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Highlights1

• A joint theory-based framework to account for responses and reaction times in working mem-2

ory updating.3

• A Markov chain structure to characterize probabilities of responses during and after memory4

updating, and a Wald diffusion process to account for reaction times.5

• Application to two empirical studies. One shows the mechanisms underlying age differences6

in memory updating performance; the other reveals potential training and transfer effects7

from working memory training.8
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Abstract9

We propose a hierarchical Bayesian model for working memory updating. This model accounts for10

both the accuracy of the responses and the reaction times (RT) in the memory updating paradigm,11

which is a commonly used paradigm to measure working memory capacity. We adapt a mutual12

interference model from Oberauer & Kliegl (2006) to explain responses. Oberauer & Kliegl (2006)13

used a Boltzmann equation framework based on the activation levels of items stored in working14

memory to quantify the probability of correct response at the final recall step after memory updat-15

ing. We expand the original framework with a Markov chain structure, so that the model accounts16

for the probabilities of all possible responses, correct or incorrect, at both the intermediate steps17

during memory updating and the final recall step after memory updating. We use a Wald diffusion18

process to characterize RT, where the drift rate parameters are associated with the activation levels19

of items in working memory. This model allows us to investigate the mechanisms underlying choices20

and RTs in the memory updating paradigm under a joint theoretical framework. A simulation study21

shows the effectiveness of this model, and posterior predictive distributions and out-of-sample vali-22

dations show that this model gives a good account of empirical working memory updating findings.23

We apply the model to two published data sets. The first data set, from Oberauer & Kliegl (2001),24

examined age differences in working memory. Results from our model reveal an increased level of25

mutual interference, less use of memory trace information, and potentially less pre-activation of26

memorized items in older adults compared to younger adults. The second data set, from De Simoni27

& von Bastian (2018), investigated transfer effects of working memory training. Results from our28

model reveal a potential transfer effect in the speed of information accumulation, where training in29

one working memory task may improve the information processing speed in another.30
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1 Introduction34

Working memory is a complex process composed of both passive maintenance and active manip-35

ulation of information (Vecchi & Cornoldi, 1999; Vecchi et al., 2005; Camos & Barrouillet, 2011;36

Veltman et al., 2003; Masse et al., 2019). Passive maintenance processes, such as storage and recall,37

do not change the nature of memorized information, whereas active manipulation processes change38

the information by transformation and manipulation (Vecchi et al., 2005). Both passive mainte-39

nance and active manipulation processes have been studied using a memory updating task designed40

by Salthouse et al. (1991). This task requires the ability to switch attentional focus (Oberauer,41

2006) and remove outdated information from working memory (Ecker et al., 2010, 2014). It is often42

used to test working memory capacity and efficiency, and sometimes it is used as a training task43

for working memory abilities (e.g. De Simoni & von Bastian, 2018; Waris et al., 2015).44

Salthouse et al. (1991)’s memory updating paradigm requires participants to memorize a se-45

quence of stimuli, then perform specified operations one at a time on each of the stimuli for several46

steps, and then recall the final outcomes for each stimulus. Varied types of stimuli have been used47

in the task, including digits, alphabetic letters, arrows and location of items (e.g. De Simoni & von48

Bastian, 2018). Each stimulus type can isolate either the verbal-numerical or visuo-spatial factors49

of working memory (Oberauer et al., 2000; Kane et al., 2004). We focus our modeling and analysis50

on the verbal-numerical versions of the task, which test the ability to maintain and manipulate51

numbers and letters.52

We demonstrate the memory updating paradigm with a numerical version. In this paradigm,53

the memory updating task features a sequence of adjacent boxes, each containing a single digit54

chosen from 1-9 (see Figure 1). The memory demands of the task increase as the number of55
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Figure 1: An example of a numerical memory updating task trial. The trial is composed of
a memorizing period, an updating period containing multiple updating steps, and a final recall
period where participants recall all the items in the order determined by the cue.

boxes increases. After memorizing the digits and their locations in the boxes, the participant is56

asked to perform a sequence of updating steps by applying a series of arithmetic operations on57

the digit in the box. During the updating step for each stimulus, the participant must recall the58

correct digit from working memory and conduct the operation accurately. After the sequence of59

updating steps, the participant recalls the digits in each cued box one at a time. The performance60

of participants commonly decreases as the memory demand increases in this task. Other versions61

often have a similar task structure with a variety of stimuli and updating operations. Based on62

specific requirements, the memory updating paradigm can require intermediate responses after63

each updating step (e.g. De Simoni & von Bastian, 2018), or require no intermediate responses but64

impose time limits for each updating step (e.g. Oberauer & Kliegl, 2001).65

In this paper, we use joint modeling to link responses and RTs from the memory updating tasks.66

We examined potential modeling approaches that allow such a link while providing theoretical67

explanations of the working memory process. A potential simple model that allows such a link68

is the speed-accuracy trade-off (SAT) model which can characterize the inverse relation between69

processing time and accuracy (Wickelgren, 1977; Heitz, 2014). This model was used in Oberauer &70

Kliegl (2006) for the memory updating task. However, due to its simplicity, the SAT function has71

only a limited ability to incorporate theory about cognitive mechanisms and corresponding working72
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memory processes.73

We base our model on established theories that explain how working memory performance74

declines with increasing memory demand. The most notable of these theories are resource theories75

hypothesizing limited working memory resources (e.g. Anderson et al., 1996; Cowan, 2010), time-76

based decay theories hypothesizing memory decay (e.g. Schweickert & Boruff, 1986; Barrouillet &77

Camos, 2001; Camos, 2017), and mutual interference theories hypothesizing interference between78

items in working memory (e.g. Nairne, 1990; Oberauer & Kliegl, 2006; Oberauer & Lin, 2017).79

Corresponding theory-based statistical models include the time-based resource-sharing model for80

decay theory (Barrouillet et al., 2004; Oberauer & Lewandowsky, 2011), and the activation-framed81

models for interference theory (Oberauer & Kliegl, 2001, 2006; Oberauer & Lin, 2017). In this82

paper, we base our model on the mutual interference theory and its related modeling, as there has83

been an increasing amount of evidence supporting the existence of interference from the literature84

(e.g. Oberauer et al., 2016; Farrell et al., 2016; Souza & Oberauer, 2015; Barrouillet et al., 2018).85

In this paper, we propose a hierarchical Bayesian model for the memory updating task. Our86

model builds on a working memory interference framework from Oberauer & Kliegl (2006), and87

expand it with a Markov chain structure so that the model can account for a wider range of88

responses at each step of the memory updating period, providing a more thorough framework for89

memory updating performance compared with the original model. The Markov chain structure90

also allows us to jointly characterize the RTs at each memory updating step under the mutual91

interference framework. We use a Wald diffusion process to account for RTs, and associate the92

process that yields the RT with the interference component characterized by the Markov chain93

state at each updating step. Therefore, this model can provide a framework that incorporates both94

the accuracies of responses and RTs under the interference theory of working memory.95

We use a hierarchical structure that allows the parameters from each individual to be informed96

by group-level hyper-parameters, thus helping to avoid estimation bias caused by potential small97

sample sizes and outliers (Busemeyer & Diederich, 2010). The model is flexible and can be applied98

to both the no-intermediate-response paradigm and the intermediate-response paradigm with some99

slight modifications. This flexibility allows it to fit data from the majority of memory updating100
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studies.101

In what follows, we first describe some interference mechanisms in the interference theory and102

the interference-based model from Oberauer & Kliegl (2006). To develop the hierarchical Bayesian103

model, we retain the activation-based framework from the original model and characterize it with104

a Markov chain structure. We link the interference parameters to the RT parameters to formalize105

the RT model. We then fit the model to two data sets. The first is from Oberauer & Kliegl (2001);106

they examined differences in memory performance due to age and did not ask participants to report107

intermediate results. The second is from De Simoni & von Bastian (2018); they examined working108

memory training and transfer effects, and they asked participants to report intermediate results.109

We show that estimated parameters from this model can characterize the group differences shown110

in these data sets, and provide a theoretical account for the mechanisms underlying the group111

differences of both responses and RTs.112

2 Hierarchical Bayesian model and parameter recovery113

In this section, we first describe potential mechanisms underlying interference in working memory,114

with a focus on the mechanism of lack of distinctiveness in cue-based retrieval and the mechanism115

of feature overwriting. We then describe the mutual interference model proposed by Oberauer &116

Kliegl (2006), which is based on the theory of feature overwriting but not exclusive to this theory in117

its statistical form. We modify and extend the model to a hierarchical Bayesian framework which118

incorporates information from both responses and RTs. This model is able to quantify the level of119

interference and the speed of processing with model parameters, and the joint modeling framework120

of responses and RT allows interference parameters to be informed by RT information, and vice121

versa. The model’s parameter recovery ability is evaluated with a simulation study in Appendix 1.122

2.1 Potential mechanisms of interference123

We focus on mechanisms explaining mutual interference caused by similarities between target items124

and competitors in working memory. We mainly describe the interference mechanisms from lack125
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of distinctiveness in cue-based retrieval and feature overwriting, along with some evidence for each126

in the literature. However, these different mechanisms are not mutually exclusive and may jointly127

cause mutual interference in working memory.128

The lack of distinctiveness in cue-based retrieval is a potential mechanism of interference most129

active during the retrieval period (Brown et al., 2007; Oberauer et al., 2012; Surprenant & Neath,130

2013; Ecker et al., 2015). This theory assumes that memory traces are laid down for each item131

stored in working memory. During retrieval, the retrieval cues activate memory traces of the target132

items, thus retrieving the target item. However, when there is a lack of distinctiveness between133

different items stored in working memory, traces from different items may be associated with the134

same cues. Therefore, these cues may activate traces from both the target item and competitor135

items that lack distinctiveness with the target, resulting in interference between items and potential136

erroneous retrieval. This mechanism is consistent with various findings showing a link between item137

similarity and lowered retrieval accuracy (e.g. Oberauer et al., 2012; Ecker et al., 2015; Villata et138

al., 2018; Park et al., 2006).139

The mechanism of feature overwriting assumes that mutual interference is caused by the shared140

features of items stored in working memory (Nairne, 1990; Oberauer & Kliegl, 2001, 2006; Oberauer,141

2009; Cowan, 1988; Nairne, 2006). According to this theory, the representation of each item in142

working memory is composed of a number of features. When different items share the same features,143

each item would lose some of these shared features to the other items during encoding, resulting144

in feature overwriting and mutual interference. Thereby the mechanism of feature overwriting145

is potentially most active during the encoding period. This mechanism is consistent with some146

findings showing similarity-based interference effects in the encoding period (e.g. Oberauer, 2009;147

Hofmeister & Vasishth, 2014; Guitard et al., 2021).148

Besides these mechanisms, there are a number of other mechanisms meant to explain interference149

in memory, including activation leveling (Villata et al., 2018; Smith et al., 2021) and superposition150

