-the-fly It would be useful if the model performance could instantly
reflect with different adjustments P7, P10 (2)

Advanced adjustment
module

The adjustment experience can be improved by supporting
curve and border drawing with flexible options for
adjusting weights of the masks other than binary masks

P1, P3, P6, P7
(4)

Scalable interaction for
bigger dataset

It needs improved computing capabilities and design features
for bigger datasets

P2, P3, P4, P8,
P11 (5)

Table 5. Study 2 user feedback regarding DeepFuse’s disadvantages.

the overall context of the image data and the corresponding impact on the model (accuracy and
attention quality) by detected object sub-grouping of DeepFuse (P1, P2, P3, P5, P6, P8, P9, P11, P12).
An industry practitioner who worked primarily on model quality assurance mentioned that the
black-box models were not usually accessible for engineers outside the core ML team, and DeepFuse
had features that could be practical for them to evaluate the model performance in that situation
(P11). In the last evaluation view of DeepFuse for record-wise attention comparison (as shown on
the right of Fig. 3), P7 was curious about the opposite shift of attention quality (i.e., a change from
“right” to “wrong” attention after model fine-tuning) and wanted to see some quantitative measures
about it.
The IoU distribution visualization was another measure in DeepFuse that could provide a

rigorous comparison between model conditions (with/without attention adjustment), revealing
the positive relationship between accuracy and attention quality improvement (P2, P8, P11). As
people mentioned, measuring IoU was not commonly used in classification evaluation compared to
segmentation tasks, and it was typically difficult to visualize.

5.3 Discussion
Overall, the system received acceptable usability [8] with an average SUS score of 76.88 (SD = 14.70,
see the SUS box plot in Fig. 5-B, the rated scores (0-4) were converted to a 0-100 scale based on
Brooke’s SUS guide [9]), exceeding the average SUS level of 68. There were 10 out of 12 participants
(except P3 and P5) who gave above-average SUS scores.

Although this study is not for system-level comparison, we wanted to understand the effect
of our fine-tuning mechanism collected from real users. We conducted Mann-Whitney U tests
to confirm the significant performance improvement after using attention. From each of the 12
participants’ results, the accuracy of our fine-tuned model using attention was significantly greater
than the baseline line condition (U = 0, 𝑛𝑏𝑎𝑠𝑒 = 𝑛𝑒𝑥𝑝 = 12, p < 0.00001). The same results apply to
the IoU and attention reasonability proportion comparisons.
Through the studies, we also identified disadvantages of our system that need to be improved

(as shown in Table 5). Regarding the interpretation of the reasonability matrix produced by users’
annotation and model prediction, the guidelines can be more formally provided to be acceptable in
the ML community (P4, P5, P11). The styles of attention visualization (i.e., color-scale, gray-scale,
and polygon mask) need improvement, especially since the orange polygon mask was not visually
clear for P3 and P10. It can be solved by having color and opacity adjustment features. People also
raise the potential inconsistency issue in attention adjustment, where users may have subjective
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options and criteria about where the “right” attention should be. DeepFuse needs to further provide
more deterministic guidelines in attention adjustment for more complex task types, especially
for tasks that require domain expertise (e.g., TB diagnosis in chest X-ray images [60]). With this
uncertainty in attention adjustment, P7 and P10 suggested an instant performance comparison
feature to reflect the model improvement on the fly as people annotate, which can be a future
direction in active learning to have simultaneous updates while labeling in progress [90]. About
the attention adjustment module, people suggested that the drawing feature should be optimized
for drawing curves and near image borders, as it was not easy to do so (P1, P3, P6). P5 suggested
existing smart drawing features (e.g., image matting tool in Photoshop [81]) to be added. P7 thinks
that binary mask drawings might not be enough for the best attention guidance used in fine-tuning
the model. A solution could be giving higher weights toward the centroid of the attention areas.
With the current data size and task setting in S2, the trade-off between manual workload and

model improvement may not be as significant since the overall workload was not overwhelming
and considered labor-efficient compared with existing assessment methods. Though evaluating
attention maps could be a labor-intensive step, diagnosing and optimizing the model’s vulnerability
were effective and easy to use based on users’ feedback. The annotation steps were incorporated
with AI-supported automation (bulk annotation, object detection, object relevance filtering, adjust-
ment recommendation, etc.) to reduce both users’ cognitive and labor workloads while gaining
better performance. However, as data size increases, this labor-performance trade-off becomes
essential, and more specifically, scalability solutions should be explored to reduce human labor
while maintaining good fine-tuning performance. We further discussed scalability considerations
regarding the trade-off in the next section (6.3).

