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a b s t r a c t 

The behavior of Bayesian model averaging (BMA) for the normal linear regression model 

in the presence of influential observations that contribute to model misfit is investigated. 

Remedies to attenuate the potential negative impacts of such observations on inference 

and prediction are proposed. The methodology is motivated by the view that well-behaved 

residuals and good predictive performance often go hand-in-hand. Focus is placed on re- 

gression models that use variants on Zellner’s g prior. Studying the impact of various forms 

of model misfit on BMA predictions in simple situations points to prescriptive guidelines 

for “tuning” Zellner’s g prior to obtain optimal predictions. The tuning of the prior dis- 

tribution is obtained by considering theoretical properties that should be enjoyed by the 

optimal fits of the various models in the BMA ensemble. The methodology can be thought 

of as an “empirical Bayes” approach to modeling, as the data help to inform the specifica- 

tion of the prior in an attempt to attenuate the negative impact of influential cases. 
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1. Introduction 

While there are many strategies for Bayesian regression modeling when there is uncertainty about model composition, 

Bayesian model averaging has been predominant in both literature and practice over the last two decades. This is particularly 

true when prediction is the primary objective. In this setting, a prior distribution is first placed over the collection of all

models under consideration. For each model M γ , a prior distribution is then placed on the model-specific parameters, 

leading to a joint posterior distribution over both models and parameters. Predictions of a new outcome ˜ Y are typically 

made by computing a weighted average of the predictions under all possible models, 

Pred ( ̃  Y ) = 

∑ 

γ ∈ � Pred ( ̃  Y | M γ ) w (M γ ) , 

where � is a set that indexes all models under consideration, M γ is a particular model and w (M γ ) is the weight assigned

to model M γ in the averaging. Most commonly, Pred ( ̃  Y ) is taken to be E( ̃  Y | Y ) , which minimizes expected posterior predic-

tive L 2 loss, in which case the model-specific predictions are E( ̃  Y | Y , M γ ) and the model-specific weights are the posterior

probabilities π(M γ | Y ) ( Bernardo and Smith, 1994 ). Reviews of BMA are provided in Hoeting et al. (1999) and Clyde and

George (2004) . The term “BMA” is quite general and can be applied to many different data-analytic settings. In this work,
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“BMA” refers to Bayesian model averaging for linear regression, where an analyst has available p potential covariates and 

would like to average over the 2 p possible regression models that can be constructed using subsets of the covariates. Seminal

work on regression model composition uncertainty, which underlies BMA, can be found in Mitchell and Beauchamp (1988) , 

George and McCulloch (1993) , Smith and Kohn (1996) , George and McCulloch (1997) , Raftery et al. (1997) and Chipman et al.

(2001) . 

While methods for diagnosing and remedying model misfit are well-established and routinely taught in regression mod- 

eling courses (see, e.g., Neter et al., 1996; Cook and Weisberg, 1982 ), the literature on model misfit for Bayesian analyses

of classical linear regression models is somewhat less well-developed. Addressing potential or known model misfit is some- 

times accomplished by modifying the likelihood, writing down a model that is flexible enough to describe the observed 

data. One example is the use of heavy-tailed error distributions to accommodate outliers ( West, 1984 ). Model-based ap-

proaches to outlier detection and residual analysis have been considered by Chaloner and Brant (1988) and Hoeting et al.

(1996) . 

The corpus of literature on Bayesian regression modeling and, in particular, Bayesian averaging of many regression models 

has expanded greatly since the development of early work addressing model misfit in Bayesian regression. While existing 

work provides useful guidelines for thinking about model misfit for specific Bayesian models, it is not clear that it provides

prescriptive guidelines that can be applied in many of the currently-used Bayesian regression modeling settings. 

For example, priors related to Zellner’s g prior ( Zellner, 1986 ) have become one of the “standard” setups for Bayesian

regression modeling. The popularity of such priors is due, in part, to their computational simplicity. Use of these priors 

requires choosing an approach for handling hyperparameters, which we refer to generically as g. Current popular approaches 

for handling g include empirical Bayes (EB) methods that focus on specifying g by maximizing the marginal likelihood of 

the data with respect to either a single model or a mixture of models. Fully Bayes approaches assign a prior distribution to

g and then integrate it out of the model. While these approaches are sound when the model fits well, it is less clear that

maximizing the marginal likelihood or integrating g out of the model will be optimal in the presence of model misfit due

to influential outliers, as the discrepancy between prior and likelihood may result in sub-optimal out-of-sample inference 

(say, the prediction of new cases). 

In this work, we focus on methods of model specification in the presence of influential outliers that are strongly con-

nected to the concept of residual analysis. We take the view that well-behaved residuals and good predictive performance 

usually go hand-in-hand. Any particular choice for handling g corresponds to a specific Bayesian model and hence specific 

fitted values and residuals. By tuning the value of g in Zellner’s g prior over a continuous interval, we obtain continuously- 

varying residuals. Broadly speaking, in the presence of model misfit we seek to choose a value of g that yields well-behaved

residuals and hence attenuates the impact of the model misfit and, ultimately, achieves better out-of-sample predictive 

performance. In practice, we seek to find prescriptive guidelines for accomplishing this task by focusing on minimizing pre- 

diction error. Our investigation concerns not only an individual regression model but also an entire ensemble of regression 

models that may be combined together via BMA. In this case, model misfit due to influential outliers can exist at both the

local (individual model) level and the global (model-averaged) level. By tuning the priors to attenuate the impact of model 

misfit, we eventually achieve improved out-of-sample predictive performance. 

In Section 2 we introduce our regression model setting and review Zellner’s g prior. Section 3 makes connections between 

the choice of g and optimal prediction in the presence of influential outliers, and provides prescriptive guidelines for tuning 

Zellner’s g prior. Section 4 describes the approach we have developed for applying these prescriptive guidelines in practice, 

and Section 5 investigates the performance of this approach in simulation studies. Section 6 applies our approach in an

analysis of a data set and compares its predictive performance to other common methods. A summary of the results and a

discussion of open questions and related work are provided in Section 7 . 

2. Regression model setting 

We consider situations where an analyst observes an n × 1 vector of response values, Y , and an n × p matrix X which

contains p covariate values for each of the n cases. As is common in the literature, unless specified otherwise, we assume

throughout that the columns of X have been mean centered (see, e.g., Liang et al., 2008; Bayarri et al., 2012; Li and Clyde,

2018 , for justifications and discussion of this modeling choice). There are 2 p possible subsets of the p covariates that could be

used to construct a mean function for a linear regression model, and interest lies in computing model-averaged predictions 

as described in Section 1 over the space of all possible regression models. In this setup, a model M γ corresponds to a

subset of k predictors. We use the binary p-vector γ to index all possible models: γ j = 1 when X j is included in a model

and γ j = 0 otherwise. The notation M γ is used to denote a model containing predictors indicated by the vector γ . Other

quantities subscripted by γ denote model-specific terms, e.g. X γ is the n × k matrix which contains the columns of X that 

are included in model M γ . 

Our work focuses on data analysis settings where either (i) the total number of predictors p is not too large or (ii) where

p may be large, but we constrain the maximum number of predictors in a model to be k ∗ � p (e.g., as in Hans et al., 2007 ).

The simulations and examples presented in Sections 5 and 6 consider p as large as ten. We focus on small- p settings in part

because they are relevant for a wide swath of applied data analysis, where an investigator is interested in understanding 

the relationship between a small set of regressors and a response variable, and in part due to the computational challenges

associated with averaging over very large model spaces that are faced by all BMA methods. 
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BMA requires hierarchical specification of a prior probability, π(M γ ) , for each model under consideration, and then, for 

each model, a likelihood and a prior for the model-specific regression parameters. For normal linear regression modeling, 

the likelihood for a specific model M γ is derived from the distribution of Y given the model parameters, (α, βγ , σ 2 ) , 

p( Y | α, βγ , σ 2 , M γ ) = N ( Y | α1 n + X γ βγ , σ 2 I n ) , 

where βγ are the regression coefficients corresponding to the predictors X γ in model M γ , α is an intercept, σ 2 is the error

variance, 1 n is an n × 1 vector of ones, and I n is the n × n identity matrix. The model-specific priors on the parameters are

known to play a key role in inference and prediction, and there are many possibilities for their specification. A common

approach, which we adopt in this work, is to assume π(α, βγ , σ 2 | M γ ) = π( βγ | σ 2 , M γ ) π(α, σ 2 | M γ ) and to use the

improper, “objective” prior π(α, σ 2 | M γ ) ∝ σ−2 ( Jeffreys, 1961; Berger et al., 1998 ). 

