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Multidimensional specialization and 
generalization are pervasive in soil 
prokaryotes

Damian J. Hernandez    1,2  , Kasey N. Kiesewetter1,2, Brianna K. Almeida1, 
Daniel Revillini    1 & Michelle E. Afkhami    1

Habitat specialization underpins biological processes from species 
distributions to speciation. However, organisms are often described as 
specialists or generalists based on a single niche axis, despite facing complex, 
multidimensional environments. Here, we analysed 236 environmental 
soil microbiomes across the United States and demonstrate that 90% of 
>1,200 prokaryotes followed one of two trajectories: specialization on all 
niche axes (multidimensional specialization) or generalization on all axes 
(multidimensional generalization). We then documented that this pervasive 
multidimensional specialization/generalization had many ecological and 
evolutionary consequences. First, multidimensional specialization and 
generalization are highly conserved with very few transitions between 
these two trajectories. Second, multidimensional generalists dominated 
communities because they were 73 times more abundant than specialists. 
Lastly, multidimensional specialists played important roles in community 
structure with ~220% more connections in microbiome networks. These 
results indicate that multidimensional generalization and specialization are 
evolutionarily stable with multidimensional generalists supporting larger 
populations and multidimensional specialists playing important roles within 
communities, probably stemming from their overrepresentation among 
pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate 
that the vast majority of soil prokaryotes are restricted to one of two 
multidimensional niche trajectories, multidimensional specialization or mul­
tidimensional generalization, which then has far-reaching consequences for 
evolutionary transitions, microbial dominance and community roles.

In nature, organisms navigate complex environments by embracing 
diverse conditions (generalists) or utilizing a smaller portion of avail­
able resources and habitats (specialists). The extent to which organisms 
specialize or generalize is central to many ecological and evolution­
ary processes such as species distributions, rates of speciation and 
resilience to disturbances1,2. However, studies of specialization and 

generalization have historically focused on only a single environmental 
axis which overlooks the reality that organisms experience complex, 
heterogeneous environments that change on many axes through space 
and time. Omitting environmental complexity disregards relation­
ships across niche axes and the impact they have on organisms with 
important implications for their ecology, evolution and conservation. 
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categories based on the local minima between the two peaks in niche 
breadth (a heuristic delineation between low and high niche breadth; 
Methods and Fig. 1e,f). Not only did ~90% of prokaryotes (1,090 of 1,230 
taxa) in the 236 communities show consistent degrees of specialization 
or generalization across all the axes investigated, but these relation­
ships were stronger than environmental correlations among axes and 
robust to different analysis decisions. Specifically, we found that ~57% 
of prokaryotes (697 of 1,230 taxa) were multidimensional general­
ists and ~32% were multidimensional specialists across the four main 
environmental axes (soil pH, moisture, temperature and litter depth). 
The bimodal distribution with ~90% of taxa being multidimensional 
specialists or generalists was robust to other filtering cut-offs (for 
example, including taxa that occur in only 1% or 5% of samples; Sup­
plementary Data 1), and the lower number of multidimensional special­
ists is unlikely to result from insufficient sequencing depth because 
rarefaction curves in our analyses consistently plateaued (Extended 
Data Fig. 2a). Also, when using the more lenient filtering criteria of 
1% and 5% occupancy, the bimodal distribution of multidimensional 
generalists and multidimensional specialists still holds with 48.1% and 
52.4% of taxa identified as multidimensional generalists and 42.3%  
and 36.9% of taxa identified as multidimensional specialists for the 
1% and 5% occupancy cut-offs, respectively. In all cases, mixed spe­
cialization/generalization was unusual with only ~10% of taxa show­
ing a mixture of generalization and specialization across dimensions 
regardless of filtering cut-off. Our results were also robust to using 
an alternative niche breadth metric that accounts for the similarities 
among habitats taxa occupy and the range of environmental conditions 
(niche range and Levin’s niche breadth; Methods and Supplementary 
Data 1). These results highlight that multidimensional generalization 
and multidimensional specialization are opposing niche trajectories 
for soil prokaryotes, supporting that when taxa generalize or special­
ize across one niche dimension, generalization/specialization impacts 
the other niche axes.

In addition, microbial niche breadth on one environmental axis 
explained ~80% of the variation in all other niche breadths (Spearman’s 
ρ = 0.94 ± 0.005, mean ± s.e.m.; Fig. 1), further indicating that niche 
specialization and generalization occur together along multiple envi­
ronmental axes. This conclusion was supported by several additional 
lines of evidence. First, the relationships among niche breadths on 
different environmental axes when calculated at the continental scale 
were more than ten times stronger on average (range: 2–54) than the 
correlations among environmental axes (niche breadth Spearman’s 
ρ = 0.94 ± 0.005 versus environmental |Spearman’s ρ| = 0.37 ± 0.078, 
mean ± s.e.m.; W = 36, P = 0.0022; Fig. 1b–d). Second, multidimensional 
specialization and generalization were still ubiquitous when analy­
ses were done at a higher taxonomic resolution with >14,000 exact 
sequence variant (ESV) taxa (Spearman’s ρ = 0.82 ± 0.010; Extended 
Data Fig. 3a–d). Third, multidimensional specialization and generali­
zation remained pervasive when per cent carbon, per cent nitrogen 
and carbon to nitrogen ratios (additional major determinants of soil 
prokaryotic community composition available for a subset of sites) 
were included in our analyses (Spearman’s ρ for analysis with seven 
niche axes = 0.96 ± 0.001; Extended Data Fig. 3e–h). These results show 
that multidimensional generalization and specialization are biologi­
cally important rather than simple byproducts of correlations between 
environmental axes, and are consistent across different taxonomic 
scales and different types of niche axes.

In addition to their ubiquity at the continental scale, multidimen­
sional specialization and multidimensional generalization were also 
prevalent in soils at local geographic scales. When we determined 
the niche breadth of taxa using the 21 individual sites with sufficient 
within-site replication, 75.2% ± 1.8% of taxa were specialized or general­
ized across all environmental axes with multidimensional generalists 
approximately three times more common than multidimensional spe­
cialists, again indicating the importance of multidimensional shaping 

For example, the more restrictive habitat requirements of multidi­
mensional specialists (organisms that specialize across many niche 
dimensions) compared with single-axis specialists could make multi­
dimensional specialists especially susceptible to the disturbances and 
intensifying stress of the Anthropocene. Despite growing interest in 
multidimensional specialization and generalization2–7, there are few, if 
any, empirical tests of the prevalence of multidimensional specializa­
tion and generalization and their consequent effects on evolutionary 
trajectories, species dominance and ecological communities.