6 IMPLICATIONS FOR DESIGN BEYOND XAI
Through S1 and S2, we learned several insights from our participants. While listening to their
voice and questions, and observing the way they perceive DeepFuse after their usage, we learned
that at the heart of people’s pursuit of grounding their models into their practice, one of the core
challenges they encounter seems to understand how they can harmonize between the way they
see the CNN should suppose to work and the way CNNs actually work. When they identify such a
gap through XAI-driven tools, the upcoming challenge seemed to be to know how to reconcile
such a gap efficiently and effectively. We reflect on this aspect of beyond XAI—how to help a user
to shift their learned insights to actionable plans—and list up possible research directions that the
HCI and CSCW communities can consider in designing future XAI or steerable AI tools to help
practitioners “in the trench”.

6.1 Correlating Model Attention and Model Accuracy
One of the overarching questions we wanted to understand was how the model attention seen
as reasonable by the human mind could also result in accurate prediction. Perhaps that was the
reason we decided to use the reasonability matrix. If reasonable attention and accurate prediction
are aligned together, the reasonable accurate instances (i.e., accurate for the right reason) and
unreasonable inaccurate instances (i.e., inaccurate for the wrong reason) should increase while
the unreasonable accurate and reasonable inaccurate instances should decrease. The tendency we
saw was positive. We observed the reasonable accurate instances increased while the unreasonable
accurate instances decreased from most participants. At least from our setting, adding more human
reasoning to the model’s way of thinking has increased the model’s gaze toward intrinsic objects,
resulting in an accuracy increment. However, one segment that didn’t change was the reasonable
inaccurate group. We think understanding the reason when and why the model makes inaccurate
predictions despite the reasonable gaze should be closely related to improving model performance.
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Regarding research in Fairness, Accountability, and Transparency (FaccT), a dominant view is
that human input or intervention may be required to realize a model that retains FaccT with the cost
of model accuracy drop. We hope to understand the effective way to correlate the right reason, and
accurate prediction can motivate the development of a fair, robust, and accurate model [42, 44]. In
general, we believe it is important to understand how to align human reasoning and model accuracy.
Shao et al. argue that humans “arguing” against DNNs when explanations are not reasonable can
benefit the model [80]. A railroad cannot be a train [57], a snowboard is not a man [39], and
a shopping cart should not be a woman [104]. Lastly, while human-guided ML has a potential
and good cause [18, 30], finding a way to cut down the human-side labor is another important
perspective from the two studies.

6.2 Generalizability Consideration: Beyond Binary Classification
We started to test the idea of direct steering of model attention through local explanation from the
binary classification problem for reasons—simplicity of the problem and well-annotated datasets.
After using DeepFuse, several participants shared their feedback and curiosity on how our pipeline
can be applied in more advanced vision-based tasks. The design we provided in binary classification
can be relatively simpler than the aforementioned cases. As the model’s task gets more complex
and diverse, new designs customized to the particular task type and application area should be
required to understand the generalizability of our findings.

Methodologically, local explanation-based attention steering is not limited to binary classification
tasks. The future design can be explored to enhance CNN models for handling different tasks, such
as multi-class classification, object detection, and segmentation tasks, which could possibly be
expanded from processing images to videos. The core user flow beneath DeepFuse in CNN steering
is as follows: First, the user flow allows human users to define reasonable and unreasonable types
of attention depending on task goals. Next, the user flow motivates reasonable attention types and
penalizes unreasonable attention types in a fine-tuning process suggested in Explanation-guided
Learning [26]. Finally, the designer can provide a dashboard that helps users to understand how
their indicated directions were reflected in the model revision process.
While the flow can be generally applicable, the way a designer facilitates a user’s definition of