(Rumelhart et al., 1988; Oberauer et al., 2012, 2016). Because the nature of interference in working151

memory is still largely unclear (Li & Cowan, 2021), we do not intend to build a model to evaluate152

the plausibility of each potential mechanism, but instead quantify the level of interference affecting153
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a person’s final recall performance regardless of the mechanism.154

2.2 Original model framework155

Oberauer & Kliegl’s 2006 model is based on the mechanism of feature overwriting. It assumes156

that each item is stored as a large number of features in memory. If a proportion A (A ≤ 1) of157

features are activated during recall, this item has an activation level A in working memory. Each158

pair of items is assumed to share a mean proportion C of features (0 < C < 1) and items in159

the pair compete for shared features. As a result of this competition, half of the features shared160

between two items are assumed to be allocated to each item1. Thus, if there is one interfering161

item present, the target is left with a mean proportion of 1 − C/2 features dedicated to it, and it162

has a maximum activation level of 1 − C/2 when all these features are fully activated. Suppose163

that for each pair of items, the features that they share with each other are independent of the164

features that they share with other items. If there is another interfering item, it shares a mean165

proportion C of features among the 1 − C/2 remaining in the target, and the target is left with a166

(1−C/2)− (1−C/2)(C/2) = (1−C/2)2 proportion of features after interference with this second167

interfering item. So, with n ≥ 2 items present in working memory, one of them being the target and168

the others distracting competitors, this framework models the upper limit of the target’s activation169

level with the formula2170

Atarg = (1− C/2)n−1.171

Each competitor item shares a proportion C/2 of features with the target. However, it also has172

interference with the other n−2 competitor items, thus the C/2 proportion of features are not fully173

allocated to it. Oberauer & Kliegl (2006) assume that a competitor can maintain (1 − C/2)n−2
174

proportion of features because of its interference with the other competitors, thus the upper limit175

1Although the actual proportions of shared features may differ for different pairs of items, the mean proportion C
was used in this model. This was because the memory updating task featured a homogeneous set of stimuli (without
grouping within stimuli), thus the mean proportion C was considered a reasonable approximation to the actual shared
proportions (Oberauer & Kliegl, 2001).

2This formula does not exactly partition all features. Some features can be lost during memorization if they are
shared by too many items.
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of a competitor is176

Acomp = (C/2)(1− C/2)n−2.177

Extralist items not present in working memory have an activation level of 0 because no features178

are allocated to them during memorization.179

Oberauer and Kliegl’s (2006) model is formulated for the paradigm without intermediate re-180

sponses and with a time limit imposed for each updating step. It assumes that during the updating181

steps, the items in working memory gradually activate until their activation levels reach the upper182

bounds, and this activation process follows a negatively accelerated function (McClelland, 1979;183

Oberauer & Kliegl, 2001, 2006). Thus, with activation rate θ and time limit T , the maximum184

activation level for the target is185

atarg = Atarg(1− exp(−θT )),186

and for a competitor is187

acomp = Acomp(1− exp(−θT )).188

When applied to the numerical updating task with single digits and arithmetic operations, and189

when the memory demand is n, the potential recall outcomes are from the digits 1-9, where one190

of them is the target, n − 1 are competitors and the remaining 9 − n are extralist items3. It is191

assumed that participants tend to choose the item with the highest activation level as the response.192

Considering the activation process to have a degree σ of noise, the probability of choosing the target193

is characterized by the Boltzmann equation (Oberauer & Kliegl, 2006)194

Ptarg =
exp(atarg/σ)

exp(atarg/σ) + (n− 1) exp(acomp/σ) + (9− n) exp(0/σ)
,195

where the 9 − n extralist items have an activation level of 0. Oberauer & Kliegl (2006) give the196

3We do not specifically characterize the case when a stimulus appears in more than one box because of its limited
occurrence and influence.
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accuracy of recalling each item correctly as197

ptarg = 1/9 + (1− 1/9)Pm
targQtarg,198

where 1/9 adjusts for random guessing and m ≥ 0 is the number of updating steps performed on199

the current target. In the final recall step, no time limit T is imposed and the activation level200

can reach the upper bound where atarg = Atarg and acomp = Acomp. The quantity Qtarg is used to201

characterize the accuracy in the recall step without a time limit imposed.202

We base the hierarchical Bayesian model on this scheme, but add some adjustments to formulate203

the probabilities of choosing competitors and extralist items and to incorporate the information204

from RTs. Because the exact mechanisms of interference are unclear, we do not assume interference205

to result solely from feature overwriting. We use the interference parameter to quantify the level206

of interference affecting the final recall regardless of interference mechanisms.207

2.3 Hierarchical Bayesian model208

In this section, we expand the framework from Oberauer & Kliegl (2006) with a Markov chain209

structure to account for the probabilities of all responses at both the updating and recall steps.210

We also incorporate an RT model into the framework so the interference mechanism also explains211

RTs. We give the model a hierarchical Bayesian structure, so that it can fit data sets composed of212

groups of individuals representing the experimental groups to be compared. We first describe our213

model in the case when the paradigm requires intermediate responses during the updating period,214

then describe the alterations needed in the cases when intermediate responses are not required, or215

when the task includes pre/post-test conditions.216

2.3.1 Response217

To construct the hierarchical Bayesian model, we denote the group identifier as c and the partici-218

pant identifier as i. We use the parameter Cic and σic to quantify mutual interference and noise,219

respectively. For Trial j with a memory demand of nj , denote the choice of target, competitors and220

11



extralist items as 1, 2, and 3, respectively. Then the activation levels at the end of each step are221

a1,ic,j = (1− Cic/2)
nj−1, and

a2,ic,j = (Cic/2)(1− Cic/2)
nj−2.

(1)222

When trials in the updating task have n plausible responses, for example, n = 9 for the numerical223

version shown in Figure 1, the corresponding probabilities of choosing the target, competitors and224

extralist items are225

P1,ic,j =
exp(a1,ic,j/σic)

exp(a1,ic,j/σic) + (nj − 1) exp(a2,ic,j/σic) + (n− nj) exp(0/σic)
,226

227

P2,ic,j =
(nj − 1) exp(a2,ic,j/σic)

exp(a1,ic,j/σic) + (nj − 1) exp(a2,ic,j/σic) + (n− nj) exp(0/σic)
,228

and229

P3,ic,j =
(n− nj) exp(0/σic)

exp(a1,ic,j/σic) + (nj − 1) exp(a2,ic,j/σic) + (n− nj) exp(0/σic)
,230

respectively. To obtain the probabilities of choosing each type of item at each step, we use a Markov231

chain structure with transition matrix232

Step x+z

1 2 3


1 P1,ic,j P2,ic,j P3,ic,j

Mic,j = Step x 2 1
n

nj−1
n

n−nj

n

3 1
n

nj−1
n

n−nj

n .

233

Assume that an item is encountered at Step x followed by the next encounter at Step x + z, this234

matrix shows the probability of choosing items of types 1, 2, and 3 at Step x+ z given the choice 1,235

2, or 3 at Step x. The first row of Mic,j corresponds to the condition when a participant correctly236

recalls, updates and memorizes the target at Step x. In this case, when this participant recalls237

or updates the item in the same location at Step x + z, the decision is based on the correct item238

memorized in Step x. Thus the probabilities of choosing types 1, 2, and 3 are P1,ic,j , P2,ic,j , and239

P3,ic,j respectively, as shown by the first row of Mic,j . The second and third rows correspond to240
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the conditions when a participant incorrectly recalls, updates and memorizes a non-target item at241

Step x. In this case, recall or update at Step x+ z is based on the wrong item from Step x, and we242

assume that this participant can still obtain the correct result by chance, as shown by the second243

and third rows of Mic,j . However, because the participants do not know their mistakes when they244

make them, they could keep on performing this task regardless of whether their previous updates245

are correct or wrong. Thus, if a participant successfully gets the correct intermediate result by246

chance, this participant’s subsequent decisions will be based on the correct result, and the state247

returns to the one corresponding to the first row in Mic,j .248

We assume that no mistakes are made during the initial memorization period of the task,249

resulting in a starting state vector (p1,ic,j , p2,ic,j , p3,ic,j) = (1, 0, 0). The probabilities of responding250

with each type of item are251

(p∗1,ic,j , p
∗
2,ic,j , p

∗
3,ic,j) = (p1,ic,j , p2,ic,j , p3,ic,j)M

mj

ic,j , (2)252

where mj is the number of encounters of the target item up to the current trial. Therefore, denoting253

the response to be Ric,j (Ric,j ∈ {1, 2, 3}), the probability of making each response, denoted as Presp,254

is255

Presp(Ric,j = k) = p∗k,ic,j , k = 1, 2, 3. (3)256

The probability p∗k,ic,j reflects the proportions of activated traces linked to items of type k, and257

correspondingly, the probabilities of responding with each type of item.258

In this structure, we do not restrict the mutual interference to be solely the result of feature259

overwriting, but assume it to be the overall interference affecting the final performance that could be260

the result of different mechanisms. It could be understood as follows: during each encoding period,261

a number of memory traces are laid down for each item, and because of interference mechanisms262

such as feature overwriting in this period, each item loses some of its traces to the competitor items.263

During the retrieval period, each memory cue activates traces from both the target and competitor264

items. It is partly because some overlapping memory traces are attributed to competitors during265

encoding, but is also partly because each cue can activate both a number of traces from the target266

and a small number of traces from competitors due to mechanisms such as the lack of distinctiveness267
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in cue-based retrieval. Based on the activation levels of all items, the participant determines one268

item as the target, then proceeds to retrieve, (possibly) update, and respond with that item.269

Overall, we quantify the final amount of interference with Cic without distinguishing its source.270

2.3.2 Response times271

We model the RTs using a diffusion model based on the Wald distribution (Burbeck & Luce, 1982).272

We selected the Wald diffusion model because it is theoretically motivated, can fit RT data well,273

and can be easily applied to the framework inspired by mutual interference. The Wald diffusion274

model proposes that, in each trial, a participant samples information from the display and memory,275

then stores this information in a neural accumulator. To determine the end of each accumulation276

process, this participant sets a decision boundary determined by a certain amount of information:277

when the accumulated information reaches the decision boundary, the process is terminated and a278

response is made. The Wald diffusion model characterizes information accumulation as a Wiener279

diffusion process with drift and a single absorbing boundary. Therefore, the time of each process280

follows a Wald distribution.281

To integrate the Wald diffusion process into the mutual interference framework, we consider the282

process as such: first, based on the cues and memory traces, a participant determines the item to283

be retrieved from working memory using the mechanism from Section 2.3.1. Then, the participant284

accumulates information about the final response from the retrieved item and (possibly) updating285

of that item. The speed of accumulation depends on the participant’s speed of processing, the286

number of traces linked to the chosen item, and the difficulty of the (potential) updating process.287