Although plant and animal studies have been important to our 
foundational knowledge of specialization and generalization1,8,9, inves­
tigating multidimensional niche processes in macro-organisms can be 
prohibitively labour intensive for even just a few species or axes4,5,10. By 
contrast, relatively recent advances in next-generation sequencing now 
allow surveys of entire, natural microbial communities (hundreds to 
thousands of species) across multiple environmental axes, locations 
and scales with relatively low time and resource costs. Therefore, the 
recent rise of microbiome studies provides a promising new avenue 
for efficiently investigating multidimensional specialization and mul­
tidimensional generalization and their ecological and evolutionary 
consequences for thousands of taxa.

Here, we quantify multidimensional specialization and generali­
zation in thousands of co-occurring microbes at local and continental 
scales. To do this, we analysed the niche breadths of >1,200 prokaryotes 
from soil microbiomes across the continental United States along envi­
ronmental axes that include some of the most important abiotic factors 
known to shape prokaryotic soil communities (soil pH, litter depth, soil 
moisture and soil temperature as well as per cent soil nitrogen, per cent 
soil carbon and carbon/nitrogen ratio for a subset of sites)11. We confirm 
that these soil parameters are meaningful niche axes for prokaryotes 
in our analyses by demonstrating that they explain approximately 
67% of community variation (Methods). This large-scale investiga­
tion was made possible by the launch ( January 2021) of the National 
Ecological Observatory Network (NEON), which is the National Science 
Foundation’s flagship ecological repository of biological, climatic and 
environmental information across the continental United States and is 
already among the world’s largest repositories of soil microbiome data. 
In this study, we determined (1) the frequencies of multidimensional 
specialization (specialization across all characterized niche dimen­
sions) and multidimensional generalization (generalization across 
all characterized niche dimensions) within microbial communities. 
We then explored the ecology and evolution of multidimensional 
specialists and generalists, asking (2) whether evolutionary transi­
tions from multidimensional specialist to multidimensional generalist 
or vice versa are more common, (3) which group is dominant within 
microbial communities and (4) which group plays more central roles 
in their communities. Our study reveals a new ecological principle of 
prokaryotic niches in which nearly all soil taxa follow only one of two 
opposing trajectories—multidimensional specialization or multidi­
mensional generalization—and highlights how constraining taxa to 
these two trajectories has meaningful consequences for microbial 
ecology and evolution.

Ubiquity of multidimensional specialization and 
generalization
Our evaluation of 236 microbial communities from 30 sites across 
the United States (Extended Data Fig. 1) demonstrated that multidi­
mensional shaping of ecological niches of microbes is ubiquitous, 
with multidimensional generalization occurring more commonly than 
multidimensional specialization. We calculated niche breadths across 
all axes using the standard metric of ‘proportional similarity’, which 
accounts for species resource use and how common those resources 
are in the environment12,13. Microbial taxa (‘species’ as identified by map­
ping to the GreenGenes database) displayed a bimodal distribution in 
niche breadth that we then categorize into ‘specialist’ and ‘generalist’ 
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of ecological niches and that multidimensional generalization is more 
common than multidimensional specialization. Further, >80% of sites 
(17 of 21, t-tests corrected for multiple comparisons) showed signifi­
cantly stronger niche breadth relationships (5.83 ± 1.68 times greater 

across all sites) than environmental correlations. In short, a substan­
tial part of the multidimensional specialization and generalization is 
occurring independently from relationships between environmental 
axes (Extended Data Fig. 4). Our continental- and local-scale analyses 
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Fig. 1 | Multidimensional generalization and specialization are widespread 
in prokaryotes and exceed what can be explained by environmental 
correlations. a, Heatmap of niche breadths highly correlated for 1,230 
prokaryotic taxa (x axis) along four environmental axes (also true with seven 
axes; Extended Data Fig. 3), indicating that most taxa (57%) are generalists 
across all axes and most of the remaining taxa (32%) are specialists across all 
axes. Taxa are ordered by average niche breadth increasing from left to right 
for visualization. b, Standard deviation of niche breadth across all four axes 
demonstrates how consistent niche breadth is across niche dimensions. The 
dashed line represents a standard deviation of 0.1 in proportional similarity. 
Taxa are in the same order as in the heatmap. c, Heatmap of Spearman’s ρ from 
correlations between niche breadths of 1,230 microbial taxa along different 
axes. d, Heatmap of Spearman’s ρ from correlations between environmental 
axes across 236 individual plots. e, Comparison of the absolute values of 
Spearman’s ρ from correlations between niche breadths and correlations 

between environmental axes, demonstrating that niche breadth correlations 
are significantly stronger than correlations in environmental variation among 
axes. Significance determined by two-tailed Mann–Whitney U-test. Box plots 
show the median (middle line) and interquartile range (box). f, Average niche 
breadths of taxa (mean breadth calculated across all niche dimensions) showed 
a bimodal distribution between specialist and generalist at a continental scale. 
g, Similarly, the average niche breadth of taxa calculated within each individual 
site also demonstrated a consistently bimodal distribution between specialist 
and generalist across sites. h, Distribution of multidimensional specialists/
generalists is consistent across scales. The box plot shows the distribution 
of 1,230 taxa that generalize on n dimensions at the local scale (across 21 
independent sites) with the purple points displaying the proportion of 1,230 
taxa that generalize on n dimensions at the continental scale. Box plots show the 
median (middle line) and interquartile range (box).
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together emphasize that multidimensional specialization and gener­
alization is a widespread, scale-independent ecological phenomenon 
in prokaryotic soil communities.

Evolution of multidimensional specialization and 
generalization
Importantly, we found that this pervasive multidimensional specializa­
tion and generalization also have diverse implications for prokaryotic 
ecology and evolution, including for evolutionary transitions between 
generalist and specialist states, species dominance and organisms’ 
roles within microbial networks.

First, the bifurcating trajectories of multidimensional special­
ists and generalists were further supported by low transition rates 
between specialist and generalist states, with specialist-to-generalist 
and generalist-to-specialist transitions occurring ~90% less often than 
expected by chance. Specifically, permutational tests comparing 
observed transition rates with null transition distributions demon­
strated that both specialist-to-generalist and generalist-to-specialist 
transitions occurred ~90% less often than expected by chance 
across all 100 phylogenetic trees tested (false discovery rate (FDR) 
< 0.05 (specialist-to-generalist transitions), Methods; FDR < 0.05 
(generalist-to-specialist transitions), Fig. 2a and Extended Data Fig. 5).  
Limited transitions between niche trajectories could be due to gen­
eralization and specialization requiring specific, opposing heritable 
ecological strategies and adaptations. In other words, the relatively 
few transitions between niche trajectories may reflect a fitness land­
scape in which most prokaryotes occupy one of two types of peaks 
(a specialist or generalist peak) with few intermediate alternatives. 
Mapping other dichotomous ecological frameworks (for example, 
copiotrophy versus oligotrophy, r/K selection theory) to these two 
alternative strategies would be important for building generalizable 
frameworks of prokaryotic ecology by improving the predictive abil­
ity of how prokaryotes navigate their environments (for example, a 
taxon identified as generalist would be predicted to invest more in 
growth rates and replication over resilience). We find signatures of 
this dichotomy in the phylogenetic conservation of niche breadth with 
extreme specialists/generalists far more likely to have close relatives 
that are also as specialized/generalized (Fig. 2b and Methods), which 
is what would be expected if following specialist/generalist strategies 
makes it difficult to switch trajectories. In fact, the relationship between 
conservation of niche breadth and the actual value of niche breadth 
follows a more quadratic (37.4% ± 0.02% adjusted R2, mean ± s.e.m.) 
relationship rather than a linear relationship (25.4% ± 0.01% adjusted R2, 
mean ± s.e.m.) in all 100 phylogenetic trees tested (Fig. 2c and Extended 
Data Fig. 6), indicating that the more specialized taxa are, the less likely 
they will evolve into generalists and vice versa.

