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Remedies to attenuate the potential negative impacts of such observations on inference
and prediction are proposed. The methodology is motivated by the view that well-behaved
residuals and good predictive performance often go hand-in-hand. Focus is placed on re-
gression models that use variants on Zellner’s g prior. Studying the impact of various forms

I:fg,:ﬁ;is}egression of model misfit on BMA predictions in simple situations points to prescriptive guidelines
BMA for “tuning” Zellner's g prior to obtain optimal predictions. The tuning of the prior dis-
Outliers tribution is obtained by considering theoretical properties that should be enjoyed by the
Regression diagnostics optimal fits of the various models in the BMA ensemble. The methodology can be thought
Residuals of as an “empirical Bayes” approach to modeling, as the data help to inform the specifica-

Shrinkage estimation tion of the prior in an attempt to attenuate the negative impact of influential cases.
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1. Introduction

While there are many strategies for Bayesian regression modeling when there is uncertainty about model composition,
Bayesian model averaging has been predominant in both literature and practice over the last two decades. This is particularly
true when prediction is the primary objective. In this setting, a prior distribution is first placed over the collection of all
models under consideration. For each model M,, a prior distribution is then placed on the model-specifjc parameters,
leading to a joint posterior distribution over both models and parameters. Predictions of a new outcome Y are typically
made by computing a weighted average of the predictions under all possible models,

Pred(Y) =¥, . Pred(Y | M, )w(M,),

where I is a set that indexes all models under consideration, M, is a particular model and w(M,, ) is the weight assigned
to model M, in the averaging. Most commonly, Pred(Y) is taken to be E(Y | Y), which minimizes expected posterior predic-
tive L, loss, in which case the model-specific predictions are E(Y | Y, M, ) and the model-specific weights are the posterior
probabilities 7 (My, | Y) (Bernardo and Smith, 1994). Reviews of BMA are provided in Hoeting et al. (1999) and Clyde and
George (2004). The term “BMA” is quite general and can be applied to many different data-analytic settings. In this work,
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“BMA” refers to Bayesian model averaging for linear regression, where an analyst has available p potential covariates and
would like to average over the 2P possible regression models that can be constructed using subsets of the covariates. Seminal
work on regression model composition uncertainty, which underlies BMA, can be found in Mitchell and Beauchamp (1988),
George and McCulloch (1993), Smith and Kohn (1996), George and McCulloch (1997), Raftery et al. (1997) and Chipman et al.
(2001).

While methods for diagnosing and remedying model misfit are well-established and routinely taught in regression mod-
eling courses (see, e.g., Neter et al., 1996; Cook and Weisberg, 1982), the literature on model misfit for Bayesian analyses
of classical linear regression models is somewhat less well-developed. Addressing potential or known model misfit is some-
times accomplished by modifying the likelihood, writing down a model that is flexible enough to describe the observed
data. One example is the use of heavy-tailed error distributions to accommodate outliers (West, 1984). Model-based ap-
proaches to outlier detection and residual analysis have been considered by Chaloner and Brant (1988) and Hoeting et al.
(1996).

The corpus of literature on Bayesian regression modeling and, in particular, Bayesian averaging of many regression models
has expanded greatly since the development of early work addressing model misfit in Bayesian regression. While existing
work provides useful guidelines for thinking about model misfit for specific Bayesian models, it is not clear that it provides
prescriptive guidelines that can be applied in many of the currently-used Bayesian regression modeling settings.

For example, priors related to Zellner's g prior (Zellner, 1986) have become one of the “standard” setups for Bayesian
regression modeling. The popularity of such priors is due, in part, to their computational simplicity. Use of these priors
requires choosing an approach for handling hyperparameters, which we refer to generically as g. Current popular approaches
for handling g include empirical Bayes (EB) methods that focus on specifying g by maximizing the marginal likelihood of
the data with respect to either a single model or a mixture of models. Fully Bayes approaches assign a prior distribution to
g and then integrate it out of the model. While these approaches are sound when the model fits well, it is less clear that
maximizing the marginal likelihood or integrating g out of the model will be optimal in the presence of model misfit due
to influential outliers, as the discrepancy between prior and likelihood may result in sub-optimal out-of-sample inference
(say, the prediction of new cases).

In this work, we focus on methods of model specification in the presence of influential outliers that are strongly con-
nected to the concept of residual analysis. We take the view that well-behaved residuals and good predictive performance
usually go hand-in-hand. Any particular choice for handling g corresponds to a specific Bayesian model and hence specific
fitted values and residuals. By tuning the value of g in Zellner’s g prior over a continuous interval, we obtain continuously-
varying residuals. Broadly speaking, in the presence of model misfit we seek to choose a value of g that yields well-behaved
residuals and hence attenuates the impact of the model misfit and, ultimately, achieves better out-of-sample predictive
performance. In practice, we seek to find prescriptive guidelines for accomplishing this task by focusing on minimizing pre-
diction error. Our investigation concerns not only an individual regression model but also an entire ensemble of regression
models that may be combined together via BMA. In this case, model misfit due to influential outliers can exist at both the
local (individual model) level and the global (model-averaged) level. By tuning the priors to attenuate the impact of model
misfit, we eventually achieve improved out-of-sample predictive performance.

In Section 2 we introduce our regression model setting and review Zellner’s g prior. Section 3 makes connections between
the choice of g and optimal prediction in the presence of influential outliers, and provides prescriptive guidelines for tuning
Zellner’s g prior. Section 4 describes the approach we have developed for applying these prescriptive guidelines in practice,
and Section 5 investigates the performance of this approach in simulation studies. Section 6 applies our approach in an
analysis of a data set and compares its predictive performance to other common methods. A summary of the results and a
discussion of open questions and related work are provided in Section 7.

2. Regression model setting

We consider situations where an analyst observes an n x 1 vector of response values, Y, and an n x p matrix X which
contains p covariate values for each of the n cases. As is common in the literature, unless specified otherwise, we assume
throughout that the columns of X have been mean centered (see, e.g., Liang et al., 2008; Bayarri et al., 2012; Li and Clyde,
2018, for justifications and discussion of this modeling choice). There are 2P possible subsets of the p covariates that could be
used to construct a mean function for a linear regression model, and interest lies in computing model-averaged predictions
as described in Section 1 over the space of all possible regression models. In this setup, a model M, corresponds to a
subset of k predictors. We use the binary p-vector y to index all possible models: y; =1 when X; is included in a model
and y; = 0 otherwise. The notation M, is used to denote a model containing predictors indicated by the vector y. Other
quantities subscripted by y denote model-specific terms, e.g. X, is the n x k matrix which contains the columns of X that
are included in model M,,.

Our work focuses on data analysis settings where either (i) the total number of predictors p is not too large or (ii) where
p may be large, but we constrain the maximum number of predictors in a model to be k* « p (e.g., as in Hans et al., 2007).
The simulations and examples presented in Sections 5 and 6 consider p as large as ten. We focus on small-p settings in part
because they are relevant for a wide swath of applied data analysis, where an investigator is interested in understanding
the relationship between a small set of regressors and a response variable, and in part due to the computational challenges
associated with averaging over very large model spaces that are faced by all BMA methods.
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BMA requires hierarchical specification of a prior probability, 7w (M, ), for each model under consideration, and then, for
each model, a likelihood and a prior for the model-specific regression parameters. For normal linear regression modeling,
the likelihood for a specific model M, is derived from the distribution of Y given the model parameters, (o, ﬂy, 0?),

p(Y | B,.0% My) =N | a1, + X, B,.0%I),

where ,By are the regression coefficients corresponding to the predictors X,, in model M,, « is an intercept, o2 is the error
variance, 1, is an n x 1 vector of ones, and I, is the n x n identity matrix. The model-specific priors on the parameters are
known to play a key role in inference and prediction, and there are many possibilities for their specification. A common
approach, which we adopt in this work, is to assume n(a,ﬂy,az | My)=m (B, | 02, My)m (2,02 | My) and to use the
improper, “objective” prior 7 (o, 62 | My) x o2 (Jeffreys, 1961; Berger et al., 1998).

