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Habitat specialization underpins biological processes from species
distributions to speciation. However, organisms are often described as
specialists or generalists based on a single niche axis, despite facing complex,
multidimensional environments. Here, we analysed 236 environmental

soil microbiomes across the United States and demonstrate that 90% of
>1,200 prokaryotes followed one of two trajectories: specialization on all
niche axes (multidimensional specialization) or generalization on all axes
(multidimensional generalization). We then documented that this pervasive
multidimensional specialization/generalization had many ecological and
evolutionary consequences. First, multidimensional specialization and
generalization are highly conserved with very few transitions between

these two trajectories. Second, multidimensional generalists dominated
communities because they were 73 times more abundant than specialists.
Lastly, multidimensional specialists played important roles in community
structure with ~220% more connections in microbiome networks. These
results indicate that multidimensional generalization and specialization are
evolutionarily stable with multidimensional generalists supporting larger
populations and multidimensional specialists playing important roles within
communities, probably stemming from their overrepresentation among
pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate
that the vast majority of soil prokaryotes are restricted to one of two
multidimensional niche trajectories, multidimensional specialization or mul-
tidimensional generalization, which then has far-reaching consequences for
evolutionary transitions, microbial dominance and community roles.

In nature, organisms navigate complex environments by embracing  generalization have historically focused on only asingle environmental
diverse conditions (generalists) or utilizing asmaller portion of avail-  axis which overlooks the reality that organisms experience complex,
ableresources and habitats (specialists). The extent towhichorganisms  heterogeneous environments that change on many axes through space
specialize or generalize is central to many ecological and evolution-  and time. Omitting environmental complexity disregards relation-
ary processes such as species distributions, rates of speciationand  ships across niche axes and the impact they have on organisms with
resilience to disturbances'*. However, studies of specializationand  importantimplications for their ecology, evolutionand conservation.
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For example, the more restrictive habitat requirements of multidi-
mensional specialists (organisms that specialize across many niche
dimensions) compared with single-axis specialists could make multi-
dimensional specialists especially susceptible to the disturbances and
intensifying stress of the Anthropocene. Despite growing interest in
multidimensional specialization and generalization”, there are few, if
any, empirical tests of the prevalence of multidimensional specializa-
tion and generalization and their consequent effects on evolutionary
trajectories, species dominance and ecological communities.

Although plant and animal studies have been important to our
foundational knowledge of specialization and generalization*’, inves-
tigating multidimensional niche processes in macro-organisms canbe
prohibitively labour intensive for even just a few species or axes**'°, By
contrast, relatively recent advances in next-generation sequencing now
allow surveys of entire, natural microbial communities (hundreds to
thousands of species) across multiple environmental axes, locations
and scales with relatively low time and resource costs. Therefore, the
recent rise of microbiome studies provides a promising new avenue
for efficiently investigating multidimensional specialization and mul-
tidimensional generalization and their ecological and evolutionary
consequences for thousands of taxa.

Here, we quantify multidimensional specialization and generali-
zationinthousands of co-occurring microbes at local and continental
scales. To do this, we analysed the niche breadths of >1,200 prokaryotes
from soil microbiomes across the continental United States along envi-
ronmental axes thatinclude some of the mostimportant abiotic factors
knownto shape prokaryotic soil communities (soil pH, litter depth, soil
moisture and soil temperature as well as per cent soil nitrogen, per cent
soil carbonand carbon/nitrogen ratio for a subset of sites)". We confirm
that these soil parameters are meaningful niche axes for prokaryotes
in our analyses by demonstrating that they explain approximately
67% of community variation (Methods). This large-scale investiga-
tion was made possible by the launch (January 2021) of the National
Ecological Observatory Network (NEON), whichis the National Science
Foundation’s flagship ecological repository of biological, climatic and
environmental information across the continental United States and is
already among the world’s largest repositories of soil microbiome data.
In this study, we determined (1) the frequencies of multidimensional
specialization (specialization across all characterized niche dimen-
sions) and multidimensional generalization (generalization across
all characterized niche dimensions) within microbial communities.
We then explored the ecology and evolution of multidimensional
specialists and generalists, asking (2) whether evolutionary transi-
tions from multidimensional specialist to multidimensional generalist
or vice versa are more common, (3) which group is dominant within
microbial communities and (4) which group plays more central roles
in their communities. Our study reveals a new ecological principle of
prokaryotic niches in which nearly all soil taxa follow only one of two
opposing trajectories—multidimensional specialization or multidi-
mensional generalization—and highlights how constraining taxa to
these two trajectories has meaningful consequences for microbial
ecology and evolution.

Ubiquity of multidimensional specialization and
generalization

Our evaluation of 236 microbial communities from 30 sites across
the United States (Extended Data Fig. 1) demonstrated that multidi-
mensional shaping of ecological niches of microbes is ubiquitous,
with multidimensional generalization occurring more commonly than
multidimensional specialization. We calculated niche breadths across
all axes using the standard metric of ‘proportional similarity’, which
accounts for species resource use and how common those resources
areinthe environment'>, Microbial taxa (‘species’ as identified by map-
pingtothe GreenGenes database) displayed abimodal distributionin
niche breadth that we then categorize into ‘specialist’and ‘generalist’

categories based on the local minima between the two peaks in niche
breadth (a heuristic delineation between low and high niche breadth;
Methods and Fig. 1e,f). Not only did ~90% of prokaryotes (1,090 0f 1,230
taxa) inthe 236 communities show consistent degrees of specialization
or generalization across all the axes investigated, but these relation-
ships were stronger than environmental correlations among axes and
robust to different analysis decisions. Specifically, we found that ~-57%
of prokaryotes (697 of 1,230 taxa) were multidimensional general-
ists and ~32% were multidimensional specialists across the four main
environmental axes (soil pH, moisture, temperature and litter depth).
The bimodal distribution with ~90% of taxa being multidimensional
specialists or generalists was robust to other filtering cut-offs (for
example, including taxa that occur in only 1% or 5% of samples; Sup-
plementary Data1), and the lower number of multidimensional special-
ists is unlikely to result from insufficient sequencing depth because
rarefaction curves in our analyses consistently plateaued (Extended
DataFig. 2a). Also, when using the more lenient filtering criteria of
1% and 5% occupancy, the bimodal distribution of multidimensional
generalists and multidimensional specialists still holds with 48.1% and
52.4% of taxa identified as multidimensional generalists and 42.3%
and 36.9% of taxa identified as multidimensional specialists for the
1% and 5% occupancy cut-offs, respectively. In all cases, mixed spe-
cialization/generalization was unusual with only ~10% of taxa show-
ing a mixture of generalization and specialization across dimensions
regardless of filtering cut-off. Our results were also robust to using
an alternative niche breadth metric that accounts for the similarities
among habitats taxa occupy and the range of environmental conditions
(nicherange and Levin’s niche breadth; Methods and Supplementary
Datal). Theseresults highlight that multidimensional generalization
and multidimensional specialization are opposing niche trajectories
for soil prokaryotes, supporting that when taxa generalize or special-
ize across one niche dimension, generalization/specializationimpacts
the other niche axes.