Various approaches to specifying the prior probabilities π(M γ ) have been studied in the literature. While the uniform 

prior over models, π(M γ ) = 2 −p , was discussed in the early Bayesian variable selection literature ( George and McCulloch,

1993 ), it does not control the false positive rate in the context of variable selection when making multiple comparisons

( Scott and Berger, 2010 ). An alternate prior formulation that provides better multiplicity control is the Beta-Binomial (1 , 1)

prior, π(M γ ) = (p + 1) −1 
(

p 
|M γ | 

)−1 
, where |M γ | is the number of variables in model M γ ( Ley and Steel, 2009; Scott and

Berger, 2010 ). This is a special case of the Beta-Binomial prior considered by Kohn et al. (2001) and can be interpreted

as first specifying a uniform prior over model size and then, conditionally on model size, specifying a uniform prior over

models. More recent advances in model space prior specification include the loss-based prior of Villa and Lee (2020) . Unless

specified otherwise, we use the Beta-Binomial (1 , 1) prior in this work. 

The research literature on priors for the model-specific regression coefficients, π( βγ | σ 2 , M γ ) , is extensive. Historically,

one of the most popular classes of priors for the regression coefficients is based on Zellner’s g prior, 

βγ | σ 2 , M γ ∼ N (0 , g γ σ 2 ( X 
T 
γX γ ) −1 ) , (1) 

where g γ > 0 is a hyperparameter ( Zellner, 1986 ). This prior has received much attention in the literature and in practice due

in part to the fact that, for specific treatments of g γ , Zellner’s g-prior allows for computationally efficient model averaging

when p is not too large. In the context of BMA, when minimizing expected posterior predictive L 2 loss, model averaged

predictions require calculation of E( βγ | Y , M γ ) and π(M γ | Y ) ∝ m ( Y | M γ ) π(M γ ) for each model, where m ( Y | M γ ) is

the marginal likelihood for model M γ . Closed form expressions for these quantities exist when g γ is treated as a constant

in the model. The marginal likelihood for model M γ is 

m ( Y | M γ ) = 

∫ 
p( Y | α, βγ , σ 2 , M γ ) π(α, βγ , σ 2 | M γ ) d α d βγ d σ 2 

= 

�((n − 1) / 2) 

π(n −1) / 2 n 1 / 2 || Y − Ȳ || n −1 

(1 + g γ ) (n −k −1) / 2 

(1 + g γ (1 − R 2 γ )) (n −1) / 2 
, 

where Ȳ is the n × 1 vector where all elements are equal to the sample average value of the Y i ’s, || · || is the L 2 norm and R 2 γ
is the coefficient of determination for model M γ . The posterior mean of the regression coefficients under model M γ is 

E( βγ | Y , M γ ) = 

g γ

1 + g γ
ˆ βLS , (2) 

where ˆ βLS is the ordinary least squares estimate of βγ under model M γ , and ργ = g γ / (1 + g γ ) ∈ (0 , 1) is sometimes called

the shrinkage factor . Under this model, the prior combines with the data to shrink the least squares estimate toward zero by

a factor of ργ . Computation of all of these quantities is trivial once the usual calculations for least-squares estimation have

been performed. 

Specification (or modeling) of g γ is important, as it impacts the marginal likelihood, which in turn impacts model aver- 

aging. There is a large literature discussing methods for handling this parameter. Approaches that specify fixed values of the 

g γ include the unit information prior ( Kass and Wasserman, 1995 ), the risk inflation criterion ( Foster and George, 1994 ), the

local empirical Bayes prior ( Hansen and Yu, 2001 ) and the global empirical Bayes prior ( George and Foster, 20 0 0; Clyde and

George, 20 0 0 ). Some of these approaches specify a single g that is common to all models, while others specify different g γ ’s

for different models. Som et al. (2014) use different g γ ’s for different groups of predictor variables. Liang et al. (2008) and

Bayarri et al. (2012) provide motivation for assigning a prior distribution to g and suggest priors that enjoy appealing theo- 

retical properties while maintaining computational tractability. Other priors for g have been proposed by Zellner and Siow 

(1980) , West (2003) , Cui and George (2008) , Maruyama and Strawderman (2010) , and Maruyama and George (2011) . 

The method we describe in Section 4 can be viewed as an empirical Bayes approach to specifying hyperparameter values, 

and so existing empirical Bayes methods are of special interest to us. Global empirical Bayes methods use the data to

estimate a hyperparameter g that is common to all models. The parameter is typically estimated by maximizing the marginal 

likelihood of the observed data given g, m ( Y | g) = 

∑ 

γ ∈ � m ( Y | M γ , g) π(M γ ) , where the parameters α, βγ and σ 2 have

been integrated out of each model to obtain the model-specific marginal likelihood m ( Y | M γ , g) . Clyde (2001) describes

an EM algorithm that can be used to find the value of g that maximizes the model-averaged marginal likelihood. The local

empirical Bayes approach allows for different g γ for each model and uses the data to estimate them by maximizing the
104 
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model-specific marginal likelihood m ( Y | M γ , g γ ) . While empirical Bayes approaches use the data to estimate specific values

g γ , fully-Bayesian approaches assign prior distributions to the g γ and use the data to integrate over uncertainty about 

them a posteriori . Of the fully-Bayes methods, the hyper- g/n prior of Liang et al. (2008) is noteworthy as it is amenable

to efficient computation and has desirable theoretical properties. This approach assigns the prior π(g γ | M γ ) = (a − 2)(1 +
g γ /n ) −1 / 2 / (2 n ) , with a = 3 recommended as a default specification. We compare our method to these three approaches in

Section 5 . 

The prior mean vector E( βγ | σ 2 , M γ ) is routinely taken to be the zero vector in (1) . When lacking prior information

about the location of the vector of regression coefficients, centering the prior at zero shrinks the posterior distribution 

toward zero—corresponding to no linear association between Y and the collection of predictors X γ —as can be seen in (2) .

Zellner’s original formulation of the g prior ( Zellner, 1986 ) allowed for shrinkage toward non-zero mean vectors. In this case,

we write the prior as 

βγ | σ 2 , M γ ∼ N ( θγ , g γ σ 2 ( X 
T 
γX γ ) −1 ) , (3) 

where θγ is the prior mean vector for βγ . Under this prior, the posterior mean of βγ under model M γ is 

E( βγ | Y , M γ ) = 

1 

1 + g γ
θγ + 

g γ

1 + g γ
ˆ βLS = (1 − ργ ) θγ + ργ

ˆ βLS , 

where ργ = g γ / (1 + g γ ) , called the shrinkage factor above, can now be interpreted as determining the posterior mean as a

convex combination of the prior mean of βγ and the data-based estimate of βγ . The marginal likelihood under prior (3) for

a model M γ with k predictors is 

m ( Y | M γ ) = 

�((n − 1) / 2) 

π(n −1) / 2 n 1 / 2 
|| Y − Ȳ || −(n −1) (1 + g γ ) (n −k −1) / 2 ×

(
1 + g γ (1 − R 2 γ ) + 

|| Y − X γ θγ || 2 − || Y || 2 
|| Y − Ȳ || 2 

)− n −1 
2 

. (4) 

Dividing (4) by the marginal likelihood for the “null model”, M N —the model with no predictors that assumes a common

mean for all Y i —yields the Bayes factor for comparing model M γ to model M N : 

BF (M γ : M N ) = (1 + g γ ) (n −k −1) / 2 

(
1 + g γ (1 − R 2 γ ) + 

|| Y − X γθγ || 2 − || Y || 2 
|| Y − Ȳ || 2 

)− n −1 
2 

. (5) 

We revisit this version of Zellner’s g prior in Section 4.1 . 