These results suggest that multidimensional specialization and 
generalization may require incompatible strategies and adaptations so 
that becoming more specialized makes it more difficult to generalize 
(and vice versa). For example, shifts to a multidimensional specialist 
lifestyle may be difficult for generalists because specialization can 
require changes in multiple genes across the organism’s genome and 
complex genetic regulations susceptible to mismatches in gene–gene 
interactions. These challenges could cause failure to specialize or to 
survive after specialization. Conversely, specialization may require 
adaptive strategies to persist that are incompatible with a general­
ized niche. For example, multidimensional specialists could experi­
ence a trade-off in which, instead of improving fitness by having large 
populations—explored below—they improve fitness by increasing their 
endurance through investing in, for example, more durable spores or 
other stress-tolerant traits1,14 such as the endospore-forming bacteria 
order Clostridiales15 that is enriched for multidimensional specialists. 
Other obstacles could also exist that limit specialist-to-generalist tran­
sitions such as Dollo parsimony because regaining lost functions can 
be difficult16–18 and multidimensional specialization could result in a 

loss of genes/traits essential to persisting in multiple environments, 
thereby hindering transitions to generalist identities. This possibility 
is reinforced by previous work demonstrating that specialist microbes 
tend to have smaller genomes than generalists19,20.

Overall, our findings highlight multidimensional generaliza­
tion and specialization as an intrinsic feature of soil prokaryotes that 
probably represent two opposing evolutionary trajectories. Because 
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Fig. 2 | Multidimensional niche trajectories are phylogenetically conserved. 
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1,000 randomized trees). The dashed line indicates 0 transitions from the null 
expectation. Distributions of transitions in randomized trees were consistent 
across all 100 trees (Kolmogorov–Smirnov test) and are displayed in Extended 
Data Fig. 5. Each point is overlayed on a box plot showing the median (middle line) 
and interquartile range (box). b, LIPA Moran’s I (local measure of phylogenetic 
conservation of average niche breadth) in 1 of the 100 observed trees for all 
1,230 taxa (see Extended Data Fig. 6 for the other 99 relationships which are all 
qualitatively and statistically the same as this example). The more positive the 
LIPA Moran’s I value the more similar niche breadth is between closely related 
taxa. Each point represents one taxon. The blue line is a LOESS fit. Taxa with 
non-significant LIPA Moran’s I have an I of 0. c, Box plot comparing the adjusted 
R2 values of linear and quadratic fits between average niche breadth and LIPA 
Moran’s I. A stronger quadratic fit indicates stronger phylogenetic conservation 
of niche breadth at the extremes (the more generalized/specialized a taxon is, the 
greater the likelihood close relatives will be just as generalized/specialized). Each 
point represents a tree with each model type (linear or quadratic) consisting of 
100 trees (200 trees in total). Each line connects linear and quadratic models of 
the same tree. Two-tailed Wilcoxon signed-rank test, V = 0, P < 2.20 × 10–16.
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multidimensional niche breadth relationships shape evolution, we 
asked whether multidimensional niche breadth impacts prokaryotic 
ecology through community dominance and structure.

Multidimensional generalists dominate 
microbial communities
Second, when investigating ecological consequences of multidimen­
sional generalization/specialization, we found that multidimensional 
generalists were 73 times more dominant on average than multidi­
mensional specialists (Z = −6.28, P < 0.0001; Fig. 3). Specifically, we 
compared the mean and maximum relative abundances (indicators of 
dominance/performance within communities) to determine whether 
the size of a taxon’s niche breadth explains how dominant that taxon is 
relative to other taxa. Prokaryotes with wider niche breadths were more 
abundant than those with narrower breadths for both mean and maxi­
mum relative abundance (Spearman’s ρ = 0.84 and 0.66 (P < 0.0001 and 
P < 0.0001) for mean and maximum relative abundance, respectively; 
Fig. 3). The dominance of generalists highlights how flexible the vast 
majority of the soil prokaryotic community should be to changes in 
environmental conditions because they can persist across a wide range 
of environmental conditions in many different niche dimensions.

The dominance of multidimensional generalists was also highly 
robust to a wide range of biological factors, analysis decisions and 
spatial scales (Extended Data Figs. 7 and 8). For instance, this relation­
ship was maintained when analysing communities at higher taxonomic 
resolutions (>14,000 ESV; Spearman’s ρ = 0.62 and 0.33 (P < 0.0001 
and P < 0.0001) for mean and maximum relative abundance, respec­
tively; Extended Data Fig. 7a,b) and when including the three additional 
resource axes: per cent carbon, per cent nitrogen and carbon to nitro­
gen ratios (Spearman’s ρ = 0.85 and 0.70 (P < 0.0001 and P < 0.0001) 
for mean and maximum relative abundance, respectively; Extended 
Data Fig. 7c,d). Because the dominance of multidimensional general­
ists could be overestimated if abundances of specialists are down­
weighted by absences outside their range, we also conducted analyses 
accounting for the size of each taxon’s niche breadth and the number 
of habitats in which a taxon is present. The goal of these two analyses 
was to demonstrate that our conclusions were robust when accounting 

for the potential of an abundance–occupancy bias. Multidimensional 
generalists were still dominant even after accounting for a taxon’s 
niche breadth (mean relative abundance/mean niche breadth) with 
multidimensional generalists 27 times more abundant than specialists 
on average (Z = 6.3857, P < 0.0001). We also found that when evaluating 
abundances only where taxa occur, multidimensional generalist taxa 
were still four times more dominant on average than specialist taxa 
(Z = −6.1038, P < 0.0001). Finally, the higher abundances of multidi­
mensional generalists compared with specialists occurred not only at 
the continental scale, but also locally (permutational analysis of vari­
ance (ANOVA); P < 0.0001 and P < 0.0001 for mean and maximum rela­
tive abundance; Extended Data Fig. 8). In fact, niche breadth was a more 
important predictor of a taxon’s relative abundance than sampling site, 
with niche breadth explaining >15 times more variation in both relative 
abundance metrics (⍵2

Niche Breadth = 0.52, ⍵2
Site = 0.03). Overall, our analy­

ses indicate that multidimensional generalists are more dominant than 
multidimensional specialists regardless of spatial scales and taxonomic 
resolution, emphasizing that many soil prokaryotes are likely to be 
resilient to environmental changes because multidimensional general­
ists persist across a wide range of conditions in many different niche 
dimensions, and that larger population sizes may be an important part 
of the multidimensional generalists’ ecological strategy.