In addition, microbial niche breadth on one environmental axis
explained -80% of the variationin all other niche breadths (Spearman’s
p=0.94+0.005, mean +s.e.m.; Fig. 1), further indicating that niche
specialization and generalization occur together along multiple envi-
ronmental axes. This conclusion was supported by several additional
lines of evidence. First, the relationships among niche breadths on
different environmental axes when calculated at the continental scale
were more than ten times stronger on average (range: 2-54) than the
correlations among environmental axes (niche breadth Spearman’s
p=0.94 £ 0.005 versus environmental [Spearman’s p| = 0.37 £ 0.078,
mean ts.e.m.; W=36,P=0.0022;Fig.1b-d). Second, multidimensional
specialization and generalization were still ubiquitous when analy-
ses were done at a higher taxonomic resolution with >14,000 exact
sequence variant (ESV) taxa (Spearman’s p = 0.82 + 0.010; Extended
Data Fig.3a-d). Third, multidimensional specialization and generali-
zation remained pervasive when per cent carbon, per cent nitrogen
and carbon to nitrogen ratios (additional major determinants of soil
prokaryotic community composition available for a subset of sites)
were included in our analyses (Spearman’s p for analysis with seven
nicheaxes = 0.96 + 0.001; Extended Data Fig.3e-h). These results show
that multidimensional generalization and specialization are biologi-
callyimportant rather than simple byproducts of correlations between
environmental axes, and are consistent across different taxonomic
scales and different types of niche axes.

Inaddition to their ubiquity at the continental scale, multidimen-
sional specialization and multidimensional generalization were also
prevalent in soils at local geographic scales. When we determined
the niche breadth of taxa using the 21 individual sites with sufficient
within-sitereplication, 75.2% + 1.8% of taxa were specialized or general-
ized across all environmental axes with multidimensional generalists
approximately three times more common than multidimensional spe-
cialists, againindicating theimportance of multidimensional shaping
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Fig.1|Multidimensional generalization and specialization are widespread
in prokaryotes and exceed what can be explained by environmental
correlations. a, Heatmap of niche breadths highly correlated for 1,230
prokaryotic taxa (x axis) along four environmental axes (also true with seven
axes; Extended Data Fig. 3), indicating that most taxa (57%) are generalists
across all axes and most of the remaining taxa (32%) are specialists across all
axes. Taxa are ordered by average niche breadth increasing from left to right
for visualization. b, Standard deviation of niche breadth across all four axes
demonstrates how consistent niche breadth is across niche dimensions. The
dashed line represents a standard deviation of 0.1in proportional similarity.
Taxa arein the same order asin the heatmap. ¢, Heatmap of Spearman’s p from
correlations between niche breadths of 1,230 microbial taxa along different
axes. d, Heatmap of Spearman’s p from correlations between environmental
axes across 236 individual plots. e, Comparison of the absolute values of
Spearman’s p from correlations between niche breadths and correlations

Average niche breadth

Number of
generalized dimensions

between environmental axes, demonstrating that niche breadth correlations
aressignificantly stronger than correlations in environmental variation among
axes. Significance determined by two-tailed Mann-Whitney U-test. Box plots
show the median (middle line) and interquartile range (box). f, Average niche
breadths of taxa (mean breadth calculated across all niche dimensions) showed
abimodal distribution between specialist and generalist at a continental scale.
g, Similarly, the average niche breadth of taxa calculated within each individual
site also demonstrated a consistently bimodal distribution between specialist
and generalist acrossssites. h, Distribution of multidimensional specialists/
generalists is consistent across scales. The box plot shows the distribution
of1,230 taxa that generalize on n dimensions at the local scale (across 21
independent sites) with the purple points displaying the proportion of 1,230
taxa that generalize on n dimensions at the continental scale. Box plots show the
median (middle line) and interquartile range (box).

of ecological niches and that multidimensional generalizationis more
common than multidimensional specialization. Further, >80% of sites
(17 of 21, t-tests corrected for multiple comparisons) showed signifi-
cantly stronger niche breadth relationships (5.83 + 1.68 times greater

across all sites) than environmental correlations. In short, a substan-
tial part of the multidimensional specialization and generalization is
occurring independently from relationships between environmental
axes (Extended Data Fig. 4). Our continental- and local-scale analyses
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together emphasize that multidimensional specialization and gener-
alizationis awidespread, scale-independent ecological phenomenon
in prokaryotic soil communities.

Evolution of multidimensional specialization and
generalization

Importantly, we found that this pervasive multidimensional specializa-
tionand generalization also have diverse implications for prokaryotic
ecology and evolution, including for evolutionary transitions between
generalist and specialist states, species dominance and organisms’
roles within microbial networks.