reasonable and unreasonable attention type should be carefully implemented depending on the type
of problem. For example, in a multi-class classification or object detection task for different animals,
users can employ attention logic that penalizes background and motivates foreground objects
to build a more reasonable and high-performing model. As mentioned in 5.1.1, local explanation
methods can be applied to different layers of a CNN to produce different levels of granularity. If the
task goal requires a coarse granularity detection of a bounding box, applying local explanation
visualization at the last layer of CNN can be suitable. However, if it needs more fine-grained
granularity of closed curve for semantic segmentations, producing local explanations on both the
first convolutional layer for edge-level of detail and the last convolutional layer for object-level
detail can be considered, providing more depths of local explanation for users to evaluate. Finally,
we noted P7’s suggestion about extending this flow to a more advanced video level of object
classification, detection, and segmentation model steering. Due to the data volume, special design
considerations need to be applied in such a task. However, upon the efficient design for indicating
reasonable and unreasonable attention types, we believe that it is possible to apply the suggested
flow to the problem space.

6.3 Scalability Consideration: Hundreds vs. Millions
Despite the promising performance of the model steering method, scalability remains an essential
concern raised by several participants (P2, P3, P4, P8, P11), as many real-world image classification
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Fig. 6. An illustration of scalability optimization on a human-in-the-loop (HITL) application regarding the
trade-off between human labor (as data size increases) and performance gain. The model performance can be
improved faster before hitting the bottleneck of feasible human labor (the blue vertical dotted line) when the
HITL processing capability is scaled up from “trade-off curve 1” (the red line) to “trade-off curve 2” (the green
line).

tasks involve millions of images. Human scalability has been a crucial issue in HCI, CSCW, and
beyond—while the data size can easily go up to millions and trillions in training state-of-the-art
models, human cognition remains flat [97]. Even if we can surface millions of images to users,
it may not be possible for them to scan images serially and achieve sensemaking. Generally, to
successfully devise a scalable design, we believe that the number of images users have to go over
should still not exceed thousands, and the amount of time they may spend should not exceed one
hour, as recent data annotation literature suggests [14]. Herbert Simon remarked that “wealth of
information creates a poverty of attention” [82].

As the trade-off between human labor and performance gain in human-in-the-loop applications
is illustrated in Fig. 6, when users spend more effort as data size increases, the model will gain
better performance until the workload hits the bottleneck of feasible human labor. We aim to make
the curve of labor-performance trade-off steeper (from “curve 1” to “curve 2” shown in Fig. 6)
through scalability optimization to improve the impact of human workload on performance gain. By
devising “scalable” human-in-the-loop approaches, model performance could be further improved
with the feasible amount of available human labor.

While every human-in-the-loop approach can suffer the bottleneck of limited information, labor
source, session time, etc., ultimate breakthroughs in human-in-the-loop and interactive ML designs
could come from scalability strategies. We introduce how some of the design strategies can be
adopted in the design space of Beyond XAI. First, one can consider sampling from the whole dataset.
Modern computer vision models can yield keywords of objects and context in the scene. Using
such additional information extracted from the vast dataset, it is possible to define major and minor
clusters of images. The new design may help users proceed with a small portion of sampled images
derived from such clusters to reason the whole dataset and typify reasonable and unreasonable
attention types accordingly. Second, one can consider examining images based on the sequence
built from Active Learning, a technique that chooses the fewest unlabeled data possible that could
maximize the model accuracy gain [16]. Applying active learning techniques is common in data
annotation research, which can help reduce the required size of images to reason. Third, devising
further intelligent features that can automate the current workflow can facilitate the process as
well. Some features that need manual investigation can be automated in future designs. Finally, if
there is a strong rationale for investing more human resources, one can consider crowdsourcing.
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6.4 Data Iteration and Continual Lifelong Learning
DeepFuse’s capability of figuring out the vulnerability through local explanation is closely related to
the capability of fortifying the dataset by adding more examples that can remove the contextual bias.
Such “data iteration” is not uncommon in practice. To improve the model, the most fundamental
way is to improve data. For instance, Chameleon lets users compare data features, training/testing
splits, and performance across data versions [41]. When combining the data iteration with model
steering using local explanations, one could derive some interesting design ideas that can help ML
engineers to better find, search, and add the dataset.
While improving the model with new data can be straightforward, a few issues need to be

considered when steering models through local explanations. First, it is necessary to understand
what learning strategy can be more effective between the case where stacking every dataset in
one place and retraining the model and the case of iteratively adding the new dataset and making
the model “evolve”, In general, the first case can yield a high-performing model than the second
case due to the chance of catastrophic forgetting, which is a problematic and almost inevitable
drawback [51]. In recent years, the concept of continual lifelong learning has emerged [70] and
provided a breakthrough. Understanding which strategy can yield what strengths and weaknesses
in the scenario of data iteration with local explanation reasoning would be necessary.