3. Outliers and Model-Averaged Prediction Accuracy 

Model-averaged predictions for linear regression depend on the posterior distribution over models, π(M γ | Y ) , and the 
within-model estimates of the regression coefficients, E( βγ | Y , M γ ) , both of which depend on g γ . When p predictors are

available and we are averaging over the space � of all possible 2 p models, the model-averaged predictions of n new cases
˜  at the same matrix of regressors X used to fit the model can be written as 

Pred ( ̃  Y ) = 

∑ 

γ ∈ �
Pred ( ̃  Y | M γ ) π(M γ | y ) 

= 

∑ 

γ ∈ �

(
Ȳ + X γ E( βγ | Y , M γ ) 

)
π(M γ | Y ) 

= Ȳ + X E( β | Y ) , 
where, for j = 1 , . . . , p, the jth element of the vector E( β | Y ) , 

E(β j | Y ) = 

∑ 

γ ∈ � : X j ∈M γ

E(βγ ,X j | Y , M γ ) π(M γ | Y ) , 

is the model-averaged estimate of β j , and the sum is taken over all models that include X j as a regressor. The notation βγ ,X j 

is used to denote the coefficient in model M γ that corresponds to regressor X j . We denote the model-averaged estimate of

the regression coefficients as ˆ βBMA ≡ E( β | Y ) . 
In this section, we present several examples to illustrate the impact of influential outliers on BMA. In particular we focus

on the relationship between outlying value(s), the choice of g γ in the prior, and predictive accuracy. The examples shed light

on the behavior of BMA in the presence of influential outliers and suggest general strategies for improving model-averaged 

prediction. Example 1 illustrates the sensitivity of the posterior distribution over models to outliers in an example with 

three potential predictors. Example 2 focuses on the impact of outliers on model-averaged prediction in a stylized example. 

This example makes connections between the behavior of residuals and optimal prediction. Sections 3.3 and 3.4 generalize 

these results to mean-shift and variance-inflation contamination settings with an arbitrary number of predictors, p. The 

examples and results in this section provide the intuition behind the prescriptive guidelines for selecting g γ that we pursue

in Section 4 . 
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Fig. 1. Posterior model probabilities (top row) and marginal inclusion probabilities (bottom row) for Example 1 in Section 3.1 . Models in the top row are 

indexed by γ , e.g. “010” indicates the model with only X 2 as a predictor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Example 1: Impact of Outliers on the Posterior 

We first present a simple example that illustrates the impact of a single contaminated case on the posterior distribution 

over models. Let X i 1 = i − 1 − (n − 1) / 2 , for i = 1 , . . . , n = 11 , so that the X i 1 take the values −5 , −4 , . . . , 4 , 5 and are mean-

centered with 
∑ n 

i =1 X i 1 = 0 . Suppose that the true regression line is given by E(Y i | X i ) = βX i 1 and that the data are generated

according to 

Y i = βX i 1 + I(i = j) K + εi , i = 1 , . . . , n, 

with εi 
iid ∼ N(0 , 1) and β = 0 . 5 , where I(i = j) is a 0/1 indicator function that is nonzero only for case j. In this setup, K � = 0

means the response for case j is a contaminated value and constitutes an outlier if | K| is large. Case j will also have high

leverage for small and large values of j. We simulated (X i 1 , Y i ) pairs with n = 11 , β = 0 . 5 and σ 2 = 1 . We also simulated

(and then mean centered) two other potential predictor variables: X i 2 = X i 1 + Z i , with X i 
iid ∼ N(0 , 1) so that X 1 and X 2 are

highly correlated, and X i 3 
iid ∼ N(0 , 1) with X 3 independent of Y , X 1 and X 2 . Considering all three potential predictors, the

model space contains 2 3 = 8 possible models (including the null model, containing only an intercept), over which we place

a prior distribution that is uniform over model size and, conditional on model size, uniform over models. For each of the

non-null models, the prior distribution on the regression coefficients is taken to be Zellner’s g-prior centered at zero with 

g = n , corresponding to a unit information prior ( Kass and Wasserman, 1995; Fernández et al., 2001 ). The prior is completed

with the standard non-informative prior π(α, σ 2 ) ∝ σ−2 . 

For a given contaminated case location j, we are interested in the impact of K on the posterior probabilities of the

eight models. The top row of Figure 1 displays this impact as K ranges from −10 to 10 for j = 1 (so that the contaminated

case corresponds to the smallest X 1 value), j = 6 (medium X 1 value) and j = 11 (largest X 1 value). The binary vector γ
distinguishes the eight models: (0,0,0) corresponds to the model that includes none of the three predictors, (1,0,0) contains 

only X 1 , (0,1,1) contains X 2 and X 3 , etc. Clearly, the posterior distribution is quite sensitive to the contaminated case. In

cases where the contaminated case attenuates the relationship between X 1 and Y ( j ≈ 1 , K ≈ 10 ; j ≈ 11 , K ≈ −10 ), the null

model becomes more heavily weighted than when there is no contaminated case. In other cases (e.g., j = 11 , K ≈ 10 ), the

posterior shifts toward models that include too many predictors. When K = 0 there is no outlier, and so the posterior model

probabilities will be the same in each plot ( j = 1 , 6 , 11 ) as indicated by the plotted points. 

The marginal inclusion probabilities for each predictor j, 

π(γ j = 1 | Y ) = 

∑ 

γ ∈ � : γ j =1 

π(M γ | Y ) , 

play an important role in assessing model uncertainty from a Bayesian perspective. Barbieri and Berger (2004) provide 

conditions under which the median probability model (MPM)—the model that includes all predictors with π(γ j = 1 | Y ) ≥
106 
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Fig. 2. Simple linear regression data with contaminants for Example 3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 . 5 —is Bayes-optimal for prediction when a single model is to be selected. Carvalho and Lawrence (2008) provide decision-

theoretic support for reporting the MPM under a model selection framework. Marginal inclusion probabilities also play a 

key role in many computational approaches for BMA (e.g., Clyde et al., 2011 ). 

The bottom row of Figure 1 displays how outlier location, magnitude and direction impact the marginal inclusion prob- 

abilities for each of the three predictors in this example. The probabilities are clearly sensitive to the nature of the outlier.

When K = 0 (no outlier), the MPM just barely selects the generative model ( X 1 only); the marginal inclusion probability for

X 2 is 0.4996. Outlier contamination suppresses marginal inclusion probabilities in some cases (outlier location j = 1 , K large; 

j = 6 , | K| large) while amplifying them in others ( j = 11 , K large). Model-averaged inference and prediction depend on the

posterior weights for the individual models, which we learn from this example can be impacted greatly by the presence of

an influential outlier. This motivates the need to study the impact of outliers on BMA predictive accuracy, which we explore

in the next example. 

3.2. Example 2: Impact on Prediction 

This example considers a simplified version of Example 1 in order to illustrate clearly how the choice of g in the g prior

impacts model averaged prediction accuracy in the presence of an influential outlier. In this example we consider a single 

potential predictor X and assume the true mean is given by E(Y | X ) = βX . The observed values X i , i = 1 , . . . , n = 11 , are

the same as the values of X i 1 in Example 1: X i = i − 1 − (n − 1) / 2 . Now, however, we assume that Y i is observed without

error for i = 1 , . . . , n − 1 , so that Y i = βX i , and we assume that Y n = βX n − K. In this example, the first n − 1 training data

points are observed without error because for now we are interested exclusively in quantifying the impact of the influential 

observation. After developing intuition in this stylized example, we consider the usual setting where data are observed with 

error in Sections 3.3 and 3.4 and in the rest of the work. The data are plotted in Figure 2 for three different value of K. 

There are two models under consideration: the null model M N with only an intercept term, and the full model M 1 that

includes X as a regressor. Letting X be the n × 1 matrix of regressor values, under L 2 loss the Bayes estimators of the mean

functions at X for these two models under Zellner’s g prior (1) are 

ˆ E ( Y | X , M N ) = Ȳ = −1 n 
K 

n 
, 

ˆ E ( Y | X , M 1 ) = Ȳ + 

g 

1 + g 
X ( X 

T X ) −1 X 
T Y 

= −1 n 
K 

n 
+ 

g 

1 + g 
X 

ˆ βLS . 