Various approaches to specifying the prior probabilities 77 (M, ) have been studied in the literature. While the uniform
prior over models, 7w (M, ) = 27P, was discussed in the early Bayesian variable selection literature (George and McCulloch,
1993), it does not control the false positive rate in the context of variable selection when making multiple comparisons
(Scott and Berger, 2010). An alternate prior formulation that provides better multiplicity control is the Beta-Binomial(1, 1)
prior, T (My) = (p+ 1)*‘(|Aj’yl)71, where |My | is the number of variables in model M, (Ley and Steel, 2009; Scott and
Berger, 2010). This is a special case of the Beta-Binomial prior considered by Kohn et al. (2001) and can be interpreted
as first specifying a uniform prior over model size and then, conditionally on model size, specifying a uniform prior over
models. More recent advances in model space prior specification include the loss-based prior of Villa and Lee (2020). Unless
specified otherwise, we use the Beta-Binomial(1, 1) prior in this work.

The research literature on priors for the model-specific regression coefficients, n(ﬂy | 02, M,), is extensive. Historically,
one of the most popular classes of priors for the regression coefficients is based on Zellner’s g prior,

B, | 0% My ~N(0,g,02(X)X,) ™), (1)

where g, > 0 is a hyperparameter (Zellner, 1986). This prior has received much attention in the literature and in practice due
in part to the fact that, for specific treatments of g,, Zellner’s g-prior allows for computationally efficient model averaging
when p is not too large. In the context of BMA, when minimizing expected posterior predictive L, loss, model averaged
predictions require calculation of E(B,, | Y, My ) and 7 (My | Y) acm(Y | My )7 (M) for each model, where m(Y | My) is
the marginal likelihood for model M, . Closed form expressions for these quantities exist when g, is treated as a constant
in the model. The marginal likelihood for model M,, is

m(Y | My)

/p(Y &, B, 0% My (@, B, 0% | My)da dB,, do?

_ '((n-1)/2) (1+g,) k122
T ope-nep2|y — Y1 (1+g,(1 - R2)) 072’

where Y is the n x 1 vector where all elements are equal to the sample average value of the Y;’s, | - || is the L, norm and Rf,
is the coefficient of determination for model M,,. The posterior mean of the regression coefficients under model M,, is

E(B, | Y. My) = ﬁ—ygyﬁls, (2)

where BLS is the ordinary least squares estimate of ﬂy under model M,,, and p, =g, /(1+gy) € (0, 1) is sometimes called
the shrinkage factor. Under this model, the prior combines with the data to shrink the least squares estimate toward zero by
a factor of p,. Computation of all of these quantities is trivial once the usual calculations for least-squares estimation have
been performed.

Specification (or modeling) of g, is important, as it impacts the marginal likelihood, which in turn impacts model aver-
aging. There is a large literature discussing methods for handling this parameter. Approaches that specify fixed values of the
gy include the unit information prior (Kass and Wasserman, 1995), the risk inflation criterion (Foster and George, 1994), the
local empirical Bayes prior (Hansen and Yu, 2001) and the global empirical Bayes prior (George and Foster, 2000; Clyde and
George, 2000). Some of these approaches specify a single g that is common to all models, while others specify different g, 's
for different models. Som et al. (2014) use different g, ’s for different groups of predictor variables. Liang et al. (2008) and
Bayarri et al. (2012) provide motivation for assigning a prior distribution to g and suggest priors that enjoy appealing theo-
retical properties while maintaining computational tractability. Other priors for g have been proposed by Zellner and Siow
(1980), West (2003), Cui and George (2008), Maruyama and Strawderman (2010), and Maruyama and George (2011).

The method we describe in Section 4 can be viewed as an empirical Bayes approach to specifying hyperparameter values,
and so existing empirical Bayes methods are of special interest to us. Global empirical Bayes methods use the data to
estimate a hyperparameter g that is common to all models. The parameter is typically estimated by maximizing the marginal
likelihood of the observed data given g, m(Y | g) =3, .r m(Y | My, g)m (M,), where the parameters «, ﬂy and o2 have
been integrated out of each model to obtain the model-specific marginal likelihood m(Y | M, , g). Clyde (2001) describes
an EM algorithm that can be used to find the value of g that maximizes the model-averaged marginal likelihood. The local
empirical Bayes approach allows for different g, for each model and uses the data to estimate them by maximizing the
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model-specific marginal likelihood m(Y | M,,, g, ). While empirical Bayes approaches use the data to estimate specific values
gy, fully-Bayesian approaches assign prior distributions to the g, and use the data to integrate over uncertainty about
them a posteriori. Of the fully-Bayes methods, the hyper-g/n prior of Liang et al. (2008) is noteworthy as it is amenable
to efficient computation and has desirable theoretical properties. This approach assigns the prior 7 (g, | M) = (a—2)(1+
gy/m)~12/(2n), with a = 3 recommended as a default specification. We compare our method to these three approaches in
Section 5.

The prior mean vector E (ﬂy | 02,/\/[},) is routinely taken to be the zero vector in (1). When lacking prior information
about the location of the vector of regression coefficients, centering the prior at zero shrinks the posterior distribution
toward zero—corresponding to no linear association between Y and the collection of predictors X, —as can be seen in (2).
Zellner’s original formulation of the g prior (Zellner, 1986) allowed for shrinkage toward non-zero mean vectors. In this case,
we write the prior as

ﬂy | o?, My, ~ N(oy,gVUZ(X)T/XV)fl), (3)
where 6, is the prior mean vector for ﬂy. Under this prior, the posterior mean of ﬁy under model M, is
1 g 5 ~
EB, Y. M) = itg, 0y + Tt+g, Bis= (1-py)by + py Bis.

where p, =gy, /(1 +gy), called the shrinkage factor above, can now be interpreted as determining the posterior mean as a
convex combination of the prior mean of ﬂy and the data-based estimate of ﬂy. The marginal likelihood under prior (3) for
a model M,, with k predictors is

r(n-1)/2)

7 (n—1)/211/2

_ 2 2\ '
(¥ | M) = 1Y -X,0, ||Y||> W

ly -2

Dividing (4) by the marginal likelihood for the “null model”, My—the model with no predictors that assumes a common
mean for all Y;—yields the Bayes factor for comparing model M, to model My:

_nct
Y — X, 0y — ||Y||2) ’
[y —-y|?

