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Highlights

e A joint theory-based framework to account for responses and reaction times in working mem-

ory updating.

e A Markov chain structure to characterize probabilities of responses during and after memory

updating, and a Wald diffusion process to account for reaction times.

e Application to two empirical studies. One shows the mechanisms underlying age differences
in memory updating performance; the other reveals potential training and transfer effects

from working memory training.
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Abstract

We propose a hierarchical Bayesian model for working memory updating. This model accounts for
both the accuracy of the responses and the reaction times (RT) in the memory updating paradigm,
which is a commonly used paradigm to measure working memory capacity. We adapt a mutual
interference model from Oberauer & Kliegl (2006) to explain responses. Oberauer & Kliegl (2006)
used a Boltzmann equation framework based on the activation levels of items stored in working
memory to quantify the probability of correct response at the final recall step after memory updat-
ing. We expand the original framework with a Markov chain structure, so that the model accounts
for the probabilities of all possible responses, correct or incorrect, at both the intermediate steps
during memory updating and the final recall step after memory updating. We use a Wald diffusion
process to characterize RT, where the drift rate parameters are associated with the activation levels
of items in working memory. This model allows us to investigate the mechanisms underlying choices
and RTs in the memory updating paradigm under a joint theoretical framework. A simulation study
shows the effectiveness of this model, and posterior predictive distributions and out-of-sample vali-
dations show that this model gives a good account of empirical working memory updating findings.
We apply the model to two published data sets. The first data set, from Oberauer & Kliegl (2001),
examined age differences in working memory. Results from our model reveal an increased level of
mutual interference, less use of memory trace information, and potentially less pre-activation of
memorized items in older adults compared to younger adults. The second data set, from De Simoni
& von Bastian (2018), investigated transfer effects of working memory training. Results from our
model reveal a potential transfer effect in the speed of information accumulation, where training in

one working memory task may improve the information processing speed in another.
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1 Introduction

Working memory is a complex process composed of both passive maintenance and active manip-
ulation of information (Vecchi & Cornoldi, 1999; Vecchi et al., 2005; Camos & Barrouillet, 2011;
Veltman et al., 2003; Masse et al., 2019). Passive maintenance processes, such as storage and recall,
do not change the nature of memorized information, whereas active manipulation processes change
the information by transformation and manipulation (Vecchi et al., 2005). Both passive mainte-
nance and active manipulation processes have been studied using a memory updating task designed
by Salthouse et al. (1991). This task requires the ability to switch attentional focus (Oberauer,
2006) and remove outdated information from working memory (Ecker et al., 2010, 2014). It is often
used to test working memory capacity and efficiency, and sometimes it is used as a training task

for working memory abilities (e.g. De Simoni & von Bastian, 2018; Waris et al., 2015).

Salthouse et al. (1991)’s memory updating paradigm requires participants to memorize a se-
quence of stimuli, then perform specified operations one at a time on each of the stimuli for several
steps, and then recall the final outcomes for each stimulus. Varied types of stimuli have been used
in the task, including digits, alphabetic letters, arrows and location of items (e.g. De Simoni & von
Bastian, 2018). Each stimulus type can isolate either the verbal-numerical or visuo-spatial factors
of working memory (Oberauer et al., 2000; Kane et al., 2004). We focus our modeling and analysis
on the verbal-numerical versions of the task, which test the ability to maintain and manipulate

numbers and letters.

We demonstrate the memory updating paradigm with a numerical version. In this paradigm,
the memory updating task features a sequence of adjacent boxes, each containing a single digit

chosen from 1-9 (see Figure 1). The memory demands of the task increase as the number of
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Figure 1: An example of a numerical memory updating task trial. The trial is composed of
a memorizing period, an updating period containing multiple updating steps, and a final recall
period where participants recall all the items in the order determined by the cue.

boxes increases. After memorizing the digits and their locations in the boxes, the participant is
asked to perform a sequence of updating steps by applying a series of arithmetic operations on
the digit in the box. During the updating step for each stimulus, the participant must recall the
correct digit from working memory and conduct the operation accurately. After the sequence of
updating steps, the participant recalls the digits in each cued box one at a time. The performance
of participants commonly decreases as the memory demand increases in this task. Other versions
often have a similar task structure with a variety of stimuli and updating operations. Based on
specific requirements, the memory updating paradigm can require intermediate responses after
each updating step (e.g. De Simoni & von Bastian, 2018), or require no intermediate responses but

impose time limits for each updating step (e.g. Oberauer & Kliegl, 2001).

In this paper, we use joint modeling to link responses and RT's from the memory updating tasks.
We examined potential modeling approaches that allow such a link while providing theoretical
explanations of the working memory process. A potential simple model that allows such a link
is the speed-accuracy trade-off (SAT) model which can characterize the inverse relation between
processing time and accuracy (Wickelgren, 1977; Heitz, 2014). This model was used in Oberauer &
Kliegl (2006) for the memory updating task. However, due to its simplicity, the SAT function has

only a limited ability to incorporate theory about cognitive mechanisms and corresponding working
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memory processes.

We base our model on established theories that explain how working memory performance
declines with increasing memory demand. The most notable of these theories are resource theories
hypothesizing limited working memory resources (e.g. Anderson et al., 1996; Cowan, 2010), time-
based decay theories hypothesizing memory decay (e.g. Schweickert & Boruff, 1986; Barrouillet &
Camos, 2001; Camos, 2017), and mutual interference theories hypothesizing interference between
items in working memory (e.g. Nairne, 1990; Oberauer & Kliegl, 2006; Oberauer & Lin, 2017).
Corresponding theory-based statistical models include the time-based resource-sharing model for
decay theory (Barrouillet et al., 2004; Oberauer & Lewandowsky, 2011), and the activation-framed
models for interference theory (Oberauer & Kliegl, 2001, 2006; Oberauer & Lin, 2017). In this
paper, we base our model on the mutual interference theory and its related modeling, as there has
been an increasing amount of evidence supporting the existence of interference from the literature

(e.g. Oberauer et al., 2016; Farrell et al., 2016; Souza & Oberauer, 2015; Barrouillet et al., 2018).

In this paper, we propose a hierarchical Bayesian model for the memory updating task. Our
model builds on a working memory interference framework from Oberauer & Kliegl (2006), and
expand it with a Markov chain structure so that the model can account for a wider range of
responses at each step of the memory updating period, providing a more thorough framework for
memory updating performance compared with the original model. The Markov chain structure
also allows us to jointly characterize the RTs at each memory updating step under the mutual
interference framework. We use a Wald diffusion process to account for RTs, and associate the
process that yields the RT with the interference component characterized by the Markov chain
state at each updating step. Therefore, this model can provide a framework that incorporates both

the accuracies of responses and RTs under the interference theory of working memory.

We use a hierarchical structure that allows the parameters from each individual to be informed
by group-level hyper-parameters, thus helping to avoid estimation bias caused by potential small
sample sizes and outliers (Busemeyer & Diederich, 2010). The model is flexible and can be applied
to both the no-intermediate-response paradigm and the intermediate-response paradigm with some

slight modifications. This flexibility allows it to fit data from the majority of memory updating
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studies.

In what follows, we first describe some interference mechanisms in the interference theory and
the interference-based model from Oberauer & Kliegl (2006). To develop the hierarchical Bayesian
model, we retain the activation-based framework from the original model and characterize it with
a Markov chain structure. We link the interference parameters to the RT parameters to formalize
the RT model. We then fit the model to two data sets. The first is from Oberauer & Kliegl (2001);
they examined differences in memory performance due to age and did not ask participants to report
intermediate results. The second is from De Simoni & von Bastian (2018); they examined working
memory training and transfer effects, and they asked participants to report intermediate results.
We show that estimated parameters from this model can characterize the group differences shown
in these data sets, and provide a theoretical account for the mechanisms underlying the group

differences of both responses and RT's.

2 Hierarchical Bayesian model and parameter recovery

In this section, we first describe potential mechanisms underlying interference in working memory,
with a focus on the mechanism of lack of distinctiveness in cue-based retrieval and the mechanism
of feature overwriting. We then describe the mutual interference model proposed by Oberauer &
Kliegl (2006), which is based on the theory of feature overwriting but not exclusive to this theory in
its statistical form. We modify and extend the model to a hierarchical Bayesian framework which
incorporates information from both responses and RTs. This model is able to quantify the level of
interference and the speed of processing with model parameters, and the joint modeling framework
of responses and RT allows interference parameters to be informed by RT information, and vice

versa. The model’s parameter recovery ability is evaluated with a simulation study in Appendix 1.

2.1 Potential mechanisms of interference

We focus on mechanisms explaining mutual interference caused by similarities between target items

and competitors in working memory. We mainly describe the interference mechanisms from lack
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of distinctiveness in cue-based retrieval and feature overwriting, along with some evidence for each
in the literature. However, these different mechanisms are not mutually exclusive and may jointly

cause mutual interference in working memory.

The lack of distinctiveness in cue-based retrieval is a potential mechanism of interference most
active during the retrieval period (Brown et al., 2007; Oberauer et al., 2012; Surprenant & Neath,
2013; Ecker et al., 2015). This theory assumes that memory traces are laid down for each item
stored in working memory. During retrieval, the retrieval cues activate memory traces of the target
items, thus retrieving the target item. However, when there is a lack of distinctiveness between
different items stored in working memory, traces from different items may be associated with the
same cues. Therefore, these cues may activate traces from both the target item and competitor
items that lack distinctiveness with the target, resulting in interference between items and potential
erroneous retrieval. This mechanism is consistent with various findings showing a link between item
similarity and lowered retrieval accuracy (e.g. Oberauer et al., 2012; Ecker et al., 2015; Villata et

al., 2018; Park et al., 2006).

The mechanism of feature overwriting assumes that mutual interference is caused by the shared
features of items stored in working memory (Nairne, 1990; Oberauer & Kliegl, 2001, 2006; Oberauer,
2009; Cowan, 1988; Nairne, 2006). According to this theory, the representation of each item in
working memory is composed of a number of features. When different items share the same features,
each item would lose some of these shared features to the other items during encoding, resulting
in feature overwriting and mutual interference. Thereby the mechanism of feature overwriting
is potentially most active during the encoding period. This mechanism is consistent with some
findings showing similarity-based interference effects in the encoding period (e.g. Oberauer, 2009;

Hofmeister & Vasishth, 2014; Guitard et al., 2021).