Multidimensional specialists and community 
function
Finally, multidimensional specialists are central to community net­
works and functions. Microbiome network analysis revealed that multi­
dimensional specialists are more highly connected across the broader 
microbiome community than multidimensional generalists, indicating 
that multidimensional specialists are often ‘hub taxa’ and may have key­
stone roles within their communities. Specifically, when we constructed 
microbiome co-occurrence networks for each site and assessed each 
taxon’s (‘species’) connectedness (degree centrality), specialized taxa 
had a ~220% greater degree centrality than generalist taxa (P < 0.0001, 
permutational ANOVA; Fig. 4). Interestingly, specialist taxa also appear 
to shape the overall structure of their communities because microbi­
omes with greater frequencies of multidimensional specialists have 
significantly higher network clustering (average clustering coefficients; 
F1,19 = 13.19, P = 0.0018), making them highly connected, tightly knit 
communities. ‘Hub taxa’ in microbiomes are often considered keystone 
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species21,22 (organisms that play a disproportionate role in structuring 
communities22–24), which we have recently empirically demonstrated in 
the field25. For example, the removal of a ‘hub’ microbe in leaf endophyte 
and epiphyte communities destabilized communities with greater vari­
ability in community composition when the hub is absent than when it 
is present21, and highly connected microbes (taxa with a high degree 
of centrality) shaped soil microbiome assembly in nature, repeatedly 
increasing biodiversity and deterministically structuring community 
composition during succession25. Therefore, although multidimen­
sional specialists are often fewer and less abundant in communities 
than multidimensional generalists, their central placement within 
microbiome networks highlights that they probably play critical roles 
in these communities. Because central placement within microbiome 
networks and rare microbes have been documented to be important for 
determining microbial community variation at global scales26 and for 
supplying unique, but critical, services within communities24,27, the fact 
that multidimensional specialists have both these characteristics and 
were associated with changes in microbiome-wide network properties 
implicates them as structurally important taxa within communities.

Multidimensional specialists do indeed appear to play central 
functional roles within their communities. We found that many 
prokaryotic orders involved in nutrient-cycling and/or detoxification 
had unexpectedly high proportions of multidimensional specialists  
(Fig. 5 and Supplementary Data 1) further highlighting multidimen­
sional specialists as structurally important to their community net­
works. For example, 90% of Rhodocyclales taxa identified in our dataset 
are multidimensional specialists and, alongside other orders with 
overrepresentation of multidimensional specialists (for example, 
Desulfobacterales and Burkholderiales), have been implicated in 
nitrogen-cycling28, sulfur-cycling29 and detoxification29,30. Clostridiales, 
another order with overrepresentation of multidimensional specialists, 

is associated with nutrient-cycling31 and plant symbiosis32. Also, many 
small orders of nutrient cyclers contained high numbers of multidi­
mensional specialists; for instance, all three taxa of the green sulfur 
bacteria Chlorobiales33 identified in our dataset were multidimen­
sional specialists. In essence, although multidimensional specialists 
may be rare, their persistence in communities and their central roles 
in microbial networks probably reflect their important functions in 
microbiomes, including crucial roles in providing nutrients and detoxi­
fying environments.

Conclusions
In conclusion, our study highlights multidimensional generalization 
and specialization as an important ecological principle in prokaryotic 
communities by demonstrating that virtually all soil prokaryotes fol­
low two opposing trajectories in multidimensional niche space with 
cascading consequences for evolutionary transitions, taxon dominance 
and microbial roles within communities. Given that these microbes 
undergird many ecosystem functions and services (for example, 
nutrient-cycling, carbon sequestration, supporting primary produc­
ers), widespread multidimensional specialization and generalization 
influences natural processes by shaping prokaryotic ecology and evolu­
tion. For example, ecosystem services reliant on multidimensional gen­
eralists may be more robust to environmental instability3,34–36 compared 
with those reliant on multidimensional specialists because multidimen­
sional specialists may be more dependent on maintaining a complex 
set of environmental conditions. The discovery of multidimensional 
generalization and specialization as a ubiquitous feature of soil prokary­
ote communities has also sparked many questions for future work. 
First, investigation into the underlying mechanisms and processes that 
constrain prokaryotes to those two trajectories would be profitable. 
In particular, we advocate for studies asking: ‘Do multidimensional 
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Fig. 5 | Multidimensional specialists are overrepresented in many 
nutrient-cycling and detoxifying orders of soil prokaryotes. a, Each dot 
represents an order and their sizes represent the number of taxa identified 
in our dataset. Purple dots are highlighted to identify orders of interest for 
further multidimensional specialist research (that is, the order contained at 
least five taxa and twofold higher ratios of multidimensional specialists to 
multidimensional generalists). The solid line represents the observed ratio 
of multidimensional specialists to multidimensional generalists across the 
entire dataset of prokaryotic communities, 0.571. A jitter is applied to points to 
better highlight the number of orders in our dataset. b, Bar chart of the purple 
highlighted orders in a. The numbers on the y axis are the sizes of the orders. The 
x axis is the proportion of the orders identified as multidimensional specialists. 