Suppose we observe testing data at n design points ˜ X i . We assume the ˜ Y i values in the testing data follow the true

regression line, E( ̃  Y i | ˜ X i ) = β ˜ X i , plus independent Gaussian error εi with mean zero and variance σ 2 . Case n in the test data

set is assumed to be observed without contamination (K = 0) . The Beta-Binomial (1 , 1) prior over the model space assigns

prior probabilities of 1 / 2 to each model and leads to the model-averaged predictions 

ˆ Y = 

g 

1 + g 
w (g, Y ) ̃  X 

ˆ βLS − 1 n 
K 

n 
, (6) 

where w (g, Y ) = π(M 1 | Y ) is the weight (posterior probability) for model M 1 . We further define s (g, Y ) = (g/ (1 +
g)) w (g, Y ) to be the shrinkage factor for the model-averaged estimate of β: the factor by which the least squares esti- 

mate of β is shrunk toward zero when averaging over the two models. The shrinkage factor s (g, Y ) is a non-linear function

of g. 
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With the model-averaged predictions in hand, we can quantify predictive accuracy by computing the expected mean 

squared prediction error over the distribution of the test data ˜ Y as a function of g, conditioned on the observed data Y : 

E (MSP E (g) | Y ) = E 

[ 

1 

n 

n ∑ 

i =1 

( ̃  Y i − ˆ Y i ) 
2 

] 

= 

1 

n 

[ (
β − s (g, Y ) ̂  βLS 

)2 

( 

n ∑ 

i =1 

˜ X 2 i 

) 

+ 2 
K 

n 

(
β − s (g, Y ) ̂  βLS 

)( 

n ∑ 

i =1 

˜ X i 

) ] 

+ 

K 2 

n 2 
+ σ 2 . 

The expected mean squared prediction error is therefore minimized, as a function of g, when 

s (g, Y ) ̂  βLS = β + 

∑ n 
i =1 

˜ X i (K/n ) ∑ n 
i =1 

˜ X 2 
i 

, (7) 

i.e., when the model-averaged prediction line is parallel to a line whose slope is the sum of two terms: the slope of the true

regression line and the estimated least squares slope for a data set in which the observations taken at the n design points
˜ X i are all equal to K/n . 

The optimal value of g is thus seen to depend on the the true model slope, the testing design points, and the size K

of the contamination. In a situation where the validation design points and the contamination size are random, one could 

make use of existing knowledge of certaing aspects of their distributions to obtain a plausible value for the second term in

the RHS of Equation (7) . For example, expected values for 
∑ n 

i =1 
˜ X i , 

∑ n 
i =1 

˜ X 2 
i 
, and K could be substituted into the expression.

Of special interest is the situation where the testing design points ˜ X i coincide with the design points in the training data

set. If that happens, then 
∑ n 

i =1 
˜ X i = 0 and the optimal value of g is the one that makes the model-averaged prediction line

parallel to the true regression line. We focus on this situation when developing our methods. The simulation examples in 

Section 5 examine the behavior of our method when the testing locations ˜ X are allowed to differ from the training locations

X . 

Having characterized the g that leads to optimal predictions, we examine as a function of g the behavior of the 

quantities w (g, Y ) , s (g, Y ) , and E(MSP E(g) | Y ) when n = 11 , β = 0 . 5 , K = −5 , and σ 2 = 1 . These quantities are plotted

in Figure 3 . A question of interest is how the value of g that minimizes expected mean squared prediction error de-

scribed above compares to other choices of g, e.g., the local empirical Bayes estimate. For interpretability, it is helpful 

to work on the transformed scale ρ = g/ (1 + g) . The red diamond in the top panel of Figure 3 shows that the local

empirical Bayes value of ρ , i.e., the value of ρ that maximizes the posterior model weight, is given by ρ = 0 . 967 (or

log g = 3 . 378 ), yielding w (g = e 3 . 378 , Y ) = 0 . 994 . The red diamond in the middle panel tracks the corresponding shrinkage

s (g = e 3 . 378 , Y ) = 0 . 962 , and the red diamond in the bottom panel tracks the corresponding expected mean squared predic-

tion error, E (MSP E (g = e 3 . 378 | Y )) = 1 . 604 . 

The green diamond in the bottom panel, however, shows that the expected squared error of prediction is minimized 

for ρ = 0 . 711 (or log g = 0 . 901 ) where E (MSP E (g = e 0 . 901 | Y )) = 1 . 207 . The corresponding values of the model weight and

shrinkage, tracked by the green diamonds in the top and middle panel, are 0.967 and 0.688. The optimal value of ρ is much

smaller than the one suggested by local empirical Bayes and much more shrinkage is needed to minimize the expected 

MSPE. 

Figure 3 shows that additional interesting features occur for values of ρ approaching 1 from the left ( g going to infinity).

For one thing, as a consequence of Bartlett’s paradox ( Liang et al., 2008 ), the posterior weight assigned to the regression

model goes to zero and the null model gets fully weighted. Equation (6) says that setting ρ = 0 ( g = 0 ) and ρ = 1 ( g = ∞ )

will yield the same predictions. Hence, the expected MSPE is the same at ρ = 0 and ρ = 1 . As we move from the optimal

value of ρ (green diamond) toward ρ equal to its local empirical Bayes value (red diamond), the predictive performance 

deteriorates. In this example, the local empirical Bayes performance is still better than the weak predictive performance for 

the extreme values ρ = 0 and ρ = 1 . However, the presence of more influential cases can make the local empirical Bayes

performance deteriorate even further and become even more similar to the performance that would be attained by ignoring 

the independent variable and predicting the mean response observed in the training data set. 

Another interesting finding, tracked by the blue diamonds, is that the optimal expected predictive performance attained 

by setting ρ = 0 . 711 (or log g = 0 . 901 ) is also attained by setting ρ = 0 . 9999983 (or log g = 13 . 288 ) (geometrically, there are

two ways to make the prediction and true regression lines parallel). However, one can show that there is a linear relation

between the variance and the expectation of the MSPE, and that there is considerable instability in the predictive perfor- 

mance attained for ρ values in a small neighborhood of ρ = 0 . 9999983 . Confronting this with the considerable stability of

the predictive performance attained for ρ values in a sizable neighborhood of ρ = 0 . 711 suggests that setting empirically 

ρ = 0 . 711 (i.e., log g = 0 . 901 ) in the prior specification would be a smart choice in this problem. Note that, in view of the

role that ρ plays in determining the shrinkage, it is most natural to seek stability on the ρ scale rather than the g or log g

scale. 

We gain insight into these findings by analyzing, in Figure 4 , the behavior of the training data residuals, ˆ Y i − Y i , corre-

sponding to the various values of ρ under consideration. The left panel corresponds to the residuals for the local empirical

Bayes value. Aside from the residual for the influential observation, they exhibit a pattern which (while attenuated) mirrors 
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Fig. 3. Behavior of w (g, Y ) (top panel), s (g, Y ) = ρw (g, Y ) (middle panel) and E (MSPE (g) | Y ) (bottom panel) as a function of log g. The red diamonds 

correspond to the local empirical Bayes estimate of g; the green and blue diamonds correspond to the values of g that minimize expected mean squared 

prediction error. 

Fig. 4. Residuals under three choices of g: g = e 3 . 378 (left panel), g = e 0 . 901 (center panel) and g = 0(∞ ) (right panel). 

 

 

 

that of the residuals for the constant prediction at the observed mean value plotted in the right panel. Although biased,

the residuals corresponding to the optimal ρ = 0 . 711 , displayed in the middle panel, do not show any pattern. This is in

agreement with the previous finding that the expected MSPE is minimized when the prediction line is parallel to the true

regression line and supports the intuition that good predictive performance and well behaved residuals go hand in hand. 

3.3. General Mean-shift Contamination 

Section 3.2 demonstrated, in a stylized, one-dimensional example, how g could be chosen to minimize prediction error 

when the training data had been contaminated by a single, influential mean-shift outlier. This section generalizes the result 

to the setting where multiple candidate predictors exist, the data are contaminated according to the mean-shift contamina- 
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tion described by Abraham and Box (1978) , and the response variable is assumed to be observed with error. Suppose the

data are generated from the model 

Y i = 

{
α + x T 

i 
βT rue + εi + K, w.p. π, 

α + x T 
i 
βT rue + εi , w.p. 1 − π, 

(8) 

where εi 
iid ∼ N(0 , σ 2 ) and βT rue is a p-dimensional vector which may contain zeros. Let X be the n × p matrix with rows x T 

i 
and column means zero, and let Y be the response vector. Under this model, each case is contaminated independently of the

others with probability π . For simplicity, in this section we assume α = 0 ; this assumption does not affect the conclusions

we draw. 