First, the bifurcating trajectories of multidimensional special-
ists and generalists were further supported by low transition rates
between specialist and generalist states, with specialist-to-generalist
and generalist-to-specialist transitions occurring ~90% less often than
expected by chance. Specifically, permutational tests comparing
observed transition rates with null transition distributions demon-
strated that both specialist-to-generalist and generalist-to-specialist
transitions occurred ~90% less often than expected by chance
across all 100 phylogenetic trees tested (false discovery rate (FDR)
< 0.05 (specialist-to-generalist transitions), Methods; FDR < 0.05
(generalist-to-specialist transitions), Fig. 2a and Extended Data Fig. 5).
Limited transitions between niche trajectories could be due to gen-
eralization and specialization requiring specific, opposing heritable
ecological strategies and adaptations. In other words, the relatively
few transitions between niche trajectories may reflect a fitness land-
scape in which most prokaryotes occupy one of two types of peaks
(a specialist or generalist peak) with few intermediate alternatives.
Mapping other dichotomous ecological frameworks (for example,
copiotrophy versus oligotrophy, r/K selection theory) to these two
alternative strategies would be important for building generalizable
frameworks of prokaryotic ecology by improving the predictive abil-
ity of how prokaryotes navigate their environments (for example, a
taxon identified as generalist would be predicted to invest more in
growth rates and replication over resilience). We find signatures of
this dichotomy inthe phylogenetic conservation of niche breadth with
extreme specialists/generalists far more likely to have close relatives
that are also as specialized/generalized (Fig. 2b and Methods), which
iswhatwould be expected if following specialist/generalist strategies
makesit difficult to switchtrajectories. Infact, the relationship between
conservation of niche breadth and the actual value of niche breadth
follows a more quadratic (37.4% + 0.02% adjusted R?, mean +s.e.m.)
relationship rather thanalinear relationship (25.4% + 0.01% adjusted R?,
mean ts.e.m.)inall100 phylogenetic trees tested (Fig. 2c and Extended
DataFig. 6), indicating that the more specialized taxa are, the less likely
they will evolve into generalists and vice versa.

These results suggest that multidimensional specialization and
generalization may requireincompatible strategies and adaptations so
that becoming more specialized makes it more difficult to generalize
(and vice versa). For example, shifts to a multidimensional specialist
lifestyle may be difficult for generalists because specialization can
require changes in multiple genes across the organism’s genome and
complex genetic regulations susceptible to mismatchesingene-gene
interactions. These challenges could cause failure to specialize or to
survive after specialization. Conversely, specialization may require
adaptive strategies to persist that are incompatible with a general-
ized niche. For example, multidimensional specialists could experi-
enceatrade-offin which, instead of improving fitness by having large
populations—explored below—they improve fitness by increasing their
endurancethroughinvestingin, for example, more durable spores or
other stress-tolerant traits*** such as the endospore-forming bacteria
order Clostridiales® that is enriched for multidimensional specialists.
Other obstacles could also exist that limit specialist-to-generalist tran-
sitions such as Dollo parsimony because regaining lost functions can
be difficult’®'® and multidimensional specialization could resultin a
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Fig.2|Multidimensional niche trajectories are phylogenetically conserved.
a, Per cent difference (A) between number of transitions in 100 observed trees
versus the null expectations (average number of transitions in the corresponding
1,000 randomized trees). The dashed line indicates O transitions from the null
expectation. Distributions of transitions in randomized trees were consistent
across all100 trees (Kolmogorov-Smirnov test) and are displayed in Extended
DataFig. 5. Each pointis overlayed onabox plot showing the median (middle line)
and interquartile range (box). b, LIPA Moran’s / (local measure of phylogenetic
conservation of average niche breadth) in1of the 100 observed trees for all

1,230 taxa (see Extended Data Fig. 6 for the other 99 relationships which are all
qualitatively and statistically the same as this example). The more positive the
LIPA Moran’s / value the more similar niche breadth is between closely related
taxa. Each point represents one taxon. The blue lineis a LOESS fit. Taxa with
non-significant LIPA Moran’s / have an/of 0. ¢, Box plot comparing the adjusted
R?values of linear and quadratic fits between average niche breadth and LIPA
Moran’s /. A stronger quadratic fit indicates stronger phylogenetic conservation
of niche breadth at the extremes (the more generalized/specialized a taxon s, the
greater the likelihood close relatives will be just as generalized/specialized). Each
point represents a tree with each model type (linear or quadratic) consisting of
100 trees (200 treesin total). Each line connects linear and quadratic models of
the same tree. Two-tailed Wilcoxon signed-rank test, V=0, P<2.20 x107%,

loss of genes/traits essential to persisting in multiple environments,
thereby hindering transitions to generalist identities. This possibility
isreinforced by previous work demonstrating that specialist microbes
tend to have smaller genomes than generalists'>*.

Overall, our findings highlight multidimensional generaliza-
tion and specialization as an intrinsic feature of soil prokaryotes that
probably represent two opposing evolutionary trajectories. Because
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Fig.3 | Multidimensional generalists are more dominant within
communities. a, Mean abundances of generalist (dark purple) and specialist
(light purple) taxa. Significance calculated with a two-sided permutational

test (Z=-6.2806, P=3.37 x107'°). Box plots show the median (middle line) and
interquartile range (box). b, Average relative abundances of 1,230 taxa regressed
against average niche breadth. Theline s fitted with LOESS smoothing, and

the shaded region around the line is the 95% confidence interval. The dashed
horizontal line indicates the local minima in the bimodal distribution of average
niche breadth used to indicate specialists (light purple) and generalists (dark
purple) inb. The direction of the relationship is determined using a Spearman’s
correlation test and significance is calculated using a two-tailed permutational
testin which abundances are randomized 10,000 times (P <2.20 x 107¢).

multidimensional niche breadth relationships shape evolution, we
asked whether multidimensional niche breadth impacts prokaryotic
ecology through community dominance and structure.