Y — ¥~ 4 g, ) k2 (1 +&(1-R)+

BF (M, : My) = (1 +g,) "k 17 (1 T8y (1-R)+ ®)

We revisit this version of Zellner's g prior in Section 4.1.
3. Outliers and Model-Averaged Prediction Accuracy

Model-averaged predictions for linear regression depend on the posterior distribution over models, 7 (M, |Y), and the
within-model estimates of the regression coefficients, E(,By | Y, My), both of which depend on g,. When p predictors are
available and we are averaging over the space I' of all possible 2P models, the model-averaged predictions of n new cases
Y at the same matrix of regressors X used to fit the model can be written as

Pred(Y) = ) " Pred(Y | M, )7 (M, |y)
yel

=Y (Y+X,EB, | Y. M)))T (M, |Y)
yel

=Y+XEQB|Y),
where, for j=1,..., p, the jth element of the vector E(8|Y),

EB 1Y) = Y EByx | Y. M)TM,y | Y),

yell i XjeM,,

is the model-averaged estimate of §;, and the sum is taken over all models that include X; as a regressor. The notation ﬂy,xj
is used to denote the coefficient in model M, that corresponds to regressor X;. We denote the model-averaged estimate of

the regression coefficients as BBMA =EBY).

In this section, we present several examples to illustrate the impact of influential outliers on BMA. In particular we focus
on the relationship between outlying value(s), the choice of g, in the prior, and predictive accuracy. The examples shed light
on the behavior of BMA in the presence of influential outliers and suggest general strategies for improving model-averaged
prediction. Example 1 illustrates the sensitivity of the posterior distribution over models to outliers in an example with
three potential predictors. Example 2 focuses on the impact of outliers on model-averaged prediction in a stylized example.
This example makes connections between the behavior of residuals and optimal prediction. Sections 3.3 and 3.4 generalize
these results to mean-shift and variance-inflation contamination settings with an arbitrary number of predictors, p. The
examples and results in this section provide the intuition behind the prescriptive guidelines for selecting g;, that we pursue
in Section 4.
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Fig. 1. Posterior model probabilities (top row) and marginal inclusion probabilities (bottom row) for Example 1 in Section 3.1. Models in the top row are
indexed by y, e.g. “010” indicates the model with only X, as a predictor.

3.1. Example 1: Impact of Outliers on the Posterior

We first present a simple example that illustrates the impact of a single contaminated case on the posterior distribution
over models. Let X;; =i—1—(n—1)/2, fori=1,...,n =11, so that the X;; take the values —5,—4,...,4,5 and are mean-
centered with Y1 ; X;; = 0. Suppose that the true regression line is given by E(Y; | X;) = BX;; and that the data are generated
according to

Yi=BXqn+I1(i=j)K+e€, i=1,...,n,

with €; i N(0,1) and B = 0.5, where I(i = j) is a 0/1 indicator function that is nonzero only for case j. In this setup, K # 0
means the response for case j is a contaminated value and constitutes an outlier if |K| is large. Case j will also have high
leverage for small and large values of j. We simulated (X;;,Y;) pairs with n=11, 8 =0.5 and 02 = 1. We also simulated
(and then mean centered) two other potential predictor variables: Xj; = Xj; + Z;, with X; tid N(0, 1) so that X; and X, are
highly correlated, and X3 i N(0, 1) with X3 independent of Y, X; and X,. Considering all three potential predictors, the
model space contains 23 = 8 possible models (including the null model, containing only an intercept), over which we place
a prior distribution that is uniform over model size and, conditional on model size, uniform over models. For each of the
non-null models, the prior distribution on the regression coefficients is taken to be Zellner’s g-prior centered at zero with
g = n, corresponding to a unit information prior (Kass and Wasserman, 1995; Fernandez et al., 2001). The prior is completed
with the standard non-informative prior 7 (¢or, 62) «x 0 2.

For a given contaminated case location j, we are interested in the impact of K on the posterior probabilities of the
eight models. The top row of Figure 1 displays this impact as K ranges from —10 to 10 for j =1 (so that the contaminated
case corresponds to the smallest X; value), j =6 (medium X; value) and j =11 (largest X; value). The binary vector y
distinguishes the eight models: (0,0,0) corresponds to the model that includes none of the three predictors, (1,0,0) contains
only X, (0,1,1) contains X, and X3, etc. Clearly, the posterior distribution is quite sensitive to the contaminated case. In
cases where the contaminated case attenuates the relationship between X; and Y (j ~ 1, K~ 10; j ~ 11, K ~ —10), the null
model becomes more heavily weighted than when there is no contaminated case. In other cases (e.g., j = 11, K ~ 10), the
posterior shifts toward models that include too many predictors. When K = 0 there is no outlier, and so the posterior model
probabilities will be the same in each plot (j = 1,6, 11) as indicated by the plotted points.

The marginal inclusion probabilities for each predictor j,

Ti=11Y)= Y. M, |Y).
yel 1 y;=1

play an important role in assessing model uncertainty from a Bayesian perspective. Barbieri and Berger (2004) provide
conditions under which the median probability model (MPM)—the model that includes all predictors with 7 (y; =11Y) >

106



C.M. Hans, M. Peruggia and J. Wang Econometrics and Statistics 27 (2023) 102-119

7.5
5.0
K
> 2.5 ° -2
o [ ] e 0
° e 3
[ ]
0.0 °
[ ]
[ ]
[ ]
[ ]
254 @
_5.0 25 0.0 25 5.0

Fig. 2. Simple linear regression data with contaminants for Example 3.2

0.5—is Bayes-optimal for prediction when a single model is to be selected. Carvalho and Lawrence (2008) provide decision-
theoretic support for reporting the MPM under a model selection framework. Marginal inclusion probabilities also play a
key role in many computational approaches for BMA (e.g., Clyde et al.,, 2011).

The bottom row of Figure 1 displays how outlier location, magnitude and direction impact the marginal inclusion prob-
abilities for each of the three predictors in this example. The probabilities are clearly sensitive to the nature of the outlier.
When K = 0 (no outlier), the MPM just barely selects the generative model (X; only); the marginal inclusion probability for
X, is 0.4996. Outlier contamination suppresses marginal inclusion probabilities in some cases (outlier location j = 1, K large;
j =6, |K| large) while amplifying them in others (j = 11, K large). Model-averaged inference and prediction depend on the
posterior weights for the individual models, which we learn from this example can be impacted greatly by the presence of
an influential outlier. This motivates the need to study the impact of outliers on BMA predictive accuracy, which we explore
in the next example.

3.2. Example 2: Impact on Prediction

This example considers a simplified version of Example 1 in order to illustrate clearly how the choice of g in the g prior
impacts model averaged prediction accuracy in the presence of an influential outlier. In this example we consider a single
potential predictor X and assume the true mean is given by E(Y | X) = BX. The observed values X;, i=1,...,n=11, are
the same as the values of X;; in Example 1: X; =i—1— (n—1)/2. Now, however, we assume that Y; is observed without
error for i=1,...,n—1, so that Y; = 8X;, and we assume that Y, = X, — K. In this example, the first n — 1 training data
points are observed without error because for now we are interested exclusively in quantifying the impact of the influential
observation. After developing intuition in this stylized example, we consider the usual setting where data are observed with
error in Sections 3.3 and 3.4 and in the rest of the work. The data are plotted in Figure 2 for three different value of K.

There are two models under consideration: the null model My with only an intercept term, and the full model M; that
includes X as a regressor. Letting X be the n x 1 matrix of regressor values, under L, loss the Bayes estimators of the mean
functions at X for these two models under Zellner’s g prior (1) are

5 . K
EY[X My) =Y =-Tn_.

A Y g Tyy\—1yT
EY | X M) =Y+ —=""XXX)"XY
V1 X M) =¥+ 2 XXX
K g

= —lnE + 1 +gx,31_5.