Assume that for each model M γ we assign Zellner’s g prior to the regression coefficients, βγ , and that we allow the scale

parameter, g γ , to differ across models. Denote the collection of scale parameters as g . For a given prior over the model space,

denote the model-averaged estimate of the vector of regression coefficients by ˆ βBMA ( g , X , Y ) . With the understanding that

this estimate depends on g , we will refer to this estimate as ˆ βBMA for short. Under this model, the vector of model-averaged

fitted values is ˆ Y = Ȳ + X ̂  βBMA . 

Suppose future observations ˜ Y are generated from model (8) using the same design matrix X and a possibly different 

contamination proportion ˜ π . We can examine how the choice of the g γ is connected to predictive accuracy by examining

the expected sum of squared prediction errors: 

E(SSP E( g ) | Y , X ) = E(( ̃  Y − ˆ Y ) T ( ̃  Y − ˆ Y ) | X , Y , g ) 

= ( ̂  Y − E( ̃  Y )) T ( ̂  Y − E ( ̃  Y )) + E (( ̃  Y − E( ̃  Y )) T ( ̃  Y − E( ̃  Y )) | X , Y , g ) . (9) 

The first term in the final expression for the LHS of (9) can be viewed as a squared bias term, while the second term can

be viewed as a variance term. The variance term can be shown to be nσ 2 , which does not depend on the g γ , while the

squared bias term is 

( ̂  Y − E( ̃  Y )) T ( ̂  Y − E( ̃  Y )) = ( X ̂
 βBMA − X βT rue ) 

T ( X ̂
 βBMA − X βT rue ) + n ( ̄Y − K ̃  π) 2 . 

The term n ( ̄Y − K ̃  π) 2 doesn’t depend on the values in g . If values of g exist such that ˆ βBMA = βT rue , those values of g would

minimize the prediction error. As in the simple case in Section 3.2 , a model-averaged regression plane that is parallel to the

true mean function will result in optimal predictions as measured by expected SSP E( g | Y , X ) . 

3.4. Variance-inflation Contamination 

Suppose the data are generated from the variance-inflation contamination model of Box and Tiao (1968) , 

Y i = 

{
α + x T 

i 
βT rue + 

√ 

K εi , w.p. π, 

α + x T 
i 
βT rue + εi , w.p. 1 − π, 

(10) 

where εi 
iid ∼ N(0 , σ 2 ) . Again, βT rue is the p-dimensional true regression parameter, which can contain zeros, and we assume 

α = 0 to simplify the exposition. 

As in Section 3.3 , denoting by ˜ π the contamination proportion in the testing data, E(SSP E( g ) | X , Y ) can be decomposed

into a squared bias term and a variance term. The variance term, nσ 2 (K ̃  π + 1 − ˜ π) , does not depend on g , while the squared

bias term is 

( X ̂
 βBMA − X βT rue ) 

T ( X ̂
 βBMA − X βT rue ) + n ̄Y 2 . 

The conclusion is the same: the BMA regression plane that is parallel to the true regression plane will minimize the expected

sum of squared prediction errors, if such a plane exists as a function of g . 

4. Proposed Methods 

BMA predictions in regression depend on the posterior distribution over models and on the intra-model estimates of 

the regression coefficients, all of which depend on the values of g γ in Zellner’s g prior. These quantities are sensitive to 

influential outliers, as demonstrated in the example in Section 3.1 . Section 3.2 established, in a simple example, that in the

presence of influential outliers prediction error can be minimized if g can be chosen to make the model-averaged regression 

plane parallel to the true regression plane. Choosing g in this way has the effect of producing well-behaved residuals, which 

we know from classical regression analysis is desirable. Sections 3.3 and Section 3.4 showed that this intuition holds for

more complex model settings. 

The intuition developed in Section 3 provides motivation for how one might think about prior specification when there 

is concern that outliers might impact several (or many) of the models in the ensemble: choose values for the g γ to make

the model-averaged regression plane parallel to the true regression plane, ˆ βBMA = βT rue . We refer to this as the “parallel

condition.” There are two obvious practical limitations to this approach. The first is, of course, that the orientation of the true
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regression plane is defined by βT rue , the unknown parameters of the model. The second is that, even if the true βT rue were

known, there is no guarantee that values g γ exist that produce model-averaged coefficients satisfying the parallel condition. 

This can be illustrated simply in the context of the example in Section 3.2 by taking K = 5 instead of K = −5 . When K =
5 , the least squares estimate of the slope is ˆ βLS = 0 . 2727 . As a function of g, the shrinkage coefficient s (g, Y ) = (g/ (1 +
g)) w (g, Y ) ranges between zero and one, and so there is no value of g that produces ˆ βBMA = s (g, Y ) ̂  βLS equal to β = 0 . 5 . 

This extends to the general setting where p > 1 . In this case the model-averaged estimate of the coefficient corresponding

to regressor X j is 

ˆ βBMA, j = 

∑ 

γ ∈ � : X j ∈M γ

(
g γ

1 + g γ

)
ˆ βLS,γ , j π(M γ | Y ) , 

where ˆ βLS,γ , j is the least squares estimate of β j in a model M γ that contains X j as a regressor. The terms ˆ βLS,γ , j do not

depend on the g γ and can be bounded above and below by their largest and smallest values across the model space. The

terms (g γ / (1 + g γ )) π(M γ | Y ) depend on the g γ but are bounded below and above by zero and one, hence there is no

guarantee that there exist values of g γ that will produce a regression plane that is parallel to the true regression plane with

ˆ βBMA, j = βT rue, j , for j = 1 , . . . , p. 

In this section we address these practical limitations in several ways. First, in Section 4.1 , we expand the space of prior

distributions so that the parallel condition is achievable for a larger space of observed data sets than is possible under

Zellner’s g prior that shrinks toward zero. Second, in Section 4.2 we relax the strict parallel condition by attempting to 

find values of the model’s hyperparameters that make the model-averaged regression plane as close to parallel to the true 

regression plane as possible in L 2 distance. Finally, in Section 4.3 we synthesize these ideas and propose an approach for

choosing empirically the values of the model’s hyperparameters with the goal of yielding small prediction error in the pres- 

ence of influential outliers. As the orientation of the true regression plane is unknown, we propose using robust estimates 

that are insensitive to influential outliers as part of the procedure for choosing the hyperparameters. 

4.1. Expanding the Prior Model 

For particular data and true model settings there may not exist values g γ under Zellner’s g prior (1) which shrinks all

coefficients toward zero that satisfy ˆ βBMA = βT rue . When this is the case, we might instead chose values g γ that make the

model-averaged regression plane as close to parallel as possible to the true regression plane. To improve the quality of this

approximation, we expand the prior model to allow for shrinkage toward a potentially non-zero target, θγ . Under this prior,

described in (3) , the model-averaged estimate of the coefficient corresponding to regressor X j is 

ˆ βBMA, j = 

∑ 

γ ∈ � : X j ∈M γ

(
1 

1 + g γ
θγ , j + 

g γ

1 + g γ
ˆ βLS,γ , j 

)
π(M γ | Y ) . 

The hyperparameters θγ provide extra flexibility that allows for shrinkage toward targets other than zero. To set notation, 

let { θγ , g γ } denote the hyperparameters for model M γ and let { �, g } denote the collection of hyperparameters θγ and g γ
across all models indexed by γ ∈ �. By enlarging the collection of hyperparameters from g to { �, g } , we are able to achieve

the parallel condition, ˆ βBMA = βT rue , for a wider range of data and true model settings. 