Multidimensional generalists dominate
microbial communities
Second, when investigating ecological consequences of multidimen-
sional generalization/specialization, we found that multidimensional
generalists were 73 times more dominant on average than multidi-
mensional specialists (Z=-6.28, P<0.0001; Fig. 3). Specifically, we
compared the mean and maximum relative abundances (indicators of
dominance/performance within communities) to determine whether
the size of ataxon’s niche breadth explains how dominant that taxonis
relative to other taxa. Prokaryotes with wider niche breadths were more
abundant than those with narrower breadths for both mean and maxi-
mumrelative abundance (Spearman’s p = 0.84 and 0.66 (P < 0.0001and
P <0.0001) formean and maximumrelative abundance, respectively;
Fig. 3). The dominance of generalists highlights how flexible the vast
majority of the soil prokaryotic community should be to changes in
environmental conditions because they can persist across awide range
of environmental conditions in many different niche dimensions.
The dominance of multidimensional generalists was also highly
robust to a wide range of biological factors, analysis decisions and
spatial scales (Extended DataFigs. 7 and 8). Forinstance, thisrelation-
ship was maintained when analysing communities at higher taxonomic
resolutions (>14,000 ESV; Spearman’s p = 0.62 and 0.33 (P < 0.0001
and P < 0.0001) for mean and maximum relative abundance, respec-
tively; Extended DataFig. 7a,b) and whenincluding the three additional
resource axes: per cent carbon, per cent nitrogen and carbon to nitro-
gen ratios (Spearman’s p=0.85 and 0.70 (P < 0.0001 and P< 0.0001)
for mean and maximum relative abundance, respectively; Extended
DataFig. 7c,d). Because the dominance of multidimensional general-
ists could be overestimated if abundances of specialists are down-
weighted by absences outside their range, we also conducted analyses
accounting for the size of each taxon’s niche breadth and the number
of habitats in which a taxon is present. The goal of these two analyses
was to demonstrate that our conclusions were robust when accounting
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Fig. 4 | Multidimensional specialists are more central to microbiome
networks. a, Schematic of analysis performed. We calculated the normalized
degree centrality (number of links out of all possible links within amicrobiome
network) and regressed centrality against the average niche breadth of each
taxon. b, Violin plot of normalized degree centrality of multidimensional
specialists and multidimensional generalists. Taxa with smaller niche breadths
(more specialized) are disproportionately more central than taxa with wider
niche breadths (more generalized) even after accounting for site identity
(P<2.20 107", permutational linear model).

for the potential of an abundance-occupancy bias. Multidimensional
generalists were still dominant even after accounting for a taxon’s
niche breadth (mean relative abundance/mean niche breadth) with
multidimensional generalists 27 times more abundant than specialists
onaverage (Z=6.3857,P < 0.0001). We also found that when evaluating
abundances only where taxa occur, multidimensional generalist taxa
were still four times more dominant on average than specialist taxa
(Z=-6.1038, P<0.0001). Finally, the higher abundances of multidi-
mensional generalists compared with specialists occurred not only at
the continental scale, but also locally (permutational analysis of vari-
ance (ANOVA); P< 0.0001and P < 0.0001 for mean and maximumrela-
tive abundance; Extended DataFig. 8).Infact, niche breadth was amore
important predictor of ataxon’srelative abundance than sampling site,
with niche breadth explaining >15times more variationinbothrelative
abundance metrics (0yiche preaden = 0-52, wsie = 0.03). Overall, our analy-
sesindicate that multidimensional generalists are more dominant than
multidimensional specialists regardless of spatial scales and taxonomic
resolution, emphasizing that many soil prokaryotes are likely to be
resilient to environmental changes because multidimensional general-
ists persist across a wide range of conditions in many different niche
dimensions, and that larger population sizes may be animportant part
of the multidimensional generalists’ ecological strategy.

Multidimensional specialists and community
function

Finally, multidimensional specialists are central to community net-
works and functions. Microbiome network analysis revealed that multi-
dimensional specialists are more highly connected across the broader
microbiome community than multidimensional generalists, indicating
that multidimensional specialists are often ‘hub taxa’ and may have key-
stoneroles withintheir communities. Specifically, whenwe constructed
microbiome co-occurrence networks for each site and assessed each
taxon’s (‘species’) connectedness (degree centrality), specialized taxa
had a-220%greater degree centrality than generalist taxa (P < 0.0001,
permutational ANOVA; Fig. 4). Interestingly, specialist taxaalso appear
to shape the overall structure of their communities because microbi-
omes with greater frequencies of multidimensional specialists have
significantly higher network clustering (average clustering coefficients;
F,1=13.19, P=0.0018), making them highly connected, tightly knit
communities. ‘Hub taxa’in microbiomes are often considered keystone

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02149-y

a 4,
30 1
2
R
©
8
2 20
2]
—
o
]
p=4
10 Order size
® 25
@ 50
[ _RE
04

T
40

T
20

No. of generalists

Plant growth promotion Detoxification
Fig. 5| Multidimensional specialists are overrepresented in many
nutrient-cycling and detoxifying orders of soil prokaryotes. a, Each dot
represents an order and their sizes represent the number of taxa identified
inour dataset. Purple dots are highlighted to identify orders of interest for
further multidimensional specialist research (that is, the order contained at
least five taxa and twofold higher ratios of multidimensional specialists to
multidimensional generalists). The solid line represents the observed ratio

of multidimensional specialists to multidimensional generalists across the
entire dataset of prokaryotic communities, 0.571. A jitter is applied to points to
better highlight the number of orders in our dataset. b, Bar chart of the purple
highlighted ordersina. The numbers on the y axis are the sizes of the orders. The
Xxaxis is the proportion of the orders identified as multidimensional specialists.

Size of order

-INull expectation
53 -Burkholderiales

41 1 Clostridiales

15 -{Bacteroidales

12 1Pseudomonadales
Rhodobacterales
Verrucomicrobiales
Rhodocyclales
Desulfobacterales
Enterobacteriales
Chlorophyta
Anaerolineales
Methylococcales
Neisseriales
Chloroflexales
Nitrosomonadales
Lactobacillales
Pseudanabaenales
Deinococcalgs

10

0.25 0.50 0.75 1.00

Per cent specialist

Nutrient addition Complex carbon catabolism

The grey ‘null expectation’is the percentage of specialists in the whole dataset
(36.34%).Icons to the right of columns represent functions of specialist taxa
within these orders that could be verified by a literature search (literature search
results are provided in Supplementary Data1). ‘Plant growth promotion’includes
bacteria thatincrease plant growth or improve plant defence. ‘Detoxification’
includes heavy metal immobilization, xenobiotic degradation and hydrocarbon
degradation. ‘Nutrient addition’ includes important biogeochemical cycling
processes such as carbon fixation, denitrification, sulfate reduction and nitrogen
fixation. ‘Complex carbon catabolism’ includes breakdown of complex, difficult
to metabolize carbon sources such as lignin, chitin and cellulose. The numbers
of multidimensional specialists and generalists for all orders are provided in
Supplementary Datal.