Besides these mechanisms, there are a number of other mechanisms meant to explain interference
in memory, including activation leveling (Villata et al., 2018; Smith et al., 2021) and superposition
(Rumelhart et al., 1988; Oberauer et al., 2012, 2016). Because the nature of interference in working
memory is still largely unclear (Li & Cowan, 2021), we do not intend to build a model to evaluate

the plausibility of each potential mechanism, but instead quantify the level of interference affecting
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a person’s final recall performance regardless of the mechanism.

2.2 Original model framework

Oberauer & Kliegl’'s 2006 model is based on the mechanism of feature overwriting. It assumes
that each item is stored as a large number of features in memory. If a proportion A (A < 1) of
features are activated during recall, this item has an activation level A in working memory. Each
pair of items is assumed to share a mean proportion C of features (0 < C' < 1) and items in
the pair compete for shared features. As a result of this competition, half of the features shared

between two items are assumed to be allocated to each item!

. Thus, if there is one interfering
item present, the target is left with a mean proportion of 1 — C'/2 features dedicated to it, and it
has a maximum activation level of 1 — C/2 when all these features are fully activated. Suppose
that for each pair of items, the features that they share with each other are independent of the
features that they share with other items. If there is another interfering item, it shares a mean
proportion C' of features among the 1 — C'/2 remaining in the target, and the target is left with a
(1-C/2)—(1—-C/2)(C/2) = (1 —C/2)? proportion of features after interference with this second
interfering item. So, with n > 2 items present in working memory, one of them being the target and

the others distracting competitors, this framework models the upper limit of the target’s activation

level with the formula?

Aparg = (1 = C/2)" L,

Each competitor item shares a proportion C/2 of features with the target. However, it also has
interference with the other n —2 competitor items, thus the C'/2 proportion of features are not fully
allocated to it. Oberauer & Kliegl (2006) assume that a competitor can maintain (1 — C/2)"~2

proportion of features because of its interference with the other competitors, thus the upper limit

! Although the actual proportions of shared features may differ for different pairs of items, the mean proportion C
was used in this model. This was because the memory updating task featured a homogeneous set of stimuli (without
grouping within stimuli), thus the mean proportion C' was considered a reasonable approximation to the actual shared
proportions (Oberauer & Kliegl, 2001).

2This formula does not exactly partition all features. Some features can be lost during memorization if they are
shared by too many items.



176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

of a competitor is

Acomp = (C/2)(1 — C/2)" 2.

Extralist items not present in working memory have an activation level of 0 because no features

are allocated to them during memorization.

Oberauer and Kliegl’s (2006) model is formulated for the paradigm without intermediate re-
sponses and with a time limit imposed for each updating step. It assumes that during the updating
steps, the items in working memory gradually activate until their activation levels reach the upper
bounds, and this activation process follows a negatively accelerated function (McClelland, 1979;
Oberauer & Kliegl, 2001, 2006). Thus, with activation rate 6 and time limit 7', the maximum

activation level for the target is

Atarg = Atarg (1 — exp(=0T)),

and for a competitor is

Acomp = Acomp (1 — exp(—0T)).

When applied to the numerical updating task with single digits and arithmetic operations, and
when the memory demand is n, the potential recall outcomes are from the digits 1-9, where one
of them is the target, n — 1 are competitors and the remaining 9 — n are extralist items®. It is
assumed that participants tend to choose the item with the highest activation level as the response.
Considering the activation process to have a degree o of noise, the probability of choosing the target

is characterized by the Boltzmann equation (Oberauer & Kliegl, 2006)

exp(atarg /)
exp(atarg/0) + (n — 1) exp(acomp/0) + (9 — n) exp(0/0)’

Ptarg =

where the 9 — n extralist items have an activation level of 0. Oberauer & Kliegl (2006) give the

3We do not specifically characterize the case when a stimulus appears in more than one box because of its limited
occurrence and influence.

10



197

198

199

200

201

202

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

accuracy of recalling each item correctly as

Ptarg = 1/9 + (1 - 1/9)Ptglrtharga

where 1/9 adjusts for random guessing and m > 0 is the number of updating steps performed on
the current target. In the final recall step, no time limit 7T is imposed and the activation level
can reach the upper bound where atarg = Atarg a0d Geomp = Acomp- The quantity Qiarg is used to

characterize the accuracy in the recall step without a time limit imposed.

We base the hierarchical Bayesian model on this scheme, but add some adjustments to formulate
the probabilities of choosing competitors and extralist items and to incorporate the information
from RTs. Because the exact mechanisms of interference are unclear, we do not assume interference
to result solely from feature overwriting. We use the interference parameter to quantify the level

of interference affecting the final recall regardless of interference mechanisms.

2.3 Hierarchical Bayesian model

In this section, we expand the framework from Oberauer & Kliegl (2006) with a Markov chain
structure to account for the probabilities of all responses at both the updating and recall steps.
We also incorporate an RT model into the framework so the interference mechanism also explains
RTs. We give the model a hierarchical Bayesian structure, so that it can fit data sets composed of
groups of individuals representing the experimental groups to be compared. We first describe our
model in the case when the paradigm requires intermediate responses during the updating period,
then describe the alterations needed in the cases when intermediate responses are not required, or

when the task includes pre/post-test conditions.

2.3.1 Response

To construct the hierarchical Bayesian model, we denote the group identifier as ¢ and the partici-
pant identifier as i. We use the parameter C;. and o;. to quantify mutual interference and noise,

respectively. For Trial j with a memory demand of n;, denote the choice of target, competitors and

11
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extralist items as 1, 2, and 3, respectively. Then the activation levels at the end of each step are

Qlic,j = (1 — Cic/Q)njfl, and
(1)
aze; = (Cic/2)(1 = Cic/2)" 72,
When trials in the updating task have n plausible responses, for example, n = 9 for the numerical

version shown in Figure 1, the corresponding probabilities of choosing the target, competitors and

extralist items are

eXp(aLz'c,j/Uz‘c)

Piicy = ,
Y explanic,j/ic) + (nj — 1) exp(ag,ic,j /ic) + (n —nj) exp(0/oic)
Pici= (nj - 1) exp(aQ,ic,j/Uz’c)
T exp(an e /oic) + (nj — 1) exp(az,ic,j/dic) + (n —n;) exp(0/aic)’
and
P B (n —nj)exp(0/04c)
3,ic,j —

eXp(aLic’j/Uic) + (nj — 1) exp(agvicvj/aic) + (n — nj) eXp(O/O'iC)’
respectively. To obtain the probabilities of choosing each type of item at each step, we use a Markov

chain structure with transition matrix

Step x+z
1 2 3

1 [ Pric; Py e Ps e

S 1 nj—1 n-n;
M;.; = Stepx 2 - - -
1 n;—1 n—n;

3 n n n

Assume that an item is encountered at Step x followed by the next encounter at Step x + z, this
matrix shows the probability of choosing items of types 1, 2, and 3 at Step x + z given the choice 1,
2, or 3 at Step z. The first row of M;.; corresponds to the condition when a participant correctly
recalls, updates and memorizes the target at Step x. In this case, when this participant recalls
or updates the item in the same location at Step = + z, the decision is based on the correct item
memorized in Step x. Thus the probabilities of choosing types 1, 2, and 3 are P ;. j, P cj, and

P ;. ;i respectively, as shown by the first row of M;. ;. The second and third rows correspond to

12
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the conditions when a participant incorrectly recalls, updates and memorizes a non-target item at
Step x. In this case, recall or update at Step x + z is based on the wrong item from Step x, and we
assume that this participant can still obtain the correct result by chance, as shown by the second
and third rows of M;. ;. However, because the participants do not know their mistakes when they
make them, they could keep on performing this task regardless of whether their previous updates
are correct or wrong. Thus, if a participant successfully gets the correct intermediate result by
chance, this participant’s subsequent decisions will be based on the correct result, and the state

returns to the one corresponding to the first row in M; ;.

We assume that no mistakes are made during the initial memorization period of the task,
resulting in a starting state vector (piic.j, P2,ic.j» P3,ic,j) = (1,0,0). The probabilities of responding

with each type of item are
e
(D ic.j» P2ic.js Pasici) = (Pliic,js P2jic,js P3jic,i) Mie s (2)

where m;; is the number of encounters of the target item up to the current trial. Therefore, denoting
the response to be R;c ; (Ric; € {1,2,3}), the probability of making each response, denoted as Pregp,
is

Presp(Ric,j = k) - pz,ic,ja k=1,2,3. (3)

The probability pz’ic’j reflects the proportions of activated traces linked to items of type k, and

correspondingly, the probabilities of responding with each type of item.

In this structure, we do not restrict the mutual interference to be solely the result of feature
overwriting, but assume it to be the overall interference affecting the final performance that could be
the result of different mechanisms. It could be understood as follows: during each encoding period,
a number of memory traces are laid down for each item, and because of interference mechanisms
such as feature overwriting in this period, each item loses some of its traces to the competitor items.
During the retrieval period, each memory cue activates traces from both the target and competitor
items. It is partly because some overlapping memory traces are attributed to competitors during
encoding, but is also partly because each cue can activate both a number of traces from the target

and a small number of traces from competitors due to mechanisms such as the lack of distinctiveness

13
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in cue-based retrieval. Based on the activation levels of all items, the participant determines one
item as the target, then proceeds to retrieve, (possibly) update, and respond with that item.

Overall, we quantify the final amount of interference with C;. without distinguishing its source.

2.3.2 Response times

We model the RT's using a diffusion model based on the Wald distribution (Burbeck & Luce, 1982).
We selected the Wald diffusion model because it is theoretically motivated, can fit RT data well,
and can be easily applied to the framework inspired by mutual interference. The Wald diffusion
model proposes that, in each trial, a participant samples information from the display and memory,
then stores this information in a neural accumulator. To determine the end of each accumulation
process, this participant sets a decision boundary determined by a certain amount of information:
when the accumulated information reaches the decision boundary, the process is terminated and a
response is made. The Wald diffusion model characterizes information accumulation as a Wiener
diffusion process with drift and a single absorbing boundary. Therefore, the time of each process

follows a Wald distribution.

To integrate the Wald diffusion process into the mutual interference framework, we consider the
process as such: first, based on the cues and memory traces, a participant determines the item to
be retrieved from working memory using the mechanism from Section 2.3.1. Then, the participant
accumulates information about the final response from the retrieved item and (possibly) updating
of that item. The speed of accumulation depends on the participant’s speed of processing, the
number of traces linked to the chosen item, and the difficulty of the (potential) updating process.
When the participant accumulates enough information to reach the decision boundary a response

is made.