This can be seen clearly in a modified version of the example in Section 3.2 where K = 5 and the true regression coeffi-

cient is β = 2 . When shrinking toward a prior mean of zero, no value of g is able to produce ˆ βBMA = β because ˆ βLS = 1 . 7727

and β = 2 > 
ˆ βLS . However, when shrinking toward a potentially non-zero prior mean θ , there are many such { θ, g} pairs that

produce ˆ βBMA = 2 , and we can chose a pair according to some rule (e.g., favoring small values of θ to encourage shrinkage

toward zero, or discouraging small values of g to avoid overconfidence in the prior). The added flexibility of shrinking to- 

ward a non-zero mean θ does not guarantee we can achieve the parallel condition, e.g., when β = 0 . 5 and K = 5 in the

example in Section 3.2 , there are no { θ, g} pairs that produce ˆ βBMA = 0 . 5 . The added flexibility, though, means we can do

no worse than shrinking toward zero if our goal is to bring the model-averaged prediction plane as close to parallel to the

true regression plane as possible, and so we work with prior (3) from now on. 

4.2. Relaxing the Parallel Condition: The Overall-Mixture Prior Specification 

Even after expanding the space of priors to include non-zero prior means θγ , the parallel condition is not guaranteed

to be achievable for all data sets. To address this issue, we might relax the parallel condition and choose hyperparameter

values { �, g } so that the model-averaged regression plane is as close in L 2 distance as possible to the true regression plane:

{ ̂  �, ̂  g } = arg min 
�, g 

|| ̂  βBMA − βT rue || 2 . (11) 

This defines an empirical Bayes approach for selecting hyperparameter values that could be implemented if βT rue were 

known or replaced with a suitable estimate. We call this approach the overall-mixture prior specification. The main difficulty 
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in implementing (11) in practice is computational: with p predictors, there are (2 p − 1) + (p2 p−1 ) total hyperparameters: 

2 p − 1 scale parameters g γ and 
∑ p 

k =0 
k 
(
p 
k 

)
= p2 p−1 individual location parameters θγ ,k , where θγ ,k is the k th elements of

the prior mean vector for model M γ . Not only does this represent a high-dimensional optimization problem, but for any

given collection of values { �, g } calculating ˆ βBMA requires summing over 2 p models, where each term in the sum contains

non-linear functions of elements of { θγ , g γ } . Brute-force, numerical optimization approaches might be feasible in very small

problems, but will be challenging in general. If interest is limited to point prediction under posterior predictive L 2 loss and

the the parallel condition can be achieved, predictions based on the resulting ˆ βBMA would coincide with predictions based 

directly on βT rue . 

4.3. Local Null-Mixture Prior Specification 

To ease the computational burdens discussed in Section 4.2 while still using the parallel condition to our advantage, we 

propose a new local empirical Bayes approach for hyperparameter specification. The approach is “local” in that each model 

receives its own, unique hyperparameter values { θγ , g γ } and also in that the selection of values for the hyperparameters

requires calculations that are dependent only on that model. In principle, this is similar to the local empirical Bayes ap-

proach, though our criterion for specifying the hyperparameter values is motivated by the parallel condition (rather than by 

maximization of the marginal likelihood). 

Rather than focusing on the full model-averaged regression plane defined by ˆ βBMA in (11) , which requires knowledge 

about all 2 p models in �, for any given model M γ we focus solely on the relationship between the model M γ and the null

model with no predictors, M N . If the only two models under consideration were M γ and M N , the posterior probability of

model M γ would be 

π ∗(M γ | Y ) = 

(
1 + 

m ( Y | M N ) 

m ( Y | M γ ) 

π ∗(M N ) 

π ∗(M γ ) 

)−1 

= 

(
1 + 

1 

BF (M γ : M N ) 

π ∗(M N ) 

π ∗(M γ ) 

)−1 

, 

where BF (M γ : M N ) is the Bayes factor for comparing model M γ to the null model given in Equation (5) . We use π ∗(M N )

and π ∗(M γ ) to denote the assigned prior model probabilities when the model space contains only the two models M N and

M γ . As a default, we use π ∗(M N ) = π ∗(M γ ) = 0 . 5 , which is also what would result from using the uniform prior or the

Beta-Binomial(1,1) prior over a model space that contains only these two models. The model-averaged estimate of βγ when 

the only two models in the model space are M N and M γ is 

ˆ βBMA,γ = π ∗(M γ | Y ) 
(

1 

1 + g γ
θγ + 

g γ

1 + g γ
ˆ βLS,γ

)
, 

where ˆ βLS,γ is the least squares estimate of βγ . The relaxed parallel condition in (11) then tells us to choose hyperparameter

values that satisfy 

{ ̂ θγ , ̂  g γ } = arg min 
{ θγ ,g γ } 

|| ̂  βBMA,γ − βT rue,γ || 2 , (12) 

where βT rue,γ is interpreted here as the true regression coefficients for model M γ . Once hyperparameters for each of the 

2 p − 1 models have been found via (12) , model-averaged prediction proceeds as usual using the posterior model probabilities

π(M γ | Y ) computed under the original prior π(M γ ) over the entire , unrestricted model space, �. 

The local null-mixture approach for selecting hyperparameter values defined in (12) attempts to make the locally-model- 

averaged regression plane parallel to an unknown regression plane oriented according to βT rue,γ . In practice, we require 

estimates of these unknown parameters. We opt to use an estimate of βT rue,γ that is robust in the sense that is relatively

insensitive to influential outliers (see Rousseeuw and Leroy, 2005 , for a general treatment of robust regression). For a given

model M γ , we rank each observation according to its Cook’s distance, D i,γ ( Cook, 1977 ). We then remove 10% of the cases

corresponding to the largest values of Cook’s distance, and compute the ordinary least squares estimate of the regression 

coefficients using the remaining 90% of the cases. With this robust estimate, ˆ βRobust,γ , in hand, we choose hyperparameters 

for model M γ that satisfy the criterion 

{ ̂ θγ , ̂  g γ } = arg min 
{ θγ ,g γ } 

|| ̂  βBMA,γ − ˆ βRobust,γ || 2 2 . 

We use the optim function in R ( Team, 2021 ) to implement this approach in the examples in Section 5 . 

The local null-mixture approach is attractive due to the fact that it reduces the computational burden associated with 

criterion (11) . However, because the hyperparameters are chosen locally—by mixing models M γ and M N —rather than 

globally—by averaging over all models in (11) —the predictive optimally associated with the parallel condition is not guar- 

anteed. However, based on the intuition developed in Section 3.2 , choosing hyperparameters locally will still result in well-

behaved residuals that are local to the mixture of the models M γ and M N . As good prediction and well-behaved residuals

tend to go hand-in-hand, we expect the local null-mix method to perform well in practice. In addition, as the simulations

in Section 5 will demonstrate, this local approach can outperform the global approach when some of the true regression

parameters β j are equal to zero. 
112 



C.M. Hans, M. Peruggia and J. Wang Econometrics and Statistics 27 (2023) 102–119 

Table 1 

Data contamination patterns for the training and testing data used in the simulations: mean-shift (M-S), variance-inflation (V-I), and no contamination 

(no). 

contamination pattern 

M-S/no M-S/M-S V-I/no V-I/V-I no/no 

training data M-S M-S V-I V-I no 

testing data no M-S no V-I no 

Table 2 

The columns in the left-hand side of the table display the values of β = (β1 , β2 , β3 , β4 , β5 ) 
T for the five models of increasing complexity used in the sim- 

ulations with p = 5 . The columns in the right-hand side of the table display the values of β = (β1 , . . . , β10 ) 
T for the three models of increasing complexity 

used in the simulations with p = 10 . 

p = 5 p = 10 

complexity level complexity level 

1 2 3 4 5 1 5 10 

β1 = 1 1 1 1 1 0.5 0.5 0.5 

β2 = 0 2 2 2 2 0.0 1.0 1.0 

β3 = 0 0 3 3 3 0.0 1.5 1.5 

β4 = 0 0 0 4 4 0.0 2.0 2.0 

β5 = 0 0 0 0 5 0.0 2.5 2.5 

β6 = 0.0 0.0 3.0 

β7 = 0.0 0.0 3.5 

β8 = 0.0 0.0 4.0 

β9 = 0.0 0.0 4.5 

β10 = 0.0 0.0 5.0 

 

 

 

 

 

 

 

 

 

 

 

5. Simulations 

In this section we present simulation studies comparing the predictive performance of our proposed method to that 

of the related methods mentioned in Section 2 : local empirical Bayes (EB-Local), global empirical Bayes (EB-Global), and 

the hyper- g/n methods. The computations for the related methods were performed using the BAS package in R ( Clyde,

2020 ). The Beta-Binomial (1 , 1) prior over the model space with π(M γ ) = (p + 1) −1 
(

p 
|M γ | 

)−1 
was used for each of the BMA

methods. We also compare the performance of the BMA predictions to the performance of predictions based on the robust 

estimate ˆ βRobust,γ described in Section 4.3 under the full model with γ = (1 , . . . , 1) T (i.e., no model averaging). 