The grey ‘null expectation’ is the percentage of specialists in the whole dataset 
(36.34%). Icons to the right of columns represent functions of specialist taxa 
within these orders that could be verified by a literature search (literature search 
results are provided in Supplementary Data 1). ‘Plant growth promotion’ includes 
bacteria that increase plant growth or improve plant defence. ‘Detoxification’ 
includes heavy metal immobilization, xenobiotic degradation and hydrocarbon 
degradation. ‘Nutrient addition’ includes important biogeochemical cycling 
processes such as carbon fixation, denitrification, sulfate reduction and nitrogen 
fixation. ‘Complex carbon catabolism’ includes breakdown of complex, difficult 
to metabolize carbon sources such as lignin, chitin and cellulose. The numbers 
of multidimensional specialists and generalists for all orders are provided in 
Supplementary Data 1.
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generalists have more genetic diversity in their populations allowing 
them to occupy greater multidimensional niche space?’, ‘Can speciali­
zation on one axis restrict the environmental conditions a taxon is 
exposed to thereby leading to specialization across additional axes 
through adaptation to those restricted conditions?’ and/or ‘To what 
extent do pleiotropic and epistatic interactions among genes underpin 
multidimensional changes in the niche?’. Although agglomerative 
strategies such as bulk physiological measurements (for example, 
carbon flux in soil cores) or meta-genomes/meta-transcriptomes of 
whole soils do not allow fine-enough resolution to address these types 
of questions, the advent of new microfluidic sequencing and culturing 
technologies37–39 could provide the fine-tuned resolution necessary to 
study the genetics and physiology of not just populations, but the actual 
individual microbes that make up those populations. In addition, some 
abiotic dimensions, such as oxygen availability, can vary at microhabitat 
levels and change dramatically along a single granule of soil40,41. As a 
result, future work analysing these fine-scale niche dimensions would 
be interesting to determine whether the multidimensional relation­
ships we found for ‘macrohabitat’ dimensions are also important at 
the microhabitat scale. Microhabitat studies could provide valuable 
insight into whether multidimensional specialists utilize microhabi­
tats to avoid competitive exclusion by the community-dominating 
multidimensional generalists. Second, although multidimensional 
generalists were more common and more dominant in our study, mul­
tidimensional specialists did make up a meaningful part of the overall 
communities (32%) and were more often hub taxa, making their ecology 
especially interesting for future investigation. To understand how these 
multidimensional specialists may be structuring their communities, 
we propose that single-cell sequencing approaches could be used to 
profile functional expression of these taxa in situ and microfluidic cul­
turing approaches can be used to isolate these putative keystones for 
phenotyping and experimental manipulations. Third, we have analysed 
multidimensional niche breadth relationships along abiotic dimen­
sions (for example, pH, temperature), but, moving forward, it would 
be valuable to also analyse biotic dimensions (for example, host plant 
breadth) to determine whether multidimensional specialization and 
generalization is also common for the biotic niche of prokaryotes. 
Unlike abiotic niche dimensions, biotic niches can be actively shaped 
by adaptation in the partner organisms, which may require different 
ecological strategies outside multidimensional specialization and 
generalization. Recent work in fungi and oomycetes suggests that spe­
cialization and generalization may not be strongly correlated between 
abiotic and biotic niche dimensions42–44, but this has not been tested 
in soil prokaryotes. Because multidimensional specialization creates 
more constraints on where organisms can persist, multidimensional 
specialists may be at greater risk from accelerating habitat loss and envi­
ronmental change in the Anthropocene10,45, highlighting how ecosystem 
management that accounts for multidimensional environments could 
benefit microbial specialists and their communities. Further, because 
of multidimensional specialists’ central role in their communities, the 
loss or decline of these taxa could perturb the entire prokaryotic com­
munity, especially in cases in which they provide unique, but critical, 
functions. Thus, future studies testing predictions of multidimensional 
specialist/generalist resilience and consequent effects on ecosystem 
function and stability could be especially important for understanding 
microbial roles in ecosystem responses to global change.

Methods
All analyses and data preparation were conducted in R (v.4.0.2) using 
the packages described in Supplementary Data 1 unless indicated 
otherwise.

Microbial sequence and environmental data collection
For this study, we analysed prokaryotic soil communities and envi­
ronmental/biogeochemical data from 236 plots in NEON, which is the 

National Science Foundation’s flagship ecological repository of bio­
logical, climatic and environmental information across the continental 
United States. NEON provides long-term, standardized data needed 
to understand ecological principles of the natural world46. NEON’s 
study sites are split into three hierarchical groupings (Extended Data 
Fig. 1): site (broadest), plot and subplot (narrowest). NEON is already 
among the world’s largest repositories of soil microbiome data, col­
lecting prokaryotic community and biogeochemical data from soil 
cores at each subplot which are further subdivided into ‘organic’ and 
‘mineral’ layers (if present) and analysed separately. Sample collec­
tion and raw data processing are described in the ‘NEON User Guide 
to Microbe Marker Gene Sequences’ (DP1.10108.001; DP1.20280.001; 
DP1.20282.001)47.

To obtain data on the prokaryotic community, we downloaded raw, 
demultiplexed prokaryotic amplicon sequencing data from the NEON 
database48 using scripts in Supplementary Data 2. NEON samples were 
collected from field sites at peak greenness/productivity to standard­
ize across habitats. Microbial genomes were extracted by NEON using 
homogenization and lysis bead beating, and DNA was extracted using 
the DNEasy PowerSoil kit following the standard operating procedures 
described49,50. To survey prokaryotic communities, the hypervariable 
V4 region of 16S ribosomal RNA from extracted microbial genomes 
was amplified using standard Earth Microbiome Project primers, 515F 
(GTGYCAGCMGCCGCGGTAA) and 806R (GTGYCAGCMGCCGCGG­
TAA)47,51,52. Amplicons were sequenced on the Illumina MiSeq platform 
as described in the Argonne National Laboratory (2015) and Battelle 
Ecology (2018) standard operating procedures49,50.

To compare prokaryotic communities and abundances in different 
environments, we also obtained environmental data known to greatly 
shape microbial communities: soil pH, soil temperature, litter depth, 
soil moisture, per cent soil nitrogen, per cent soil carbon and carbon 
to nitrogen ratio (Supplementary Data 1)11,53. All 236 plots (30 sites) had 
data on soil pH, soil temperature, litter depth and soil moisture; how­
ever, a subset of the data (84 plots, 10 sites) had additional soil chemical 
characteristics (per cent soil carbon, per cent soil nitrogen and carbon 
to nitrogen ratio; Extended Data Fig. 1). As a result, we analysed niche 
breadth twice: once across the 236-plot dataset and once across the 
subsetted 84-plot dataset that had additional soil chemical informa­
tion. Analysing niche breadth with both the full 236-plot dataset and the 
subsetted 84-plot dataset allowed us to analyse first more prokaryotic 
communities (across fewer environmental axes) and second more 
environmental axes (with fewer prokaryotic communities). In the first 
dataset, our environmental axes explain 34% and 64% of community 
variation without and with spatial structure (including the site ID of the 
plot as a factor), respectively (distance-based redundancy analysis). In 
the second dataset, 52% and 67% of community variation is explained by 
the environmental axes without and with spatial structure, respectively 
(distance-based redundancy analysis). Taken together, these analyses, 
alongside the literature11,54, demonstrate that the environmental axes 
we selected are important components of prokaryotic niches.

Microbial sequence processing
To convert raw prokaryotic sequencing data to relative abundances of 
prokaryotes (Supplementary Data 2), we processed microbial sequenc­
ing data through QIIME2 (v.2019.1) to remove sequencing adapters and 
chimeras, denoise single-end reads and classify operational taxonomic 
units (OTUs)55. In short, we denoised microbial sequencing data using 
Dada2, which categorized reads into ESVs56. We normalized the abun­
dances of ESVs by dividing the observed number of denoised reads for 
a variant by the total number of denoised reads in a sample. We further 
grouped ESVs into ‘species’ using a naive Bayes classifier against the 97% 
taxonomy reference sequence database from GreenGenes (v.13.5)57. We 
constructed the classifier by using the fit-classifier-naive-bayes func­
tion58 within QIIME2’s feature-classifier plug-in on the 97% taxonomy 
reference database. We then used the above classifier on the ESVs by 
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using the classify-sklearn function (feature-classifier plug-in)55. This 
allowed grouping ESVs into taxa from ‘kingdom’ to ‘species’ levels. We 
refer to ‘species’ (‘level 7’ in QIIME2’s terminology) as OTUs from here 
onward. Sample rarefaction curves plateaued indicating that further 
sequencing would be unlikely to identify additional taxa (Extended 
Data Fig. 2). To compare communities across samples, we averaged 
the reads for each OTU across subplots within a plot and repeated this 
for any environmental data that was also collected at the subplot level 
to avoid overrepresentation of plots that were sampled more often at 
the subplot level.