Suppose we observe testing data at n design points X;. We assume the ¥; values in the testing data follow the true
regression line, E(Y; | X;) = BX;, plus independent Gaussian error €; with mean zero and variance o2. Case n in the test data
set is assumed to be observed without contamination (K = 0). The Beta-Binomial(1, 1) prior over the model space assigns
prior probabilities of 1/2 to each model and leads to the model-averaged predictions

N g oA K

Y="— Y)XBis —1,— 6
1+gW(g, )X Bis no (6)

where w(g,Y) =m(M; |Y) is the weight (posterior probability) for model AM;. We further define s(g,Y) = (g/(1+

2)w(g,Y) to be the shrinkage factor for the model-averaged estimate of §: the factor by which the least squares esti-

mate of B is shrunk toward zero when averaging over the two models. The shrinkage factor s(g,Y) is a non-linear function

of g.
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With the model-averaged predictions in hand, we can quantify predictive accuracy by computing the expected mean
squared prediction error over the distribution of the test data Y as a function of g, conditioned on the observed data Y:

1& -~ o
E(MSPE(9) | Y) =E| - ;(Yi —Y)?

1

N[ . noo )
(ﬂ -s(e Y)IBLS> Y X +2 %(ﬂ -s(g Y),3L5> DX |+ I;—z +o2
i=1 i=1

The expected mean squared prediction error is therefore minimized, as a function of g, when

iy Xi(K/n)
YL X?

i.e.,, when the model-averaged prediction line is parallel to a line whose slope is the sum of two terms: the slope of the true
regression line and the estimated least squares slope for a data set in which the observations taken at the n design points
X; are all equal to K/n.

The optimal value of g is thus seen to depend on the the true model slope, the testing design points, and the size K
of the contamination. In a situation where the validation design points and the contamination size are random, one could
make use of existing knowledge of certaing aspects of their distributions to obtain a plausible value for the second term in
the RHS of Equation (7). For example, expected values for 31 X >y )?,2 and K could be substituted into the expression.
Of special interest is the situation where the testing design points X; coincide with the design points in the training data
set. If that happens, then Y, X; =0 and the optimal value of g is the one that makes the model-averaged prediction line
parallel to the true regression line. We focus on this situation when developing our methods. The simulation examples in
Section 5 examine the behavior of our method when the testing locations X are allowed to differ from the training locations
X.

Having characterized the g that leads to optimal predictions, we examine as a function of g the behavior of the
quantities w(g,Y), s(g,Y), and E(MSPE(g) | Y) when n=11, 8 =0.5, K= -5, and 02 = 1. These quantities are plotted
in Figure 3. A question of interest is how the value of g that minimizes expected mean squared prediction error de-
scribed above compares to other choices of g, e.g., the local empirical Bayes estimate. For interpretability, it is helpful
to work on the transformed scale p =g/(1+g). The red diamond in the top panel of Figure 3 shows that the local
empirical Bayes value of p, i.e., the value of p that maximizes the posterior model weight, is given by p = 0.967 (or
logg = 3.378), yielding w(g = €3-378,Y) = 0.994. The red diamond in the middle panel tracks the corresponding shrinkage
s(g=e3378Y) = 0.962, and the red diamond in the bottom panel tracks the corresponding expected mean squared predic-
tion error, E(MSPE(g = e3-378 | Y)) = 1.604.

The green diamond in the bottom panel, however, shows that the expected squared error of prediction is minimized
for p =0.711 (or logg = 0.901) where E(MSPE(g = ¢%9'1 | Y)) = 1.207. The corresponding values of the model weight and
shrinkage, tracked by the green diamonds in the top and middle panel, are 0.967 and 0.688. The optimal value of p is much
smaller than the one suggested by local empirical Bayes and much more shrinkage is needed to minimize the expected
MSPE.

Figure 3 shows that additional interesting features occur for values of p approaching 1 from the left (g going to infinity).
For one thing, as a consequence of Bartlett’s paradox (Liang et al., 2008), the posterior weight assigned to the regression
model goes to zero and the null model gets fully weighted. Equation (6) says that setting p =0 (g=0) and p =1 (g = 00)
will yield the same predictions. Hence, the expected MSPE is the same at p =0 and p = 1. As we move from the optimal
value of p (green diamond) toward p equal to its local empirical Bayes value (red diamond), the predictive performance
deteriorates. In this example, the local empirical Bayes performance is still better than the weak predictive performance for
the extreme values p =0 and p = 1. However, the presence of more influential cases can make the local empirical Bayes
performance deteriorate even further and become even more similar to the performance that would be attained by ignoring
the independent variable and predicting the mean response observed in the training data set.

Another interesting finding, tracked by the blue diamonds, is that the optimal expected predictive performance attained
by setting p = 0.711 (or logg = 0.901) is also attained by setting p = 0.9999983 (or logg = 13.288) (geometrically, there are
two ways to make the prediction and true regression lines parallel). However, one can show that there is a linear relation
between the variance and the expectation of the MSPE, and that there is considerable instability in the predictive perfor-
mance attained for p values in a small neighborhood of p = 0.9999983. Confronting this with the considerable stability of
the predictive performance attained for p values in a sizable neighborhood of p = 0.711 suggests that setting empirically
p =0.711 (i.e, logg = 0.901) in the prior specification would be a smart choice in this problem. Note that, in view of the
role that p plays in determining the shrinkage, it is most natural to seek stability on the p scale rather than the g or logg
scale.

We gain insight into these findings by analyzing, in Figure 4, the behavior of the training data residuals, ¥; — Y;, corre-
sponding to the various values of p under consideration. The left panel corresponds to the residuals for the local empirical
Bayes value. Aside from the residual for the influential observation, they exhibit a pattern which (while attenuated) mirrors

s@@Y)pis=B+ : (7)
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Fig. 3. Behavior of w(g,Y) (top panel), s(g,Y) = pw(g,Y) (middle panel) and E(MSPE(g) | Y) (bottom panel) as a function of logg. The red diamonds
correspond to the local empirical Bayes estimate of g; the green and blue diamonds correspond to the values of g that minimize expected mean squared
prediction error.
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Fig. 4. Residuals under three choices of g: g = e3378 (left panel), g = e®%! (center panel) and g = 0(co) (right panel).

that of the residuals for the constant prediction at the observed mean value plotted in the right panel. Although biased,
the residuals corresponding to the optimal p = 0.711, displayed in the middle panel, do not show any pattern. This is in
agreement with the previous finding that the expected MSPE is minimized when the prediction line is parallel to the true
regression line and supports the intuition that good predictive performance and well behaved residuals go hand in hand.

3.3. General Mean-shift Contamination

Section 3.2 demonstrated, in a stylized, one-dimensional example, how g could be chosen to minimize prediction error
when the training data had been contaminated by a single, influential mean-shift outlier. This section generalizes the result
to the setting where multiple candidate predictors exist, the data are contaminated according to the mean-shift contamina-
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tion described by Abraham and Box (1978), and the response variable is assumed to be observed with error. Suppose the
data are generated from the model

_ o+ xTﬁTrue + €+ K: W.p. 1T, (8)
' a+xiﬂTrue+6i’ W.p.]—JT,

where ¢; i N(0.02) and By, is a p-dimensional vector which may contain zeros. Let X be the n x p matrix with rows x7
and column means zero, and let Y be the response vector. Under this model, each case is contaminated independently of the
others with probability . For simplicity, in this section we assume « = 0; this assumption does not affect the conclusions
we draw.

