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Abstract:

We present an illustrative study in which we use a mixture of regressions model to improve
on an ill-fitting simple linear regression model relating log brain mass to log body mass
for 100 placental mammalian species. The slope of the model is of particular scientific
interest because it corresponds to a constant that governs a hypothesized allometric
power law relating brain mass to body mass. We model these data using an anchored
Bayesian mixture of regressions model, which modifies the standard Bayesian Gaussian
mixture by pre-assigning small subsets of observations to given mixture components with
probability one. These observations (called anchor points) break the relabeling invariance
(or label-switching) typical of exchangeable models. In the article, we develop a strategy
for selecting anchor points using tools from case influence diagnostics. We compare the

performance of three anchoring methods on the allometric data and in simulated settings.

Key words and phrases: Case-deletion weights, Clustering, EM algorithm



1. Introduction

In the natural sciences, allometry studies the relationships between physical and
physiological measurements taken on various animal species (Peters, 1983; Gayon,
2000). Of particular interest is to determine how other measurements may be
affected by body mass. Examples include the relationships between body mass
and brain mass, body mass and metabolic rate, body mass and gestation duration.
It is often postulated that pairs (z,y) of such measurements may be related via
a power law of the form y = ca’, for some unknown constants ¢ and b, typically
assumed to be positive. The estimation of the exponent b is often of primary
scientific interest. On a logarithmic scale, the power law turns into the linear
relationship logy = (logc) 4+ blog x and the investigative focus shifts toward the
estimation of the slope of the regression line.

Given a set of (z,y) pairs of traits measured on a variety of species, it is by
now generally accepted that fitting a single linear regression model to the entire
data set provides too crude a summary, especially when many species from dif-
ferent taxa and genetically diverse groups are included in the data set (Jerison,
1955; Bennett and Harvey, 1985a,b). More refined approaches rely on the in-
corporation of evolutionary information (possibly inferred from a taxonomy) to
perform an analysis based on models for derived quantities that can be treated
as independent, rather than for the original measured traits that exhibit species-

related dependencies. For example, this is the case for a popular type of analysis



based on phylogenetically independent contrasts (Felsenstein, 1985; Garland Jr
et al., 1992). MacEachern and Peruggia (2002) show that traditional Bayesian
variance components models applied directly to allometric data for which taxo-
nomic information is available can produce a good fit and yield easily interpretable
inferences.

In this article we reanalyze the data that MacEachern and Peruggia (2002)
used to illustrate their methods. The data comprise the body and brain mass
measurements on 100 species of placental mammals originally reported by Sacher
and Staffeldt (1974) as well as a taxonomy that assigns each species to an order
and sub-order based on its morphological and physiological traits. In total, the
data contain species that represent 13 orders and 19 sub-orders.

The data are shown in Figure 1. The left panel displays a scatterplot of the
centered log body mass and log brain mass and the least-squares fit from a naive
simple linear regression model. The residuals for this model are shown in the right
panel of Figure 1. This plot raises some concerns about model fit. First, there
is a slight increase in residual variability as log body mass grows. Second, other
features of the residuals can be traced back to the species orders (distinguished
by plotting color): all Primates (red points) have positive residuals, while most
Rodentia (blue points) have negative residuals. This structure points to the fact
that the least squares line does not properly account for within-order similarities

in the allometric relationship.
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Figure 1: Mammals data (left) with the estimated least-squares regression line

and residuals (right) from the least-squares regression fit.

MacEachern and Peruggia (2002) present a detailed evaluation that uncovers
the lack-of-fit of this model, introducing Bayesian model diagnostic techniques
based on case-deletion importance sampling weights (Geweke, 1989; Bradlow and
Zaslavsky, 1997; Peruggia, 1997; Epifani et al., 2008; Thomas et al., 2018). They
also present a Bayesian variance components model that includes additive random
effects for orders and sub-orders. These random effects induce positive correlations
between the residuals of species belonging to the same taxonomic groups and
subgroups. The random effect adjustment effectively creates a separate regression
line with its own intercept for the species within each subgroup. MacEachern and
Peruggia (2002) show that this way of accounting for the taxonomic information
significantly ameliorates the quality of the fit.

