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Summary

� Allelopathy is a common and important stressor that shapes plant communities and can

alter soil microbiomes, yet little is known about the direct effects of allelochemical addition

on bacterial and fungal communities or the potential for allelochemical-selected microbiomes

to mediate plant performance responses, especially in habitats naturally structured by allelo-

pathy.
� Here, we present the first community-wide investigation of microbial mediation of allelo-

chemical effects on plant performance by testing how allelopathy affects soil microbiome

structure and how these microbial changes impact germination and productivity across 13

plant species.
� The soil microbiome exhibited significant changes to ‘core’ bacterial and fungal taxa, bac-

terial composition, abundance of functionally important bacterial and fungal taxa, and pre-

dicted bacterial functional genes after the addition of the dominant allelochemical native to

this habitat. Furthermore, plant performance was mediated by the allelochemical-selected

microbiome, with allelopathic inhibition of plant productivity moderately mitigated by the

microbiome.
� Through our findings, we present a potential framework to understand the strength of

plant–microbial interactions in the presence of environmental stressors, in which frequency of

the ecological stress may be a key predictor of microbiome-mediation strength.

Introduction

Competition via allelopathy is a notable mechanism that struc-
tures plant communities (Inderjit et al., 2011; Hierro & Call-
away, 2021). Allelopathy has a broad taxonomic distribution, as
a recent meta-analysis shows that 72% of all plant families are
capable of producing bioactive secondary metabolites (allelo-
chemicals; Kalisz et al., 2021). Allelopathy is also common across
ecosystems including grasslands (Ning et al., 2016; da Silva
et al., 2017), shrublands (Mahall & Callaway, 1991; Hewitt &
Menges, 2008), and both temperate and tropical forests (Ooka &
Owens, 2018), and is an important factor in both agricultural
and invasion ecology (Bais et al., 2003). Meta-analysis has
also shown that allelopathy reduces mean plant performance by
25% (Zhang et al., 2021). These declines in plant fitness result
from both direct effects of allelochemical inhibition and indirect
effects such as decreasing soil nutrient availability, or through
important yet largely unexplored alterations in the soil microbial
communities that interact with surrounding plant roots (Cipol-
lini et al., 2012; Zhang et al., 2019).

Soil microbes play outsized roles in plant health and survival
(Berendsen et al., 2012), and range from negative to positive
effects on plant performance depending on environmental condi-
tions (Hodge & Fitter, 2013; Trivedi et al., 2020). Recent studies
indicate that soil microbiomes can increase plant performance
under stressful environmental conditions through amelioration
of abiotic and biotic stressors (David et al., 2020; Liu
et al., 2020). Plant response to abiotic and biotic sources of stress
can act as a cue, sometimes described as a ‘cry for help’, that
encourages recruitment of microbial communities and functions
that ultimately enhance the plant’s capacity to combat stress and
maintain fitness (Bakker et al., 2018). Abiotic stressors, such as
abnormally high temperature or prolonged drought, can directly
alter soil microbial community composition and shift allocation
of plant carbon to mutualistic microbes in soil (Palta & Gre-
gory, 1997). Despite the many potential beneficial microbial
responses to this ‘cry for help,’ poststress plant microbial interac-
tions can also lead to decreased microbiome multifunctionality
and increased pathogen loads in the rhizosphere (Santos-Medell-
�ın et al., 2017; Hinojosa et al., 2019). Allelopathy can similarly
impose stress-induced shifts in microbiome composition, with
some studies indicating changes in functional capabilities*These authors contributed equally to this work.
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(Lorenzo et al., 2013), and that allelochemicals may more
strongly impact soil bacteria than fungi (Kong et al., 2008). For
example, some soil microbes have been shown to degrade pheno-
lic allelochemicals (Zhang et al., 2010), but little is known about
the recruitment or increased reliance on these potentially benefi-
cial microbes by plants. It is important to note that given this
capacity for certain microbes to degrade allelochemicals, there are
two potential pathways through which the soil microbiome can
mediate plant performance responses to allelopathy: through
allelopathy-selected compositional and functional shifts in the
microbiome, or through the direct degradation or metabolization
of an allelochemical (Fu & Oriel, 1999). Given the importance
of microbiome functionality to plant health and stress resilience,
understanding allelopathic effects on soil microbiomes is a crucial
part of understanding plant community responses.