Assume that for each model M, we assign Zellner’s g prior to the regression coefficients, ﬁy, and that we allow the scale
parameter, gy, to differ across models. Denote the collection of scale parameters as g. For a given prior over the model space,
denote the model-averaged estimate of the vector of regression coefficients by BBMA(g,X,Y). With the understanding that
this estimate depends on g, we will refer to this estimate as ,BBMA for short. Under this model, the vector of model-averaged
fitted values is ¥ = ¥ + X Bgya.

Suppose future observations ¥ are generated from model (8) using the same design matrix X and a possibly different
contamination proportion 7. We can examine how the choice of the g, is connected to predictive accuracy by examining
the expected sum of squared prediction errors:

E(SSPE() |Y.X) =E((Y -V (Y -V) | X.Y.g)
=Y -EY) (Y -EY) +E(Y -E¥) (Y -E(Y)) | X.Y.g). (9)

The first term in the final expression for the LHS of (9) can be viewed as a squared bias term, while the second term can
be viewed as a variance term. The variance term can be shown to be no2, which does not depend on the g,, while the
squared bias term is

(¥ —E@)" (¥ = E(Y)) = (XByyia — XBrrue) (XBowa — XBrre) +n(¥ — Ki)2.

The term n(Y — K#)? doesn’t depend on the values in g. If values of g exist such that BBMA = Brrue those values of g would
minimize the prediction error. As in the simple case in Section 3.2, a model-averaged regression plane that is parallel to the
true mean function will result in optimal predictions as measured by expected SSPE(g | Y, X).

3.4. Variance-inflation Contamination

Suppose the data are generated from the variance-inflation contamination model of Box and Tiao (1968),

o+ x;ﬂmm +VKe;, wp. T,

= 10
! {a+xl.ﬂmw+e,~, wp. 1—m, (10)

iid . . . . . . .
where ¢; ~ N(0, 02). Again, Bz, is the p-dimensional true regression parameter, which can contain zeros, and we assume

o = 0 to simplify the exposition.

As in Section 3.3, denoting by 77 the contamination proportion in the testing data, E(SSPE(g) | X,Y) can be decomposed
into a squared bias term and a variance term. The variance term, no%(K# + 1 — 7), does not depend on g, while the squared
bias term is

(XBBMA - X.BTrue)T(XBBMA — XBrie) + ny?2.

The conclusion is the same: the BMA regression plane that is parallel to the true regression plane will minimize the expected
sum of squared prediction errors, if such a plane exists as a function of g.

4. Proposed Methods

BMA predictions in regression depend on the posterior distribution over models and on the intra-model estimates of
the regression coefficients, all of which depend on the values of g, in Zellner’s g prior. These quantities are sensitive to
influential outliers, as demonstrated in the example in Section 3.1. Section 3.2 established, in a simple example, that in the
presence of influential outliers prediction error can be minimized if g can be chosen to make the model-averaged regression
plane parallel to the true regression plane. Choosing g in this way has the effect of producing well-behaved residuals, which
we know from classical regression analysis is desirable. Sections 3.3 and Section 3.4 showed that this intuition holds for
more complex model settings.

The intuition developed in Section 3 provides motivation for how one might think about prior specification when there
is concern that outliers might impact several (or many) of the models in the ensemble: choose values for the g, to make

the model-averaged regression plane parallel to the true regression plane, BBMA = Brre- We refer to this as the “parallel
condition.” There are two obvious practical limitations to this approach. The first is, of course, that the orientation of the true
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regression plane is defined by B, the unknown parameters of the model. The second is that, even if the true B, were
known, there is no guarantee that values g, exist that produce model-averaged coefficients satisfying the parallel condition.
This can be illustrated simply in the context of the example in Section 3.2 by taking K = 5 instead of K = —5. When K =
5, the least squares estimate of the slope is ﬂLs =0.2727. As a function of g, the shrinkage coefficient s(g,Y) = (g/(1+
g))w(g, Y) ranges between zero and one, and so there is no value of g that produces ﬁBMA =5(g.Y)Bs equal to B =0.5.
This extends to the general setting where p > 1. In this case the model-averaged estimate of the coefficient corresponding
to regressor X; is

BBMA._]': Z (lf—g )ﬁLSy]n(M}/ |Y)

yel : XjeM,

where BLS%]- is the least squares estimate of 8; in a model M, that contains X; as a regressor. The terms BLS,N do not
depend on the g, and can be bounded above and below by their largest and smallest values across the model space. The
terms (g, /(1+gy))mw (M, |Y) depend on the g, but are bounded below and above by zero and one, hence there is no
guarantee that there exist values of g,, that will produce a regression plane that is parallel to the true regression plane with
Bema.j = Brruej for j=1,....p.

In this section we address these practical limitations in several ways. First, in Section 4.1, we expand the space of prior
distributions so that the parallel condition is achievable for a larger space of observed data sets than is possible under
Zellner’s g prior that shrinks toward zero. Second, in Section 4.2 we relax the strict parallel condition by attempting to
find values of the model’s hyperparameters that make the model-averaged regression plane as close to parallel to the true
regression plane as possible in L, distance. Finally, in Section 4.3 we synthesize these ideas and propose an approach for
choosing empirically the values of the model’s hyperparameters with the goal of yielding small prediction error in the pres-
ence of influential outliers. As the orientation of the true regression plane is unknown, we propose using robust estimates
that are insensitive to influential outliers as part of the procedure for choosing the hyperparameters.

4.1. Expanding the Prior Model

For particular data and true model settings there may not exist values g, under Zellner’s g prior (1) which shrinks all

coefficients toward zero that satisfy BBMA = Brre- When this is the case, we might instead chose values g, that make the
model-averaged regression plane as close to parallel as possible to the true regression plane. To improve the quality of this
approximation, we expand the prior model to allow for shrinkage toward a potentially non-zero target, #,,. Under this prior,
described in (3), the model-averaged estimate of the coefficient corresponding to regressor X; is

R 1 R
Bomaj= Y. <9y,j + 1f_ygyﬁLS,y,j)JT(/\/ly |Y).

1
yel 1 XjeM, 8

The hyperparameters 6, provide extra flexibility that allows for shrinkage toward targets other than zero. To set notation,
let {6,,g,} denote the hyperparameters for model M, and let {®, g} denote the collection of hyperparameters 8, and g,
across all models indexed by y e I'. By enlarging the collection of hyperparameters from g to {®, g}, we are able to achieve
the parallel condition, BBMA = Brrue for a wider range of data and true model settings.

This can be seen clearly in a modified version of the example in Section 3.2 where K =5 and the true regression coeffi-
cient is 8 = 2. When shrinking toward a prior mean of zero, no value of g is able to produce ,3BMA = B because BLS =1.7727
and 8 =2 > BLS. However, when shrinking toward a potentially non-zero prior mean 6, there are many such {6, g} pairs that
produce Bgya = 2, and we can chose a pair according to some rule (e.g., favoring small values of 8 to encourage shrinkage
toward zero, or discouraging small values of g to avoid overconfidence in the prior). The added flexibility of shrinking to-
ward a non-zero mean 6 does not guarantee we can achieve the parallel condition, e.g.,, when 8 =0.5 and K =5 in the
example in Section 3.2, there are no {0, g} pairs that produce BBMA = 0.5. The added flexibility, though, means we can do
no worse than shrinking toward zero if our goal is to bring the model-averaged prediction plane as close to parallel to the
true regression plane as possible, and so we work with prior (3) from now on.