When the participant accumulates enough information to reach the decision boundary a response288

is made.289

To formulate the RT model, we denote the group identifier as c, the participant identifier as i,290

and the trial identifier as j. We characterize each individual’s decision boundary with the parameter291

bic (bic > 0). Denote the information accumulation rate as Vk,ic,j (Vk,ic,j > 0) for Trial j when the292

response is k, where k = 1, 2, 3 corresponds to targets, competitors, and extralist items respectively,293
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we model Vic,j in the updating process as294

Vk,ic,j = exp(vu,ic + κicp
∗
k,ic,j),295

and we model Vk,ic,j in the recall process as296

Vk,ic,j = exp(vr,ic + κicp
∗
k,ic,j).297

The parameter vu,ic is the speed of accumulation in the updating period with the subscript “u”298

standing for “updating”, while the parameter vr,ic is the speed of accumulation in the recall period299

with the subscript “r” standing for “recall”. As is shown in Equation (3) from Section 2.3.1, p∗k,ic,j is300

the probability of responding with items of Type k, and reflects the number of traces laid down for301

this type of item. Correspondingly, the type-to-RT parameter κic characterizes the accumulation302

rate differences between different response item types. In the task, a participant is likely to lay303

down more memory traces for the target than non-targets, leading to a larger p∗1,ic,j . As such, the304

accumulation rate shall be higher for targets than non-targets when κic > 0. The rationale is that305

when more memory traces are laid for an item, the participant can collect information from that306

item at a faster rate due to the larger amount of information from traces. We justify the inclusion307

of this type-to-RT parameter κic using a model comparison, discussed in Appendix 2.308

With a drift rate v and a decision boundary b, the Wald distribution density is given by309

fw(t|v, b) =
b√
2πt3

exp
(
− (vt− b)2

2t

)
, t > 0.310

We include a non-decision time τic for each participant that accounts for processes outside of the311

information accumulation process, including times needed for perception and motor execution.312

Denote the RT as tic,j , when the response Ric,j = k, the RT has a distribution frt as313

frt(tic,j |τic, Vk,ic,j , bic, Ric,j = k) = fw(tic,j − τic|Vk,ic,j , bic).314

315
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2.3.3 Ancillary processes and pre-activation processes316

In addition to the Wald diffusion processes, we consider the impacts from two different types of317

ancillary processes and a potential pre-activation process that may also affect the observed responses318

and RTs. Figure 2 shows the pooled RT histograms from one of De Simoni & von Bastian’s 2018319

data set. It shows three processes in addition to the Wald diffusion process that we identified320

through pre-analysis in empirical data sets.321

The two ancillary processes are sub-cognitive processes and supra-cognitive processes charac-322

terized by very short and long RTs (Kim et al., 2017). The sub-cognitive processes correspond to323

very fast responses that may result from guessing. In Figure 2, sub-cognitive processes may lead324

to fast RTs from updating steps and some very fast RTs from recall steps.4 The supra-cognitive325

processes correspond to very slow responses, which may result from distraction or mind-wandering.326

The RTs in the tails shown by Figure 2 may be partly due to supra-cognitive processes. Although327

it is common to discard responses and RTs associated with these processes, we keep these observa-328

tions in our analyses and model them with mixture distributions, because the relative proportions329

of these processes may be meaningful (Province & Rouder, 2012).330

Another process, shown in Figure 2 in the RTs of the recall period, is characterized by fast331

RTs peaked around 400 milliseconds but clearly distinct from the RTs of the main Wald diffusion332

processes. This process is also observed at the individual level, as is shown in Figure 3. We333

hypothesize that these fast RTs at the smaller mode may be a result of pre-activation. Because334

the memory updating task often features multiple items, a participant might recall multiple items335

as a “batch” before items are cued during the recall period. At the start of the recall period, a336

participant with sufficient working memory capacity might pre-activate more than one of the items,337

and keep that information active in working memory. This strategy results in the ability to select338

a response from this batch of pre-activated items at a faster speed during each step in the recall339

period (Soto et al., 2008). As a result, some fast RTs from the recall period might be a result340

of pre-activation, where the participant reads out the items in the pre-activated batch. RTs from341

pre-activation are likely to be larger than sub-cognitive RTs, but shorter than RTs generated from342

4We demonstrate with empirical data sets that these fast RTs are likely to be a result of sub-cognitive guessing
in Sections 3.1.1 and 3.2.1.

16



Figure 2: The histogram of the RTs of all 197 participants from De Simoni & von Bastian (2018),
from the updating process (left) and the recall process (right). The bin width is taken as 0.1
seconds. The recall process clearly consists of both short sub-cognitive process RTs (close to 0)
and supra-cognitive RTs in the tail. Responses from algorithmic Wald diffusion processes are
featured by the main peak around 1-1.5 seconds. A sub-peak from pre-activation processes is also
present around 0.4 seconds, which is distinct from the main responses but longer than the usual
sub-cognitive processes. In comparison, the updating processes contains relatively fewer fast RTs
around the smaller mode and slower RTs in the main peaks.

the algorithmic cognitive process operating on the stored items (see Figure 2). We consider pre-343

activation to be a more plausible mechanism for these fast RTs, because patterns from empirical344

data are consistent with pre-activation, and are inconsistent with alternative mechanisms such as345

guessing and the recency effect. These patterns are described in Sections 3.1.1 and 3.2.1. We346

also use a mixture component to model these fast pre-activation RTs. Because RTs from these347

pre-activation processes are difficult to distinguish from sub-cognitive processes, we integrate them348

into the same mixture component in the recall period.349

To model each of these processes, we denote the group identifier as c, the participant identifier350

as i, and the trial identifier as j. In the updating period, the fast responses may result mostly351

from sub-cognitive processes. We denote the RT distribution as g1 and account for it using the352

Log-normal distribution,353

g1(tic,j |µu,ic) = fln

(
t|µu,ic, 1

)
, (4)354

when tic,j is the RT from fast ancillary processes, fln is the Log-normal density, and µu,ic is the355

mean parameter of the Log-normal distribution with the subscript “u” standing for “updating”.356
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Figure 3: The histograms and densities of the RTs of Participants 1, 80, and 140 from De Simoni
& von Bastian (2018), from the updating process (upper) and the recall process (lower).

We fix the standard deviation to 1 for these processes.357

In the recall period, the fast responses may result from either sub-cognitive and pre-activation358

processes. We denote the RT distribution as g2 and account for it using the Log-normal distribution,359

360

g2(tic,j |µr,ic, σµ,r,ic) = fln

(
t|µr,ic, σ

2
µ,r,ic

)
, (5)361

where the parameters µr,ic and σµ,r,ic are the mean and standard deviation respectively. The362

subscript “r” stands for “recall”.363

We model supra-cognitive RTs also with the Log-normal distribution, denoting the RT distri-364

bution as g3,365

g3(tic,j |µs,ic, τic) = fln

(
t− τic|µs,ic, 1

)
,366

when tic,j is the RT from slow ancillary processes, µs,ic is the mean, and the standard deviation367
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is fixed at 1. The subscript “s” stands for “supra-cognitive”. To avoid identifiability problems368

in mixture estimation, we adopt informative priors for µu,ic, µr,ic, σµ,r,ic, and µs,ic so that these369

distributions are appropriate for each process. Selections of prior distributions are explained in370

Section 2.3.4.371

2.3.4 Priors and likelihood372

In this section, we formulate the hierarchical Bayesian structure of the model. Because the partic-373

ipants’ response accuracies can be higher than chance in the processes mentioned in Section 2.3.3,374

we use the parameter qk,ic (k = 1, 2, 3) to indicate the probabilities of responding with targets, com-375

petitors, and extralist items in these ancillary and pre-activation processes, so that the probabilities376

of response Ric,j are377

Pnon-diff(Ric,j = k) = qk,ic, k = 1, 2, 3. (6)378

Denote the mixture proportions for sub-cognitive/pre-activation, Wald diffusion, and supra-379

cognitive processes as (ϕu,1,ic, ϕu,2,ic, ϕu,3,ic) respectively for updating, and (ϕr,1,ic, ϕr,2,ic, ϕr,3,ic)380

respectively for recall. Then the RT tic,j and response Ric,j have a joint distribution with density381

f(tic,j , Ric,j |ϕu,·,ic, µu,ic, τic, V·,ic,j , bic, µs,ic) =ϕu,1,icg1(tic,j |µu,ic)Pnon-diff(Ric,j)382

+ ϕu,2,icfrt(tic,j |τic, V·,ic,j , bic, Ric,j)Presp(Ric,j)383

+ ϕu,3,icg3(tic,j |µs,ic, τic)Pnon-diff(Ric,j)384
385

in the updating period, and386

f(tic,j , Ric,j |ϕr,·,ic, µr,ic, σµ,r,ic, τic, V·,ic,j , bic, µs,ic) =ϕr,1,icg2(tic,j |µr,ic, σµ,r,ic)Pnon-diff(Ric,j)387

+ ϕr,2,icfrt(tic,j |τic, V·,ic,j , bic, Ric,j)Presp(Ric,j)388

+ ϕr,3,icg3(tic,j |µs,ic, τic)Pnon-diff(Ric,j)389
390

in the recall period, where Presp(Ric,j) and Pnon-diff(Ric,j) are informed by Equations (3) and (6).391

In the hierarchical Bayesian framework, we select the priors and hyper-priors as shown in392
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Priors and hyper-priors

Interference logit(Cic) ∼ N(Cc, δC,c) Cc ∼ N(C0, 0.2)
C0 ∼ N(0, 0.2) log(δC,c) ∼ N(−1, 0.2)

Noise log(σic) ∼ N(log(σc), δσ,c) log(σc) ∼ N(log(σ0), 0.2)
log(σ0) ∼ N(0, 0.2) log(δσ,c) ∼ N(−1, 0.2)

Accumulation speed v·,ic ∼ N(v·,c, δv,·,c) v·,c ∼ N(v·,0, 0.2)
v·,0 ∼ N(0, 0.2) log(δv,·,c) ∼ N(−1, 0.2)

Decision boundary log(bic) ∼ N(bc, δb,c) bc ∼ N(b0, 0.2)
b0 ∼ N(0, 0.2) log(δb,c) ∼ N(−1, 0.2)

Type-to-RT κic ∼ N(κc, δκ,c) κc ∼ N(κ0, 0.2)
κ0 ∼ N(0, 0.2) log(δκ,c) ∼ N(−1, 0.2)

Mixture proportion Non-informative

Non-decision time τic ∼ N(τ
(0)
ic , 0.001)

Ancillary processes µu,ic ∼ N(−2, 0.05) µr,ic ∼ N(−1, 0.05)
µs,ic ∼ N(3, 0.05) logit(σµ,r,ic) ∼ N(0, 1)

Activation rate log(θic) ∼ N(θc, δθ,c) θc ∼ N(θ0, 0.2)
θ0 ∼ N(0, 0.2) log(δθ,c) ∼ N(−1, 0.2)

Table 1: The model’s priors and hyper-priors. If a parameter η has a dot in its subscript, that
parameter has both updating and recall conditions, ηu and ηr.