To formulate the RT model, we denote the group identifier as ¢, the participant identifier as i,
and the trial identifier as j. We characterize each individual’s decision boundary with the parameter
bic (bic > 0). Denote the information accumulation rate as Vi jc; (Viic; > 0) for Trial j when the

response is k, where k = 1,2, 3 corresponds to targets, competitors, and extralist items respectively,

14
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we model V. ; in the updating process as

*
Vijicj = eXp(Uu,ic + Hicpkﬂ'c,j)a

and we model V} ;. ; in the recall process as

*
Vijicj = exp(vric + /iicpk,ic,j)‘

The parameter v, ;. is the speed of accumulation in the updating period with the subscript “u”
standing for “updating”, while the parameter v, ;. is the speed of accumulation in the recall period
with the subscript “r” standing for “recall”. As is shown in Equation (3) from Section 2.3.1, Phic. ;s
the probability of responding with items of Type k, and reflects the number of traces laid down for
this type of item. Correspondingly, the type-to-RT parameter x;. characterizes the accumulation
rate differences between different response item types. In the task, a participant is likely to lay
down more memory traces for the target than non-targets, leading to a larger pj ;. .. As such, the
accumulation rate shall be higher for targets than non-targets when ;. > 0. The rationale is that
when more memory traces are laid for an item, the participant can collect information from that
item at a faster rate due to the larger amount of information from traces. We justify the inclusion

of this type-to-RT parameter k;. using a model comparison, discussed in Appendix 2.
With a drift rate v and a decision boundary b, the Wald distribution density is given by

b . ( (vt — b)?
<o [ — WO
V2rt P 2t

Foltlo,b) = ). t>o0.

w

We include a non-decision time 7;. for each participant that accounts for processes outside of the
information accumulation process, including times needed for perception and motor execution.

Denote the RT as t;. j, when the response R;.; = k, the RT has a distribution f;; as

Frt(tic,j|Tics Viic,j» Dies Ricj = k) = fuw(ticj — Tie|Visic,j» bic)-

15
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2.3.3 Ancillary processes and pre-activation processes

In addition to the Wald diffusion processes, we consider the impacts from two different types of
ancillary processes and a potential pre-activation process that may also affect the observed responses
and RTs. Figure 2 shows the pooled RT histograms from one of De Simoni & von Bastian’s 2018
data set. It shows three processes in addition to the Wald diffusion process that we identified

through pre-analysis in empirical data sets.

The two ancillary processes are sub-cognitive processes and supra-cognitive processes charac-
terized by very short and long RTs (Kim et al., 2017). The sub-cognitive processes correspond to
very fast responses that may result from guessing. In Figure 2, sub-cognitive processes may lead
to fast RTs from updating steps and some very fast RTs from recall steps.? The supra-cognitive
processes correspond to very slow responses, which may result from distraction or mind-wandering.
The RTs in the tails shown by Figure 2 may be partly due to supra-cognitive processes. Although
it is common to discard responses and RT's associated with these processes, we keep these observa-
tions in our analyses and model them with mixture distributions, because the relative proportions

of these processes may be meaningful (Province & Rouder, 2012).

Another process, shown in Figure 2 in the RTs of the recall period, is characterized by fast
RTs peaked around 400 milliseconds but clearly distinct from the RTs of the main Wald diffusion
processes. This process is also observed at the individual level, as is shown in Figure 3. We
hypothesize that these fast RTs at the smaller mode may be a result of pre-activation. Because
the memory updating task often features multiple items, a participant might recall multiple items
as a “batch” before items are cued during the recall period. At the start of the recall period, a
participant with sufficient working memory capacity might pre-activate more than one of the items,
and keep that information active in working memory. This strategy results in the ability to select
a response from this batch of pre-activated items at a faster speed during each step in the recall
period (Soto et al., 2008). As a result, some fast RTs from the recall period might be a result
of pre-activation, where the participant reads out the items in the pre-activated batch. RTs from

pre-activation are likely to be larger than sub-cognitive RTs, but shorter than RTs generated from

4We demonstrate with empirical data sets that these fast RTs are likely to be a result of sub-cognitive guessing
in Sections 3.1.1 and 3.2.1.
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Figure 2: The histogram of the RTs of all 197 participants from De Simoni & von Bastian (2018),
from the updating process (left) and the recall process (right). The bin width is taken as 0.1
seconds. The recall process clearly consists of both short sub-cognitive process RTs (close to 0)
and supra-cognitive RTs in the tail. Responses from algorithmic Wald diffusion processes are
featured by the main peak around 1-1.5 seconds. A sub-peak from pre-activation processes is also
present around 0.4 seconds, which is distinct from the main responses but longer than the usual
sub-cognitive processes. In comparison, the updating processes contains relatively fewer fast RTs
around the smaller mode and slower RTs in the main peaks.

the algorithmic cognitive process operating on the stored items (see Figure 2). We consider pre-
activation to be a more plausible mechanism for these fast RTs, because patterns from empirical
data are consistent with pre-activation, and are inconsistent with alternative mechanisms such as
guessing and the recency effect. These patterns are described in Sections 3.1.1 and 3.2.1. We
also use a mixture component to model these fast pre-activation RTs. Because RTs from these
pre-activation processes are difficult to distinguish from sub-cognitive processes, we integrate them

into the same mixture component in the recall period.

To model each of these processes, we denote the group identifier as ¢, the participant identifier
as 7, and the trial identifier as j. In the updating period, the fast responses may result mostly
from sub-cognitive processes. We denote the RT distribution as g1 and account for it using the

Log-normal distribution,

gl(tic,j‘,uu,ic) = fin (t‘ﬂu,im 1) > (4)

when t;.; is the RT from fast ancillary processes, f, is the Log-normal density, and . is the

mean parameter of the Log-normal distribution with the subscript “u” standing for “updating”.
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Figure 3: The histograms and densities of the RTs of Participants 1, 80, and 140 from De Simoni
& von Bastian (2018), from the updating process (upper) and the recall process (lower).

We fix the standard deviation to 1 for these processes.

In the recall period, the fast responses may result from either sub-cognitive and pre-activation

processes. We denote the RT distribution as go and account for it using the Log-normal distribution,

g2 (tic,j‘ur,iw Uu,r,ic) = fln <t|ﬂr,i07 O'im,ic) , (5)

where the parameters ;. and o, ;. are the mean and standard deviation respectively. The

subscript “r” stands for “recall”.

We model supra-cognitive RT's also with the Log-normal distribution, denoting the RT distri-

bution as g3,

gs(tic,j\us,ic,ﬁc) = fin (t — Tic |Msics 1) s

when ;. ; is the RT from slow ancillary processes, jis;c is the mean, and the standard deviation
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is fixed at 1. The subscript “s” stands for “supra-cognitive”. To avoid identifiability problems
in mixture estimation, we adopt informative priors for fiyic, frics Opuric, and ;. so that these
distributions are appropriate for each process. Selections of prior distributions are explained in

Section 2.3.4.

2.3.4 Priors and likelihood

In this section, we formulate the hierarchical Bayesian structure of the model. Because the partic-
ipants’ response accuracies can be higher than chance in the processes mentioned in Section 2.3.3,
we use the parameter g ;. (k = 1,2,3) to indicate the probabilities of responding with targets, com-
petitors, and extralist items in these ancillary and pre-activation processes, so that the probabilities
of response R;. ; are

Pnon—diﬂ"(Ric,j = k) = qk,ic» k= 17 2a 3. (6)

Denote the mixture proportions for sub-cognitive/pre-activation, Wald diffusion, and supra-

cognitive processes as (Pu,1,icy Pu,2,icy Pu3,ic) respectively for updating, and (¢r1ic; dr2.ic, Pr3,ic)

respectively for recall. Then the RT ;. ; and response R;.; have a joint distribution with density

f(tics Ricj|Ou,ics usics Ties Veic,js bies tsic) =0u1,icd1 (tic,j fhusic) Pron-dif (Ric,j)
+ ¢u,2,icfrt (tic,j |7—ica V,z’c,j, bz’c, Rz’c,j)Presp(Ric,j)

+ Pu,3,ic93(tic,j| s ics Tic) Pron-diff (Ric,j)

in the updating period, and

f(tic,j; RiC,j ’¢T,~7ica Hriics Op,riicy Tics V,ic,jv bic, Ms,ic) :(Zsr,l,icg? (tic,j Hrjic, Uu,r,ic)Pnon—diff(Ric,j)

+ ¢r,2,icfrt (tic,j ‘Tica V,ic,j y bic; Ric,j )Presp (Ric,j)

+ ¢7‘,3,i093 (tic,j |,Us,ica Tic)Pnon—diff(Ric,j)

in the recall period, where Presp(Ric,j) and Ppon-dif(Ric,j) are informed by Equations (3) and (6).

In the hierarchical Bayesian framework, we select the priors and hyper-priors as shown in
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Interference logit(Cjc) ~ N(C¢,dc.c) C. ~ N(Cp,0.2)

Co ~ N(0,0.2) log(dc,c) ~ N(—1,0.2)
Noise log(aic) ~ N(log(o'c)’ 50,0) log(o'c) ~ N(log(UO)v 0‘2)

log(og) ~ N(0,0.2) log(dg,c) ~ N(—1,0.2)
Accumulation speed . jc ~ N(v.c,0p. ) v.c~ N(v.0,0.2)

v.0 ~ N(0,0.2) 108(3s..c) ~ N(—1,0.2)
Decision boundary  log(bi.) ~ N (bc, dp.c) be ~ N(bo,0.2)

bp ~ N(0,0.2) log(dp.c) ~ N(—1,0.2)
Type-to-RT Kic ~ N(Kc, 0x.c) ke ~ N(ko,0.2)

ko ~ N(0,0.2) log(dy.c) ~ N(—1,0.2)

Mixture proportion  Non-informative
Non-decision time Tic ~ N (T(O) 0.001)

ic

Ancillary processes  piyic ~ N(—2,0.05) fr,ic ~ N(—1,0.05)
ts,ic ~ N (3,0.05) logit(op,ric) ~ N(0,1)
Activation rate log(0ic) ~ N(6c,00,c) 0. ~ N(6p,0.2)
0y ~ N(0,0.2) log(g.c) ~ N(—1,0.2)

Table 1: The model’s priors and hyper-priors. If a parameter 1 has a dot in its subscript, that
parameter has both updating and recall conditions, 1, and 7,.