4.2. Relaxing the Parallel Condition: The Overall-Mixture Prior Specification
Even after expanding the space of priors to include non-zero prior means 6, the parallel condition is not guaranteed

to be achievable for all data sets. To address this issue, we might relax the parallel condition and choose hyperparameter
values {©, g} so that the model-averaged regression plane is as close in L, distance as possible to the true regression plane:

{@’g} = ar%min ”ﬁBMA - ﬁTrue”2~ (11)
g

This defines an empirical Bayes approach for selecting hyperparameter values that could be implemented if By, were
known or replaced with a suitable estimate. We call this approach the overall-mixture prior specification. The main difficulty
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in implementing (11) in practice is computational: with p predictors, there are (2P — 1) + (p2P~!) total hyperparameters:
2P —1 scale parameters g, and Zf::o l<(}z) = p2P-1 individual location parameters 0, k» where 0,,  is the kth elements of
the prior mean vector for model M,,. Not only does this represent a high-dimensional optimization problem, but for any
given collection of values {@®, g} calculating f}BMA requires summing over 2P models, where each term in the sum contains
non-linear functions of elements of {#,, g, }. Brute-force, numerical optimization approaches might be feasible in very small
problems, but will be challenging in general. If interest is limited to point prediction under posterior predictive L, loss and
the the parallel condition can be achieved, predictions based on the resulting BBMA would coincide with predictions based
directly on B

4.3. Local Null-Mixture Prior Specification

To ease the computational burdens discussed in Section 4.2 while still using the parallel condition to our advantage, we
propose a new local empirical Bayes approach for hyperparameter specification. The approach is “local” in that each model
receives its own, unique hyperparameter values {f,,g,} and also in that the selection of values for the hyperparameters
requires calculations that are dependent only on that model. In principle, this is similar to the local empirical Bayes ap-
proach, though our criterion for specifying the hyperparameter values is motivated by the parallel condition (rather than by
maximization of the marginal likelihood).

Rather than focusing on the full model-averaged regression plane defined by BBMA in (11), which requires knowledge
about all 2P models in I, for any given model M, we focus solely on the relationship between the model M, and the null
model with no predictors, My. If the only two models under consideration were M, and My, the posterior probability of
model M, would be

m [ My) MO\ _ (1 My
m(Y | M,) 7+ (M,) BF(M, : My) m-(M,) )

where BF (M, : My) is the Bayes factor for comparing model M, to the null model given in Equation (5). We use m*(My)
and 7*(My ) to denote the assigned prior model probabilities when the model space contains only the two models My and
My. As a default, we use m*(My) = 7*(M, ) = 0.5, which is also what would result from using the uniform prior or the
Beta-Binomial(1,1) prior over a model space that contains only these two models. The model-averaged estimate of ,BV when
the only two models in the model space are My and M,, is

- . 1 gy ~
Bowa, =7 (My | Y)(l +gy0y 7 T g, ﬂLs,y>v

(M, |Y) = (1+

where BLS’}, is the least squares estimate of ﬂy. The relaxed parallel condition in (11) then tells us to choose hyperparameter
values that satisfy

{oj/vg)/} = argmin ”ﬂBMA,y _ﬂTrue,yHZv (12)
yvgy}

where BTme_y is interpreted here as the true regression coefficients for model M,,. Once hyperparameters for each of the

2P — 1 models have been found via (12), model-averaged prediction proceeds as usual using the posterior model probabilities

(M, | Y) computed under the original prior 7 (M, ) over the entire, unrestricted model space, T'.

The local null-mixture approach for selecting hyperparameter values defined in (12) attempts to make the locally-model-
averaged regression plane parallel to an unknown regression plane oriented according to ,BTWW. In practice, we require
estimates of these unknown parameters. We opt to use an estimate of By, that is robust in the sense that is relatively
insensitive to influential outliers (see Rousseeuw and Leroy, 2005, for a general treatment of robust regression). For a given
model My, we rank each observation according to its Cook’s distance, D; , (Cook, 1977). We then remove 10% of the cases
corresponding to the largest values of Cook’s distance, and compute the ordinary least squares estimate of the regression
coefficients using the remaining 90% of the cases. With this robust estimate, BRobust,y, in hand, we choose hyperparameters
for model M, that satisfy the criterion

{01/ng}/} = arg min ”ﬂBMA,y - ﬂRobust,y ”%
oyvgy}
We use the optim function in R (Team, 2021) to implement this approach in the examples in Section 5.

The local null-mixture approach is attractive due to the fact that it reduces the computational burden associated with
criterion (11). However, because the hyperparameters are chosen locally—by mixing models M, and My—rather than
globally—by averaging over all models in (11)—the predictive optimally associated with the parallel condition is not guar-
anteed. However, based on the intuition developed in Section 3.2, choosing hyperparameters locally will still result in well-
behaved residuals that are local to the mixture of the models M, and My. As good prediction and well-behaved residuals
tend to go hand-in-hand, we expect the local null-mix method to perform well in practice. In addition, as the simulations
in Section 5 will demonstrate, this local approach can outperform the global approach when some of the true regression
parameters B; are equal to zero.
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Table 1
Data contamination patterns for the training and testing data used in the simulations: mean-shift (M-S), variance-inflation (V-I), and no contamination
(no).

contamination pattern

M-S/no M-S/M-S V-I/no V-I/V-1 no/no
training data M-S M-S V-1 V-1 no
testing data no M-S no V-1 no

Table 2

The columns in the left-hand side of the table display the values of B8 = (B1, B2, B3, Ba, Bs)" for the five models of increasing complexity used in the sim-
ulations with p = 5. The columns in the right-hand side of the table display the values of 8 = (B1,..., B1o)T for the three models of increasing complexity
used in the simulations with p = 10.

p=>5 p=10

complexity level complexity level

1 2 3 4 5 1 5 10
Bi = 1 1 1 1 1 0.5 0.5 0.5
By = 0 2 2 2 2 0.0 1.0 1.0
B3 = 0 0 3 3 3 0.0 15 1.5
Ba= 0 0 0 4 4 0.0 2.0 2.0
Bs = 0 0 0 0 5 0.0 2.5 25
Bs = 0.0 0.0 3.0
B7 = 0.0 0.0 3.5
Bs = 0.0 0.0 4.0
By = 0.0 0.0 45
B = 0.0 0.0 5.0

5. Simulations

In this section we present simulation studies comparing the predictive performance of our proposed method to that
of the related methods mentioned in Section 2: local empirical Bayes (EB-Local), global empirical Bayes (EB-Global), and
the hyper-g/n methods. The computations for the related methods were performed using the BAS package in R (Clyde,
2020). The Beta-Binomial(1, 1) prior over the model space with 7 (M) = (p+ 11! (Mfy‘)_1 was used for each of the BMA
methods. We also compare the performance of the BMA predictions to the performance of predictions based on the robust
estimate BRobust‘y described in Section 4.3 under the full model with y = (1,..., 1)T (i.e, no model averaging).