species®* (organisms that play adisproportionate role in structuring
communities***), whichwe have recently empirically demonstrated in
the field”. For example, the removal of a‘hub’microbe inleafendophyte
and epiphyte communities destabilized communities with greater vari-
ability in community compositionwhen the hubis absent than whenit
is present”, and highly connected microbes (taxa with a high degree
of centrality) shaped soil microbiome assembly in nature, repeatedly
increasing biodiversity and deterministically structuring community
composition during succession®. Therefore, although multidimen-
sional specialists are often fewer and less abundant in communities
than multidimensional generalists, their central placement within
microbiome networks highlights that they probably play critical roles
inthese communities. Because central placement within microbiome
networks and rare microbes have been documented tobe important for
determining microbial community variation at global scales* and for
supplying unique, but critical, services within communities**”, the fact
that multidimensional specialists have both these characteristics and
were associated with changes in microbiome-wide network properties
implicates them as structurally important taxa within communities.
Multidimensional specialists do indeed appear to play central
functional roles within their communities. We found that many
prokaryotic ordersinvolved in nutrient-cycling and/or detoxification
had unexpectedly high proportions of multidimensional specialists
(Fig. 5 and Supplementary Data 1) further highlighting multidimen-
sional specialists as structurally important to their community net-
works. For example, 90% of Rhodocyclales taxaidentified in our dataset
are multidimensional specialists and, alongside other orders with
overrepresentation of multidimensional specialists (for example,
Desulfobacterales and Burkholderiales), have been implicated in
nitrogen-cycling®®, sulfur-cycling” and detoxification**°. Clostridiales,
another order with overrepresentation of multidimensional specialists,

is associated with nutrient-cycling® and plant symbiosis*. Also, many
small orders of nutrient cyclers contained high numbers of multidi-
mensional specialists; for instance, all three taxa of the green sulfur
bacteria Chlorobiales® identified in our dataset were multidimen-
sional specialists. In essence, although multidimensional specialists
may be rare, their persistence in communities and their central roles
in microbial networks probably reflect their important functions in
microbiomes, including crucial roles in providing nutrients and detoxi-
fying environments.

Conclusions

In conclusion, our study highlights multidimensional generalization
and specialization as animportant ecological principle in prokaryotic
communities by demonstrating that virtually all soil prokaryotes fol-
low two opposing trajectories in multidimensional niche space with
cascading consequences for evolutionary transitions, taxon dominance
and microbial roles within communities. Given that these microbes
undergird many ecosystem functions and services (for example,
nutrient-cycling, carbon sequestration, supporting primary produc-
ers), widespread multidimensional specialization and generalization
influences natural processes by shaping prokaryotic ecology and evolu-
tion. For example, ecosystem services reliant on multidimensional gen-
eralists may be more robust to environmental instability>**~* compared
with thosereliant on multidimensional specialists because multidimen-
sional specialists may be more dependent on maintaining a complex
set of environmental conditions. The discovery of multidimensional
generalization and specialization as a ubiquitous feature of soil prokary-
ote communities has also sparked many questions for future work.
First, investigationinto the underlying mechanisms and processes that
constrain prokaryotes to those two trajectories would be profitable.
In particular, we advocate for studies asking: ‘Do multidimensional
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generalists have more genetic diversity in their populations allowing
themto occupy greater multidimensional niche space?’, ‘Can speciali-
zation on one axis restrict the environmental conditions a taxon is
exposed to thereby leading to specialization across additional axes
through adaptation to those restricted conditions?’ and/or ‘To what
extentdo pleiotropic and epistaticinteractions among genes underpin
multidimensional changes in the niche?’. Although agglomerative
strategies such as bulk physiological measurements (for example,
carbon flux in soil cores) or meta-genomes/meta-transcriptomes of
wholesoils do not allow fine-enough resolution to address these types
of questions, the advent of new microfluidic sequencing and culturing
technologies® * could provide the fine-tuned resolution necessary to
study the genetics and physiology of not just populations, but the actual
individual microbes that make up those populations. Inaddition, some
abioticdimensions, such as oxygen availability, can vary at microhabitat
levels and change dramatically along a single granule of soil***'. As a
result, future work analysing these fine-scale niche dimensions would
be interesting to determine whether the multidimensional relation-
ships we found for ‘macrohabitat’ dimensions are also important at
the microhabitat scale. Microhabitat studies could provide valuable
insight into whether multidimensional specialists utilize microhabi-
tats to avoid competitive exclusion by the community-dominating
multidimensional generalists. Second, although multidimensional
generalists were more common and more dominantin our study, mul-
tidimensional specialists did make up ameaningful part of the overall
communities (32%) and were more often hub taxa, making their ecology
especially interesting for future investigation. Tounderstand how these
multidimensional specialists may be structuring their communities,
we propose that single-cell sequencing approaches could be used to
profile functional expression of these taxa in situ and microfluidic cul-
turing approaches can be used to isolate these putative keystones for
phenotyping and experimental manipulations. Third, we have analysed
multidimensional niche breadth relationships along abiotic dimen-
sions (for example, pH, temperature), but, moving forward, it would
be valuableto also analyse biotic dimensions (for example, host plant
breadth) to determine whether multidimensional specialization and
generalization is also common for the biotic niche of prokaryotes.
Unlike abiotic niche dimensions, biotic niches can be actively shaped
by adaptation in the partner organisms, which may require different
ecological strategies outside multidimensional specialization and
generalization. Recent work in fungi and oomycetes suggests that spe-
cialization and generalization may not be strongly correlated between
abiotic and biotic niche dimensions***, but this has not been tested
insoil prokaryotes. Because multidimensional specialization creates
more constraints on where organisms can persist, multidimensional
specialistsmay be at greater risk fromaccelerating habitat loss and envi-
ronmental change in the Anthropocene'®*, highlighting how ecosystem
management thataccounts for multidimensional environments could
benefit microbial specialists and their communities. Further, because
of multidimensional specialists’ central role in their communities, the
loss or decline of these taxa could perturb the entire prokaryotic com-
munity, especially in cases in which they provide unique, but critical,
functions. Thus, future studies testing predictions of multidimensional
specialist/generalist resilience and consequent effects on ecosystem
function and stability could be especiallyimportant for understanding
microbial roles in ecosystem responses to global change.

Methods

All analyses and data preparation were conducted in R (v.4.0.2) using
the packages described in Supplementary Data 1 unless indicated
otherwise.