Table 1. The mean of non-decision times 7. is fixed at an arbitrary value of 0.15 seconds. Denoting

ic

the entirety of the model parameters by 7, the likelihood of the model is given by

E(’I’}‘R, t) = H f(tic,ja Ric,j |¢-,-,ica H-icy Tic, V,ic,ja bica Hsicy Hrics O',u,r,ic)-

Z,C,]

Figure 4 shows the model in graphical form.

2.3.5 Model fitting

In this section, we summarize some alterations needed for the model when the task does not require
intermediate responses, or when the data include results from multiple conditions such as a pre-
test and post-test. We performed simulation studies to test the model’s parameter recovery ability,

which is presented in Appendix 1.

We first consider the case where the task only requires recall responses and limits the times

spent on updating steps, for example, as in the aforementioned paradigm from Oberauer & Kliegl
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Figure 4: The diagram of the hierarchical Bayesian model. The rectangular boxes contain integers,
the round boxes contain real values, and the double-edged boxes contain computed values. The
observed variables have gray backgrounds. Parameters to be estimated are unshaded. The arrows
indicate dependence. The dashed outlines indicate that the parameters are only used in the no-
intermediate-result case. The parameters are embedded in plates representing the hierarchical
structure of the model over trials, participants and groups.

(2001). Denoting the updating time limit for Trial j as T}, we use the formulas

at,ic; = (1= Cic/2) (1 — exp(—0;.T})), and -
a2,icj = (Cie/2)(1 = Cic/2)™ (1 — exp(—0icT)))
instead of those from Equation (1). Parameter ;. is the activation rate parameter with priors and

hyper-priors shown in Table 1. We compute the probabilities of responding with each item as

(D1 ic.js P2ic.js Paicy) = (pl,ic,jap2,ic,j7p3,ic,j)M$;‘M:c,j7 (8)

where m; is the number of updates performed on each item on Trial j. Because the updating time
limit for Trial j, denoted as T}, is variable in these designs, and direct application to Equation (1)
can be time consuming for large data sets, we binned 7} to reduce the amount of calculation. We
binned Tj into 4 segments according to the 3 quartiles (25%, 50%, and 75%), and used the mean

in each of the bins as the T} values in Equation (7).
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In the case when the data include pre-test and post-test conditions, we permitted interference
parameters C, noise parameters o, RT parameters v, k, b, and the mixture proportions ¢ to differ

for pre-test and post-test conditions as in De Simoni & von Bastian (2018).

3 Empirical data analysis and results

In this section, we report the results of fitting the hierarchical Bayesian model to data from two
studies, one evaluating age differences in working memory (Oberauer & Kliegl, 2001) and the other
evaluating the transfer effect of working memory training (De Simoni & von Bastian, 2018). We first
introduce the original studies and the associated constructs of each data set. We fit our model to
these data and show that the model accounts for these data by examining the posterior predictive
distributions and using out-of-sample validation. We present the modeling results and discuss
the theoretical implications of these results, with a focus on the potential cognitive mechanisms

underlying group and individual differences.

3.1 Application 1: Age differences in working memory

The influence of age on working memory has been a common topic for investigation (e.g. Wingfield
et al., 1988; Salthouse & Babcock, 1991; Oberauer, 2005; Cragg et al., 2017). Older adults are
found to exhibit poorer performance in multiple aspects of working memory, such as decreased
capacity (Wingfield et al., 1988), a decreased ability to actively manipulate working memory items
(Dobbs & Rule, 1989), less accurate recall (Salthouse & Babcock, 1991), and the need to use more
resources for the same task (Reuter-Lorenz & Sylvester, 2005), which indicates a potential decline

in working memory.

Oberauer & Kliegl (2001) studied the effect of aging on working memory using the memory
updating task. They mainly focused on the modeling of response accuracy. Their results revealed
that older adults have a higher level of mutual interference compared with younger adults, but
there were no significant differences between younger and older adults in noise and activation rates

in the updating processes.
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Figure 5: Contrast between RTs from the younger and older groups. The upper figures display the
distributions of Participant 3 (Younger) and Participant 24 (Older). The black and red density lines
correspond to Participants 3 and 24 respectively. Despite having similar response accuracy (0.656
for Participant 3 and 0.657 for Participant 24), the RTs are overall much slower for Participant 24.
The lower figure shows the distributions for all participants (black for younger and gray for older).
The older participants generally have slower RTs than younger participants, where the fastest
individual median RT from the older participants (1.16s) is larger than the slowest individual
median RT from the younger participants (1.10s).

However, in addition to response accuracy, RTs may also serve as an important, meaningful
source of information reflecting the capabilities of working memory. Figure 5 shows that the older
group displays overall longer RTs compared to those of the younger group. Even when an older
adult (like Participant 24) has a similar response accuracy as a younger adult (like Participant 3,
shown in Figure 5), the older adult can still have longer RTs. The original interference models

(Oberauer & Kliegl, 2001, 2006) did not include a mechanism to explain such a difference in RTs.
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We fit the hierarchical Bayesian model to Oberauer & Kliegl (2001)’s data, aiming to charac-
terize the interference mechanism and other potential RT differences between older and younger
individuals. We first describe the data set and test some assumptions made about the RT distri-
butions and ancillary processes in this data set. We apply the model to this data set and evaluate

its goodness of fit, and present modeling results and discuss their implications.

3.1.1 Data

Oberauer & Kliegl (2001) tested participants on the numerical version of the memory updating task,
where participants memorize digits from “1” to “9” and update them by addition and subtraction
as shown in Figure 1. This data set consisted of 18 younger participants (average age 19.1, sd 0.68)
and 18 older participants (average age 68.8, sd 3.55). The original study only analyzed the data
from 16 younger participants and 17 older participants who completed the entire experiment, thus
we also restricted our analyses to these participants. The experiment was composed of two parts:
the first part included trials with a memory demand of 1-4, and the second with a memory demand
of 4-6. Clear evidence of a learning effect was present between the two parts. For simplicity, we
applied the model only to data from the first low-demand part of the experiment from Oberauer &
Kliegl (2001). Table 2 shows the summary statistics of the response accuracies and RTs. The older
adults had overall lower response accuracies, longer RT's, and larger RT variances compared with
the younger adults, indicating that the older adults recall the items with longer times and lower
accuracies. Table 2 also shows the mean RTs from responses to targets, competitors, and non-
competitors from both groups. Overall, responses to targets take a shorter time than responses to
non-target items. This result is consistent with a mechanism in which more memory traces (linked

to targets) can improve the speed of information accumulation in the Wald diffusion process.

We then evaluate whether the fast RTs around the smaller mode may be a result of chance
performance, the recency effect, or pre-activation in this data set. Table 2 shows the response
accuracies in the RT ranges of 0-0.2 seconds, 0.2-0.6 seconds, and over 0.6 seconds. These statistics
show that the response accuracies in the 0.2-0.6 seconds are well above chance, and are also higher

than the accuracies in the 0-0.2 seconds range and are closer to the accuracies in the over 0.6
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Table A Younger Older Younger Older

Accuracy 0.68 (0.04) 0.61 (0.05) RT 1.01 (0.66) 1.62 (1.41)
Table B Type Target Competitor Non-competitor
RT (Younger) 0.96 1.06 1.12
RT (Older) 1.54 1.69 1.75
RT (Younger, >0.6s) 1.18 1.45 1.43
RT (Older, >0.6s) 1.64 1.90 1.95
Table C RT 0-0.2s 0.2-0.6s >0.6s
Younger 0.58 0.68 0.69
Older 0.38 0.53 0.62
Table D Sequential place in recall
Memory demand 1 2 3 4
1 (Younger) 19.4%
1 (Older) 9.4%
2 (Younger) 8.0% 42.4%
2 (Older) 2.6% 31.3%
3 (Younger) 4.2% 18.3% 39.0%
3 (Older) 1.7% 11.2% 26.2%
4 (Younger) 3.6% 11.0% 16.3% 33.9%
4 (Older) 1.6% 8.3% 11.5% 23.3%

Table 2: Statistics of the data set from Oberauer & Kliegl (2001). “Table A” displays the group
means and standard deviations (in brackets) of response accuracies and RTs from the groups of
younger and older adults. “Table B” displays the mean RTs for the target, competitor, and non-
competitor responses. “Table C” displays the response accuracies in the RT ranges of 0-0.2 seconds,
0.2-0.6 seconds, and over 0.6 seconds for each group respectively. “Table D” displays the proportions
of fast RTs around the smaller mode in the 0.2-0.6 seconds range from each item to be recalled.
The columns “Sequential place in recall” shows the sequential order of the item to be recalled.

seconds range. We therefore conclude that although there is fast guessing at chance performance,
it is not likely the main reason for the fast RTs around the smaller mode. Table 2 also shows the
proportions of fast RTs around the smaller mode (0.2-0.6 seconds) from the first to last recall items
in each trial. For both the younger and older adults, the proportions of fast RTs around the smaller
mode are the smallest for the first item to be recalled then gradually increase to the largest for
the last item to be recalled. This pattern does not show evidence for or against a recency effect,
but it is consistent with the assumption that fast RTs around the smaller mode may be a result
of pre-activation: the later items to be recalled, which have a larger chance of being pre-activated,

correspond to a higher proportion of fast RTs compared with earlier items to be recalled.
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3.1.2 Model fit

We fit the hierarchical Bayesian model to the data set using Stan (Stan Development Team, 2018)
with the adjustments for no-intermediate response paradigm described in Section 2.3.5. We fixed

(0)

the mean of non-decision time priors 7,7 to 0.15 for all participants. We obtained 3 chains, each
containing 500 warm-up samples and 2000 iterations. The effective sample size (Berger et al., 2014)
and the Gelman-Rubin R statistic (Gelman et al., 1992) (R < 1.01 for all parameters) suggested

reliable posterior estimates and satisfactory convergence.

To determine goodness of fit, we examined the posterior predictive distributions, and performed
an out-of-sample validation analysis to evaluate how well the model can generalize to new data.
Because we binned the updating limiting times during model fitting (see Section 2.3.5), for a more
generalized evaluation we generated posterior predictive distributions with unbinned limiting times.
Figure 6 shows the posterior predictive summaries contrasted against the observed accuracies and
RTs. Apart from small divergences for a few participants, the observed accuracies are overall
consistent with the estimated posterior predictive accuracies despite the binning in modeling. The

posterior predictive RT's are quite consistent with the empirical RT's.