Calculating niche breadth
We first filtered the datasets, removing OTUs that were not present in 
at least 10% of all plots (in ≤23 of 236 plots for the larger site dataset 
or in ≤8 of 84 plots for the smaller site dataset). This 10% cut-off fil­
ter was used to avoid spurious niche breadths resulting from poorly 
represented taxa with a lack of data that prevents accurate estima­
tion of niche breadth. Likewise, we also calculated niche breadth for 
taxa within a site to account for the potential that differences in niche 
breadth seen at the continental scale are a result of large dispersal limits 
or other local geographic characteristics as opposed to environmental 
parameters. We calculated OTU niche breadth (NBi) using proportional 
similarity12:

NBi = 1 − 0.5∑
j
|pij − qj|

Proportional similarity constrains niche breadth between val­
ues of the smallest qj and 1 with higher values indicating wider niche 
breadths. Proportional similarity quantifies the habitat preference of 
taxa by determining whether a taxon uses habitats in proportion to 
their availability (generalization) or occurs disproportionately within 
one or a few habitats (specialization). To do this, proportional similarity 
compares the proportion of a taxon’s population in each habitat with 
how common that habitat is. For instance, if the proportions of a taxon’s 
population mirrors how common habitats are, then that taxon has no 
habitat preference and is generalized. Proportional similarity takes 
into account the proportion of taxon i (pi) present in habitat j and the 
proportion of all habitats that are habitat j (qj). Proportional similarity 
offers two advantages: (1) because NBi can only reach a maximum of 1, 
it is possible to compare niche breadths across multiple environments 
(this is particularly important in our analyses when niche breadth is cal­
culated at each site) because different environments will be on the same 
scale; and (2) proportional similarity accounts for how rare/common a 
habitat is in the community’s environment so that, if the proportion of 
a taxon’s population in a given habitat is almost equal to how common 
that habitat is (there is no preference), the difference between pij and 
qj approaches 0 for every habitat (j) thus resulting in niche breadths 
closer to 1 (ref. 12). To identify ‘habitats’ along our environmental axes, 
we binned each axis into ten bins using the functions cut and cut2 in 
the base and Hmisc R packages59,60 (our results were consistent up to 
our highest tested number of bins, 30; Extended Data Fig. 2b–d). We 
also repeated our analyses using two other common niche breadth 
metrics—niche range and Levin’s niche breadth—finding consistent 
results (results and statistics are provided in Supplementary Data 1).  
We also confirm that multidimensional niche breadths are robust 
across different time points with (1) the same multidimensional niche 
breadth relationships present in the two most sampled time points in 
the NEON dataset ( July and October 2017) and (2) the niche breadth of 
taxa consistent between these two time points (Spearman’s ρ = 0.76).

Relationships between niche breadth across axes
To determine whether niche breadth is related across multiple axes 
(that is, whether multidimensional niche specialization and/or gener­
alization are common or if niche breadths have no relationship among 

niche axes), we correlated niche breadths of each taxon on one envi­
ronmental axis (for example, soil pH) with niche breadths on all other 
environmental axes using Spearman correlations. Importantly, we also 
examined whether multidimensional specialization and generalization 
were due to correlation in the environmental axes themselves (for 
example, if organisms’ multidimensional generalization on soil tem­
perature and soil moisture niche axes is because soil temperature and 
moisture are strongly correlated). To do this, we determined the rela­
tionship between environmental axes using Spearman correlations and 
compared the absolute values of those Spearman’s coefficients with 
the Spearman’s coefficients for the niche breadth relationships using 
a Mann–Whitney U-test. To test whether effects were the same at local 
scales, we repeated these analyses at each site using niche breadths 
calculated at the site level with the aovp function (lmPerm package). 
aovp uses permutation tests to calculate significance in an ANOVA 
model (without requiring a normal distribution). This test allowed 
us to determine whether relationships between niche breadths were 
stronger or weaker than relationships between environmental axes 
after accounting for variation associated with a sample’s originating 
site. To evaluate the robustness of our results to taxonomic resolution, 
we repeated these analyses at the higher taxonomic resolution of ESVs.

Comparing taxon dominance of multidimensional specialists 
and generalists
To assess whether multidimensional specialists or generalists are more 
dominant in communities, we determined the average and maximum 
relative abundances of all taxa across the 236 communities and com­
pared differences between multidimensional specialists (all niche 
breadths below the local minimum in average niche breadth distribu­
tions) and multidimensional generalists (all niche breadths above the 
local minimum) for each abundance metric with permutational tests 
(independence_test function, coin package). After the permutational 
test determined whether these specialists and generalists had different 
abundances, we ran Spearman’s correlations tests of the two abun­
dance metrics against niche breadth to determine: (1) whether relative 
abundance increases or decreases with niche breadth and (2) how much 
of the variation in abundance differences could be attributed to niche 
breadth. We also repeated this analysis at the higher taxonomic resolu­
tion of ESVs to ensure results were robust. We conducted several other 
analyses to further check that the results were robust. For instance, 
because effects on abundance may result from dispersal limits at a 
continental scale, we ran a similar test at the local ‘site’ level. Specifi­
cally, we tested whether niche breadth (calculated for each taxon at 
each site) explained the two abundance metrics after accounting for 
variation associated with which site a sample originates by using the 
aovp function (lmPerm package). In addition, because dominance of 
generalists could be overestimated if abundances of specialists are 
downweighted by absences outside their range, we also conducted 
two analyses accounting for the potential of an abundance–occupancy 
bias by accounting for sizes of taxons’ niche breadths and the number 
of habitats in which a taxon is present.