6.5 Improving Fine-Tuning
Thiswork is the first study that observes howML engineers experience techniques in the Explanation-
guided Learning framework in fine-tuning their model and perceiving the difference. While we
saw participants satisfied with the progress they made with the RES framework, we introduced a
few directions on how the RES framework can be evolved to design an improved model steering
environment in the future.

One important direction is how to design a better quantitative measurement to assess the quality
of the steered attention during the fine-tuning process. Simple distance-based metrics such as Mean
Squared Error (MSE) or Intersection over Union (IoU) scores that are calculated purely based on the
alignment of each feature can hardly comprehensively reflect the quality of the adjusted attention,
as they completely ignore the correlations among visual features. One potential remedy to this
issue is also to leverage fidelity-based metrics, which aim at evaluating how faithful the model’s
attention is with respect to the model’s prediction. The assumption behind this is that the ‘right’
attention should contain sufficient information for the model also to make the ‘right’ prediction
[20, 66, 84]; while on the other hand, removing the attention should also lead to significant negative
impact for the model to make the correct prediction [20, 46, 66]. However, it is still not clear and
challenging to propose a single metric that can together measure the faithfulness and the degree of
alignment with the human annotation to make a more comprehensive assessment of the attention
quality.

Another possible topic is how to leverage multiple annotations from different users for a single
sample [16, 17]. As obtaining more than one annotation can be helpful to boost the reliability of
the human boundary for attention adjustment, it poses challenges on how to align model attention
with multiple ground truth boundaries. While a simple way out can be using the 50% consensus
or majority vote over all the available annotations, useful information can be lost during the
aggregation. Thus, new techniques are in demand to leverage each annotation effectively.

7 CONCLUSION
In this work, we examined our inquiry of how we can design a direct feedback loop between a
human and a CNN through local explanations. In particular, we designed and developed the first
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interactive system to help a user adjust the local explanation results regarding the gaze of CNNs.
We applied our interactive design in the problem space of contextual bias for CNN engineers.
With the S1, we learned ML engineers’ practical challenges and desires, converting the insights
to design considerations that could improve how we use local explanations in model diagnosis
and steering. With DeepFuse, we conducted S2 and found how DeepFuse can provide a better
workflow and experience to CNN engineers. At the same time, we also found limitations and future
research directions. In particular, we boiled down and shared in Implications for Design beyond
XAI within the categories of (1) correlating model attention and model accuracy, (2) generalizability
consideration, (3) scalability consideration, (4) data iteration and lifelong learning, and (5) improving
fine-tuning. We hope this work can benefit researchers and practitioners who seek to understand
how to make XAI-driven insights actionable in steering AI.
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A STUDY 1 INTERVIEW QUESTIONS
About you
• Can you explain your role in your company?

Your models and development settings
• Can you explain the purpose, input, and output of your models for which you used model
saliency/attention?
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• Can you walk us through your process of building your model? E.g., how to collect the training
set, how to train your model, how to improve your model performance, how to debug?

Use of saliency maps
• Can you explain the way you use saliency maps in understanding your model’s behavior?
• Can you explain the way you use saliency maps in supervising/improving your model’s behavior?

Working on fair/robust/accurate models
• Can you explain your experience/effort towards building more fair DNN models?
• Can you explain if attention/saliency was useful or not?

Your tools, challenge, and wish list in the future
• Can you explain the types of tools that you use for understanding/improving your DNN models?
• Can you explain the challenges you experience while interacting with your DNN?
• What new tools/features do you wish to have in the near future to make your life better?

B STUDY 2 SYSTEM USABILITY SCALE (SUS) SURVEY [9]
Indicate your degree of agreement for each of the 10 statements (on a Likert scale from
1-“strongly disagree” to 5-“strongly agree”)
1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.
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