Suppose now that no information about the taxonomy were available. We



might wish to remedy a suspected lack-of-fit of the simple linear regression model,
but a random effects model is not an option when the true group memberships are
not known. In such situations, a reasonable modeling alternative is to assume that
there exist finitely many subgroups of observations for which separate regression
lines are appropriate, and yet it is unknown which observations to associate with
which regression. This leads naturally to the formulation of a mixture of regres-
sions model in which, conditional on unobserved group membership indicators,
observations falling in separate groups follow separate regression models. Using
these data as the foundation for an illustrative study, we consider a Bayesian
mixture of regressions to account for unobserved heterogeneity in a data set. The
fundamental difference between the mixture setting and the random effects set-
ting considered by MacEachern and Peruggia (2002) is that, in the former, group
memberships are latent and are the subject of inferential investigation. An ad-
ditional difference is that we will allow for group-specific slopes in addition to
group-specific intercepts.

A unique challenge arises when modeling with Bayesian mixture models: a
typical Bayesian formulation would specify, a priori, a fully exchangeable mix-
ture, yielding a fully exchangeable posterior that is indifferent to any arbitrary
relabeling of the mixture components. This phenomenon, often referred to as label
switching, precludes informative assignment of labels to the mixture components

and prevents meaningful interpretation of the component-specific parameter esti-



mates. Kunkel and Peruggia (2020) introduce a modeling device called anchoring
that breaks the labeling invariance of the exchangeable version of a Bayesian Gaus-
sian mixture model. The idea is to identify small subsets of representative obser-
vations, called the anchor points, and allocate them to separate components before
performing the analysis. Kunkel and Peruggia (2020) characterize the equivalence
between this process and the specification of a weakly data-dependent prior for
the component specific parameters. A shrewd selection of anchor points is essen-
tial for the successful implementation of the strategy. They propose a strategy
for model specification based on a modified EM algorithm.

Motivated by the mixture of regressions model and its application to our
allometric data, we extend the work of Kunkel and Peruggia (2020) in two main
directions. First, we generalize the EM anchoring strategy to the case of mixture
of regressions models. Second, we introduce a new strategy for the selection
of anchor points that builds on the work on case-deletion analysis presented in
MacEachern and Peruggia (2002) and Thomas et al. (2018). We compare this
new strategy for the selection of anchor points (which we call CDW-reg) to the
EM anchoring strategy based on the mixture of regressions model (which we call
EM-reg). The strategies differ in the way they extract information from the data
to select the points representative of the various mixture components.

In Section 2 we present the mixture of regressions model and its corresponding

anchor model. In Section 3 we present the EM method for selecting anchor points



under the mixture of regressions model. In Section 4 we describe the CDW-reg
method for choosing anchor points via clustering of case-deletion weights. The
results of our simulations and of the analysis of the mammals data are presented

in Sections 5 and 6. A few final considerations are discussed in Section 7.

2. Background

2.1 Mixture of regressions model

The k-component mixture of linear regressions model specifies that the observa-
tions (y;, x;),7 = 1,...,n, are drawn from k& homogeneous subgroups within the
population. The response y; is a scalar and x; € RP is a row vector of predictors
whose first element is equal to one. The data are denoted by vy = (y1,...,Yn)

and by the n x p matrix X with i-th row equal to @;. The mixture likelihood is

n k
fX,8,0%n) =]D_ mély:zB; 0%, (2.1)

i=1 j=1

where ' = (11, ..., m) is a vector of mixture probabilities that satisfy Zle n; =1
and ¢(+; a,b) denotes the density function of a normal distribution with mean a
and variance b, evaluated at its argument. The component-specific regression
parameters in this model are 8 = (B,,...,8;), where 3, € RP is the vector
of regression coefficients associated with the jth component. This model can
be written equivalently by introducing latent allocations s = (sy,...,s,), where
s; = j indicates that observation ¢ was generated from component j. Specifying

that P(S; = j) =n;, for j = 1,...,k, produces the mixture of regressions model



2.1 Mixture of regressions model

in (2.1). Conditional on s; = j, the mean of y; is x;3; and, with the prior
specification given below, the model is a random effects regression.
Assuming conditional independence throughout, we specify the following ex-

changeable prior:

163|IJ’B7V ~ Np(uﬁav)v .j:]-w"akv
o ?|ab ~ Gamma(a,b), (2.2)

n ~ DiriChth(Ck]-k)?

where V' is a p x p diagonal matrix whose g—th diagonal element is v,_; and
the Gamma distribution is parameterized to have mean a/b. The exchangeable
specification is a natural way of expressing prior ignorance about the relation
between y and  within each group: we make no assumptions that induce different
prior distributions on the B;. A consequence of the exchangeable specification is
that the posterior density of B is invariant to relabeling: for any permutation
of the integers 1,..., k, denoted by p,(1 : k), p(Bly) is equal to p(B,, q.xly) for
all @. This produces k! symmetric regions in the posterior distribution of 3,
each corresponding to one of the k! possible labelings of the mixture components.
Inferentially, this is undesirable because marginal distributions of the component
specific parameters are identical, making it impossible to use estimates of the
labeled parameters 34, ..., 3, to infer differences among features of the £ groups.
Computationally, the label switching phenomenon hampers fitting the model by

Markov chain Monte Carlo simulation (Jasra et al., 2005).