Calculating transition rates between multidimensional 
generalist and specialist taxa
To determine whether multidimensional generalists and specialists 
are more or less likely to transition to the opposite state (for exam­
ple, generalist transitions to specialist) than expected by chance, we 
constructed phylogenetic trees using the microbial sequences from 
the NEON sequencing data and calculated transitions with stochastic 
character mapping. Because OTUs consist of multiple ESVs and obser­
vations may change based on which variant is used to represent an OTU, 
we constructed 100 phylogenetic trees in which a randomly chosen 
variant within an OTU is used to represent that OTU. We performed 
multiple sequence alignments using the CLUSTALΩ61 algorithm with 
default parameters. We then converted the alignments to distance 

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02149-y

matrices with the dist.ml function (phangorn package) and used the 
Jukes and Cantor 1969 ( JC69) substitution model which assumes equal 
frequencies of nucleotides and equal mutation rates between nucleo­
tides62. We built trees using the neighbour-joining method (NJ function 
in phangorn package) and rooted these trees at the midpoint (midpoint 
function in phangorn package)63–65. For each of the 100 constructed 
trees, we compared the observed transition rates from specialist to 
generalist (and vice versa) under an ‘equal rates’ model using the make.
simmap function (phytools package) against the transition rates of 
trees in which ‘specialist’ and ‘generalist’ status were randomized 1,000 
times without replacement. This allowed us to determine: (1) whether 
the observed transition rates in the 100 observed trees were different 
from expected by random chance and (2) how much the observed 
transition rates changed compared with random expectations. We 
used an ‘equal rates’ model, which assumes that transitions between 
specialist and generalist status (and vice versa) occur at equal rates66. 
We calculated one-tailed P values for the observed number of transi­
tions from generalist to specialist status and vice versa for each of the 
100 observed trees by calculating the number of transitions in 1,000 
randomized trees that were less than the number of transitions in the 
observed tree and then dividing that sum by 1,000 (the number of per­
mutations). We then corrected for multiple comparisons by calculating 
the FDR (Benjamini–Hochberg correction).

To measure whether more specialized/generalized taxa have 
more specialized/generalized relatives than intermediately special­
ized/generalized taxa, we calculated Local Indicators of Phylogenetic 
Association (LIPA) Moran’s I of average niche breadth across all 100 
previously constructed trees. LIPA Moran’s I is the same formula for 
Local Indicators of Spatial Association, but, instead of being applied 
on spatial distances, it is applied to phylogenetic distances67. For each 
taxon, LIPA Moran’s I can be calculated for its average niche breadth to 
quantify whether niche breadth in that area of the tree is a hotspot of 
phylogenetic clustering in niche breadth by applying a weighting con­
stant of dij

−1 where dij is the phylogenetic distance between focal taxon 
(i) and all other taxa in the phylogeny (j). We then determined whether 
Local Moran’s I (niche breadth conservation) is constant throughout 
the entire phylogeny or highest at the two niche breadth extremes 
by regressing Local Moran’s I against average niche breadth. We then 
compared, for each observed tree, the adjusted R-squared of two gen­
eralized linear models: (1) one in which Local Moran’s I was the response 
variable and average niche breadth was the predictor variable, and (2) 
a quadratic model with the same variables and an additional predictor 
variable of average niche breadth squared.

Assessing relationships between niche breadth and network 
centrality
To determine whether multidimensional specialists or generalists have 
central roles in their ecological communities, we used network theory 
to assess if specialist or generalist taxa are more highly connected  
to other taxa within their microbiome community network and thus 
more likely to be hub taxa within microbiomes. We constructed 
co-occurrence networks using the FastSpar package68 for each site with 
at least ten plots (21 NEON sites spread across the United States). Net­
works had 283 ± 13.7 species (mean ± s.e.m.). FastSpar is an optimized 
reimplementation of the SparCC algorithm which infers correlations 
between taxa while limiting the occurrence of spurious correlations 
inherent in analyses of compositional datasets (for example, relative 
abundances of taxa in communities)69. Links within co-occurrence 
networks are significant correlations between taxa abundances (as 
identified by FastSpar), which can represent interactions between 
connected taxa and/or shared habitat preferences70–73. As a result, 
analysing the number of links a taxon has with others in a network 
(degree centrality) has been used in the literature to provide informa­
tion about whether a taxon is a keystone species and/or a habitat indica­
tor species21,30,74–76. We calculated the degree centrality of each taxon 

in each network using the degree_centrality function in the networkx 
package (Python). The degree_centrality function normalizes the 
number of links a taxon has by the number of other taxa in a network 

Number of a taxon ′s links
Number of nodes in a network−1

 which allows for comparing degree centralities 

of taxa across networks of varying sizes. To identify relationships 
between specialization and degree centrality, we regressed the degree 
centrality of taxa against their average niche breadth at that site and 
blocked by the site from which degree centrality and average niche 
breadth are collected. We perform this regression using the permuta­
tional strategy in the aovp function (lmPerm package). We also analysed 
global network structure of the networks and regressed average clus­
tering coefficient (how tightly knit is the network) with the proportion 
of the network that are specialists using a generalized linear model.

Reporting summary
Further information on research design is available in the Nature Port­
folio Reporting Summary linked to this article.

Data availability
All raw sequencing and environmental data are publicly available 
through the NEON database (DP1.10081.001). Scripts to download 
data from NEON and process sequencing data into ESVs and OTUs are 
available in Supplementary Data 2. OTU abundances from ‘kingdom’ 
to ‘species’ levels are available in Supplementary Data 1. We used the 
GreenGenes database (v.13.5) for taxonomic assignments.

Code availability
Code to replicate our analyses and a ‘project’ folder containing all the 
intermediate files and statistical summaries from RMarkdown scripts 
are available at Zenodo (https://doi.org/10.5281/zenodo.7747186).
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Extended Data Fig. 1 | Sampling design of NEON soil collections. Map of 30 
NEON collection sites across the continental United States. There are 236 plots 
(up to 10 plots per site) in which complete data on soil pH, soil temperature, litter 
depth, and soil moisture are collected (‘full dataset’). A subset of the 236 plots (84 

plots across 10 sites) had additional biogeochemical data on per cent carbon, per 
cent nitrogen, and carbon/nitrogen ratios (‘subsetted dataset’). Distribution of 
the number of plots at each site is displayed in the heatmap for both the full and 
subsetted datasets. Dark grey squares indicates data was not available (NA).
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Extended Data Fig. 2 | Rarefaction curves of each sample split by site and 
robustness of bimodal niche breadth distributions to analysis decisions. 
a) All samples reached plateaus in their rarefaction curves indicating that we 
had enough sequencing depth to fully characterize communities. Each line 
represents the rarefaction curve of a sample. b-d) To calculate niche breadth 

along continuous axes, these axes must be broken into bins. Here, we show that 
bimodal distributions of niche breadth are robust to the important analysis 
decision of defining ‘habitats’ (that is, bins). In this manuscript, we present the 
results from the most conservative binning of 10 bins.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Niche breadth and environmental correlations across 
niche dimensions for Exact Sequence Variants (A-D) and including carbon/
nitrogen niche axes (E-H). ESV analyses are represented by subfigures A-D and 
taxa level analyses including carbon/nitrogen data are represented by subfigures 
E-H. a) Heatmap of 14,015 prokaryotic ESV taxa (x-axis) along environmental axes. 
ESVs are sorted from lowest to highest average niche breadth for visualization. 
b) Heatmap of Spearman’s ρ from correlations between niche breadths of 14,015 
ESVs along different axes. c) Heatmap of Spearman’s ρ from correlations between 
environmental axes calculated across 236 individual plots. d) Comparison of the 
absolute values of Spearman’s ρ from correlations between niche breadths and 
correlations between environmental axes, demonstrating that niche breadth 
correlations are significantly stronger than correlations in environmental 
variation among axes. Significance determined by two-tailed Mann-Whitney 