Table 1. The mean of non-decision times τ
(0)
ic is fixed at an arbitrary value of 0.15 seconds. Denoting393

the entirety of the model parameters by η, the likelihood of the model is given by394

L(η|R, t) =
∏
i,c,j

f(tic,j , Ric,j |ϕ·,·,ic, µ·,ic, τic, V·,ic,j , bic, µs,ic, µr,ic, σµ,r,ic).395

Figure 4 shows the model in graphical form.396

2.3.5 Model fitting397

In this section, we summarize some alterations needed for the model when the task does not require398

intermediate responses, or when the data include results from multiple conditions such as a pre-399

test and post-test. We performed simulation studies to test the model’s parameter recovery ability,400

which is presented in Appendix 1.401

We first consider the case where the task only requires recall responses and limits the times402

spent on updating steps, for example, as in the aforementioned paradigm from Oberauer & Kliegl403
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Figure 4: The diagram of the hierarchical Bayesian model. The rectangular boxes contain integers,
the round boxes contain real values, and the double-edged boxes contain computed values. The
observed variables have gray backgrounds. Parameters to be estimated are unshaded. The arrows
indicate dependence. The dashed outlines indicate that the parameters are only used in the no-
intermediate-result case. The parameters are embedded in plates representing the hierarchical
structure of the model over trials, participants and groups.

(2001). Denoting the updating time limit for Trial j as Tj , we use the formulas404

a1,ic,j = (1− Cic/2)
nj−1(1− exp(−θicTj)), and

a2,ic,j = (Cic/2)(1− Cic/2)
nj−2(1− exp(−θicTj))

(7)405

instead of those from Equation (1). Parameter θic is the activation rate parameter with priors and406

hyper-priors shown in Table 1. We compute the probabilities of responding with each item as407

(p∗1,ic,j , p
∗
2,ic,j , p

∗
3,ic,j) = (p1,ic,j , p2,ic,j , p3,ic,j)M

mj

ic,jM
∗
ic,j , (8)408

where mj is the number of updates performed on each item on Trial j. Because the updating time409

limit for Trial j, denoted as Tj , is variable in these designs, and direct application to Equation (1)410

can be time consuming for large data sets, we binned Tj to reduce the amount of calculation. We411

binned Tj into 4 segments according to the 3 quartiles (25%, 50%, and 75%), and used the mean412

in each of the bins as the Tj values in Equation (7).413
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In the case when the data include pre-test and post-test conditions, we permitted interference414

parameters C, noise parameters σ, RT parameters v, κ, b, and the mixture proportions ϕ to differ415

for pre-test and post-test conditions as in De Simoni & von Bastian (2018).416

3 Empirical data analysis and results417

In this section, we report the results of fitting the hierarchical Bayesian model to data from two418

studies, one evaluating age differences in working memory (Oberauer & Kliegl, 2001) and the other419

evaluating the transfer effect of working memory training (De Simoni & von Bastian, 2018). We first420

introduce the original studies and the associated constructs of each data set. We fit our model to421

these data and show that the model accounts for these data by examining the posterior predictive422

distributions and using out-of-sample validation. We present the modeling results and discuss423

the theoretical implications of these results, with a focus on the potential cognitive mechanisms424

underlying group and individual differences.425

3.1 Application 1: Age differences in working memory426

The influence of age on working memory has been a common topic for investigation (e.g. Wingfield427

et al., 1988; Salthouse & Babcock, 1991; Oberauer, 2005; Cragg et al., 2017). Older adults are428

found to exhibit poorer performance in multiple aspects of working memory, such as decreased429

capacity (Wingfield et al., 1988), a decreased ability to actively manipulate working memory items430

(Dobbs & Rule, 1989), less accurate recall (Salthouse & Babcock, 1991), and the need to use more431

resources for the same task (Reuter-Lorenz & Sylvester, 2005), which indicates a potential decline432

in working memory.433

Oberauer & Kliegl (2001) studied the effect of aging on working memory using the memory434

updating task. They mainly focused on the modeling of response accuracy. Their results revealed435

that older adults have a higher level of mutual interference compared with younger adults, but436

there were no significant differences between younger and older adults in noise and activation rates437

in the updating processes.438
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Figure 5: Contrast between RTs from the younger and older groups. The upper figures display the
distributions of Participant 3 (Younger) and Participant 24 (Older). The black and red density lines
correspond to Participants 3 and 24 respectively. Despite having similar response accuracy (0.656
for Participant 3 and 0.657 for Participant 24), the RTs are overall much slower for Participant 24.
The lower figure shows the distributions for all participants (black for younger and gray for older).
The older participants generally have slower RTs than younger participants, where the fastest
individual median RT from the older participants (1.16s) is larger than the slowest individual
median RT from the younger participants (1.10s).

However, in addition to response accuracy, RTs may also serve as an important, meaningful439

source of information reflecting the capabilities of working memory. Figure 5 shows that the older440

group displays overall longer RTs compared to those of the younger group. Even when an older441

adult (like Participant 24) has a similar response accuracy as a younger adult (like Participant 3,442

shown in Figure 5), the older adult can still have longer RTs. The original interference models443

(Oberauer & Kliegl, 2001, 2006) did not include a mechanism to explain such a difference in RTs.444
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We fit the hierarchical Bayesian model to Oberauer & Kliegl (2001)’s data, aiming to charac-445

terize the interference mechanism and other potential RT differences between older and younger446

individuals. We first describe the data set and test some assumptions made about the RT distri-447

butions and ancillary processes in this data set. We apply the model to this data set and evaluate448

its goodness of fit, and present modeling results and discuss their implications.449

3.1.1 Data450

Oberauer & Kliegl (2001) tested participants on the numerical version of the memory updating task,451

where participants memorize digits from “1” to “9” and update them by addition and subtraction452

as shown in Figure 1. This data set consisted of 18 younger participants (average age 19.1, sd 0.68)453

and 18 older participants (average age 68.8, sd 3.55). The original study only analyzed the data454

from 16 younger participants and 17 older participants who completed the entire experiment, thus455

we also restricted our analyses to these participants. The experiment was composed of two parts:456

the first part included trials with a memory demand of 1-4, and the second with a memory demand457

of 4-6. Clear evidence of a learning effect was present between the two parts. For simplicity, we458

applied the model only to data from the first low-demand part of the experiment from Oberauer &459

Kliegl (2001). Table 2 shows the summary statistics of the response accuracies and RTs. The older460

adults had overall lower response accuracies, longer RTs, and larger RT variances compared with461

the younger adults, indicating that the older adults recall the items with longer times and lower462

accuracies. Table 2 also shows the mean RTs from responses to targets, competitors, and non-463

competitors from both groups. Overall, responses to targets take a shorter time than responses to464

non-target items. This result is consistent with a mechanism in which more memory traces (linked465

to targets) can improve the speed of information accumulation in the Wald diffusion process.466

We then evaluate whether the fast RTs around the smaller mode may be a result of chance467

performance, the recency effect, or pre-activation in this data set. Table 2 shows the response468

accuracies in the RT ranges of 0-0.2 seconds, 0.2-0.6 seconds, and over 0.6 seconds. These statistics469

show that the response accuracies in the 0.2-0.6 seconds are well above chance, and are also higher470

than the accuracies in the 0-0.2 seconds range and are closer to the accuracies in the over 0.6471
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Table A Younger Older Younger Older
Accuracy 0.68 (0.04) 0.61 (0.05) RT 1.01 (0.66) 1.62 (1.41)

Table B Type Target Competitor Non-competitor
RT (Younger) 0.96 1.06 1.12
RT (Older) 1.54 1.69 1.75

RT (Younger, >0.6s) 1.18 1.45 1.43
RT (Older, >0.6s) 1.64 1.90 1.95

Table C RT 0-0.2s 0.2-0.6s >0.6s
Younger 0.58 0.68 0.69
Older 0.38 0.53 0.62

Table D Sequential place in recall
Memory demand 1 2 3 4

1 (Younger) 19.4%
1 (Older) 9.4%

2 (Younger) 8.0% 42.4%
2 (Older) 2.6% 31.3%

3 (Younger) 4.2% 18.3% 39.0%
3 (Older) 1.7% 11.2% 26.2%

4 (Younger) 3.6% 11.0% 16.3% 33.9%
4 (Older) 1.6% 8.3% 11.5% 23.3%

Table 2: Statistics of the data set from Oberauer & Kliegl (2001). “Table A” displays the group
means and standard deviations (in brackets) of response accuracies and RTs from the groups of
younger and older adults. “Table B” displays the mean RTs for the target, competitor, and non-
competitor responses. “Table C” displays the response accuracies in the RT ranges of 0-0.2 seconds,
0.2-0.6 seconds, and over 0.6 seconds for each group respectively. “Table D” displays the proportions
of fast RTs around the smaller mode in the 0.2-0.6 seconds range from each item to be recalled.
The columns “Sequential place in recall” shows the sequential order of the item to be recalled.

seconds range. We therefore conclude that although there is fast guessing at chance performance,472

it is not likely the main reason for the fast RTs around the smaller mode. Table 2 also shows the473

proportions of fast RTs around the smaller mode (0.2-0.6 seconds) from the first to last recall items474

in each trial. For both the younger and older adults, the proportions of fast RTs around the smaller475

mode are the smallest for the first item to be recalled then gradually increase to the largest for476

the last item to be recalled. This pattern does not show evidence for or against a recency effect,477

but it is consistent with the assumption that fast RTs around the smaller mode may be a result478

of pre-activation: the later items to be recalled, which have a larger chance of being pre-activated,479

correspond to a higher proportion of fast RTs compared with earlier items to be recalled.480
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3.1.2 Model fit481

We fit the hierarchical Bayesian model to the data set using Stan (Stan Development Team, 2018)482

with the adjustments for no-intermediate response paradigm described in Section 2.3.5. We fixed483

the mean of non-decision time priors τ
(0)
ic to 0.15 for all participants. We obtained 3 chains, each484

containing 500 warm-up samples and 2000 iterations. The effective sample size (Berger et al., 2014)485

and the Gelman-Rubin R̂ statistic (Gelman et al., 1992) (R̂ < 1.01 for all parameters) suggested486

reliable posterior estimates and satisfactory convergence.487

To determine goodness of fit, we examined the posterior predictive distributions, and performed488

an out-of-sample validation analysis to evaluate how well the model can generalize to new data.489

Because we binned the updating limiting times during model fitting (see Section 2.3.5), for a more490

generalized evaluation we generated posterior predictive distributions with unbinned limiting times.491

Figure 6 shows the posterior predictive summaries contrasted against the observed accuracies and492

RTs. Apart from small divergences for a few participants, the observed accuracies are overall493

consistent with the estimated posterior predictive accuracies despite the binning in modeling. The494

posterior predictive RTs are quite consistent with the empirical RTs.495

To evaluate whether the model can correctly recover the association between the types of re-496

sponses and RT, for each type of response we show the posterior predictive mean RTs in contrast497

to the empirical mean RTs in Figure 7 from selected participants. We computed means from RTs498

larger than 0.6 seconds to minimize the confounding from fast ancillary processes. Shown in Fig-499

ure 7, most participants have higher mean RTs when responding with non-targets than targets,500

which is consistent with the mechanism that more memory traces (in targets) lead to an increase501

in the speed of evidence accumulation. The posterior predictive RTs are able to recover these RT502

differences, and are overall consistent with empirical data, indicating a good fit of the model.503