To evaluate whether the model can correctly recover the association between the types of re-
sponses and RT, for each type of response we show the posterior predictive mean RT's in contrast
to the empirical mean RTs in Figure 7 from selected participants. We computed means from RTs
larger than 0.6 seconds to minimize the confounding from fast ancillary processes. Shown in Fig-
ure 7, most participants have higher mean RTs when responding with non-targets than targets,
which is consistent with the mechanism that more memory traces (in targets) lead to an increase
in the speed of evidence accumulation. The posterior predictive RTs are able to recover these RT

differences, and are overall consistent with empirical data, indicating a good fit of the model.

For out-of-sample validation, we extracted a subset of the data set by selecting 50% of the
observations at random. We fit the model to this subset and simulated accuracies and RTs from
the posterior predictive distributions for other data. Figure 8 shows the simulated accuracies and

RTs compared to the true accuracies and RTs of the other 50% of data. Despite a larger divergence
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than those shown in Figure 6, most of the simulated accuracies are close to the true accuracy
values, and the simulated RT's generally show patterns consistent with the true RTs. These results
indicate that the estimation results from a subset can be generalized to the remainder of the data
set. Thus, we consider the model to have a satisfactory fit to the data and a reasonable ability to

generalize.

3.1.3 Results and implications

To analyze the mechanism and implications of the age data, we present the group and individual
estimated posterior results. Figure 9 displays the estimated posterior distributions of the group-level
parameters, including the interference parameter C,, the noise parameters o., the RT accumulation
rate parameter v., the type-on-RT parameter k., the decision boundary parameter b., and the
activation rate parameter .. From posterior samples, the estimated posterior probability that the
younger group has a lower interference C. is 0.96; the estimated posterior probability that the
younger group has a lower noise o, is 0.98; the estimated posterior probability that the younger
group has a higher RT accumulation rate v, is 0.63; the estimated posterior probability that the
younger group has a higher type-on-RT parameter k. is 0.81; the estimated posterior probability
that the younger group has a lower decision boundary parameter b, is 1.00; and the estimated
posterior probability that the younger group has a lower activation level 6. is 0.91. Based on these

results, all parameters except the accumulation rate v;. have clear group differences.

Figure 10 shows the estimated posteriors for the individual-level parameters. The interference
parameters C;. and boundary parameters b;. display a clear difference in the majority of younger
and older participants, further supporting the existence of their group-level differences. The noise
parameters o;., the type-to-RT parameters x;.,, and the activation rate parameters 6;., however, are
similar for most participants. The accumulation rate parameters v;. appear to be more divergent
in the younger group than in the older group, but like the group-level results, these parameters
do not display consistent group differences. The younger participants have overall higher propor-
tions of sub-cognitive and pre-activation processes, shown by higher ¢ ;.s, and have overall lower

proportions of algorithmic Wald diffusion processes and supra-cognitive processes, shown by lower
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Posterior predictive results of response accuracy and RT. The upper figure shows the
posterior accuracy for each participant in the data set from Oberauer & Kliegl (2001). The red
points are the observed accuracies from the participants, and the corresponding box-plots are the
posterior predictive accuracies. The lower figure shows the posterior predictive RT distributions
contrasted with the empirical RT distributions for Participants 1-3 (younger) and 20-22 (older).
Results of the other participants can be found in the supplemental materials. The red points are the
5% to 95% RT quantiles incremented by 5% from empirical data, connected by red lines; and the
black bars show the 5% to 95% RT quantiles incremented by 5% from posterior predictive samples,
connected by black lines. The x-axis corresponds to the quantiles, and the y-axis corresponds to

RT values at each quantile.
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Figure 7: Posterior predictive mean RTs (box-plots) and empirical mean RTs (red points) for
Participants 1-3 (younger) and 20-22 (older). The x-axes show the types of response, where 1, 2,
and 3 correspond to targets, competitors, and non-competitors, respectively.

$2,ics and @3 ;cs.

The results of the interference parameter are consistent with those from the Oberauer & Kliegl
(2001) study. Evidence suggests that the interference parameter C is higher for the older group, and
the older adults may have a lowered ability to resist mutual interference between items. Oberauer
& Kliegl found no evidence of differences in noise ¢ or activation rate 6. Results from this model
indicate that the older group might have an overall higher level of noise than the younger group
because of some individuals: some younger participants may have less cognitive noise than most of
the others, and some older participants may have higher noise than most of the others. Similarly,
these results suggest that some older participants may have a higher activation rate than most of
other participants, which may have resulted in an overall higher group-level activation rate in the
older group. It is also noteworthy that the posterior means of parameters o and 6 are positively
correlated in both groups, with r(14) = 0.82,p < 0.001 in the younger group of 16 participants,
and with r(15) = 0.87,p < 0.001 in the older group of 17 participants. This may indicate that a
higher activation level is related to a higher level of noise in mental representation, so that fast

activation may not always indicate better performance.
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Figure 9: The box-plots for the estimated posteriors of the group-level parameters. The black
and gray box-plots correspond to the younger and older groups, respectively. These parameters
can have negative values because of the transformations shown in Table 1. The priors for each
parameter are shown in Table 1.

In the RT results, the younger participants have relatively lower decision boundary parameters
b;c than the older participants. This may indicate that younger participants need less information to
make a response. Some younger participants also have higher type-to-RT parameters x;. than other
participants, which may indicate that they have a better ability to use memory trace information

to guide their accumulation processes

The mixture proportions of the ancillary and pre-activation processes show some results wor-
thy of notice. The mixture components for sub-cognitive/pre-activation processes are higher for
younger than older participants, even though the younger participants have generally higher re-
sponse accuracies. Despite being indistinguishable from sub-cognitive processes, the pre-activation
processes may have contributed the most to these proportions judging from response accuracies

well above chance (see Table 2). This may imply that the younger participants are more capable
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Figure 10: Box-plots for estimated posteriors of the individual-level parameters. Younger partic-
ipants are shown in black (left of the vertical gray line) and older participants are shown in gray

(right of the vertical line).
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of using cognitive resources for pre-activation processing than the older participants, where they
pre-activate items, store them in a “batch”, and read items out upon seeing cues. In contrast, the
older participants may rely more on algorithmic processing, where they retrieve only one item after
seeing a cue. This difference may be a result of decline in working memory abilities in some older

adults.

3.2 Application 2: Transfer effects of working memory training

De Simoni & von Bastian (2018) performed a study to evaluate the transfer effect of working
memory training on the improvement of cognitive abilities. Working memory is related to many
cognitive abilities and related human performance (e.g. Oberauer et al., 2008; Cragg et al., 2017),
leading to research about the effect of working memory training transferring to other abilities (e.g.
Borella et al., 2010; Schwaighofer et al., 2015; von Bastian & Oberauer, 2013). It is assumed that the
improvement of working memory ability, gained via training, can be transferred to improve other
related abilities (De Simoni & von Bastian, 2018; Shipstead et al., 2010, 2012). In the literature,
there is substantial evidence both for (e.g. Minear et al., 2016) and against (e.g. Sala & Gobet,
2017) the general benefit of transfer effects. In this application, we focus on the near transfer effects
(Shipstead et al., 2010), where the benefit of training for a specific type of working memory task

transfers to performance of other working memory tasks (e.g. Hovik et al., 2013).

In De Simoni & von Bastian (2018)’s design to search for near transfer effects, participants
were divided into three groups, two of them receiving training in different working memory tasks,
namely memory updating tasks and binding tasks, and a control group that received training in
visual search tasks. All participants were pre-tested in all three types of tasks before training, then
received training of their specific allocated task across five weeks, followed by post-tests in all three
types of tasks. De Simoni & von Bastian (2018) used measurement statistics and a latent-variable
confirmatory factor analysis to investigate whether these data embed transfer effects. In their
analysis, despite improved performances in the trained tasks, little evidence was found to support
the existence of near transfer effects. They concluded that working memory training is more likely

to induce the use of stimulus-specific strategies than general transfer effects.
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With the intention to investigate the near transfer effect to memory updating performance, we
applied the hierarchical Bayesian model to the pre-test and post-test memory updating data. We
first describe the data sets from De Simoni & von Bastian (2018) and test some assumptions made
to the RT distributions and ancillary processes in these data sets. We then apply the model to
these data, and evaluate its goodness of fit to these data sets. We then present the model fitting

results and summarize their implications.

3.2.1 Data

The De Simoni & von Bastian (2018) study investigated multiple versions of the memory updating
tasks using different stimuli. We focus our analyses on the numerical and verbal versions, as they
are both linked to the verbal-numerical aspect of working memory, and may correspond well to the
assumptions of our model. In this section, we describe the numerical and verbal updating tasks
used in the De Simoni & von Bastian (2018) study, summarize some characteristics of the data
sets from each task, and show that the characteristics of these data sets are consistent with RT

assumptions made in Sections 2.3.3 and 2.3.4.

The data sets of De Simoni & von Bastian (2018) includes 216 participants. They excluded
19 participants from the analysis for reasons such as programming errors and abnormal response
patterns. Thus we also used the data from the remaining 197 participants for the hierarchical
model analysis excluding one with missing information in the verbal version. The memory updating
training group had 59 participants, the binding training group had 66 participants (65 in the verbal
version), and the visual search control group had 72 participants. Each participant provided data
from pre-test and post-test memory-updating sessions. Each session contained 16 trials, where each
trial was composed of 9 updating steps, and either 3 or 5 recall steps in the numerical version, or 2
or 4 recall steps in the verbal version. The different numbers of recall steps correspond to different
memory demands in each trial. As such, each participant has 416 and 394 observations overall in

the numerical and verbal versions, respectively.

In the numerical version of the task, the participants were required to memorize digits from

“1” to “9”, and update them by addition and subtraction as is shown by Figure 1. In the verbal
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version, the participants were required to memorize alphabetic letters “A” to “H”, and update
them by shifting the letters forward and backward the alphabet according to the cues provided.
The updating cues in the verbal version are similar to those in Figure 1, and indicate the direction
and amounts to move in the alphabet, for example, if the memorized item is “A” and the cue is

“+3”, the correct response would be the letter that is 3 places after “A”, which is “D”.

We show some summary statistics of the response accuracies and RTs in Table 3. All groups
show an increase in the response accuracy and a decrease in RT after training, where the updating-
trained group shows the largest improvement in response accuracy and the largest decrease in RT
in both versions. The binding-trained group overall shows a slightly larger increase in response
accuracy and a slightly larger decrease in RT compared with the control group. However, because
these differences are relatively small and could be due to participant variability, it is impossible to

determine whether they are the result of training by simply inspecting the summary statistics.