2.2 Anchor models

2.2 Anchor models

In previous work, (Kunkel and Peruggia, 2020) we have proposed a new class of
models called anchor models which pre-classify some observations in order to in-
duce a non-exchangeable, data-dependent prior which can alleviate the inferential
nuisances caused by the model’s posterior exchangeability. The model is defined
using k index sets Ay, ..., Ag, where A; contains the indices of a small number of
observations which will be be pre-labeled (or “anchored”) to component j. The
number of points in A;, denoted by mj;, is chosen ahead of time and each ob-
servation is anchored to at most one component; i.e., A; N Ay = 0 for j # j'.
Given the anchor points, A = U?ZIAj, the anchored version of model (2.1) arises
by modifying the distribution on the latent allocations, such that

. 1, 1€ A;,
P(S; = j) = f (2.3)

07 iEAj/7j/7£j>
and P(S; =j) =mn; for i € A as in the model (2.1).

An anchored mixture model can be regarded as a hybrid between a random
effects model, in which the class membership is known for all observations, and a
pure mixture model, in which the class membership is unknown for all observa-
tions. The properties of this model depend on which and how many anchor points
are selected. Kunkel and Peruggia (2020) show that an anchor model can result
in a nearly-unimodal posterior density on the component-specific parameter when
the anchor points are judiciously chosen and at least £ — 1 components have an-

chor points. They propose a modified expectation-maximization (EM) algorithm



for specifying anchor points for a multivariate Normal mixture model. The next

section describes an extension of this method to mixture of regressions models.

3. Anchoring with the EM algorithm

Kunkel and Peruggia (2020) propose the anchored EM algorithm, a modified ver-
sion of the EM algorithm for maximum a posteriori estimation of anchored mixture
models. The standard EM algorithm for mixture models obtains estimates of the
model parameters @ by iterating between an E-step, which estimates the probabil-
ity distribution p(s) on the latent allocations conditional on the current estimate
of 8, and an M-step, which updates 8 to maximize the expected (with respect to
p(8)) joint posterior density of @ and s. This approach can be viewed as itera-
tively maximizing an objective function F(q,0) = E, (log (p(y, 0, s)/q(s))) with
respect to a distribution ¢(s) on the latent allocations (E step) and 6 (M-step)
Neal and Hinton (1998).

The anchored EM algorithm modifies the E-step by constraining the distri-
bution ¢(s) to correspond to an anchor model; that is, a distribution for which
m; observations are allocated to component j with probability 1, for j =1,... k.
It can be shown that the optimal distribution ¢(-) is that which is closest to the
posterior distribution on s conditional on 8 and y (Kunkel and Peruggia, 2020).
The resulting algorithm recovers an anchoring structure that closely approximates

the unanchored posterior distribution of @ near one of its local modes.



3.1 Anchored EM for the mixture of regressions

3.1 Anchored EM for the mixture of regressions

The EM method for the mixture of regressions model (2.1) comprises these steps.

Initialization. Choose a small tolerance > 0. Set t = 1; A = 100. Initialize
6" = (B",0°n°).
While A > tolerance do:

E-step. Calculate rfj fori =1,...,n, j = 1,...,k, where r;; is the posterior

probability that S; = j given y, X, 3, 0,n, and satisfies
ry ocn; o(yis By, o) (3.4)

Anchor step. For fixed values m;, 7 = 1,...,k, update the anchor points by

subject to A; N Ay =10

; t |k t . k t
finding A* = Uj_; A} to maximize > ., ZieAj T

and |A;| = m; for all j # j'. Let

(
T4 ifi ¢ A*
=41 if i € A (3.5)
0 ifieAl, j 4

\

M-step. Update 0* = (8, 0%, 1) to maximize F*(¢', ), where

k n
F*(q',0) = log(p(B,0,m) + Y > 7 log(¢(ys; @:B;,0%)),  (3.6)
j=1 i=1

p(B,0,m) is given in 2.2, and F*(q¢",0) is equal to F(q",0) plus terms that

are constant with respect to 6.



3.2 Anchoring on the mammals data

Update A = F*(¢",0") — F*(¢",0"1). Set t =t + 1.

End do
Return A%, j =1,...,k and F*(¢",0").
Update steps and recommendations for initialization and remediation of possible

non-convergence are given in Supplement 1.