In real-world settings, data contamination may constitute a one-off occurrence or it may represent a structural compo- 

nent of the underlying stochastic mechanism (a fraction of the observations may follow a different distribution than the 

bulk of the observations). In the first case we might expect only the training (or only the testing) data to be contaminated.

In the second case we would expect both the training and the testing data to be contaminated. Our simulations evaluate

the performance of the different methods in both of these cases, as well as in the case when neither the training nor the

testing data are contaminated. We consider contaminations arising from a mean-shift and from a variance-inflation scheme. 

The data contamination patterns for the five simulations we conducted are summarized in Table 1 . 

Prior to possibly being contaminated, the training and the testing data are both generated from the true model 

Y T rain = X T rain β + α1 + ε, 

Y Test = X Test β + α1 + ε. 

For simplicity, in all simulations, we set α = 0 . The design matrices X T rain and X Test have dimension 100 × 5 and their

rows are independently generated from a multivariate normal distribution, MVN ( 0 , �) , where the covariance matrix � has 

diagonal elements equal to 1 and off-diagonal elements equal to 0.6. The error vector ε has i.i.d. standard normal random 

elements. 

In the mean-shift case, we contaminate the data by randomly selecting 5% of the observations and adding K = 10 to the

dependent variable. In the variance-inflation case, we contaminate the data by randomly selecting 5% of the observations and 

multiplying their errors, εi , by 
√ 

10 before adding them to the mean function so that the errors for the contaminated cases

have variance K = 10 . To assess how model complexity affects performance we consider five models of increasing complexity

where the number of active predictors ranges from one to five. The values of the vectors of regression coefficients β for the

five models are summarized in the left-hand side of Table 2 . 

For settings where the training data are contaminated, we use either the mean-shift scheme or the variance-inflation 

scheme to contaminate the training data set. For the testing data, we either contaminate it with the same scheme used to

contaminate the training data set or we leave it uncontaminated. Therefore, we have multiple settings based on the true 
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coefficients and the contamination scheme of the training and testing data sets. Since we have 5 true β vectors and 5

different contamination combinations, we have 25 different settings in total. 

Our simulations consider all 5 × 5 = 25 settings resulting from pairing one of the 5 data contamination patterns with

one of the 5 model complexity levels. In each of these settings, we simulate 500 training and testing data sets to evaluate

the performance of the different methods mentioned at the start of the section. We apply each method to the training data

sets to estimate models and let the models make predictions ˆ Y for the testing data sets. Specifically, the BMA predictions ˆ Y 

are calculated according to the following steps. 

1. Centering the training data: We use X T rain,c to denote the centered training design matrices, and X T rain,mean to denote 

the corresponding column mean vector, i.e., 

X T rain,c = X T rain − 1 X 
T 
T rain,mean , 

where 1 is a vector of size n with all the elements equal to 1. 

2. Fitting models to the training data sets : By applying each of the BMA methods, indexed by m , to the centered training

data sets ( Y T rain , X T rain,c ) we obtain fitted BMA planes: 

ˆ Y T rain,m 
= 1 Ȳ T rain + X T rain,c 

ˆ βBMA,m 
, 

where ˆ βBMA,m 
is the BMA estimate of β for method m , Ȳ T rain is the average of Y T rain (which is also the estimated

intercept), and ˆ Y T rain,m 
are the values predicted by method m for the training data. 

3. Making predictions: We employ the estimated parameters from the previous step to construct the following prediction 

plane: 

ˆ Y m = 1 Ȳ T rain + 

(
X Test − 1 X 

T 
T rain,mean 

)
ˆ βBMA,m 

. 

By subtracting the column means of the training design matrix from the testing design matrix we ensure that the esti-

mated model parameters can be meaningfully applied to the testing data. 

In each of the 25 simulation settings and for each method m , after acquiring the predictions ˆ Y 
(i ) 

m 
for replication i , i =

1 , . . . , 500 , we compute the observed MSPE for that iteration as 

MSPE (i ) m 
= 

1 

n 

∥∥∥ ˆ Y 
(i ) 

m 
−Y (i ) 

Test 

∥∥∥2 

, 

where n is the number of observations in the testing data set (here n = 100 ). We are mainly interested in assessing the

relative performance of the various methods. To this end, for replication i , letting m 
∗ denote the hyper- g/n method that we

take as a reference, we compute the relative percent reduction in MSPE for the other methods relative to m 
∗ as 

RR (i ) m,m 
∗ = 100 × MSPE (i ) m 

∗ − MSPE (i ) m 

MSPE (i ) m 
∗

, i = 1 , . . . , 500 . 

The relative percent reduction in MSPE values from 500 replications for each of the 25 simulation settings are sum- 

marized graphically in the boxplots of Figure 5 . First, we note that the two empirical Bayes BMA methods both perform

similarly to the hyper- g/n BMA method. Comparing the local null-mixture method to the other BMA methods, perhaps 

the most conspicuous finding is that, when the training data are contaminated and the testing data are uncontaminated, 

the proposed method exhibits the largest relative improvements over the competing BMA methods for both contamination 

schemes (when making visual comparisons, note that the scale on the vertical axes differ across panels). The relative im- 

provements are smaller in settings when both the training and the testing data are contaminated. The variability of the 

proposed method appears to increase with model complexity. In particular, when the complexity level equals 5, the relative 

performance of the proposed method can be significantly worse in a small number of replications. The bottom panel in 

the figure shows that the proposed methodology suffers a little compared to the other BMA methods when the training

data are uncontaminated. This behavior is to be expected and suggests that the methodology is best suited for situation in

which the analyst suspects that contamination is present, although the median performance deterioration in the case of no 

contamination is tolerable. 

It follows from the last remark in Section 4.2 that, when the parallel condition can be achieved, predictions based directly

on ˆ βRobust,γ , the robust estimate of βT rue under the full model, coincide with the predictions produced by the overall- 

mixture method under posterior predictive L 2 loss. Compared to the local null-mixture method, the performance of the 

robust (overall-mixture) predictions varies with the complexity of the underlying, true, uncontaminated model. 

When the true complexity is less than p, the performance of the overall-mixture method suffers from its strong reliance

on the robust estimate under an overparameterized model and the attendant loss of accuracy from estimation of the β j 

coefficients equal to zero. By contrast, the local null-mixture model attains higher precision because it builds upon separate 

robust estimates for all possible models including the model that excludes the β j equal to zero. This is evidenced by the

reduced variability exhibited by the boxplots (local null-mixture vs. robust) for smaller complexity settings in Figure 5 . 

While less variable overall, the EB-Global and EB-Local methods tend to underperform relative to the local null-mixture 

and the robust method whenever any contamination is present. When neither the trainig nor the testing data are con- 

taminated, the EB-Global and EB-Local methods exhibit better predictive performance. In such cases, the local null-mixture 
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Fig. 5. Percent reduction in MSPE relative to the model-averaged hyper- g/n method for the simulation study with p = 5 predictors under complexity 

settings (the number of non-zero coefficients) ranging from 1 to 5. Each row corresponds to a contamination scheme, labeled “X / Y”, where X (Y) denotes 

the contamination scheme for the training (test) data. “M-S” denotes mean-shift contamination, “V-I” denotes variance-inflation contamination, and “no”

denotes no contamination. 

115 



C.M. Hans, M. Peruggia and J. Wang Econometrics and Statistics 27 (2023) 102–119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method outperforms the robust approach when the complexity is small relative to p, and does about as well as the robust

approach when the complexity matches p. 

In summary, these results suggest that, in the realistic situation when there is uncertainty about model composition, 

the local null-mixture method is preferable to the the robust method from a predictive perspective and has the additional 

advantage of providing posterior descriptions of uncertainty about variable inclusion and other aspects of the posterior and 

predictive distributions. 