In real-world settings, data contamination may constitute a one-off occurrence or it may represent a structural compo-
nent of the underlying stochastic mechanism (a fraction of the observations may follow a different distribution than the
bulk of the observations). In the first case we might expect only the training (or only the testing) data to be contaminated.
In the second case we would expect both the training and the testing data to be contaminated. Our simulations evaluate
the performance of the different methods in both of these cases, as well as in the case when neither the training nor the
testing data are contaminated. We consider contaminations arising from a mean-shift and from a variance-inflation scheme.
The data contamination patterns for the five simulations we conducted are summarized in Table 1.

Prior to possibly being contaminated, the training and the testing data are both generated from the true model

YTrain = XTrainﬂ +al+e,
YTest = XTestﬂ +al+e.

For simplicity, in all simulations, we set o = 0. The design matrices X, and Xre; have dimension 100 x 5 and their
rows are independently generated from a multivariate normal distribution, MVN(0, X), where the covariance matrix X has
diagonal elements equal to 1 and off-diagonal elements equal to 0.6. The error vector € has i.i.d. standard normal random
elements.

In the mean-shift case, we contaminate the data by randomly selecting 5% of the observations and adding K = 10 to the
dependent variable. In the variance-inflation case, we contaminate the data by randomly selecting 5% of the observations and
multiplying their errors, €;, by +/10 before adding them to the mean function so that the errors for the contaminated cases
have variance K = 10. To assess how model complexity affects performance we consider five models of increasing complexity
where the number of active predictors ranges from one to five. The values of the vectors of regression coefficients 8 for the
five models are summarized in the left-hand side of Table 2.

For settings where the training data are contaminated, we use either the mean-shift scheme or the variance-inflation
scheme to contaminate the training data set. For the testing data, we either contaminate it with the same scheme used to
contaminate the training data set or we leave it uncontaminated. Therefore, we have multiple settings based on the true
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coefficients and the contamination scheme of the training and testing data sets. Since we have 5 true B vectors and 5
different contamination combinations, we have 25 different settings in total.

Our simulations consider all 5 x 5 = 25 settings resulting from pairing one of the 5 data contamination patterns with
one of the 5 model complexity levels. In each of these settings, we simulate 500 training and testing data sets to evaluate
the performance of the different methods mentioned at the start of the section. We apply each method to the training data
sets to estimate models and let the models make predictions ¥ for the testing data sets. Specifically, the BMA predictions ¥
are calculated according to the following steps.

1. Centering the training data: We use Xy, . to denote the centered training design matrices, and Xtgin meqn to denote
the corresponding column mean vector, i.e.,

XTrain,c = XTrain -1 X%ruin,mean’
where 1 is a vector of size n with all the elements equal to 1.
2. Fitting models to the training data sets: By applying each of the BMA methods, indexed by m, to the centered training
data sets (Y rrgin, XTrqin,c) We obtain fitted BMA planes:

YTrain.m =1 YTrain + XTrain,c ﬂBMA.m’

where ﬁBMA’m is the BMA estimate of B for method m, Yy, is the average of Yy, (which is also the estimated
intercept), and ?Tmin,m are the values predicted by method m for the training data.

3. Making predictions: We employ the estimated parameters from the previous step to construct the following prediction
plane:

N _ T ~
Ym =1 YTrain + (XTESI -1 XTrain,mean)ﬁBMA,m'

By subtracting the column means of the training design matrix from the testing design matrix we ensure that the esti-

mated model parameters can be meaningfully applied to the testing data.

In each of the 25 simulation settings and for each method m, after acquiring the predictions ?,(,11) for replication i, i =
1,...,500, we compute the observed MSPE for that iteration as

1 A
MSPEg):HHY,(,I,) ORI

Test

where n is the number of observations in the testing data set (here n = 100). We are mainly interested in assessing the
relative performance of the various methods. To this end, for replication i, letting m* denote the hyper-g/n method that we
take as a reference, we compute the relative percent reduction in MSPE for the other methods relative to m* as

(i) ()
— 100 x MSPEw —MSPE, 5 500,

MSPE()

The relative percent reduction in MSPE values from 500 replications for each of the 25 simulation settings are sum-
marized graphically in the boxplots of Figure 5. First, we note that the two empirical Bayes BMA methods both perform
similarly to the hyper-g/n BMA method. Comparing the local null-mixture method to the other BMA methods, perhaps
the most conspicuous finding is that, when the training data are contaminated and the testing data are uncontaminated,
the proposed method exhibits the largest relative improvements over the competing BMA methods for both contamination
schemes (when making visual comparisons, note that the scale on the vertical axes differ across panels). The relative im-
provements are smaller in settings when both the training and the testing data are contaminated. The variability of the
proposed method appears to increase with model complexity. In particular, when the complexity level equals 5, the relative
performance of the proposed method can be significantly worse in a small number of replications. The bottom panel in
the figure shows that the proposed methodology suffers a little compared to the other BMA methods when the training
data are uncontaminated. This behavior is to be expected and suggests that the methodology is best suited for situation in
which the analyst suspects that contamination is present, although the median performance deterioration in the case of no
contamination is tolerable.

It follows from the last remark in Section 4.2 that, when the parallel condition can be achieved, predictions based directly
on BRobusty},, the robust estimate of By, under the full model, coincide with the predictions produced by the overall-
mixture method under posterior predictive L, loss. Compared to the local null-mixture method, the performance of the
robust (overall-mixture) predictions varies with the complexity of the underlying, true, uncontaminated model.

When the true complexity is less than p, the performance of the overall-mixture method suffers from its strong reliance
on the robust estimate under an overparameterized model and the attendant loss of accuracy from estimation of the §;
coefficients equal to zero. By contrast, the local null-mixture model attains higher precision because it builds upon separate
robust estimates for all possible models including the model that excludes the B; equal to zero. This is evidenced by the
reduced variability exhibited by the boxplots (local null-mixture vs. robust) for smaller complexity settings in Figure 5.

While less variable overall, the EB-Global and EB-Local methods tend to underperform relative to the local null-mixture
and the robust method whenever any contamination is present. When neither the trainig nor the testing data are con-
taminated, the EB-Global and EB-Local methods exhibit better predictive performance. In such cases, the local null-mixture

RRY)

m,m*
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Fig. 5. Percent reduction in MSPE relative to the model-averaged hyper-g/n method for the simulation study with p =5 predictors under complexity
settings (the number of non-zero coefficients) ranging from 1 to 5. Each row corresponds to a contamination scheme, labeled “X |/ Y”, where X (Y) denotes
the contamination scheme for the training (test) data. “M-S” denotes mean-shift contamination, “V-I" denotes variance-inflation contamination, and “no”
denotes no contamination.
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method outperforms the robust approach when the complexity is small relative to p, and does about as well as the robust
approach when the complexity matches p.

In summary, these results suggest that, in the realistic situation when there is uncertainty about model composition,
the local null-mixture method is preferable to the the robust method from a predictive perspective and has the additional
advantage of providing posterior descriptions of uncertainty about variable inclusion and other aspects of the posterior and
predictive distributions.

We performed a second simulation study to demonstrate how the predictive performance of the local null-mixture
method scales in comparison to the other methods as p increases. The setup is the same as above but now with dou-
ble the number of predictors (p = 10) and three complexity settings (1, 5 and 10). The values of the true coefficients
B=(B1....,B1o)T under each of the three complexity settings are given in the right-hand side of Table 2. The results,
summarized graphically in Figure 6, confirm the overall features and patterns uncovered by the first simulation study.