To evaluate whether more memory traces may lead to a faster speed of responding, we show the
mean RTs from responses of each type (targets, competitors and non-competitors) in Table 3. We
computed mean RTs from RTs larger than 0.6 seconds to minimize the confounds of fast ancillary
processes. It is shown that non-targets require overall longer mean RTs than targets, and this
trend is persistent in both tasks, all groups, and both the updating and recall periods of each task.
This is consistent with the mechanism that more memory traces, linked to targets, can improve

the speed of information accumulation in the Wald diffusion process.

We then evaluate whether the characteristics of these data sets are consistent with some RT
assumptions made in Sections 2.3.3 and 2.3.4, especially whether the RT bi-modality is likely a result
of pre-activation. To evaluate whether the fast RT's at the smaller mode are a result of fast guessing,
we examine the response accuracies of trials with RTs in the range of 0-0.2 seconds, corresponding
to potential sub-cognitive processes; and in the range of 0.2-0.6 seconds, corresponding to the first
peak (Figure 2), and larger that 0.6 seconds, corresponding to the main process. Table 3 shows
the response accuracies in each RT range. In the updating processes, the response accuracies in
trials with RTs under 0.6 seconds are around chance performance. In the recall processes, while

response accuracies with RTs under 0.2 seconds are lower than the overall accuracies, the response
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accuracies in the 0.2-0.6 seconds RT range are close to the overall accuracy. Therefore, the fast RT's
at the smaller mode in the recall process are unlikely a result of fast guessing that should result in

chance performance.

To evaluate whether the fast RTs around the smaller mode are a result of recency effect, we
evaluate the proportions of RTs in the range of 0.2-0.6 seconds in the first recall response in each
trial. When the first recall item is in the same location as the last updated item, there are 6.8%
and 17.1% of RTs in the range of 0.2-0.6 seconds from the numerical and verbal tasks, respectively.
When the first recall item is in a different location from the last updated item, there are 1.9% and
3.9% of RTs in the range of 0.2-0.6 seconds from the numerical and verbal tasks, respectively. This
indicates that a recency effect may be present. However, in all recall responses, there are 14.9%
and 20.1% of RTs in the 0.2-0.6 seconds range from the numerical and verbal tasks respectively,
which are larger than the 6.8% and 17.1% in the first recall response when the first recall item is
in the same location as the last updated item. These statistics indicate that the recency effect is
unlikely to be the main cause of fast RTs around the smaller mode, as the proportions of overall

fast RTs are larger than what a recency effect may induce.

We then examine the proportions of fast RTs around the smaller mode from responses to the
first to last recall items in each trial. Table 3 displays the proportions in the range of 0.2-0.6 seconds
from both versions. These statistics show that the proportions of fast RT's around the smaller mode
are smallest from the first item to be recalled, then gradually increase to the largest from the last
item to be recalled. It is in support of the assumption that fast RTs around the smaller mode may
be a result of pre-activation, where the later items to be recalled are more likely to be pre-activated
when recalling the previous items, and it may result in the larger proportions of faster RTs from

the later items to be recalled.

To summarize, the data sets show clear effects of updating training on the performance in
memory updating tasks, but it is unclear whether binding training can have transfer effects. The
RTs from these data sets show patterns consistent with the assumption of pre-activation made in
the model. We then fit the hierarchical Bayesian model to the data set to investigate whether

binding training induces transfer effects that are reflected in model parameters, or if the differences
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between the control group and the binding-trained group is purely a result of participant variability.

3.2.2 Model fit

We fit the hierarchical Bayesian model using Stan to numerical and verbal data using methods
described in Section 2.3. To accommodate the small sample size of the verbal data set, especially
in the recall period, we adjusted the standard deviation of the hyper-priors of v, . and v,o from
0.2 to 0.1. We fixed the mean of non-decision time priors Ti((?) to 0.1 for the updating-trained
group and to 0.15 for other groups. For each data set, we generate 3 chains, each consisting of 500
warm-up samples and 2000 iterations. The Gelman-Rubin statistic R (R < 1.01 for all parameters)

and the effective sample size were both reasonable, indicating satisfactory convergence and reliable

posteriors.

To evaluate the model’s ability to fit the data, we examined the estimated posterior predictive
distributions and performed out-of-sample validations for numerical and verbal data. We present
the posterior predictive accuracies and RT's in contrast with empirical accuracies and RTs in Fig-
ure 11 and Figure 12, respectively. Figure 11 shows that the posterior predictive accuracies are
overall consistent with empirical accuracy regardless of the value of accuracy. Figure 12 shows
that the posterior predictive RTs have consistent fits with empirical RTs. For some participants
(such as Participant 140), the posterior predictive RT distributions have small divergences from
the empirical distributions, but this is reasonable considering the small sample sizes in this data

set.

To evaluate whether the model can correctly recover the association between the types of re-
sponses and RT, for each type of response, we show the posterior predictive RT distributions in
contrast with the empirical RT distributions in Figure 13. We computed quantiles from RTs larger
than 0.6 seconds and less than 8 seconds to minimize the confounding from ancillary processes.
Shown in Figure 13, the model is able to reflect the differences in RTs from different types of
response. For competitors and non-competitors, the RTs are sometimes overestimated, but the

differences are relatively small.
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Figure 11: Posterior predictive accuracies for each participant from De Simoni & von Bastian
(2018). The upper plots show results from the pre-test and post-test of the numerical version, and
the lower plots show results from the verbal version. The red lines are identity lines. The x-axis
reflects each participant’s empirical response accuracy. The y-axis reflects the posterior predictive
accuracy of each participant. The black points are the mean of posterior predictive accuracies from
all samples, and the gray whisker plots are the 95% equal-tailed credible intervals from all samples.

To perform out-of-sample validation, we drew 50% of the data set at random. We applied
the model to the subset, simulated accuracies and RT's from the posterior predictive distributions
and plotted the mean predictive accuracies against the observed accuracies for the rest of the data,
shown in Figure 14 and Figure 15, respectively. Figure 14 shows some divergences but overall linear
patterns following the identity line. Figure 15 shows that there are larger divergences between the
simulated RT distributions and the empirical ones, but the patterns are overall consistent consid-
ering the small sample size. This indicates that our model has a reasonable ability to generalize

with these data sets.
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Figure 12: The posterior predictive RT distributions contrasted with the empirical RT distributions
for Participants 1, 80, and 140 from the control, updating, and binding groups, respectively. Results
of the other participants can be found in the supplemental materials. The red points are the 5%
to 95% RT quantiles incremented by 5% from empirical data, connected by red lines. The vertical
black bars show the 5% to 95% RT quantiles incremented by 5% from posterior predictive samples,
connected by black lines. The length of black bars reflect the size of 95% equal-tailed credible
intervals from all samples. The x-axis corresponds to the quantiles, and the y-axis corresponds to
RT values at each quantile.
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Figure 13: The posterior predictive RT distributions contrasted with the empirical RT distributions
for responses from targets, competitors and non-competitors. The red points are the 5% to 95% RT
quantiles incremented by 5% from empirical data, connected by red lines. The vertical black bars
show the 5% to 95% RT quantiles incremented by 5% from posterior predictive samples, connected
by black lines. The length of black bars reflect the size of 95% equal-tailed credible intervals from
all samples. The x-axis corresponds to the quantiles, and the y-axis corresponds to RT values at
each quantile.
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Figure 14: Posterior predictive results of response accuracy based on the generated out-of-sample
validation parameters from test data (y-axis), compared to the observed accuracies and RTs from
the other data (x-axis). These figures are plotted in the same way as those shown in Figure 11.

3.2.3 Results and implications

In this section, we display a subset of estimated group and individual posterior parameters, and

discuss their patterns and implications.

Figure 16 shows the estimated posterior distributions of the pre/post-test differences of group-
level parameters from the numerical version (upper) and the verbal version (lower). From inspection
of the plot, the updating-trained participants have a larger decrease in the level of interference than
the other groups, reflected by C.. However, the binding-trained participants do not show a similar
decrease in the level of interference: in contrast, they have less decrease than the control group
in both tasks. Among other parameters, the noise parameters, o., and the accumulation rate

parameters in the recall period, v, ., appear to show potential transfer effects, as both the updating
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Figure 15: Posterior predictive results of RT based on the generated out-of-sample validation
parameters from test data (black), compared to the observed accuracies and RTs from the other
data (red). These figures are plotted in the same way as those shown in Figure 12.

and binding groups have a similar trend of changes compared with the control group. Based on
these results, we discuss the results of each of the parameters C¢, 0. and v, . by investigating their
posterior distributions. For each parameter, we compute the estimated posterior probability that
the pre/post-test differences are numerically smaller in the control group than in the other groups.
When the estimated posterior probability is less than 0.3 or more than 0.7, we consider that there

may be a meaningful divergence between the control group and another group.

In the difference of interference parameters, C'((;Q) — C’él), the posterior probabilities that the

control group has a higher C’éQ) — C’él) than the updating and binding groups are 0.18 and 0.68
respectively in the numerical version, and are 0.14 and 0.78 respectively in the verbal version.

Therefore, results from the interference parameters provide evidence supporting a general training

effect, because the updating group consistently show a larger decrease in the level of interference
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than the control group. However, there is no evidence supporting a transfer effect in mutual
interference, as the binding-trained group shows either no contrast or less decrease in the level of

interference than the control group.

In the differences of noise parameters, log(a((;Q)) — log(a,gl)), the posterior probabilities that the

control group has a lower log(agz)) — log(agl)) than the updating and binding groups are 0.34
and 0.32 respectively in the numerical version, and are 0.01 and 0.13 respectively in the verbal
version. This may indicate that, regardless of whether the training is in updating or binding tasks,
training in verbal tasks may reduce noise in mental representation in the verbal version of the
memory updating task, because both the updating and the binding group have a decrease in noise

compared with the control group. However, training in numerical tasks may not reduce the noise

in the numerical version of the memory updating task as effectively.

In the differences of RT accumulation rate parameters from the recall period, v,@ — vﬁ}c), the
posterior probabilities that the control group has a lower v,(?c) — U,(n,lc) than the updating and binding
groups are 0.98 and 0.85 respectively in the numerical version, and are 0.98 and 0.88 respectively
in the verbal version. This parameter shows a clear effect of training, where the updating group
has an increased accumulation speed after training in both numerical and verbal versions, and this
group improves more than the other groups. There may also be a transfer effect associated with

this parameter, as the binding-trained group also have consistent increases in the accumulation

rate in both tasks, and the increases are larger than those from the control group.