3.2 Anchoring on the mammals data

We now present an analysis of the mammals data using three different anchor
models, which differ in the method used to select the anchor points. All models
use the same number of mixture components (kK = 3) and the same number
of anchor points in each component (m = 3). Selecting the number of mixture
components is an open research question, made more difficult by the intractability
of the mixture likelihood, poor theoretical properties of standard selection criteria,
and the non-identifiability of the model (Roeder, 1994; Nobile, 2004). Several
promising strategies that treat k£ as a random quantity have been developed in
recent years (Malsiner-Walli et al., 2016; Miller and Harrison, 2018), and these
model-based approaches may be developed in future work into methods that can
specify both the anchor points and the number of components. In this study, the
choice of three components is motivated by a practical desire to restrain model
complexity while retaining sufficient flexibility to capture salient morphological

differences between groups of species. Traditional information indices support the



3.3 EM anchoring on the mammals data

choice of a small number of components: the BIC favors k£ = 2 and increases as
k ranges from 2 to 6 (BIC =192, 197, 211, 220, 233, for k = 2,...,6), while the
AIC is smallest at k = 3 with little evidence that k£ > 4 aids in model fit (AIC=
175.9, 173.6, 179.3, 180.7, 186.5 for k = 2,...,6). Comments on a two-component
fit are given in Section 7.

In selecting m, we confine the anchor points to be small subsets of optimally
chosen observations. A minimum of one anchor point for £ — 1 components is
required to eliminate the prior exchangeability of the model that leads to label-
switching. We exceed this minimum in order to specify data-dependent prior
information that can partially characterize the locations and scales of underlying
groups. However, we keep m small because our previous work has demonstrated
that when the groups are not well-separated, using many anchor points can lead
to poor out-of-sample predictive performance (Kunkel and Peruggia, 2020). The
sensitivity analysis outlined in Supplement 3 indicates that inferences on the mam-
mals data are similar when we reduce the number of anchor points from m = 3
to m = 2, but that m = 1 appears to provide insufficient prior information to

identify three distinct lines.

3.3 EM anchoring on the mammals data

We now apply the anchored EM method outlined in the previous sections to the

mammals data. We set the prior hyperparameters in (2.2) to be a = 5, b = 1,



s = (3.5,0.6)', and vg = 1, v; = 0.5. The left panel of Figure 2 shows the
anchor points selected. For ease of exposition, we code mixture grouping by color.
The anchored EM essentially performs an approximate maximum a posteriori
fit of the mixture model, and it selects anchor points to be those with largest
probability of allocation to their respective components. Thus, anchor points
assigned to the same component, are, in a sense, those points that would be
least likely to be assigned to either of the remaining components. The anchor
points for the red and blue groups exhibit some variability in the x-direction and
identify approximately parallel lines with different intercepts. The green points
are clustered close together in both the x- and y-directions, but suggest a line
with a steeper slope than that of the other two groups. The auxiliary information
about the orders of the species selected as anchors, shown in the bottom panel of
Figure 2, indicates that each component has two anchor points from a particular
order. This suggests that the anchor points may be partially identifying the

underlying structure that is driven by the taxonomic information.

4. Anchoring with case deletion weights

In a Bayesian context, case-deletion analysis quantifies the influence of an indi-
vidual observation on the overall analysis by comparing the posterior distribution
conditional on the entire data set and the posterior distribution conditional on

the reduced data set obtained by omitting the observation under consideration.
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Figure 2: Selected anchor points for the mammals data. The legend indicates

the order of each anchor point.

Case-deletion analysis is an effective tool for identifying influential observations
in Bayesian models (Bradlow and Zaslavsky, 1997; MacEachern and Peruggia,
2002). It also provides an avenue to assess the similarity of the impact of obser-
vations on the inferential conclusions. We now derive a strategy for selecting the
anchor points of a Bayesian Gaussian mixture model as “typical” representatives
of clusters identified via a preliminary case-deletion analysis based on a model
which assumes a single regression line to describe all data points.

Consider a set of observations y = (y1, ..., yn) following a model with density
f(y|@) conditional on a set of parameters 8 having prior distribution 7(6). The

posterior distribution of 0 given y is proportional to the joint distribution of y



and @ which is p(y,0) = f(y|@)7(0). Similarly, denoting by y\; the reduced data
set obtained by deleting observation 4, the posterior distribution of 6 given y; is
proportional to p\;(y\i, 0) = f(y\:|0)7(0).