For out-of-sample validation, we extracted a subset of the data set by selecting 50% of the504

observations at random. We fit the model to this subset and simulated accuracies and RTs from505

the posterior predictive distributions for other data. Figure 8 shows the simulated accuracies and506

RTs compared to the true accuracies and RTs of the other 50% of data. Despite a larger divergence507
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than those shown in Figure 6, most of the simulated accuracies are close to the true accuracy508

values, and the simulated RTs generally show patterns consistent with the true RTs. These results509

indicate that the estimation results from a subset can be generalized to the remainder of the data510

set. Thus, we consider the model to have a satisfactory fit to the data and a reasonable ability to511

generalize.512

3.1.3 Results and implications513

To analyze the mechanism and implications of the age data, we present the group and individual514

estimated posterior results. Figure 9 displays the estimated posterior distributions of the group-level515

parameters, including the interference parameter Cc, the noise parameters σc, the RT accumulation516

rate parameter vc, the type-on-RT parameter κc, the decision boundary parameter bc, and the517

activation rate parameter θc. From posterior samples, the estimated posterior probability that the518

younger group has a lower interference Cc is 0.96; the estimated posterior probability that the519

younger group has a lower noise σc is 0.98; the estimated posterior probability that the younger520

group has a higher RT accumulation rate vc is 0.63; the estimated posterior probability that the521

younger group has a higher type-on-RT parameter κc is 0.81; the estimated posterior probability522

that the younger group has a lower decision boundary parameter bc is 1.00; and the estimated523

posterior probability that the younger group has a lower activation level θc is 0.91. Based on these524

results, all parameters except the accumulation rate vic have clear group differences.525

Figure 10 shows the estimated posteriors for the individual-level parameters. The interference526

parameters Cic and boundary parameters bic display a clear difference in the majority of younger527

and older participants, further supporting the existence of their group-level differences. The noise528

parameters σic, the type-to-RT parameters κic,, and the activation rate parameters θic, however, are529

similar for most participants. The accumulation rate parameters vic appear to be more divergent530

in the younger group than in the older group, but like the group-level results, these parameters531

do not display consistent group differences. The younger participants have overall higher propor-532

tions of sub-cognitive and pre-activation processes, shown by higher ϕ1,ics, and have overall lower533

proportions of algorithmic Wald diffusion processes and supra-cognitive processes, shown by lower534

27



Figure 6: Posterior predictive results of response accuracy and RT. The upper figure shows the
posterior accuracy for each participant in the data set from Oberauer & Kliegl (2001). The red
points are the observed accuracies from the participants, and the corresponding box-plots are the
posterior predictive accuracies. The lower figure shows the posterior predictive RT distributions
contrasted with the empirical RT distributions for Participants 1-3 (younger) and 20-22 (older).
Results of the other participants can be found in the supplemental materials. The red points are the
5% to 95% RT quantiles incremented by 5% from empirical data, connected by red lines; and the
black bars show the 5% to 95% RT quantiles incremented by 5% from posterior predictive samples,
connected by black lines. The x-axis corresponds to the quantiles, and the y-axis corresponds to
RT values at each quantile.
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Figure 7: Posterior predictive mean RTs (box-plots) and empirical mean RTs (red points) for
Participants 1-3 (younger) and 20-22 (older). The x-axes show the types of response, where 1, 2,
and 3 correspond to targets, competitors, and non-competitors, respectively.

ϕ2,ics and ϕ3,ics.535

The results of the interference parameter are consistent with those from the Oberauer & Kliegl536

(2001) study. Evidence suggests that the interference parameter C is higher for the older group, and537

the older adults may have a lowered ability to resist mutual interference between items. Oberauer538

& Kliegl found no evidence of differences in noise σ or activation rate θ. Results from this model539

indicate that the older group might have an overall higher level of noise than the younger group540

because of some individuals: some younger participants may have less cognitive noise than most of541

the others, and some older participants may have higher noise than most of the others. Similarly,542

these results suggest that some older participants may have a higher activation rate than most of543

other participants, which may have resulted in an overall higher group-level activation rate in the544

older group. It is also noteworthy that the posterior means of parameters σ and θ are positively545

correlated in both groups, with r(14) = 0.82, p < 0.001 in the younger group of 16 participants,546

and with r(15) = 0.87, p < 0.001 in the older group of 17 participants. This may indicate that a547

higher activation level is related to a higher level of noise in mental representation, so that fast548

activation may not always indicate better performance.549
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Figure 8: Posterior predictive results of response accuracy and RT based on the generated out-of-
sample validation parameters (black) from test data, compared to the observed accuracies and RTs
from the other data (red). These figures are plotted in the same way as those shown in Figure 6.

30



Figure 9: The box-plots for the estimated posteriors of the group-level parameters. The black
and gray box-plots correspond to the younger and older groups, respectively. These parameters
can have negative values because of the transformations shown in Table 1. The priors for each
parameter are shown in Table 1.

In the RT results, the younger participants have relatively lower decision boundary parameters550

bic than the older participants. This may indicate that younger participants need less information to551

make a response. Some younger participants also have higher type-to-RT parameters κic than other552

participants, which may indicate that they have a better ability to use memory trace information553

to guide their accumulation processes554

The mixture proportions of the ancillary and pre-activation processes show some results wor-555

thy of notice. The mixture components for sub-cognitive/pre-activation processes are higher for556

younger than older participants, even though the younger participants have generally higher re-557

sponse accuracies. Despite being indistinguishable from sub-cognitive processes, the pre-activation558

processes may have contributed the most to these proportions judging from response accuracies559

well above chance (see Table 2). This may imply that the younger participants are more capable560
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Figure 10: Box-plots for estimated posteriors of the individual-level parameters. Younger partic-
ipants are shown in black (left of the vertical gray line) and older participants are shown in gray
(right of the vertical line).
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of using cognitive resources for pre-activation processing than the older participants, where they561

pre-activate items, store them in a “batch”, and read items out upon seeing cues. In contrast, the562

older participants may rely more on algorithmic processing, where they retrieve only one item after563

seeing a cue. This difference may be a result of decline in working memory abilities in some older564

adults.565

3.2 Application 2: Transfer effects of working memory training566

De Simoni & von Bastian (2018) performed a study to evaluate the transfer effect of working567

memory training on the improvement of cognitive abilities. Working memory is related to many568

cognitive abilities and related human performance (e.g. Oberauer et al., 2008; Cragg et al., 2017),569

leading to research about the effect of working memory training transferring to other abilities (e.g.570

Borella et al., 2010; Schwaighofer et al., 2015; von Bastian & Oberauer, 2013). It is assumed that the571

improvement of working memory ability, gained via training, can be transferred to improve other572

related abilities (De Simoni & von Bastian, 2018; Shipstead et al., 2010, 2012). In the literature,573

there is substantial evidence both for (e.g. Minear et al., 2016) and against (e.g. Sala & Gobet,574

2017) the general benefit of transfer effects. In this application, we focus on the near transfer effects575

(Shipstead et al., 2010), where the benefit of training for a specific type of working memory task576

transfers to performance of other working memory tasks (e.g. Hovik et al., 2013).577

In De Simoni & von Bastian (2018)’s design to search for near transfer effects, participants578

were divided into three groups, two of them receiving training in different working memory tasks,579

namely memory updating tasks and binding tasks, and a control group that received training in580

visual search tasks. All participants were pre-tested in all three types of tasks before training, then581

received training of their specific allocated task across five weeks, followed by post-tests in all three582

types of tasks. De Simoni & von Bastian (2018) used measurement statistics and a latent-variable583

confirmatory factor analysis to investigate whether these data embed transfer effects. In their584

analysis, despite improved performances in the trained tasks, little evidence was found to support585

the existence of near transfer effects. They concluded that working memory training is more likely586

to induce the use of stimulus-specific strategies than general transfer effects.587

33



With the intention to investigate the near transfer effect to memory updating performance, we588

applied the hierarchical Bayesian model to the pre-test and post-test memory updating data. We589

first describe the data sets from De Simoni & von Bastian (2018) and test some assumptions made590

to the RT distributions and ancillary processes in these data sets. We then apply the model to591

these data, and evaluate its goodness of fit to these data sets. We then present the model fitting592

results and summarize their implications.593

3.2.1 Data594

The De Simoni & von Bastian (2018) study investigated multiple versions of the memory updating595

tasks using different stimuli. We focus our analyses on the numerical and verbal versions, as they596

are both linked to the verbal-numerical aspect of working memory, and may correspond well to the597

assumptions of our model. In this section, we describe the numerical and verbal updating tasks598

used in the De Simoni & von Bastian (2018) study, summarize some characteristics of the data599

sets from each task, and show that the characteristics of these data sets are consistent with RT600

assumptions made in Sections 2.3.3 and 2.3.4.601

The data sets of De Simoni & von Bastian (2018) includes 216 participants. They excluded602

19 participants from the analysis for reasons such as programming errors and abnormal response603

patterns. Thus we also used the data from the remaining 197 participants for the hierarchical604

model analysis excluding one with missing information in the verbal version. The memory updating605

training group had 59 participants, the binding training group had 66 participants (65 in the verbal606

version), and the visual search control group had 72 participants. Each participant provided data607

from pre-test and post-test memory-updating sessions. Each session contained 16 trials, where each608

trial was composed of 9 updating steps, and either 3 or 5 recall steps in the numerical version, or 2609

or 4 recall steps in the verbal version. The different numbers of recall steps correspond to different610

memory demands in each trial. As such, each participant has 416 and 394 observations overall in611

the numerical and verbal versions, respectively.612

In the numerical version of the task, the participants were required to memorize digits from613

“1” to “9”, and update them by addition and subtraction as is shown by Figure 1. In the verbal614
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version, the participants were required to memorize alphabetic letters “A” to “H”, and update615

them by shifting the letters forward and backward the alphabet according to the cues provided.616

The updating cues in the verbal version are similar to those in Figure 1, and indicate the direction617

and amounts to move in the alphabet, for example, if the memorized item is “A” and the cue is618

“+3”, the correct response would be the letter that is 3 places after “A”, which is “D”.619

We show some summary statistics of the response accuracies and RTs in Table 3. All groups620

show an increase in the response accuracy and a decrease in RT after training, where the updating-621

trained group shows the largest improvement in response accuracy and the largest decrease in RT622

in both versions. The binding-trained group overall shows a slightly larger increase in response623

accuracy and a slightly larger decrease in RT compared with the control group. However, because624

these differences are relatively small and could be due to participant variability, it is impossible to625

determine whether they are the result of training by simply inspecting the summary statistics.626