Based on group-level results, for individual-level parameters, we examine the interference pa-
rameters Cj., as they are tightly linked with the interference mechanism of interest, and the ac-
cumulation rate parameters v, ;. in the recall period, as they may embed possible transfer effects.

Figures 17 and 18 display individual pre/post-test differences of these parameters.

As displayed by the numerical version of Figure 17, in the updating group, 36 out of 59 partic-
ipants have an estimated posterior probability larger than 0.7 that Cl(f ) < C’Z-(C1 ); the control group
has 32 such participants out of 72, and the binding group has 26 such participants out of 66. In
the verbal version, the updating group has 26 such participants out of 59; the control group has 18

out of 72; and the binding group has 15 out of 65. From the individual level, a larger proportion
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Figure 16: Posterior box-plots for the pre-post test differences of group-level parameters from the
numerical version (upper) and the verbal version (lower). Parameters 0,(,? (0 € (C,0,k,)) corre-
sponds to the pre-test condition, and 9.(,%) corresponds to the post-test condition. The subscripts u
and r indicate that the parameters are from the updating period and the recall period, respectively.
The control group (“Ctl”), memory-updating group (“Upd”), and binding group (“bind”) are each

colored in brown, black and gray, respectively.
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Figure 17: The whisker plots of pre-post test differences of individual posteriors for the interference
parameter C' in the recall period. The upper plots are from the numerical task and the lower plots
are from the verbal task. The control, updating, and binding groups are colored in brown, black,
and gray, respectively. In the whisker plots, the points are placed at the posterior medians, and
the whiskers are the 95% equal-tailed credible intervals. We re-ordered participants in each group
by estimated parameter values so that their results are shown in an increasing order.

of participants from the updating group have a reduction in the level of interference, which may
indicate that memory-updating training could potentially reduce the degree of mutual interference
in working memory processing for some individuals in the same task. However, similar to results
from the group level, there is no evidence that binding training can help to reduce the level of

interference in memory updating tasks.

Figure 18 shows the individual-level accumulation rate parameters in the recall period. Most
participants in the updating and binding groups have an increase in the RT speed after training.
In the updating group, 49 out of 59 participants has an estimated posterior probability larger than
0.7 that 0521)0 > vill)(: in the numerical version, and 46 out of 59 in the verbal version. The binding

group has 45 out of 66 such participants in the numerical version and 33 out of 65 participants in

the verbal version. The control group has 37 out of 72 such participants in the numerical version
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Figure 18: The whisker plots of pre-post test differences of individual posteriors for the RT accu-
mulation rate parameter v in the recall period. The upper plots are from the numerical task and
the lower plots are from the verbal task. The control, updating, and binding groups are colored in
brown, black, and gray, respectively. In the whisker plots, the points are placed at the posterior
medians, and the whiskers are the 95% equal-tailed credible intervals. We re-ordered participants
in each group by estimated parameter values so that their results are shown in an increasing order.

and 25 out of 72 participants in the verbal version. These results may indicate that both updating
and binding training are more helpful in improving the speed of information accumulation in the
recall period than the visual search tasks. It may be the result of familiarizing and speeding up
passive working memory processes, where the participants learned to use the cognitive resources
more efficiently. The change in the binding group may be due to the shared passive components in
binding and memory updating, so the benefit from binding training can also benefit related passive

components in the memory updating task.

Consistent with the findings reported by De Simoni & von Bastian (2018), we found no evidence
of transfer effects in the level of interference. However, our results indicate that there may be
training and transfer effects in the speed of information accumulation in these memory tasks. As

is shown by the RT accumulation parameter in the recall period, the updating group has a large
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increase in the accumulation speed after training in both numerical and verbal versions of the task.
The binding group does not have as large an increase as that of the updating group, but still have
a larger increase in the speed of information accumulation than the control group in both versions
of the task. At the individual level, larger proportions of participants have increases in the speed
of information accumulation in updating and binding groups than in the control group. This may
indicate that some degree of near transfer effects may be present in the passive components shared
by all working memory components. Because these components are shared, training of them in one

task may indirectly improve them in another task.

4 Conclusion and future directions

In this paper, we developed a hierarchical Bayesian model for working memory updating based on
mutual interference. The model adapted the activation framework based on mutual interference
(Oberauer & Kliegl, 2006) and the Wald diffusion model, allowing it to jointly model the response
accuracies and RTs. This hierarchical Bayesian model yielded reasonable fits to several memory
updating data sets, thus we conclude that it is a feasible model for the memory updating task.
Compared with previous models, the joint modeling framework in this model allows each of response
and RT information to inform and potentially improve parameter estimation of the other. Because
of the inclusion of RT parameters, results of this model may reflect possible RT-related effects
that are otherwise not shown by parameters related to response accuracy. This model also used
mixtures to account for ancillary processes such as pre-activation, which could otherwise confound

the modeling results.

In this section, we discuss potential future directions in working memory studies. Some are
related to possible improvements to our current modeling methods, and the others are related to

extensions of working memory studies based on findings in Section 3.

4.1 Discussion: Modeling

We discuss potential work related to the modification and improvement of our modeling approach.
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Firstly, we constructed the hierarchical Bayesian model with the purpose of quantifying the
level of interference and RT differences in groups and individuals. Our focus is not on the evalua-
tion and comparison of different interference mechanisms, or on the mechanisms limiting working
memory capacity in general. In future studies, it may be plausible to build joint models or further
improve existing models based on different specific mechanisms, and evaluate the plausibility of
each mechanism by model comparison (e.g. Oberauer & Kliegl, 2001; Ecker et al., 2015; Tan et al.,
2017). Because RT distribution information is shown to be informative in this study, it may also
be beneficial to incorporate RT distributions in potential models and perform estimations jointly.
With several models, model comparisons may also be used to evaluate the flexibility of different
models, which regards their abilities to fit the data with their numbers of effective parameters eval-
uated by the deviance information criterion (Spiegelhalter et al., 2002) or the Watanabe-Akaike

information criterion (Gelman et al., 2013).

To accommodate the mixture structures in this model, we used strongly informative priors
for some parameters to avoid potential identifiability problems and reduce computational time.
However, if the ancillary processes are not the interest of a study, it may be feasible to discard
fast and slow responses, model the process with only the algorithmic mutual interference and Wald
diffusion processes, and relax the priors of these parameters. It may also be feasible to fit this
model with another sampler other than the Hamiltonian Monte Carlo sampler from Stan, such as
the Differential Evolution approach (Turner et al., 2013), so that the process has less computational

cost.

4.2 Discussion: Working memory applications

We discuss potential future work based on our modeling assumptions and findings in empirical

applications.

When constructing the model, we made several assumptions that can be tested or extended
in future development. The first is the assumption that targets and competitor items share the
same level of interference in each task. This assumption can be violated if a design involves stimuli

of different levels of distinctiveness (e.g. Oberauer et al., 2012) or incentives (e.g. Strand et al.,
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2012), thus the modeling framework can be updated to incorporate these conditions in future
development. The second is the assumption that items are perfectly encoded in the memorization
period, which is a simplification and may be modified to include potential encoding effects such as
elaborative encoding (Bradshaw & Anderson, 1982) in future works. The third is the assumption
of pre-activation for the fast RTs around the smaller mode. This assumption is examined in this

study but may need further evidence from future studies to validate.

In the application investigating aging effects in working memory based on data from Oberauer &
Kliegl (2001), our results indicate that older adults may have higher levels of interference between
items, less use of memory trace information to guide their information accumulation processes,
and less use of potential pre-activation processes compared with younger adults. One possible
extension to this work is related to the pre-activation processes. It may be helpful to further test
the pre-activation assumption, and investigate the mechanisms underlying the processing differences

between younger and older adults in relation to pre-activation in future research.

In the application investigating transfer effects in working memory training based on data from
De Simoni & von Bastian (2018), we found strong evidence of training and transfer effects in
the speed of processing. Because our analysis focused on the verbal-numerical aspect of working
memory, effects in the visuo-spatial aspect may be investigated in future studies. For a better
evaluation of the benefits of working memory training, it may also be helpful to study the reason
for this transfer effect in future research. One possibility is to identify the specific working memory
processes that benefit from the transfer effects, so that the scope and generalizability of the transfer

effect can be understood.
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Appendix 1: Simulation and parameter recovery

We performed a simulation study to test the model’s parameter recovery ability. We investigated
parameter recovery under two conditions: when responses and RTs are only recorded during the

recall period for the final results, and when they are recorded both in the updating and recall
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periods for intermediate and final results. These conditions correspond to the characteristics of the
two paradigms and empirical data sets presented by Oberauer & Kliegl (2001) and De Simoni &
von Bastian (2018). In this section, we describe our methods to generate the simulated data sets,
and the results of these simulations. Based on simulation results, we argue that the hierarchical

Bayesian model has a reasonable parameter recovery ability for most parameters.

4.2.1 Simulation without intermediate responses

In this section, we examine whether the model can successfully recover the true parameter values
when responses from the recall steps are recorded, and when the updating time limit is binned into
four segments (see Section 2.3.5). To obtain simulated data sets, we simulated each data set from
two groups, each consisting of 10 artificial participants. We used the experimental schemes similar
to that from Oberauer & Kliegl (2001) to generate simulated data. We simulated two cases, where
each participant completes 80 trials (around 250 observations depending on the memory demand)
or 240 trials (around 700 observations). We generated the individual parameters with group-level
parameters obtained from modeling results in Section 3.1.3, using distributions shown in Table 1.

We obtained 30 different sets of parameters and 30 corresponding simulated data sets in each case.

We fit the model using the procedure described in Section 2.3. In particular, we computed
quartiles for the limiting times during the updating period, and fit the model to data with binned
limiting times. We fit the hierarchical Bayesian model to these data using the software Stan. For

each simulated data set, we obtained a chain containing 500 warm-up samples and 1000 iterations.

We present parameter recovery results in Figure 19 and Figure 20. Figure 19 shows that when
the sample size is relatively small, the interference parameter Cj. is slightly overestimated at lower
values. Estimation of the activation rate parameter ;. is less accurate at higher values, which is
likely due to the binning of updating limit times. Besides the main parameters of interest, the
response probabilities in the ancillary processes, gj ., and the Log-normal standard deviation of
fast ancillary processes, 0., have a relatively larger variability in their estimation. Figure 20
shows that the quality of estimation improves when the sample size is relatively large. The majority

of the parameters are reasonably recovered and there are no major patterns of divergence from the
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identity lines. The ancillary processes parameters, especially g ;. and o, ., have less variable

estimation compared with the small sample size condition.