U test (W = 36, p = 0.002). Box plots show the median (middle line) and 
interquartile range (the box). e) Heatmap of 1085 prokaryotic taxa (x-axis) 
along seven environmental axes that include measures of carbon and nitrogen. 
Taxa are sorted from lowest to highest average niche breadth for visualization. 
f ) Heatmap of Spearman’s ρ from correlations between niche breadths of the 
1085 taxa along the seven different axes. g) Heatmap of Spearman’s ρ from 
correlations between the seven environmental axes across 84 individual 
plots. h) Comparison of the absolute values of Spearman’s ρ from correlations 
between niche breadths and correlations between environmental axes, again 
demonstrating that niche breadth correlations are significantly stronger than 
correlations in environmental variation among axes. Significance determined 
by two-tailed Mann-Whitney U test (W = 440, p = 7.43 × 10−12). Box plots show the 
median (middle line) and interquartile range (the box).
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Extended Data Fig. 4 | Differences in magnitude of correlations between 
niche breadths and environmental axes. Boxplots of the magnitude of 
Spearman’s coefficients between niche breadths and environmental axes at 
each of the 21 sites. When we account for the site from which data was collected, 
niche breadth relationships are still substantially stronger than environmental 

correlations (p < 2.20 × 10−16, permutational ANOVA accounting for origin site) 
with the type of the relationship (that is, relationship between niche breadths 
versus relationship between environmental axes) having an effect size >4 times 
stronger than site identity (ωcorrelation type/ωsite = 4.17). Boxplots show the median 
(middle line) and interquartile range (the box).
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Extended Data Fig. 5 | Randomized state transitions are consistent across 
all 100 observed representative trees. Kolomogorov-Smirnov statistics (a 
measure of how different the shape of two distributions are) of generalist-to-
specialist (a) and specialist-to-generalist (b) transitions in all 100 observed 
representative trees (x-axis). Each point is the comparison of the randomized 

distribution of the focal representative tree (value of x-axis) against each other 
representative tree. All values are below a D of 0.1 (dashed horizontal line) 
indicating that our analyses are robust to changes in which ESV represents each 
OTU. The higher the D, the more different the distributions are from each other. 
The lower the D, the more similar the distributions are.
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Extended Data Fig. 6 | Phylogenetic relationships of niche breadth in 
closely-related taxa. Scatter plots of LIPA Moran’s I of average niche breadth 
for all 1230 taxa (points) in all 100 observed trees (each graph). A LOESS fit (blue 
line) is plotted to visualize if pattern follows linear or quadratic relationships 
(compared in Fig. 2). A higher LIPA Moran’s I indicates more phylogenetic 
conservation of average niche breadth among closely related taxa. A quadratic 

relationship (a better fit than a linear model in all trees; Fig. 2) indicates that 
phylogenetic conservation of average niche breadth is strongest when taxa are 
highly specialized or highly generalized. The quadratic relationship further 
supports multidimensional specialization and generalization as opposing niche 
trajectories.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Relationship between average relative abundance 
and niche breadth of Exact Sequence Variants (A-B) and including carbon/
nitrogen niche axes data (C-D). ESV analyses are represented by subfigures 
A-B and taxa level analyses including carbon/nitrogen data are represented by 
subfigures C-D. a) Average abundances of generalist (dark purple) and specialist 
(light purple) taxa (14,015 ESV taxa total). Significance calculated with a two-
tailed permutational test (Z = 5.79, p = 6.87 × 10−9). Boxplots show the median 
(middle line) and interquartile range (the box). b) Average relative abundances 
of 14015 prokaryotic ESV taxa regressed against average niche breadth. Direction 
of the relationship is determined using a Spearman’s correlation test and 
significance is calculated using a two-tailed permutational test (p < 2.20 × 10−16). 
c) Average abundances of generalist (dark purple) and specialist (light purple) 

taxa (1085 taxa total). Significance calculated with a two-tailed permutational 
test (Z = −6.34, p = 2.27 × 10−10). Boxplots show the median (middle line) and 
interquartile range (the box). d) Average relative abundances of 1085 taxa 
regressed against average niche breadth. In B and D, Lines are fitted with LOESS 
smoothing, shaded regions around the lines are the 95% confidence intervals, 
and the x-axes are on a log10 scale. Dashed horizontal line indicates the local 
minima in the bimodal distribution of average niche breadth used to indicate 
specialists (light purple) and generalists (dark purple). Direction of relationships 
were determined using a Spearman’s correlation test and significance was 
calculated using two-tailed permutational tests in which abundances were 
randomized 10,000 times (p < 2.20 × 10−16).
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Extended Data Fig. 8 | Average relative abundance within a site is explained 
by a taxon’s average niche breadth at that site. Average relative abundances 
of taxa at each of 21 sites regressed against average niche breadth in the 

corresponding site. Lines are fitted with LOESS smoothing, and shaded regions 
around the lines are the 95% confidence interval. The x-axes are displayed on a 
log10 scale.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All raw sequencing and environmental data are publicly available through the NEON database (DP1.10081.001). Scripts to download data from NEON and process 
sequencing data into ESVs and OTUs are available in Supplementary File 2. OTU abundances from “kingdom” to “species” levels are available in Supplementary File 
1. Code to replicate our analyses and a “project” folder containing all the intermediate files and statistical summaries from Rmarkdown scripts are available at 
Zenodo (10.5281/zenodo.7747186). We used the publicly available GreenGenes database (version 13.5) for taxonomic assignments.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation 
was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data exclusions Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established. 

Replication Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this 
OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.

Randomization Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates 
were controlled OR if this is not relevant to your study, explain why.

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
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Research sample information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 

studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description An analysis of prokaryotic niche breadth across multiple niche dimensions using the publicly available NEON database.

Research sample Environmental data such as soil pH, soil moisture, and nutrient content as well as microbiome sequencing data of the 16S 
hypervariable 4 region.

Sampling strategy Sampling of multiple subplots within a plot within 30 sites across the continental United States. For our purposes, we average 
abundances across subplots per plot to avoid pseudoreplication from plots that are sampled more frequently by the National 
Ecological Observatory Network.

Data collection All files are download using the scripts in Supplementary File 2. Data collection is described using the NEON data products as cited in 
the Manuscript text and in Supplementary File 1.

Timing and spatial scale Continental scale.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility All raw data is publicly accessible through NEON and our analyses are provided through Zenodo as a project folder (see data 
availability statement).

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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