To evaluate whether more memory traces may lead to a faster speed of responding, we show the627

mean RTs from responses of each type (targets, competitors and non-competitors) in Table 3. We628

computed mean RTs from RTs larger than 0.6 seconds to minimize the confounds of fast ancillary629

processes. It is shown that non-targets require overall longer mean RTs than targets, and this630

trend is persistent in both tasks, all groups, and both the updating and recall periods of each task.631

This is consistent with the mechanism that more memory traces, linked to targets, can improve632

the speed of information accumulation in the Wald diffusion process.633

We then evaluate whether the characteristics of these data sets are consistent with some RT634

assumptions made in Sections 2.3.3 and 2.3.4, especially whether the RT bi-modality is likely a result635

of pre-activation. To evaluate whether the fast RTs at the smaller mode are a result of fast guessing,636

we examine the response accuracies of trials with RTs in the range of 0-0.2 seconds, corresponding637

to potential sub-cognitive processes; and in the range of 0.2-0.6 seconds, corresponding to the first638

peak (Figure 2), and larger that 0.6 seconds, corresponding to the main process. Table 3 shows639

the response accuracies in each RT range. In the updating processes, the response accuracies in640

trials with RTs under 0.6 seconds are around chance performance. In the recall processes, while641

response accuracies with RTs under 0.2 seconds are lower than the overall accuracies, the response642
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accuracies in the 0.2-0.6 seconds RT range are close to the overall accuracy. Therefore, the fast RTs643

at the smaller mode in the recall process are unlikely a result of fast guessing that should result in644

chance performance.645

To evaluate whether the fast RTs around the smaller mode are a result of recency effect, we646

evaluate the proportions of RTs in the range of 0.2-0.6 seconds in the first recall response in each647

trial. When the first recall item is in the same location as the last updated item, there are 6.8%648

and 17.1% of RTs in the range of 0.2-0.6 seconds from the numerical and verbal tasks, respectively.649

When the first recall item is in a different location from the last updated item, there are 1.9% and650

3.9% of RTs in the range of 0.2-0.6 seconds from the numerical and verbal tasks, respectively. This651

indicates that a recency effect may be present. However, in all recall responses, there are 14.9%652

and 20.1% of RTs in the 0.2-0.6 seconds range from the numerical and verbal tasks respectively,653

which are larger than the 6.8% and 17.1% in the first recall response when the first recall item is654

in the same location as the last updated item. These statistics indicate that the recency effect is655

unlikely to be the main cause of fast RTs around the smaller mode, as the proportions of overall656

fast RTs are larger than what a recency effect may induce.657

We then examine the proportions of fast RTs around the smaller mode from responses to the658

first to last recall items in each trial. Table 3 displays the proportions in the range of 0.2-0.6 seconds659

from both versions. These statistics show that the proportions of fast RTs around the smaller mode660

are smallest from the first item to be recalled, then gradually increase to the largest from the last661

item to be recalled. It is in support of the assumption that fast RTs around the smaller mode may662

be a result of pre-activation, where the later items to be recalled are more likely to be pre-activated663

when recalling the previous items, and it may result in the larger proportions of faster RTs from664

the later items to be recalled.665

To summarize, the data sets show clear effects of updating training on the performance in666

memory updating tasks, but it is unclear whether binding training can have transfer effects. The667

RTs from these data sets show patterns consistent with the assumption of pre-activation made in668

the model. We then fit the hierarchical Bayesian model to the data set to investigate whether669

binding training induces transfer effects that are reflected in model parameters, or if the differences670
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between the control group and the binding-trained group is purely a result of participant variability.671

3.2.2 Model fit672

We fit the hierarchical Bayesian model using Stan to numerical and verbal data using methods673

described in Section 2.3. To accommodate the small sample size of the verbal data set, especially674

in the recall period, we adjusted the standard deviation of the hyper-priors of vr,c and vr,0 from675

0.2 to 0.1. We fixed the mean of non-decision time priors τ
(0)
ic to 0.1 for the updating-trained676

group and to 0.15 for other groups. For each data set, we generate 3 chains, each consisting of 500677

warm-up samples and 2000 iterations. The Gelman-Rubin statistic R̂ (R̂ < 1.01 for all parameters)678

and the effective sample size were both reasonable, indicating satisfactory convergence and reliable679

posteriors.680

To evaluate the model’s ability to fit the data, we examined the estimated posterior predictive681

distributions and performed out-of-sample validations for numerical and verbal data. We present682

the posterior predictive accuracies and RTs in contrast with empirical accuracies and RTs in Fig-683

ure 11 and Figure 12, respectively. Figure 11 shows that the posterior predictive accuracies are684

overall consistent with empirical accuracy regardless of the value of accuracy. Figure 12 shows685

that the posterior predictive RTs have consistent fits with empirical RTs. For some participants686

(such as Participant 140), the posterior predictive RT distributions have small divergences from687

the empirical distributions, but this is reasonable considering the small sample sizes in this data688

set.689

To evaluate whether the model can correctly recover the association between the types of re-690

sponses and RT, for each type of response, we show the posterior predictive RT distributions in691

contrast with the empirical RT distributions in Figure 13. We computed quantiles from RTs larger692

than 0.6 seconds and less than 8 seconds to minimize the confounding from ancillary processes.693

Shown in Figure 13, the model is able to reflect the differences in RTs from different types of694

response. For competitors and non-competitors, the RTs are sometimes overestimated, but the695

differences are relatively small.696
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Figure 11: Posterior predictive accuracies for each participant from De Simoni & von Bastian
(2018). The upper plots show results from the pre-test and post-test of the numerical version, and
the lower plots show results from the verbal version. The red lines are identity lines. The x-axis
reflects each participant’s empirical response accuracy. The y-axis reflects the posterior predictive
accuracy of each participant. The black points are the mean of posterior predictive accuracies from
all samples, and the gray whisker plots are the 95% equal-tailed credible intervals from all samples.

To perform out-of-sample validation, we drew 50% of the data set at random. We applied697

the model to the subset, simulated accuracies and RTs from the posterior predictive distributions698

and plotted the mean predictive accuracies against the observed accuracies for the rest of the data,699

shown in Figure 14 and Figure 15, respectively. Figure 14 shows some divergences but overall linear700

patterns following the identity line. Figure 15 shows that there are larger divergences between the701

simulated RT distributions and the empirical ones, but the patterns are overall consistent consid-702

ering the small sample size. This indicates that our model has a reasonable ability to generalize703

with these data sets.704
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Figure 12: The posterior predictive RT distributions contrasted with the empirical RT distributions
for Participants 1, 80, and 140 from the control, updating, and binding groups, respectively. Results
of the other participants can be found in the supplemental materials. The red points are the 5%
to 95% RT quantiles incremented by 5% from empirical data, connected by red lines. The vertical
black bars show the 5% to 95% RT quantiles incremented by 5% from posterior predictive samples,
connected by black lines. The length of black bars reflect the size of 95% equal-tailed credible
intervals from all samples. The x-axis corresponds to the quantiles, and the y-axis corresponds to
RT values at each quantile.
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Figure 13: The posterior predictive RT distributions contrasted with the empirical RT distributions
for responses from targets, competitors and non-competitors. The red points are the 5% to 95% RT
quantiles incremented by 5% from empirical data, connected by red lines. The vertical black bars
show the 5% to 95% RT quantiles incremented by 5% from posterior predictive samples, connected
by black lines. The length of black bars reflect the size of 95% equal-tailed credible intervals from
all samples. The x-axis corresponds to the quantiles, and the y-axis corresponds to RT values at
each quantile.
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Figure 14: Posterior predictive results of response accuracy based on the generated out-of-sample
validation parameters from test data (y-axis), compared to the observed accuracies and RTs from
the other data (x-axis). These figures are plotted in the same way as those shown in Figure 11.

3.2.3 Results and implications705

In this section, we display a subset of estimated group and individual posterior parameters, and706

discuss their patterns and implications.707

Figure 16 shows the estimated posterior distributions of the pre/post-test differences of group-708

level parameters from the numerical version (upper) and the verbal version (lower). From inspection709

of the plot, the updating-trained participants have a larger decrease in the level of interference than710

the other groups, reflected by Cc. However, the binding-trained participants do not show a similar711

decrease in the level of interference: in contrast, they have less decrease than the control group712

in both tasks. Among other parameters, the noise parameters, σc, and the accumulation rate713

parameters in the recall period, vr,c, appear to show potential transfer effects, as both the updating714
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Figure 15: Posterior predictive results of RT based on the generated out-of-sample validation
parameters from test data (black), compared to the observed accuracies and RTs from the other
data (red). These figures are plotted in the same way as those shown in Figure 12.

and binding groups have a similar trend of changes compared with the control group. Based on715

these results, we discuss the results of each of the parameters Cc, σc and vr,c by investigating their716

posterior distributions. For each parameter, we compute the estimated posterior probability that717

the pre/post-test differences are numerically smaller in the control group than in the other groups.718

When the estimated posterior probability is less than 0.3 or more than 0.7, we consider that there719

may be a meaningful divergence between the control group and another group.720

In the difference of interference parameters, C
(2)
c − C

(1)
c , the posterior probabilities that the721

control group has a higher C
(2)
c − C

(1)
c than the updating and binding groups are 0.18 and 0.68722

respectively in the numerical version, and are 0.14 and 0.78 respectively in the verbal version.723

Therefore, results from the interference parameters provide evidence supporting a general training724

effect, because the updating group consistently show a larger decrease in the level of interference725
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than the control group. However, there is no evidence supporting a transfer effect in mutual726

interference, as the binding-trained group shows either no contrast or less decrease in the level of727

interference than the control group.728

In the differences of noise parameters, log(σ
(2)
c )− log(σ

(1)
c ), the posterior probabilities that the729

control group has a lower log(σ
(2)
c ) − log(σ

(1)
c ) than the updating and binding groups are 0.34730

and 0.32 respectively in the numerical version, and are 0.01 and 0.13 respectively in the verbal731

version. This may indicate that, regardless of whether the training is in updating or binding tasks,732

training in verbal tasks may reduce noise in mental representation in the verbal version of the733

memory updating task, because both the updating and the binding group have a decrease in noise734

compared with the control group. However, training in numerical tasks may not reduce the noise735

in the numerical version of the memory updating task as effectively.736

In the differences of RT accumulation rate parameters from the recall period, v
(2)
r,c − v

(1)
r,c , the737

posterior probabilities that the control group has a lower v
(2)
r,c − v

(1)
r,c than the updating and binding738

groups are 0.98 and 0.85 respectively in the numerical version, and are 0.98 and 0.88 respectively739

in the verbal version. This parameter shows a clear effect of training, where the updating group740

has an increased accumulation speed after training in both numerical and verbal versions, and this741

group improves more than the other groups. There may also be a transfer effect associated with742

this parameter, as the binding-trained group also have consistent increases in the accumulation743

rate in both tasks, and the increases are larger than those from the control group.744