The ratio between the case-deleted and full posterior reacts to the influence
of the deleted case on the inferential conclusions. For this reason it is useful to

understand the behavior of the random variables

_ iy, 9)
p(y,0) ’

when @ follows the posterior distribution conditional of the entire data set. In

w;(0) i=1,...,n, (4.7)

practice, we can compute the normalized empirical versions of the ratios in (4.7)
using a sample 0y,...,0; from (approximately) the posterior distribution of 0
given y. These quantities, known as case-deletion importance sampling weights,

are given by

_ wi(0€>
i) = =p——
00 = ST ()

The theoretical variability of the w;(€) and the sample variability of the w;(6,)

i=1,....n; £=1,...,L. (4.8)

and w;(0y), £ = 1,..., L, are indicators of the influence of observation ¢ on the
posterior distribution, with higher variability indicating larger influence (Bradlow
and Zaslavsky, 1997; Peruggia, 1997; Epifani et al., 2008). The covariance matrix
(with respect to the full posterior distribution of €) of the log weights, C = [C};] =
[Cov(log w;(0),log w;(8))], is a particularly useful quantity: C;; can be interpreted
as summarizing the degree of similarity between the influence of deletion of case

7 and case j.



Further, for models of conditional independence, Thomas et al. (2018) detail
the existence of a close relationship between C' and measures of influence based on
infinitesimal geometric perturbations of the multiplicative contributions of each
observation to the overall likelihood. In the perturbed likelihood, the multiplica-
tive factor corresponding to each observation is raised to a power w;, e = 1...,n.
The original likelihood is recovered by setting w; = 1, ¢ = 1...n. Thomas et al.
(2018) show that, in a neighborhood of w = (1,...,1)’, C characterizes the cur-
vature of the n-dimensional surface representing the Kullback-Leibler divergence
of the posterior based on the original likelihood from the posterior based on the
geometrically perturbed likelihood. Thus, C' contains information about the di-
rections in the n—dimensional real hyperplane along which the Kullback-Leibler
divergence surface changes more rapidly in response to geometric likelihood per-
turbations. This insight can be used to assess the directional influence of cases.

As an exploratory tool for assessing such influence, Thomas et al. (2018) rec-
ommend to compute the sample covariance matrix, C , and the sample correlation
matrix, fi, based on the sample 64, ..., 0 and to perform a principal component
analysis (PCA) based on the eigendecompositions of these matrices. The first
several components are often sufficient to explain most of the observed variability
in the log weights and well-summarize the main directions of influence. A PCA
display consisting of a scatterplot of the first two or three normalized eigenvectors

helps to reveal structure in the data: points with high loadings in one or more



4.1 CDW anchoring on the mammals data

components are particularly influential, and points with similar loadings in all
components have similar influence.

We leverage these ideas to form a strategy for choosing anchor points based on
the case-deletion weights. First, we fit a single simple linear regression model that
does not accommodate latent heterogeneity in the data. Graphical summaries
based on a PCA eigendecomposition of C or R can help to visualize clusters
with similar directional influence on the base model. To specify an appropriate
mixture of regressions model, we choose anchor points to be representatives of
these clusters. In this study we use k means applied to the rows of C or R to aid

in identifying clusters and representative points.

4.1 CDW anchoring on the mammals data

To apply the proposed technique to the analysis of the mammals data, we began
by fitting a Bayesian simple linear regression model with the following hyperpa-
rameters: a =5, b =1, pg = (3.5,0.6)', and vy = 1, v; = 0.5. A Gibbs sampler
was run to obtain 5,000 posterior samples after burn-in and thinning of chains.
The log case-deletion weights were computed from the sampled residuals. The
left panels of Figure 3 shows the PCA displays based on the first two eigenvalues
of the eigendecomposition of C and R.

Again postulating three mixture components, we ran the k means clustering

algorithm, as implemented in R, on the rows of C or R. Doing so, we identified
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Figure 3: PCA display based on the first two eigenvalues from the eigendecompo-
sition of C (top) and R (bottom) of the log case-deletion weights. The resulting

k means clustering with highlighted anchor points is shown in the right panel.

the red, green, and blue clusters in the PCA display. The scatterplots in the right
panels of Figure 3 shows how the identified clusters map back into observation
space. The C-based clustering appears to be reacting primarily to the size and sign
of the residuals from the fitted simple linear regression line, with the green cases
representing a small number of values tending to have large, positive residuals
and the blue cases representing a small number of values with negative residuals.

These green and blue cases stand apart from most points in the PCA space, with
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the points with largest residuals appearing well-separated from all other points.
The red cases, which comprise most of the data set, are closely clustered in the
PCA space and appear to be well described by the simple linear regression line.