6. Crime Data

To evaluate the out-of-sample predictive performances of several of the methods discussed in this article in a real data
analysis setting, we consider the crime data reported in Agresti and Agresti (1970). The methods we evaluate are a subset
of those considered in the simulation study (Hyper-g/n, EB-Local, EB-Global, and Local Null-mixture), and we again use the
Beta-Binomial(1,1) prior over the model space.

For each US state and the District of Columbia, the data comprise a dependent variable, “violent crimes per 100,000
people,” to be modeled in terms of eight socio-economic regressors. Following a preliminary exploratory analysis we took a
logarithmic transformation of the dependent variable to remedy the skewness of the observed counts. In addition, the ex-
ploratory analysis uncovered positive correlations between the transformed dependent variable and some of the regressors
as well as between some of the regressors themselves. Diagnostics for the full linear regression model revealed that the ob-
servations for Hawaii (HI) and the District of Columbia (DC) are the most highly influential and that a normality assumption
for the errors in the full model might not hold. We also examined residual plots produced by applying various BMA pro-
cedures to the data and found that the residuals for the three traditional methods EB-Local, EB-Global, and Hyper-g/n, are
very similar but differ in several aspects from those of the local null-mixture method (e.g., the local null-mixture method
produces a larger residual for Alaska (AK) and a smaller one for DC).

We used K-fold cross-validation (Friedman et al., 2001) to evaluate the out-of-sample predictive performance of the var-
ious methods, executing the following steps: (a) partition the observations at random into K subsets having approximately
equal size; (b) conditional on the selected partition, leave out in turn one of the K subsets as the testing data, and use the
remaining K — 1 subsets as the training data; (c) apply the various BMA methods to the training data to make predictions
on the testing data.

Using the cross-validated predictions, the cross-validation error (CVE) of each method, is calculated as

” 17 . 2
CVE(f. method, K. P) = 3" (Yi ~ P x,, method)) ,
i=1

(13)

where n is the number of observations in the data set, K is the number of sets in the selected partition P, « (i) denotes the
held-out element of the partition 7 to which observation i belongs, and f\«® (X;, method) denotes the fitted value at X;
produced by a given method when the « (i)-th element of the partition is removed.

For given K, the CVE value varies from partition to partition and, assuming a uniform distribution over partitions, we can
define an expected cross-validation error (ECVE). When K = 51, there is only one partition and the ECVE can be computed
exactly using Equation (13). For smaller values of K, when there are too many partitions to compute the exact expectation,
we repeat the K-fold cross-validation procedure T times and approximate the ECVE by

T
ECVE(f. method, K) = % N (cvs( . method, K, 7><f>)>, (14)
t=1

where P® represents a partition selected at random in repetition (t).

The cross-validation results for values of K equal to 51, 25, and 10 are summarized in Table 3. The EB-Local and EB-Global
methods always perform comparably to one another and slightly better than the Hyper-g/n method. The Local Null-mixture
method clearly outperforms all other methods for K equal to 51, is noticeably better for K equal to 25, and is only slightly
worse for K equal to 10.

The two most influential cases (DC and HI) have a similar impact on the full model. Apparently, the Local Null-mixture
method benefits from the inclusion of one of these two cases in the training set and of the other in the testing set. This
happens with probability one when K equals 51 and with decreasing probability as K becomes larger.

7. Discussion

We developed BMA prediction methodology for common types of regression model misfit, in particular the presence
of influential observations and non-constant residual variance. The methodology is motivated by the view that, typically,
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Fig. 6. Percent reduction in MSPE relative to the model-averaged hyper-g/n method for the simulation study with p = 10 predictors under complexity
settings (the number of non-zero coefficients) 1, 5 and 10. Each row corresponds to a contamination scheme, labeled “X / Y”, where X (Y) denotes the con-
tamination scheme for the training (test) data. “M-S” denotes mean-shift contamination, “V-I" denotes variance-inflation contamination, and “no” denotes
no contamination.

17



C.M. Hans, M. Peruggia and J. Wang Econometrics and Statistics 27 (2023) 102-119

Table 3
For the crime data, ECVE and ECVE for various BMA methods and the realized percent reduction in their values compared to those obtained using the
Hyper-g/n method. The largest realized percent reduction for each cross-validation setting K appears in boldface.

K =51 K=25 K=10
Method ECVE % Red. ECVE % Red. ECVE % Red.
Hyper-g/n 0.204 - 0.204 . 0.209 .
EB-Local 0.202 0.94 0.203 0.93 0.207 0.91
EB-Global 0.202 1.17 0.202 1.16 0.207 1.1
Local Null-mixture 0.174 14.73 0.197 3.87 0.218 -4.40

good predictive performance cannot be attained unless the model residuals are well behaved. The regression models under
consideration make use of variants on Zellner’s g prior. By studying the impact of various forms of model misfit on BMA
predictions in simple situations we were able to identify prescriptive guidelines for “tuning” Zellner’s g prior to obtain
optimal predictions. The methodology can be thought of as an “empirical Bayes” approach to modeling, as the data help to
inform the specification of the prior in an attempt to attenuate the negative impact of model misfit. The methods described
in the paper can be extended to other types of model misfit, such as non-linearity of the mean function (or model under-fit),
and can be implemented with different adaptations of robust g-prior specification, as illustrated in Wang (2016).

In modern applications, especially when there are many potential predictor variables, analysts do not have the time (or,
due to the size of the problem, are not able) to interactively investigate the quality of fitted models, hampering one’s ability
to manually attenuate the impact of model misfit through either model revision or prior tuning. In such complex situa-
tions, the guidelines developed in the simple examples considered in this paper can motivate automatic or semi-automatic
procedures that provide some insurance against Bayesian predictions that are unduly impacted by gross model specification.

Standard implementations of BMA analyses based on Zellner's g prior typically make the simplifying assumption that
the prior mean of the regression coefficients is zero, leading to shrinkage of the least squares estimate toward the origin,
which may be sub-optimal in the presence of model misfit. By developing BMA strategies that take advantage of the full
generality of the prior as proposed by Zellner, in particular by allowing for a non-zero prior mean, we are able to achieve
shrinkage toward points other than the origin, which can have the effect of attenuating the impact of model misfit on
prediction. There is little doubt that our proposed methodology may not be as good as the best possible human analysis
(with the understanding, of course, that the quality of such an analysis depends on the skills of the individual analyst), but
we have demonstrated through theoretical arguments and empirical investigations that our methodology performs better
than routine implementations of BMA that do not account for model misfit.

In our methodology, the tuning of the prior distribution is obtained by considering theoretical properties that should
be enjoyed by the optimal fit (mainly, the parallel condition) of the various models in the BMA ensemble. This approach
should lead to well-behaved residuals for each of the individual models. An alternative approach to fine-tuning the prior
distributions could focus on the realized residuals of the model-averaged fit. This would be a more empirical approach
requiring an objective function that assesses quantitatively the quality of the realized residuals coupled with a feasible
computational approach for sequentially updating the prior parameters to improve such an objective function. An appeal
of such an approach is the potential for the development of dynamic, graphical diagnostics that are closely related to the
traditional diagnostics for linear regression that are familiar to most users.

Finally, extension of our methods to situations involving very large data sets may require the development of algorithms
that implement computational shortcuts for the determination of the prior tuning parameters. A guiding direction for such
work would be to develop shortcuts that, while speeding up computation, do not unduly compromise the Bayesian optimal-
ity guarantees implicit in our framework.
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