Based on group-level results, for individual-level parameters, we examine the interference pa-745

rameters Cic, as they are tightly linked with the interference mechanism of interest, and the ac-746

cumulation rate parameters vr,ic in the recall period, as they may embed possible transfer effects.747

Figures 17 and 18 display individual pre/post-test differences of these parameters.748

As displayed by the numerical version of Figure 17, in the updating group, 36 out of 59 partic-749

ipants have an estimated posterior probability larger than 0.7 that C
(2)
ic < C

(1)
ic ; the control group750

has 32 such participants out of 72, and the binding group has 26 such participants out of 66. In751

the verbal version, the updating group has 26 such participants out of 59; the control group has 18752

out of 72; and the binding group has 15 out of 65. From the individual level, a larger proportion753
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Figure 16: Posterior box-plots for the pre-post test differences of group-level parameters from the

numerical version (upper) and the verbal version (lower). Parameters θ
(1)
·,c (θ ∈ (C, σ, κ, α)) corre-

sponds to the pre-test condition, and θ
(2)
·,c corresponds to the post-test condition. The subscripts u

and r indicate that the parameters are from the updating period and the recall period, respectively.
The control group (“Ctl”), memory-updating group (“Upd”), and binding group (“bind”) are each
colored in brown, black and gray, respectively.
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Figure 17: The whisker plots of pre-post test differences of individual posteriors for the interference
parameter C in the recall period. The upper plots are from the numerical task and the lower plots
are from the verbal task. The control, updating, and binding groups are colored in brown, black,
and gray, respectively. In the whisker plots, the points are placed at the posterior medians, and
the whiskers are the 95% equal-tailed credible intervals. We re-ordered participants in each group
by estimated parameter values so that their results are shown in an increasing order.

of participants from the updating group have a reduction in the level of interference, which may754

indicate that memory-updating training could potentially reduce the degree of mutual interference755

in working memory processing for some individuals in the same task. However, similar to results756

from the group level, there is no evidence that binding training can help to reduce the level of757

interference in memory updating tasks.758

Figure 18 shows the individual-level accumulation rate parameters in the recall period. Most759

participants in the updating and binding groups have an increase in the RT speed after training.760

In the updating group, 49 out of 59 participants has an estimated posterior probability larger than761

0.7 that v
(2)
r,ic > v

(1)
r,ic in the numerical version, and 46 out of 59 in the verbal version. The binding762

group has 45 out of 66 such participants in the numerical version and 33 out of 65 participants in763

the verbal version. The control group has 37 out of 72 such participants in the numerical version764
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Figure 18: The whisker plots of pre-post test differences of individual posteriors for the RT accu-
mulation rate parameter v in the recall period. The upper plots are from the numerical task and
the lower plots are from the verbal task. The control, updating, and binding groups are colored in
brown, black, and gray, respectively. In the whisker plots, the points are placed at the posterior
medians, and the whiskers are the 95% equal-tailed credible intervals. We re-ordered participants
in each group by estimated parameter values so that their results are shown in an increasing order.

and 25 out of 72 participants in the verbal version. These results may indicate that both updating765

and binding training are more helpful in improving the speed of information accumulation in the766

recall period than the visual search tasks. It may be the result of familiarizing and speeding up767

passive working memory processes, where the participants learned to use the cognitive resources768

more efficiently. The change in the binding group may be due to the shared passive components in769

binding and memory updating, so the benefit from binding training can also benefit related passive770

components in the memory updating task.771

Consistent with the findings reported by De Simoni & von Bastian (2018), we found no evidence772

of transfer effects in the level of interference. However, our results indicate that there may be773

training and transfer effects in the speed of information accumulation in these memory tasks. As774

is shown by the RT accumulation parameter in the recall period, the updating group has a large775
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increase in the accumulation speed after training in both numerical and verbal versions of the task.776

The binding group does not have as large an increase as that of the updating group, but still have777

a larger increase in the speed of information accumulation than the control group in both versions778

of the task. At the individual level, larger proportions of participants have increases in the speed779

of information accumulation in updating and binding groups than in the control group. This may780

indicate that some degree of near transfer effects may be present in the passive components shared781

by all working memory components. Because these components are shared, training of them in one782

task may indirectly improve them in another task.783

4 Conclusion and future directions784

In this paper, we developed a hierarchical Bayesian model for working memory updating based on785

mutual interference. The model adapted the activation framework based on mutual interference786

(Oberauer & Kliegl, 2006) and the Wald diffusion model, allowing it to jointly model the response787

accuracies and RTs. This hierarchical Bayesian model yielded reasonable fits to several memory788

updating data sets, thus we conclude that it is a feasible model for the memory updating task.789

Compared with previous models, the joint modeling framework in this model allows each of response790

and RT information to inform and potentially improve parameter estimation of the other. Because791

of the inclusion of RT parameters, results of this model may reflect possible RT-related effects792

that are otherwise not shown by parameters related to response accuracy. This model also used793

mixtures to account for ancillary processes such as pre-activation, which could otherwise confound794

the modeling results.795

In this section, we discuss potential future directions in working memory studies. Some are796

related to possible improvements to our current modeling methods, and the others are related to797

extensions of working memory studies based on findings in Section 3.798

4.1 Discussion: Modeling799

We discuss potential work related to the modification and improvement of our modeling approach.800
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Firstly, we constructed the hierarchical Bayesian model with the purpose of quantifying the801

level of interference and RT differences in groups and individuals. Our focus is not on the evalua-802

tion and comparison of different interference mechanisms, or on the mechanisms limiting working803

memory capacity in general. In future studies, it may be plausible to build joint models or further804

improve existing models based on different specific mechanisms, and evaluate the plausibility of805

each mechanism by model comparison (e.g. Oberauer & Kliegl, 2001; Ecker et al., 2015; Tan et al.,806

2017). Because RT distribution information is shown to be informative in this study, it may also807

be beneficial to incorporate RT distributions in potential models and perform estimations jointly.808

With several models, model comparisons may also be used to evaluate the flexibility of different809

models, which regards their abilities to fit the data with their numbers of effective parameters eval-810

uated by the deviance information criterion (Spiegelhalter et al., 2002) or the Watanabe-Akaike811

information criterion (Gelman et al., 2013).812

To accommodate the mixture structures in this model, we used strongly informative priors813

for some parameters to avoid potential identifiability problems and reduce computational time.814

However, if the ancillary processes are not the interest of a study, it may be feasible to discard815

fast and slow responses, model the process with only the algorithmic mutual interference and Wald816

diffusion processes, and relax the priors of these parameters. It may also be feasible to fit this817

model with another sampler other than the Hamiltonian Monte Carlo sampler from Stan, such as818

the Differential Evolution approach (Turner et al., 2013), so that the process has less computational819

cost.820

4.2 Discussion: Working memory applications821

We discuss potential future work based on our modeling assumptions and findings in empirical822

applications.823

When constructing the model, we made several assumptions that can be tested or extended824

in future development. The first is the assumption that targets and competitor items share the825

same level of interference in each task. This assumption can be violated if a design involves stimuli826

of different levels of distinctiveness (e.g. Oberauer et al., 2012) or incentives (e.g. Strand et al.,827
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2012), thus the modeling framework can be updated to incorporate these conditions in future828

development. The second is the assumption that items are perfectly encoded in the memorization829

period, which is a simplification and may be modified to include potential encoding effects such as830

elaborative encoding (Bradshaw & Anderson, 1982) in future works. The third is the assumption831

of pre-activation for the fast RTs around the smaller mode. This assumption is examined in this832

study but may need further evidence from future studies to validate.833

In the application investigating aging effects in working memory based on data from Oberauer &834

Kliegl (2001), our results indicate that older adults may have higher levels of interference between835

items, less use of memory trace information to guide their information accumulation processes,836

and less use of potential pre-activation processes compared with younger adults. One possible837

extension to this work is related to the pre-activation processes. It may be helpful to further test838

the pre-activation assumption, and investigate the mechanisms underlying the processing differences839

between younger and older adults in relation to pre-activation in future research.840

In the application investigating transfer effects in working memory training based on data from841

De Simoni & von Bastian (2018), we found strong evidence of training and transfer effects in842

the speed of processing. Because our analysis focused on the verbal-numerical aspect of working843

memory, effects in the visuo-spatial aspect may be investigated in future studies. For a better844

evaluation of the benefits of working memory training, it may also be helpful to study the reason845

for this transfer effect in future research. One possibility is to identify the specific working memory846

processes that benefit from the transfer effects, so that the scope and generalizability of the transfer847

effect can be understood.848
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Appendix 1: Simulation and parameter recovery1024

We performed a simulation study to test the model’s parameter recovery ability. We investigated1025

parameter recovery under two conditions: when responses and RTs are only recorded during the1026

recall period for the final results, and when they are recorded both in the updating and recall1027

56



periods for intermediate and final results. These conditions correspond to the characteristics of the1028

two paradigms and empirical data sets presented by Oberauer & Kliegl (2001) and De Simoni &1029

von Bastian (2018). In this section, we describe our methods to generate the simulated data sets,1030

and the results of these simulations. Based on simulation results, we argue that the hierarchical1031

Bayesian model has a reasonable parameter recovery ability for most parameters.1032

4.2.1 Simulation without intermediate responses1033

In this section, we examine whether the model can successfully recover the true parameter values1034

when responses from the recall steps are recorded, and when the updating time limit is binned into1035

four segments (see Section 2.3.5). To obtain simulated data sets, we simulated each data set from1036

two groups, each consisting of 10 artificial participants. We used the experimental schemes similar1037

to that from Oberauer & Kliegl (2001) to generate simulated data. We simulated two cases, where1038

each participant completes 80 trials (around 250 observations depending on the memory demand)1039

or 240 trials (around 700 observations). We generated the individual parameters with group-level1040

parameters obtained from modeling results in Section 3.1.3, using distributions shown in Table 1.1041

We obtained 30 different sets of parameters and 30 corresponding simulated data sets in each case.1042

We fit the model using the procedure described in Section 2.3. In particular, we computed1043

quartiles for the limiting times during the updating period, and fit the model to data with binned1044

limiting times. We fit the hierarchical Bayesian model to these data using the software Stan. For1045

each simulated data set, we obtained a chain containing 500 warm-up samples and 1000 iterations.1046

We present parameter recovery results in Figure 19 and Figure 20. Figure 19 shows that when1047

the sample size is relatively small, the interference parameter Cic is slightly overestimated at lower1048

values. Estimation of the activation rate parameter θic is less accurate at higher values, which is1049

likely due to the binning of updating limit times. Besides the main parameters of interest, the1050

response probabilities in the ancillary processes, qk,ic, and the Log-normal standard deviation of1051

fast ancillary processes, σµ,r,ic, have a relatively larger variability in their estimation. Figure 201052

shows that the quality of estimation improves when the sample size is relatively large. The majority1053

of the parameters are reasonably recovered and there are no major patterns of divergence from the1054
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identity lines. The ancillary processes parameters, especially qk,ic and σµ,r,ic, have less variable1055

estimation compared with the small sample size condition.1056

In these simulations, the parameter recovery results are reasonably good for model parameters,1057

and the precision of estimation improves as the sample size increases. With a larger sample size, the1058

model is able to recover all parameters well, including the activation rate parameter after binning.1059