The R-based PCA plot shows a nearly-circular shape and fewer points with
high loadings in a particular direction. In the observation space, we see that the
green and blue clusters correspond to points having rather large least squares
residuals of the same sign within each cluster.

To specify the CDW anchor models, we identified three representative obser-
vations within each cluster to be used as the three anchor points. To do this,
for each of the initial clusters, we again ran the k means clustering algorithm
to identify three sub-clusters. A representative point from each sub-cluster was
chosen as the point nearest to the sub-cluster centroid. The selected points (three
for each cluster) are shown as solid dots in the PCA displays and scatterplots of
Figure 3. In addition, the Cook’s distances and residuals for the anchors points
were obtained from the least-squares fit depicted in Figure 1. The same nine
points are also displayed in the middle and right panels of Figure 2, along with
the orders to which the nine species belong. The model whose anchor points are
estimated from C is referred to as CDW-cov, and the model whose anchor points
are estimated from R is referred to as CDW-cor.

In the CDW-cov model, we see that, within each cluster, the set of anchor

points comprises some points with apparently large influence (the blue triangle



and green square, for example, which have large Cook’s distance values and large
residuals, relative to the other points) and points that are less influential (such as
the red triangle, whose x-value is near the sample average and which falls close to
the regression line). This feature follows from the way in which k means decides
to allocate member species to the various sub-clusters, with some sub-clusters
comprising mostly “usual” observations and other, typically smaller, sub-clusters
comprising mostly “unusual” observations. Nonetheless, the anchor points for the
blue and green groups tend to be somewhat close together in the x-y space; the
larger residuals of points in these clusters produces more distance in the PCA
space.

In contrast, the CDW-cor anchor points do not stand out as unusual in the
observation space and their Cook’s distances tend to be smaller, with only two
exceeding 0.02. These selected points are widely separated in the x-direction, with
each set of three points hinting at a clearly distinct line (in a least squares sense).

These groups seem to be driven primarily by similar directions of influence.

5. Simulation

We performed a simulation study to evaluate the performance of the anchored
EM and CDW methods in estimating parameters of three-component mixture
of regressions models. The details of the simulation design and its results are

presented in Supplement 2. In summary, we found that the anchored EM models



and CDW-cor models tend to produce better accuracy in parameter estimation
and cluster estimation than CDW-cov. The weaker performance of CDW-cov can
be explained by the tendency for the points whose case-deletion weights have the
highest variance to be separated from the others in the C space. These points,
which are the most unusual observations in one or both of the x- and y- directions,
are often selected as anchor points by the proposed k means method. However,
they may not represent behavior that would be typical of any other points, leading
to situations where some components describe only the most unusual cases. This
phenomenon is alleviated when using the CDW-cor method because the R matrix
captures a normalized version of the similarity of the influence of cases and is less
sensitive to the overall variability of the case deletion weights. Future work may
investigate alternatives to the use of the k means clusters and sub-clusters to
better select anchor points using s

An interesting case considered in the simulation is one where data are gener-
ated from three parallel lines (Setting B in Supplement 2). This corresponds to a
random-intercepts regression when the source of heterogeneity is unobserved. The
CDW-cor method resulted in the most accurate estimation in this case, suggesting
that R can be a useful tool in uncovering this type of latent heterogeneity. In
contrast, when the lines differ in slope and intercepts, anchored EM performed

better than the CDW methods.



6. Analysis of mammals

We now present the inferential results obtained by fitting three anchored mixture
of regressions models to the mammals data: the anchored EM (A-EM), CDW-cov,
and CDW-cor models. We specify the prior in (2.2) with the same hyperparame-
ters specified in the anchored EM selection method: a =5, b =1, ug = (3.5,0.6)’,
and vg = 1,v; = 0.5. For each anchor model we ran a Gibbs sampler to obtain
L = 7,500 posterior samples (after thinning and burn-in) of the model parame-
ters and assessed convergence using trace plots. To sample from an anchor model
with the Gibbs sampler, the latent allocation variables s; are fixed for the anchor

points and sampled only for the unanchored points.

6.1 Parameter and cluster estimates

We used the posterior means of the model parameters to estimate component
regression lines and pointwise credible intervals for the component-specific mean
functions, X/3;, for each anchor model. These lines are shown in Figure 4, with
Components 1, 2, and 3 drawn in blue, red, and green, respectively. We also
estimated group membership for each species by finding a maximum a posteriori
estimate of its latent allocation, s;. Each data point in Figure 4 is color-coded
according to its estimated allocation, s;. The anchor points, whose group assign-
ments are assumed to be known, are shown as solid symbols to distinguish them

from the remaining observations.