We performed a second simulation study to demonstrate how the predictive performance of the local null-mixture 

method scales in comparison to the other methods as p increases. The setup is the same as above but now with dou-

ble the number of predictors ( p = 10 ) and three complexity settings (1, 5 and 10). The values of the true coefficients

β = (β1 , . . . , β10 ) 
T under each of the three complexity settings are given in the right-hand side of Table 2 . The results,

summarized graphically in Figure 6 , confirm the overall features and patterns uncovered by the first simulation study. 

6. Crime Data 

To evaluate the out-of-sample predictive performances of several of the methods discussed in this article in a real data 

analysis setting, we consider the crime data reported in Agresti and Agresti (1970) . The methods we evaluate are a subset

of those considered in the simulation study (Hyper- g/n , EB-Local, EB-Global, and Local Null-mixture), and we again use the

Beta-Binomial(1,1) prior over the model space. 

For each US state and the District of Columbia, the data comprise a dependent variable, “violent crimes per 10 0,0 0 0

people,” to be modeled in terms of eight socio-economic regressors. Following a preliminary exploratory analysis we took a 

logarithmic transformation of the dependent variable to remedy the skewness of the observed counts. In addition, the ex- 

ploratory analysis uncovered positive correlations between the transformed dependent variable and some of the regressors 

as well as between some of the regressors themselves. Diagnostics for the full linear regression model revealed that the ob-

servations for Hawaii (HI) and the District of Columbia (DC) are the most highly influential and that a normality assumption

for the errors in the full model might not hold. We also examined residual plots produced by applying various BMA pro-

cedures to the data and found that the residuals for the three traditional methods EB-Local, EB-Global, and Hyper- g/n , are

very similar but differ in several aspects from those of the local null-mixture method (e.g., the local null-mixture method 

produces a larger residual for Alaska (AK) and a smaller one for DC). 

We used K-fold cross-validation ( Friedman et al., 2001 ) to evaluate the out-of-sample predictive performance of the var-

ious methods, executing the following steps: (a) partition the observations at random into K subsets having approximately 

equal size; (b) conditional on the selected partition, leave out in turn one of the K subsets as the testing data, and use the

remaining K − 1 subsets as the training data; (c) apply the various BMA methods to the training data to make predictions

on the testing data. 

Using the cross-validated predictions, the cross-validation error (CVE) of each method, is calculated as 

CVE( ̂  f , method , K, P) = 

1 

n 

n ∑ 

i =1 

(
Y i − ˆ f \ κ(i ) ( X i , method ) 

)2 

, (13) 

where n is the number of observations in the data set, K is the number of sets in the selected partition P , κ(i ) denotes the

held-out element of the partition P to which observation i belongs, and ˆ f \ κ(i ) ( X i , method ) denotes the fitted value at X i 
produced by a given method when the κ(i ) -th element of the partition is removed. 

For given K, the CVE value varies from partition to partition and, assuming a uniform distribution over partitions, we can

define an expected cross-validation error (ECVE). When K = 51 , there is only one partition and the ECVE can be computed

exactly using Equation (13) . For smaller values of K, when there are too many partitions to compute the exact expectation,

we repeat the K-fold cross-validation procedure T times and approximate the ECVE by 

̂ ECVE ( ̂  f , method , K) = 

1 

T 

T ∑ 

t=1 

(
CVE( ̂  f , method , K, P 

(t) ) 
)
, (14) 

where P 
(t) represents a partition selected at random in repetition (t) . 

The cross-validation results for values of K equal to 51, 25, and 10 are summarized in Table 3 . The EB-Local and EB-Global

methods always perform comparably to one another and slightly better than the Hyper- g/n method. The Local Null-mixture 

method clearly outperforms all other methods for K equal to 51, is noticeably better for K equal to 25, and is only slightly

worse for K equal to 10. 

The two most influential cases (DC and HI) have a similar impact on the full model. Apparently, the Local Null-mixture

method benefits from the inclusion of one of these two cases in the training set and of the other in the testing set. This

happens with probability one when K equals 51 and with decreasing probability as K becomes larger. 

7. Discussion 

We developed BMA prediction methodology for common types of regression model misfit, in particular the presence 

of influential observations and non-constant residual variance. The methodology is motivated by the view that, typically, 
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Fig. 6. Percent reduction in MSPE relative to the model-averaged hyper- g/n method for the simulation study with p = 10 predictors under complexity 

settings (the number of non-zero coefficients) 1, 5 and 10. Each row corresponds to a contamination scheme, labeled “X / Y”, where X (Y) denotes the con- 

tamination scheme for the training (test) data. “M-S” denotes mean-shift contamination, “V-I” denotes variance-inflation contamination, and “no” denotes 

no contamination. 
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Table 3 

For the crime data, E CVE and ̂ ECVE for various BMA methods and the realized percent reduction in their values compared to those obtained using the 

Hyper- g/n method. The largest realized percent reduction for each cross-validation setting K appears in boldface. 

K = 51 K = 25 K = 10 

Method E CVE % Red. ̂ ECVE % Red. ̂ ECVE % Red. 

Hyper- g/n 0.204 · 0.204 · 0.209 ·
EB-Local 0.202 0.94 0.203 0.93 0.207 0.91 

EB-Global 0.202 1.17 0.202 1.16 0.207 1.11 

Local Null-mixture 0.174 14.73 0.197 3.87 0.218 -4.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

good predictive performance cannot be attained unless the model residuals are well behaved. The regression models under 

consideration make use of variants on Zellner’s g prior. By studying the impact of various forms of model misfit on BMA

predictions in simple situations we were able to identify prescriptive guidelines for “tuning” Zellner’s g prior to obtain 

optimal predictions. The methodology can be thought of as an “empirical Bayes” approach to modeling, as the data help to 

inform the specification of the prior in an attempt to attenuate the negative impact of model misfit. The methods described

in the paper can be extended to other types of model misfit, such as non-linearity of the mean function (or model under-fit),

and can be implemented with different adaptations of robust g-prior specification, as illustrated in Wang (2016) . 

In modern applications, especially when there are many potential predictor variables, analysts do not have the time (or, 

due to the size of the problem, are not able) to interactively investigate the quality of fitted models, hampering one’s ability

to manually attenuate the impact of model misfit through either model revision or prior tuning. In such complex situa- 

tions, the guidelines developed in the simple examples considered in this paper can motivate automatic or semi-automatic 

procedures that provide some insurance against Bayesian predictions that are unduly impacted by gross model specification. 

Standard implementations of BMA analyses based on Zellner’s g prior typically make the simplifying assumption that 

the prior mean of the regression coefficients is zero, leading to shrinkage of the least squares estimate toward the origin,

which may be sub-optimal in the presence of model misfit. By developing BMA strategies that take advantage of the full

generality of the prior as proposed by Zellner, in particular by allowing for a non-zero prior mean, we are able to achieve

shrinkage toward points other than the origin, which can have the effect of attenuating the impact of model misfit on

prediction. There is little doubt that our proposed methodology may not be as good as the best possible human analysis

(with the understanding, of course, that the quality of such an analysis depends on the skills of the individual analyst), but

we have demonstrated through theoretical arguments and empirical investigations that our methodology performs better 

than routine implementations of BMA that do not account for model misfit. 

In our methodology, the tuning of the prior distribution is obtained by considering theoretical properties that should 

be enjoyed by the optimal fit (mainly, the parallel condition) of the various models in the BMA ensemble. This approach

should lead to well-behaved residuals for each of the individual models. An alternative approach to fine-tuning the prior 

distributions could focus on the realized residuals of the model-averaged fit. This would be a more empirical approach 

requiring an objective function that assesses quantitatively the quality of the realized residuals coupled with a feasible 

computational approach for sequentially updating the prior parameters to improve such an objective function. An appeal 

of such an approach is the potential for the development of dynamic, graphical diagnostics that are closely related to the

traditional diagnostics for linear regression that are familiar to most users. 

Finally, extension of our methods to situations involving very large data sets may require the development of algorithms 

that implement computational shortcuts for the determination of the prior tuning parameters. A guiding direction for such 

work would be to develop shortcuts that, while speeding up computation, do not unduly compromise the Bayesian optimal- 

ity guarantees implicit in our framework. 
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