Therefore, the model is feasible for Oberauer & Kliegl (2001)’s data set.1060

4.2.2 Simulation with intermediate responses1061

In this section, we examine whether the model can successfully recover true parameter values1062

for both the updating and recall steps, and when the number of observations per participant is1063

relatively small. We describe in order the methods to generate the simulated data sets, the model1064

fitting procedures, and simulation results.1065

To evaluate whether the model has a good parameter recovery ability when the data has a small1066

number of observations like that in De Simoni & von Bastian (2018), we simulated each data set1067

from 3 groups, each consisting of 10 artificial participants. We used experimental schemes identical1068

to those of the numerical version of memory updating task from De Simoni & von Bastian (2018),1069

described in detail in Section 3.2.1. This scheme consists of 208 trials in total, including 144 trials1070

from the updating period and 64 trials from the recall period. In this simulation, each participant1071

completes the task once (208 observations in total). In each simulation, we selected the group-level1072

parameters as those obtained from Bayesian fits of the model to empirical data from Section 3.2.3,1073

which embedded reasonable group differences. We generated the individual-level parameters from1074

the group-level parameters using the distributions shown in Table 1. These values have considerable1075

variability but are also within a reasonable range for an empirical scenario. For parameters outside1076

the hierarchy, we randomly selected values out of all posterior samples for them. We generated 501077

different sets of parameters and 50 corresponding simulated data sets. Although the first simulation1078

shows that the model has a good parameter recovery ability when the sample size is large, for a1079

more thorough comparison, we also performed 5 simulations where each participant performed the1080

task 10 times, resulting in 2080 observations each. We fit the hierarchical Bayesian model to these1081
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Figure 19: Results from simulations with 80 trials (about 250 observations per participant) where
intermediate updating responses are not recorded. This figure shows the contrasts between true
parameter values (x-axis) and parameter values recovered from simulations (y-axis) for individual-
level parameters. Red lines are identity lines.
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Figure 20: Results from simulations with 240 trials (about 700 observations per participant) where
intermediate updating responses are not recorded. This figure shows the contrasts between true
parameter values (x-axis) and parameter values recovered from simulations (y-axis) for individual-
level parameters. Red lines are identity lines.
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data using the software Stan (Stan Development Team, 2018). For each simulated data set, we1082

obtained a chain containing 500 warm-up samples and 1000 iterations.1083

We present parameter recovery results in Figure 21 and Figure 22. Figure 21 shows that, even1084

with a really small sample size, the model can recover parameters well. It is most noticeable that1085

the interference parameter Cic is slightly overestimated at low values under 0.1. In comparison,1086

Figure 21 shows that when the sample size is large, Cic is more precisely estimated. Based on these1087

results, the overestimation of Cic at small sample sizes is likely to occur because we used tighter1088

priors (see Section 2.3.4) to accommodate the inclusion of mixtures and computational cost, and1089

when the sample size is small, the priors are not properly shifted to the precise location. However,1090

because the Cic estimates positively relate to the true values, this overestimation is unlikely to lead1091

to misinterpretation of modeling results. Therefore, the model is reasonable to use for parameter1092

estimation and interpretation in data sets with small sample sizes like those from De Simoni & von1093

Bastian (2018).1094

Appendix 2: Model comparison1095

We perform a model comparison to evaluate whether the participants’ type of responses are linked to1096

their information accumulation rate. From the mechanism in Section 2.3.1, the number of memory1097

traces linked to each type of item (targets, competitors and non-competitors) are embedded in the1098

probabilities p∗k,ic,j of responding by that type. More memory traces linked to an item (such as a1099

target) can lead to a larger p∗k,ic,j for that item. In Section 2.3.2, we hypothesize that the number1100

of memory traces can also affect the information accumulation rate in the Wald diffusion process1101

while responding, reflected in the type-to-RT parameter κic. When a participant performs the task1102

well, we expect κic > 0, so that as target items have more memory traces, this participant can1103

collect information faster and respond earlier to targets than non-targets. In Sections 3.1.1 and1104

3.2.1, we showed that the relations of RTs and responses are consistent with this assumption in all1105

data sets.1106

In this section, we use the Watanabe-Akaike information criterion (WAIC, Gelman et al., 2013)1107
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Figure 21: Results from simulations with 208 observations where intermediate updating responses
are recorded. This figure shows the contrasts between true parameter values (x-axis) and parameter
values recovered from simulations (y-axis) for individual-level parameters. Red lines are identity
lines.
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Figure 22: Results from simulations with 2080 observations where intermediate updating responses
are recorded. This figure shows the contrasts between true parameter values (x-axis) and parameter
values recovered from simulations (y-axis) for individual-level parameters. Red lines are identity
lines.
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to evaluate whether the inclusion of κic improves model fit without over-fitting. For all data sets,1108

we fit a model with κic and a model without κic to the data, generating a chain of 500 warm-up1109

samples and 2000 iterations each. We then compute the WAICs for each model. Table 4 shows the1110

WAICs and effective number of parameters from both models in each data set. Two versions of1111

WAIC and effective numbers of parameters are used. In “WAIC1” and ”Eff1”, the effective number1112

of parameters pWAIC1 is computed as1113

pWAIC1 = 2
n∑

j=1

(
log

( 1

S

S∑
s=1

p(yj |ηs)
)
−
( 1

S

S∑
s=1

log p(yj |ηs)
))

,1114

where η denotes the posterior samples, η̂ denotes the posterior sample means, and y denotes the1115

data. With a total of n data points and S posterior samples, yj denotes the jth data point and1116

ηs denotes the sth posterior sample. In “WAIC2” and “Eff2”, the effective number of parameters1117

pWAIC2 is computed as1118

pWAIC2 =

n∑
j=1

varSs=1(log p(yj |ηs)).1119

The log pointwise predictive density is computed as1120

lppd =

n∑
j=1

log
( 1

S

S∑
s=1

p(yj |ηs)
)
,1121

and the WAICs are computed as1122

WAIC = −2lppd + 2pWAIC.1123

From Table 4, for all data sets, both WAICs are lower for the model with κic than the model1124

without κic. This indicates that the model with κic is superior based on both measures for all data1125

sets, and the type-to-RT parameter κic should be retained in the model.1126
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Numerical version

Table A1 Control Updating Binding Control Updating Binding
Accuracy Updating RT

Pre-test 0.81 0.83 0.81 3.20 (3.27) 3.46 (3.43) 3.17 (2.77)
Post-test 0.82 0.88 0.82 2.82 (2.91) 1.80 (1.26) 2.64 (2.29)
Mean diff 0.01 0.05 0.01 -0.38 -1.66 -0.53

Recall RT
Pre-test 1.51 (1.40) 1.57 (1.31) 1.49 (1.16)
Post-test 1.32 (1.12) 1.17 (1.20) 1.28 (0.90)
Mean diff -0.19 -0.40 -0.21

Table B1 RT T1 (pre) T1 (post) T2 (pre) T2 (post) T3 (pre) T3 (post)
Control 3.25/1.65 2.89/1.52 3.67/2.20 3.04/1.96 3.40/2.05 2.91/1.76
Updating 3.41/1.64 1.79/1.37 4.28/2.20 2.34/1.86 3.90/2.23 2.20/1.67
Binding 3.17/1.67 2.72/1.46 3.61/2.06 3.20/1.88 3.64/1.88 2.60/1.72

Table C1 Updating RT Recall RT
RT 0-0.2s 0.2-0.6s >0.6s 0-0.2s 0.2-0.6s >0.6s

Accuracy 0.10 0.12 0.88 0.47 0.73 0.76
Table D1 Sequential place in recall

Memory demand 1 2 3 4 5
3 3.2% 18.6% 62.7%
5 2.4% 5.0% 11.7% 16.4% 24.0%

Verbal version

Table A2 Control Updating Binding Control Updating Binding
Accuracy Updating RT

Pre-test 0.72 0.73 0.66 4.52 (4.72) 4.55 (4.26) 4.33 (4.70)
Post-test 0.72 0.86 0.69 3.48 (3.79) 1.82 (1.18) 3.31 (3.26)
Mean diff 0.00 0.13 0.03 -1.04 -2.73 -1.02

Recall RT
Pre-test 1.44 (1.72) 1.33 (1.18) 1.36 (1.31)
Post-test 1.24 (1.47) 0.94 (0.79) 1.07 (0.90)
Mean diff -0.20 -0.39 -0.29

Table B2 RT T1 (pre) T1 (post) T2 (pre) T2 (post) T3 (pre) T3 (post)
Control 4.51/1.53 3.56/1.43 5.03/2.37 3.51/1.99 4.84/1.98 3.89/1.88
Updating 4.51/1.43 1.80/1.16 5.01/1.97 2.19/1.74 4.98/1.89 2.21/1.51
Binding 4.49/1.49 3.59/1.33 4.59/2.07 3.33/1.50 4.39/1.86 3.52/1.54

Table C2 Updating RT Recall RT
RT 0-0.2s 0.2-0.6s >0.6s 0-0.2s 0.2-0.6s >0.6s

Accuracy 0.14 0.16 0.79 0.39 0.68 0.62
Table D2 Sequential place in recall

Memory demand 1 2 3 4
2 15.7% 62.6%
4 3.6% 10.5% 20.3% 39.8%

Table 3: Statistics from numerical and verbal versions of memory updating tasks from De Simoni
& von Bastian (2018). “Table A”s display the summary statistics of response accuracies and
RTs for the visual search (control) participants, updating-trained participants, and binding-trained
participants. These tables show the mean response accuracies and the RT mean with standard
deviations (in brackets) for each group. “Mean diff” rows show the mean differences of the post-
test values from the pre-test values. “Table B”s display the mean RTs (calculated from RT larger
than 0.6 seconds) of each type. T1, T2, and T3 correspond to targets, competitors, and non-
competitors, respectively. The mean RTs before and after each “/” are from the updating and
recall periods, respectively. “Table C”s display the response accuracies in the RT ranges of 0-0.2
seconds, 0.2-0.6 seconds, and more than 0.6 seconds. “Table D”s display the proportions of fast
RTs around the smaller mode in the 0.2-0.6 seconds range in the recall period from each item to
be recalled. The “Sequential place in recall” shows the sequential order of the item to be recalled.
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With κic No κic
WAIC1 Eff1 WAIC2 Eff2 WAIC1 Eff1 WAIC2 Eff2

Age 278072 403 278097 415 282381 358 282404 370
Numerical 348429 5918 350544 6976 349406 5667 351458 6693
Verbal 384085 5452 385574 6197 385269 5233 386743 5970

Table 4: WAICs and effective number of parameters (Eff) of data sets from Oberauer & Kliegl
(2001) (“Age”) and De Simoni & von Bastian (2018) (“Numerical” and “Verbal”).
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