6.1 Parameter and cluster estimates

Anchored EM

brain
brain
brain

o~ Qf o~ ~-
g g © 4 °

o ﬁ(’,»’ — 3.39+0.7x o ‘j;"f" — 3.43+0.69x o 3 5 —— 3.47+0.69x
& — 3.97+0.71x / —  4+0.69x y —— 3.83+0.72x
4 — 4.56+0.91x ,/‘u"‘ — 4.53+0.92x ‘,.,]" — 4.52+0.89x
T 1 1T T T T 1 T 1 1T T T T 1 T T T T T T
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6

body body body

Figure 4: Posterior mean regression lines and 90% pointwise posterior credible
intervals for the mean function for each mixture component. The data are color-

coded according to their estimated allocation.

All three models have identified a subgroup whose slope is considerably steeper
than those of the other groups, arbitrarily labeled Component 3 (shown in green)
for all models. This group contains species whose brain masses show a large in-
crease as body masses increase. The estimated regression lines are similar across
the methods, with CDW-cor estimating the lowest slope (0.89) and CDW-cov es-
timating the largest (0.92). The three methods assign many of the same species to
Component 3, identifying a string of points in the upper-right end of the scatter-
plot to be those arising from the steep regression line. Fewer species are allocated
to this group than to the other two, and most are those with larger bodies from
the Primate or Cetacea orders. In addition to these, the CDW-cor model assigns
several smaller species to Component 3, which appear in the middle-left portion

of the left panel of Figure 4 in an area near the point where the estimated regres-



6.2 Validation and sensitivity

sion lines for Components 2 and 3 intersect. These same points are assigned to
Component 2 in the CDW-cov model, and are split between Components 2 and 3
in the A-EM model.

Component 1, plotted in blue in Figure 4, represents, broadly speaking, species
with brains that are small relative to species of the same size. Of the 24 species in
the Rodentia order, 18, 20, and 15 are allocated to this component by the A-EM,
CDW-cov, and CDW-cor models, respectively. For all models, this group has the
smallest intercept, and the estimated slopes are near 0.70 for all three anchor
models. Component 2, with regression lines drawn in red, has an estimated slope
nearly equal to that of Component 1. This group represents the species which
differ from the Component 1 species mostly in their average brain size given
their body size. The orders of species allocated to Component 2 are varied, with

Artiodactyla and Carinorva being the most prevalent for all anchor models.

6.2 Validation and sensitivity

For this case study, we specified a mixture model in order to accommodate het-
erogeneity in the data due to taxonomic differences. Because the auxiliary in-
formation about the species’ orders is available, we can evaluate the similarity in
estimated groups from the mixture model to the true orders of the species. In Sup-
plement 4, we demonstrate that all three mixture models have estimated grouping

that have some correspondence with the known taxonomies: Group 1 tends to de-



6.2 Validation and sensitivity

scribe Rodentia, while Group 3 seems to describe Primates and Cetacea.
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Figure 5: Maximum allocation probabilities sorted by magnitude. The left panel
compares the CDW-cor model to one randomly-selected anchor model. The mid-
dle panel displays the sorted maximum average allocation probabilities over 100
randomly-selected anchor models. The shaded lines show the 25th and 75th quan-

tiles. The right panel compares the CDW-cor model to the A-EM model.

In the absence of auxiliary information, it may be desirable to compare com-
peting anchor models in terms of their effectiveness in identifying distinct, well-
separated mixture components. Kunkel and Peruggia (2020) show that goodness-
of-fit in an anchor model is closely related to the degree of separation among
the component distributions: a well-fitting anchor model will produce estimated
mixture components with distinctive features. In contrast, a poorly-fitting anchor
model will exhibit features similar to the “label-switching” seen in full exchange-

able models: densities of component-specific parameters may be multimodal and



6.2 Validation and sensitivity

similar in shape, and estimated allocation probabilities will tend towards equal
probabilities for each component. Motivated by these considerations, we propose
to perform model-checking by summarizing the maximum estimated posterior al-

location probabilities calculated for each of the observed data points; that is,

max

2 :maxjﬁ(Si:ﬂy),izl,...,n.