Microbial sequence and environmental data collection
For this study, we analysed prokaryotic soil communities and envi-
ronmental/biogeochemical datafrom 236 plotsin NEON, whichis the

National Science Foundation'’s flagship ecological repository of bio-
logical, climatic and environmental information across the continental
United States. NEON provides long-term, standardized data needed
to understand ecological principles of the natural world*®. NEON’s
study sites are splitinto three hierarchical groupings (Extended Data
Fig.1): site (broadest), plot and subplot (narrowest). NEON is already
among the world’s largest repositories of soil microbiome data, col-
lecting prokaryotic community and biogeochemical data from soil
cores at each subplot which are further subdivided into ‘organic’ and
‘mineral’ layers (if present) and analysed separately. Sample collec-
tion and raw data processing are described in the ‘NEON User Guide
to Microbe Marker Gene Sequences’ (DP1.10108.001; DP1.20280.001;
DP1.20282.001)".

To obtain dataon the prokaryotic community, we downloaded raw,
demultiplexed prokaryoticamplicon sequencing datafrom the NEON
database*® using scriptsin Supplementary Data2. NEON samples were
collected fromfield sites at peak greenness/productivity to standard-
ize across habitats. Microbial genomes were extracted by NEON using
homogenization and lysis bead beating, and DNA was extracted using
the DNEasy PowerSoil kit following the standard operating procedures
described***°. To survey prokaryotic communities, the hypervariable
V4 region of 16S ribosomal RNA from extracted microbial genomes
was amplified using standard Earth Microbiome Project primers, 515F
(GTGYCAGCMGCCGCGGTAA) and 806R (GTGYCAGCMGCCGCGG-
TAA)**%>2, Amplicons were sequenced on the lllumina MiSeq platform
as described in the Argonne National Laboratory (2015) and Battelle
Ecology (2018) standard operating procedures*>*°.

To compare prokaryotic communities and abundancesin different
environments, we also obtained environmental dataknown to greatly
shape microbial communities: soil pH, soil temperature, litter depth,
soil moisture, per cent soil nitrogen, per cent soil carbon and carbon
tonitrogen ratio (Supplementary Data1)"*. All 236 plots (30 sites) had
dataonsoil pH, soil temperature, litter depth and soil moisture; how-
ever, asubset of the data (84 plots, 10 sites) had additional soil chemical
characteristics (per cent soil carbon, per cent soil nitrogen and carbon
to nitrogenratio; Extended Data Fig. 1). As aresult, we analysed niche
breadth twice: once across the 236-plot dataset and once across the
subsetted 84-plot dataset that had additional soil chemical informa-
tion. Analysing niche breadth with both the full236-plot dataset and the
subsetted 84-plot dataset allowed us to analyse first more prokaryotic
communities (across fewer environmental axes) and second more
environmental axes (with fewer prokaryoticcommunities). In the first
dataset, our environmental axes explain 34% and 64% of community
variation withoutand with spatial structure (including the site ID of the
plotasafactor), respectively (distance-based redundancy analysis). In
the second dataset, 52% and 67% of community variation is explained by
the environmental axes without and with spatial structure, respectively
(distance-based redundancy analysis). Taken together, these analyses,
alongside the literature™**, demonstrate that the environmental axes
we selected are important components of prokaryotic niches.

Microbial sequence processing

To convertraw prokaryotic sequencing datatorelative abundances of
prokaryotes (Supplementary Data 2), we processed microbial sequenc-
ing data through QIIME2 (v.2019.1) to remove sequencing adapters and
chimeras, denoise single-end reads and classify operational taxonomic
units (OTUs)*. Inshort, we denoised microbial sequencing data using
Dada2, which categorized reads into ESVs*. We normalized the abun-
dances of ESVs by dividing the observed number of denoised reads for
avariant by the total number of denoised readsinasample. We further
grouped ESVsinto ‘species’ using a naive Bayes classifier against the 97%
taxonomy reference sequence database from GreenGenes (v.13.5)*". We
constructed the classifier by using the fit-classifier-naive-bayes func-
tion*® within QIIME2’s feature-classifier plug-in on the 97% taxonomy
reference database. We then used the above classifier on the ESVs by
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using the classify-sklearn function (feature-classifier plug-in)®. This
allowed grouping ESVs into taxa from ‘kingdom’ to ‘species’ levels. We
refer to ‘species’ (‘level 7 in QIIME2’s terminology) as OTUs from here
onward. Sample rarefaction curves plateaued indicating that further
sequencing would be unlikely to identify additional taxa (Extended
Data Fig. 2). To compare communities across samples, we averaged
thereadsforeach OTU across subplots within aplot and repeated this
for any environmental datathat was also collected at the subplot level
to avoid overrepresentation of plots that were sampled more often at
the subplotlevel.

Calculating niche breadth

We first filtered the datasets, removing OTUs that were not present in
at least 10% of all plots (in <23 of 236 plots for the larger site dataset
or in <8 of 84 plots for the smaller site dataset). This 10% cut-off fil-
ter was used to avoid spurious niche breadths resulting from poorly
represented taxa with a lack of data that prevents accurate estima-
tion of niche breadth. Likewise, we also calculated niche breadth for
taxawithinasite toaccount for the potential that differencesin niche
breadthseenat the continental scale are aresult of large dispersal limits
orotherlocal geographic characteristics asopposed to environmental
parameters. We calculated OTU niche breadth (NB,) using proportional
similarity:

NB; =1-0.5)" Ip; — gl
J

Proportional similarity constrains niche breadth between val-
ues of the smallest g;and 1 with higher values indicating wider niche
breadths. Proportional similarity quantifies the habitat preference of
taxa by determining whether a taxon uses habitats in proportion to
their availability (generalization) or occurs disproportionately within
oneor afew habitats (specialization). To do this, proportional similarity
compares the proportion of ataxon’s population in each habitat with
how common that habitat is. Forinstance, ifthe proportions ofataxon’s
population mirrors how common habitats are, then that taxon has no
habitat preference and is generalized. Proportional similarity takes
into account the proportion of taxon i (p;) present in habitatjand the
proportion of all habitats that are habitat (g;). Proportional similarity
offers two advantages: (1) because NB;can only reach amaximum of 1,
itis possible to compare niche breadths across multiple environments
(thisis particularlyimportantin our analyses when niche breadthis cal-
culated ateach site) because different environments will be on the same
scale; and (2) proportional similarity accounts for how rare/commona
habitatisinthe community’s environment so that, if the proportion of
ataxon’spopulationinagiven habitat is almost equal tohow common
that habitat is (there is no preference), the difference between p;and
g;approaches O for every habitat (j) thus resulting in niche breadths
closerto1(ref.12). Toidentify ‘habitats’ along our environmental axes,
we binned each axis into ten bins using the functions cut and cut2 in
the base and Hmisc R packages®**° (our results were consistent up to
our highest tested number of bins, 30; Extended Data Fig. 2b-d). We
also repeated our analyses using two other common niche breadth
metrics—niche range and Levin’s niche breadth—finding consistent
results (results and statistics are provided in Supplementary Data 1).
We also confirm that multidimensional niche breadths are robust
across different time points with (1) the same multidimensional niche
breadth relationships present in the two most sampled time pointsin
the NEON dataset (July and October 2017) and (2) the niche breadth of
taxa consistent between these two time points (Spearman’s p = 0.76).