In these simulations, the parameter recovery results are reasonably good for model parameters,
and the precision of estimation improves as the sample size increases. With a larger sample size, the
model is able to recover all parameters well, including the activation rate parameter after binning.

Therefore, the model is feasible for Oberauer & Kliegl (2001)’s data set.

4.2.2 Simulation with intermediate responses

In this section, we examine whether the model can successfully recover true parameter values
for both the updating and recall steps, and when the number of observations per participant is
relatively small. We describe in order the methods to generate the simulated data sets, the model

fitting procedures, and simulation results.

To evaluate whether the model has a good parameter recovery ability when the data has a small
number of observations like that in De Simoni & von Bastian (2018), we simulated each data set
from 3 groups, each consisting of 10 artificial participants. We used experimental schemes identical
to those of the numerical version of memory updating task from De Simoni & von Bastian (2018),
described in detail in Section 3.2.1. This scheme consists of 208 trials in total, including 144 trials
from the updating period and 64 trials from the recall period. In this simulation, each participant
completes the task once (208 observations in total). In each simulation, we selected the group-level
parameters as those obtained from Bayesian fits of the model to empirical data from Section 3.2.3,
which embedded reasonable group differences. We generated the individual-level parameters from
the group-level parameters using the distributions shown in Table 1. These values have considerable
variability but are also within a reasonable range for an empirical scenario. For parameters outside
the hierarchy, we randomly selected values out of all posterior samples for them. We generated 50
different sets of parameters and 50 corresponding simulated data sets. Although the first simulation
shows that the model has a good parameter recovery ability when the sample size is large, for a
more thorough comparison, we also performed 5 simulations where each participant performed the

task 10 times, resulting in 2080 observations each. We fit the hierarchical Bayesian model to these
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Figure 19: Results from simulations with 80 trials (about 250 observations per participant) where
intermediate updating responses are not recorded. This figure shows the contrasts between true
parameter values (x-axis) and parameter values recovered from simulations (y-axis) for individual-
level parameters. Red lines are identity lines.
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Figure 20: Results from simulations with 240 trials (about 700 observations per participant) where
intermediate updating responses are not recorded. This figure shows the contrasts between true
parameter values (x-axis) and parameter values recovered from simulations (y-axis) for individual-
level parameters. Red lines are identity lines.
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data using the software Stan (Stan Development Team, 2018). For each simulated data set, we

obtained a chain containing 500 warm-up samples and 1000 iterations.

We present parameter recovery results in Figure 21 and Figure 22. Figure 21 shows that, even
with a really small sample size, the model can recover parameters well. It is most noticeable that
the interference parameter Cj. is slightly overestimated at low values under 0.1. In comparison,
Figure 21 shows that when the sample size is large, C;. is more precisely estimated. Based on these
results, the overestimation of Cj. at small sample sizes is likely to occur because we used tighter
priors (see Section 2.3.4) to accommodate the inclusion of mixtures and computational cost, and
when the sample size is small, the priors are not properly shifted to the precise location. However,
because the C;. estimates positively relate to the true values, this overestimation is unlikely to lead
to misinterpretation of modeling results. Therefore, the model is reasonable to use for parameter
estimation and interpretation in data sets with small sample sizes like those from De Simoni & von

Bastian (2018).

Appendix 2: Model comparison

We perform a model comparison to evaluate whether the participants’ type of responses are linked to
their information accumulation rate. From the mechanism in Section 2.3.1, the number of memory
traces linked to each type of item (targets, competitors and non-competitors) are embedded in the
probabilities p;i j of responding by that type. More memory traces linked to an item (such as a
target) can lead to a larger pzm j for that item. In Section 2.3.2, we hypothesize that the number
of memory traces can also affect the information accumulation rate in the Wald diffusion process
while responding, reflected in the type-to-RT parameter x;.. When a participant performs the task
well, we expect k;. > 0, so that as target items have more memory traces, this participant can
collect information faster and respond earlier to targets than non-targets. In Sections 3.1.1 and
3.2.1, we showed that the relations of RTs and responses are consistent with this assumption in all

data sets.

In this section, we use the Watanabe-Akaike information criterion (WAIC, Gelman et al., 2013)
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Figure 21: Results from simulations with 208 observations where intermediate updating responses
are recorded. This figure shows the contrasts between true parameter values (x-axis) and parameter
values recovered from simulations (y-axis) for individual-level parameters. Red lines are identity
lines.
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Figure 22: Results from simulations with 2080 observations where intermediate updating responses
are recorded. This figure shows the contrasts between true parameter values (x-axis) and parameter
values recovered from simulations (y-axis) for individual-level parameters. Red lines are identity

lines.
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to evaluate whether the inclusion of k;. improves model fit without over-fitting. For all data sets,
we fit a model with k;. and a model without x;. to the data, generating a chain of 500 warm-up
samples and 2000 iterations each. We then compute the WAICs for each model. Table 4 shows the
WAICs and effective number of parameters from both models in each data set. Two versions of
WAIC and effective numbers of parameters are used. In “WAIC1” and " Eff1”, the effective number

of parameters pwaici is computed as

S

PWAICT = 2Zn: (log (% Zp(yj!ns)) - (% ilogp(yj\ns)»,

j=1 s=1

where 17 denotes the posterior samples, 7 denotes the posterior sample means, and y denotes the
data. With a total of n data points and S posterior samples, y; denotes the jth data point and
7ns denotes the sth posterior sample. In “WAIC2” and “Eff2”, the effective number of parameters

PwAIC2 is computed as

n
pwatcz = »_ vars_; (log p(y;|ns)).
j=1

The log pointwise predictive density is computed as

n S
Ippd = > "log (% Zp(yj!ns))
j=1

s=1
and the WAICs are computed as

WAIC = —2lppd + 2pwaic.

From Table 4, for all data sets, both WAICs are lower for the model with ;. than the model
without x;.. This indicates that the model with k;. is superior based on both measures for all data

sets, and the type-to-RT parameter k;. should be retained in the model.
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Numerical version

Table A1l Control  Updating Binding Control  Updating Binding
Accuracy Updating RT
Pre-test 0.81 0.83 0.81 3.20 (3.27) 3.46 (3.43) 3.17 (2.77)
Post-test 0.82 0.88 0.82 2.82 (2.91) 1.80 (1.26) 2.64 (2.29)
Mean diff 0.01 0.05 0.01 -0.38 -1.66 -0.53
Recall RT

Pre-test 1.51 (1.40) 1.57 (1.31) 1.49 (1.16)
Post-test  1.32 (1.12) 1.17 (1.20) 1.28 (0.90)

Mean diff -0.19 -0.40 -0.21
Table B1 RT T1 (pre) T1 (post) T2 (pre) T2 (post) T3 (pre) T3 (post)
Control 3.25/1.65 2.89/1.52 3.67/2.20 3.04/1.96 3.40/2.05 2.91/1.76
Updating 3.41/1.64 1.79/1.37 4.28/2.20 2.34/1.86 3.90/2.23 2.20/1.67
Binding 3.17/1.67 2.72/1.46 3.61/2.06 3.20/1.88 3.64/1.88 2.60/1.72
Table C1 Updating RT Recall RT
RT 0-0.2s 0.2-0.6s >0.6s 0-0.2s 0.2-0.6s >0.6s
Accuracy 0.10 0.12 0.88 0.47 0.73 0.76
Table D1 Sequential place in recall
Memory demand 1 2 3 4 5
3 3.2% 18.6% 62.7%
5 2.4% 5.0% 11.7% 16.4% 24.0%
Verbal version
Table A2 Control Updating Binding Control Updating Binding
Accuracy Updating RT
Pre-test 0.72 0.73 0.66 4.52 (4.72) 4.55 (4.26) 4.33 (4.70)
Post-test 0.72 0.86 0.69 3.48 (3.79) 1.82 (1.18) 3.31 (3.26)
Mean diff 0.00 0.13 0.03 -1.04 -2.73 -1.02
Recall RT
Pre-test 1.44 (1.72) 1.33 (1.18) 1.36 (1.31)
Post-test 1.24 (1.47) 0.94 (0.79) 1.07 (0.90)
Mean diff -0.20 -0.39 -0.29
Table B2 RT T1 (pre) TI1 (post) T2 (pre) T2 (post) T3 (pre) T3 (post)
Control 4.51/1.53 3.56/1.43 5.03/2.37 3.51/1.99 4.84/1.98 3.89/1.88
Updating 4.51/1.43 1.80/1.16 5.01/1.97 2.19/1.74 4.98/1.89 2.21/1.51
Binding 4.49/1.49 3.59/1.33 4.59/2.07 3.33/1.50 4.39/1.86 3.52/1.54
Table C2 Updating RT Recall RT
RT 0-0.2s 0.2-0.6s >0.6s 0-0.2s 0.2-0.6s >0.6s
Accuracy 0.14 0.16 0.79 0.39 0.68 0.62
Table D2 Sequential place in recall
Memory demand 1 2 3 4
2 15.7% 62.6%
4 3.6% 10.5% 20.3% 39.8%

Table 3: Statistics from numerical and verbal versions of memory updating tasks from De Simoni
& von Bastian (2018). “Table A”s display the summary statistics of response accuracies and
RTs for the visual search (control) participants, updating-trained participants, and binding-trained
participants. These tables show the mean response accuracies and the RT mean with standard
deviations (in brackets) for each group. “Mean diff” rows show the mean differences of the post-
test values from the pre-test values. “Table B”s display the mean RTs (calculated from RT larger
than 0.6 seconds) of each type. T1, T2, and T3 correspond to targets, competitors, and non-
competitors, respectively. The mean RTs before and after each “/” are from the updating and
recall periods, respectively. “Table C”s display the response accuracies in the RT ranges of 0-0.2
seconds, 0.2-0.6 seconds, and more than 0.6 seconds. “Table D”s display the proportions of fast
RTs around the smaller mode in the 0.2-0.6 secgmds range in the recall period from each item to
be recalled. The “Sequential place in recall” shows the sequential order of the item to be recalled.



With k. No ki
WAIC1 Effi WAIC2 Eff2 | WAIC1 Effi WAIC2 Ef2
Age 278072 403 278097 415 | 282381 358 282404 370
Numerical | 348429 5918 350544 6976 | 349406 5667 351458 6693
Verbal 384085 5452 385574 6197 | 385269 5233 386743 5970

Table 4: WAICs and effective number of parameters (Eff) of data sets from Oberauer & Kliegl
(2001) (“Age”) and De Simoni & von Bastian (2018) (“Numerical” and “Verbal”).
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