Figure 5 demonstrates three ways to assess the model using the values of p[***

The right panel shows the order statistics of the p/"** values from the CDW-cor
model on the x-axis and from the A-EM model on the y-axis. A straight line would
indicate that both models result in similar overall fit across the two models. The
fact that most points fall slightly above the identity line indicates that most prob-
abilities are higher for the A-EM model than for CDW-cor, suggesting a better fit
for the A-EM model. If a competing model is not considered, randomization can
be used for checking one anchor model. The left panel shows a plot that compares
the CDW-cor model to an anchor model whose anchor points are selected com-
pletely at random. The CDW-cor probabilities are consistently higher, resulting
in a pattern with points falling underneath the identity line. The middle panel is

similar, but the y-axis shows the average p

7% values over 100 randomized anchor

models with shaded lines indicating the 25th and 75th sample percentiles of the

max

b;

max

. This plot gives an approximation of the expected p!

% and their variability

across random anchor models.

A sensitivity analysis was performed to investigate the effect of the hyperpa-



rameters a, b, vg, and vy in (2.2). The analysis, which is detailed in Supplement 3,
revealed parameter estimates for models with weaker prior information on o2

and B that are similar to those in the analysis described in Section 6.1.

7. Discussion

When we specify a finite mixture model, we assume the existence of distinct sub-
groups in the population. The group membership of any individual observation
is unknown and can be estimated a posteriori. A random effects model similarly
allows inference on group-specific features, but requires auxiliary, deterministic
information indicating which observations are to be grouped together, and the
similarities among these observations drive the estimated features of the vari-
ous groups. In an anchored mixture model, the anchored observations affect the
model fit in the same way as labeled observations in a random effects model af-
fect inferences on their groups: they inform the distinct features of their mixture
components. These features then influence the probabilities of group membership
of the remaining unanchored observations. Thus, the similarities among a compo-
nent’s anchor points are a key driver of what types of groups the mixture model
identifies.

In this case study, we selected three groups in order to detect hypothesized
subgroups tied to unobserved random effect indicators. A model with two mix-

ture components could also have been specified to to accommodate some of the



unexplained structure in the residuals from the simple linear regression. Two
components, while unable to capture many latent subgroups, can nonetheless dis-
tinguish between the most prominent inhomogeneous subsets of data points: for
example, the primates such as homo sapiens are likely to be separated from the
large-bodied, small-brained rodents, regardless of the number of components used.
The Supplementary materials gives details regarding the anchor points and esti-
mated regression lines under a two-component model. A two component model
may also be a first step in an iterative process, in which mixture components are
added and model fit is re-evaluated to determine whether additional components
are necessary.

In our illustrative study, the EM method chose anchor points to fall near the
straight lines assumed by the mixture of regression lines, and its accompanying
mixture model defined groups based on proximity to these lines. For example, if
we truly believe the mixture model we have specified, a method such as anchored
EM, which subsumes this model at the anchoring stage, is perfectly appropriate.
This method is flexible and extensions to other regression models, including non-
Gaussian mixtures, can be readily derived within this framework.

The CDW methods are based on the principle that a mixture model is ap-
propriate because the simple model is inadequate; the mixture components are
identified as groups exhibiting similar misfit. In our study, the CDW-cov method

often selected points whose case deletion weights have high variance. These points



tend to have unusual x-values and/or large residuals.

The CDW-cor method selected anchor points that were representative of
groups of observations exerting similar influence on the posterior inferences from
a naive model, and our simulation results indicated that this method has promise
in using a mixture model to introduce random effects when auxiliary grouping
information is unobserved. Further, because CDW requires only a base model
and ability to calculate log case-deletion weights, this method can readily to be
extended to non-Gaussian models, such as logistic or Poisson regression, and hi-
erarchical models. Future work will investigate how the theoretical properties
of the C and R matrices relate to the optimal determination of the number of
components and selection of anchor points.

In the multiple regression setting, we have demonstrated in simulations that
the anchored mixture of regressions models can produce accurate parameter es-
timates in low dimensions, even if some predictors are collinear. Further inves-
tigation is needed to evaluate how well the model scales when the number of
predictors grows. In addition, real data sets are likely to exhibit features that
affect the relative performance of the methods for selecting anchor points. For
example, the current study illustrates that anchored-EM and the CDW methods
differ in the variability among selected anchor points: CDW enforces some sepa-
ration among the points, while anchored-EM may often select anchor points that

are close together. We have found that in real data sets where some predictors



may have low variability, discretized values, or inflation at zero, the differences
among anchor models estimated from these methods may be magnified.

In sum, to select a method for finding anchor points, it is important to consider
which types of distinguishing features the underlying model uses to identify similar
observations and to determine how such features become relevant to answer the

scientific questions of interest.

8. Supplementary Materials

The online Supplement contains the following: (1) details on the anchored EM
algorithm for the anchored mixture of regressions model; (2) simulation study
design and results; (3) sensitivity analyses; (4) ; and (5) analysis that explores

the relationship between known taxonomy and the model-based clustering.
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