Relationships between niche breadth across axes

To determine whether niche breadth is related across multiple axes
(thatis, whether multidimensional niche specialization and/or gener-
alization are common or if niche breadths have no relationship among

niche axes), we correlated niche breadths of each taxon on one envi-
ronmental axis (for example, soil pH) with niche breadths on all other
environmental axes using Spearman correlations. Importantly, we also
examined whether multidimensional specialization and generalization
were due to correlation in the environmental axes themselves (for
example, if organisms’ multidimensional generalization on soil tem-
perature and soil moisture niche axes is because soil temperature and
moisture are strongly correlated). To do this, we determined the rela-
tionship between environmental axes using Spearman correlations and
compared the absolute values of those Spearman’s coefficients with
the Spearman’s coefficients for the niche breadth relationships using
aMann-Whitney U-test. To test whether effects were the same at local
scales, we repeated these analyses at each site using niche breadths
calculated at the site level with the aovp function (ImPerm package).
aovp uses permutation tests to calculate significance in an ANOVA
model (without requiring a normal distribution). This test allowed
us to determine whether relationships between niche breadths were
stronger or weaker than relationships between environmental axes
after accounting for variation associated with a sample’s originating
site. To evaluate the robustness of our results to taxonomic resolution,
werepeated these analyses at the higher taxonomic resolution of ESVs.

Comparing taxon dominance of multidimensional specialists
and generalists

To assess whether multidimensional specialists or generalists are more
dominantin communities, we determined the average and maximum
relative abundances of all taxa across the 236 communities and com-
pared differences between multidimensional specialists (all niche
breadths below the local minimum in average niche breadth distribu-
tions) and multidimensional generalists (all niche breadths above the
local minimum) for each abundance metric with permutational tests
(independence_test function, coin package). After the permutational
test determined whether these specialists and generalists had different
abundances, we ran Spearman’s correlations tests of the two abun-
dance metrics against niche breadth to determine: (1) whether relative
abundanceincreases or decreases with niche breadthand (2) how much
ofthe variationinabundance differences could be attributed to niche
breadth. We also repeated this analysis at the higher taxonomic resolu-
tion of ESVs to ensure results were robust. We conducted several other
analyses to further check that the results were robust. For instance,
because effects on abundance may result from dispersal limits at a
continental scale, we ran a similar test at the local ‘site’ level. Specifi-
cally, we tested whether niche breadth (calculated for each taxon at
each site) explained the two abundance metrics after accounting for
variation associated with which site a sample originates by using the
aovp function (ImPerm package). In addition, because dominance of
generalists could be overestimated if abundances of specialists are
downweighted by absences outside their range, we also conducted
two analyses accounting for the potential of anabundance-occupancy
bias by accounting for sizes of taxons’ niche breadths and the number
of habitats in which a taxonis present.

Calculating transition rates between multidimensional
generalist and specialist taxa

To determine whether multidimensional generalists and specialists
are more or less likely to transition to the opposite state (for exam-
ple, generalist transitions to specialist) than expected by chance, we
constructed phylogenetic trees using the microbial sequences from
the NEON sequencing data and calculated transitions with stochastic
character mapping. Because OTUs consist of multiple ESVs and obser-
vations may change based onwhich variantisusedtorepresentan OTU,
we constructed 100 phylogenetic trees in which a randomly chosen
variant within an OTU is used to represent that OTU. We performed
multiple sequence alignments using the CLUSTALQ® algorithm with
default parameters. We then converted the alignments to distance
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matrices with the dist.ml function (phangorn package) and used the
Jukes and Cantor1969 (JC69) substitution model which assumes equal
frequencies of nucleotides and equal mutation rates between nucleo-
tides®?. We built trees using the neighbour-joining method (NJ function
inphangorn package) and rooted these trees at the midpoint (midpoint
function in phangorn package)®* . For each of the 100 constructed
trees, we compared the observed transition rates from specialist to
generalist (and vice versa) under an‘equal rates’model using the make.
simmap function (phytools package) against the transition rates of
treesin which‘specialist’and ‘generalist’ status were randomized 1,000
times without replacement. This allowed us to determine: (1) whether
the observed transitionratesin the 100 observed trees were different
from expected by random chance and (2) how much the observed
transition rates changed compared with random expectations. We
used an ‘equal rates’ model, which assumes that transitions between
specialist and generalist status (and vice versa) occur at equal rates®®.
We calculated one-tailed P values for the observed number of transi-
tions from generalist to specialist status and vice versa for each of the
100 observed trees by calculating the number of transitions in 1,000
randomized trees that were less than the number of transitions in the
observedtree and then dividing that sum by 1,000 (the number of per-
mutations). We then corrected for multiple comparisons by calculating
the FDR (Benjamini-Hochberg correction).

To measure whether more specialized/generalized taxa have
more specialized/generalized relatives than intermediately special-
ized/generalized taxa, we calculated Local Indicators of Phylogenetic
Association (LIPA) Moran’s / of average niche breadth across all 100
previously constructed trees. LIPA Moran'’s / is the same formula for
Local Indicators of Spatial Association, but, instead of being applied
onspatial distances, itis applied to phylogenetic distances®’. For each
taxon, LIPA Moran’s/canbe calculated forits average niche breadth to
quantify whether niche breadth in that area of the tree is a hotspot of
phylogenetic clusteringin niche breadth by applying a weighting con-
stantof d; " where d;;is the phylogenetic distance between focal taxon
(i) and all other taxain the phylogeny (j). We then determined whether
Local Moran'’s / (niche breadth conservation) is constant throughout
the entire phylogeny or highest at the two niche breadth extremes
by regressing Local Moran’s / against average niche breadth. We then
compared, foreach observedtree, the adjusted R-squared of two gen-
eralized linear models: (1) one in which Local Moran’s /was the response
variable and average niche breadth was the predictor variable, and (2)
aquadratic model with the same variables and an additional predictor
variable of average niche breadth squared.

Assessing relationships between niche breadth and network
centrality

To determine whether multidimensional specialists or generalists have
centralrolesintheir ecological communities, we used network theory
to assess if specialist or generalist taxa are more highly connected
to other taxa within their microbiome community network and thus
more likely to be hub taxa within microbiomes. We constructed
co-occurrence networks using the FastSpar package® for each site with
atleast ten plots (21 NEON sites spread across the United States). Net-
workshad 283 +13.7 species (mean + s.e.m.). FastSpar is an optimized
reimplementation of the SparCC algorithm which infers correlations
between taxa while limiting the occurrence of spurious correlations
inherent in analyses of compositional datasets (for example, relative
abundances of taxa in communities)®. Links within co-occurrence
networks are significant correlations between taxa abundances (as
identified by FastSpar), which can represent interactions between
connected taxa and/or shared habitat preferences’® 7. As a result,
analysing the number of links a taxon has with others in a network
(degree centrality) hasbeenusedin theliterature to provide informa-
tionabout whether ataxonis akeystone species and/or a habitat indica-
tor species®*%"*7°, We calculated the degree centrality of each taxon

in each network using the degree_centrality function in the networkx
package (Python). The degree_centrality function normalizes the
number of links a taxon has by the number of other taxa in a network

Number of ataxon's links _ . bich allows for comparing degree centralities

Number of nodes in a network—1
of taxa across networks of varying sizes. To identify relationships
between specialization and degree centrality, weregressed the degree
centrality of taxa against their average niche breadth at that site and
blocked by the site from which degree centrality and average niche
breadthare collected. We perform this regression using the permuta-
tional strategy in the aovp function (ImPerm package). We also analysed
global network structure of the networks and regressed average clus-
tering coefficient (how tightly knit is the network) with the proportion
of the network that are specialists using a generalized linear model.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw sequencing and environmental data are publicly available
through the NEON database (DP1.10081.001). Scripts to download
datafrom NEON and process sequencing datainto ESVsand OTUs are
available in Supplementary Data 2. OTU abundances from ‘kingdom’
to ‘species’ levels are available in Supplementary Data 1. We used the
GreenGenes database (v.13.5) for taxonomic assignments.

Code availability

Codetoreplicate our analyses and a ‘project’ folder containing all the
intermediate files and statistical summaries from RMarkdown scripts
areavailable at Zenodo (https://doi.org/10.5281/zenodo.7747186).
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along continuous axes, these axes must be broken into bins. Here, we show that
bimodal distributions of niche breadth are robust to the important analysis
decision of defining ‘habitats’ (that is, bins). In this manuscript, we present the
results from the most conservative binning of 10 bins.
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Extended Data Fig. 3| Niche breadth and environmental correlations across
niche dimensions for Exact Sequence Variants (A-D) and including carbon/
nitrogen niche axes (E-H). ESV analyses are represented by subfigures A-D and
taxalevel analyses including carbon/nitrogen data are represented by subfigures

E-H. a) Heatmap of 14,015 prokaryotic ESV taxa (x-axis) along environmental axes.

ESVs are sorted from lowest to highest average niche breadth for visualization.

b) Heatmap of Spearman’s p from correlations between niche breadths of 14,015
ESVs along different axes. ¢) Heatmap of Spearman’s p from correlations between
environmental axes calculated across 236 individual plots. d) Comparison of the
absolute values of Spearman’s p from correlations between niche breadths and
correlations between environmental axes, demonstrating that niche breadth
correlations are significantly stronger than correlations in environmental
variation among axes. Significance determined by two-tailed Mann-Whitney

Utest (W =36, p=0.002). Box plots show the median (middle line) and
interquartile range (the box). e) Heatmap of 1085 prokaryotic taxa (x-axis)
along seven environmental axes that include measures of carbon and nitrogen.
Taxa are sorted from lowest to highest average niche breadth for visualization.
f) Heatmap of Spearman’s p from correlations between niche breadths of the
1085 taxa along the seven different axes. g) Heatmap of Spearman’s p from
correlations between the seven environmental axes across 84 individual

plots. h) Comparison of the absolute values of Spearman’s p from correlations
between niche breadths and correlations between environmental axes, again
demonstrating that niche breadth correlations are significantly stronger than
correlations in environmental variation among axes. Significance determined
by two-tailed Mann-Whitney U test (W =440, p = 7.43 x 102). Box plots show the
median (middle line) and interquartile range (the box).
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Extended Data Fig. 7 | Relationship between average relative abundance
and niche breadth of Exact Sequence Variants (A-B) and including carbon/
nitrogen niche axes data (C-D). ESV analyses are represented by subfigures

A-B and taxalevel analyses including carbon/nitrogen data are represented by
subfigures C-D. a) Average abundances of generalist (dark purple) and specialist
(light purple) taxa (14,015 ESV taxa total). Significance calculated with a two-
tailed permutational test (Z =5.79, p = 6.87 x 10~°). Boxplots show the median
(middleline) and interquartile range (the box). b) Average relative abundances
of14015 prokaryotic ESV taxa regressed against average niche breadth. Direction
ofthe relationship is determined using a Spearman’s correlation test and
significance is calculated using a two-tailed permutational test (p < 2.20 x107%¢).
c) Average abundances of generalist (dark purple) and specialist (light purple)

taxa (1085 taxa total). Significance calculated with a two-tailed permutational
test (Z=-6.34, p=2.27 x107'°). Boxplots show the median (middle line) and
interquartile range (the box). d) Average relative abundances of 1085 taxa
regressed against average niche breadth. In B and D, Lines are fitted with LOESS
smoothing, shaded regions around the lines are the 95% confidence intervals,
and the x-axes are onalog,, scale. Dashed horizontal line indicates the local
minimain the bimodal distribution of average niche breadth used to indicate
specialists (light purple) and generalists (dark purple). Direction of relationships
were determined using a Spearman’s correlation test and significance was
calculated using two-tailed permutational tests in which abundances were
randomized 10,000 times (p < 2.20 x107%).
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