Our knowledge of microbial mediation of plant allelopathic
interactions is notably limited in systems structured by native
allelochemical inhibition. Much of what we know about the
effects of allelopathy on plant–microbial interactions comes from
studies of plant invasions. Allelopathy is very common among
invasive species, with 51–67% of invasive plants reported to have
allelopathic capacity (Zhang et al., 2019; Kalisz et al., 2021).
Allelochemicals from invasive species have been shown to nega-
tively impact bacterial abundance and community composition
(Cipollini et al., 2012; Zhang et al., 2019), change microbial
functionality in the rhizosphere (Qu et al., 2021), and ultimately
alter plant–soil feedbacks in agriculture (Hu et al., 2018). It has
been proposed and largely supported that naive native plant spe-
cies are more vulnerable to negative impacts of non-native allelo-
pathic plants because they have not adapted to the novel
chemicals introduced in their system (novel weapons hypothesis;
Callaway & Aschehoug, 2000). The likely corollary to this
hypothesis, discussed in Callaway & Hierro (2006) and Mishra
et al. (2013), is that plants in ecosystems natively structured by
dominant allelopathic plants will have adaptations that minimize
inhibition by allelopathy. We predict that plant–microbial inter-
actions play a key role in this adaptation to allelopathy. For
instance, allelopathy may select for soil microbiomes (through
differential shifts in community members and associated func-
tions) that mitigate or neutralize the inhibition of plant perfor-
mance by allelochemicals (e.g. via increased beneficial
interactions in stressful environments as in David et al., 2020).
Importantly, the strength of microbial mediation of allelochem-
ical stress can fall along a continuum and may be dependent on
plant species–microbe specificity (Revillini et al., 2016).

Given the known importance of soil microbiomes for plant
health and the global impacts of allelopathy (Wardle et al., 1998;
David et al., 2018), we conducted a study to determine the direct
effects of allelochemical addition on the soil microbiome, as well
as the subsequent effects on performance of native plants from a
habitat naturally structured by allelopathy. We address three
questions: (1) Can allelochemicals alter bacterial and fungal com-
munity structure and function in soil? (2) How does a history of
persistent allelochemical-selection on the soil microbiome impact
native plant performance responses? And (3) which
allelochemical-altered soil microbes and microbiome functions

underpin changes in plant performance? We are interested in the
potential for adaptation among native plant and soil microbial
communities to allelopathy, a persistent and long-term stressor in
this habitat, as there will have been consistent selection pressure
for plant–microbial associations that are able to weather that
stress. We predict that allelochemical addition to soils will more
strongly alter bacterial than fungal communities due to pre-
viously noted bacterial susceptibility to allelochemicals (Lorenzo
et al., 2013; Niro et al., 2016), and concomitant potential for
greater fungal tolerance to allelochemicals (Barto et al., 2011).
Moreover, we expect that changes in microbial abundance as a
response to allelopathy and relationships with increased plant
performance will allow for the identification of microbial consor-
tia that are adapted to mitigate inhibitory effects of native allelo-
pathy in this system. We intend for this work to function as a
template for future research in allelopathic systems by identifying
core sets of allelochemical-selected soil microbiota and attendant
microbiome-mediation of allelopathy.

Materials and Methods

Study system

The Florida Scrub ecosystem has the highest rate of endemism in
the southeastern United States and hosts many threatened species
(Dobson et al., 1997; Menges et al., 2008). This ecosystem exhibits
a range of habitat types from open sand gaps and shrublands to
mixed conifer flatwoods within a relatively small area (Abrahamson
et al., 1984). Many of the rare and endemic plants in this ecosys-
tem are found in the rosemary scrub habitat, where they occur in
open sand gaps between the dominant, allelopathic shrub Florida
rosemary (Ceratiola ericoides Michaux). Florida rosemary produces
a suite of allelochemicals that can affect performance of other scrub
species. Notably, Florida rosemary produces ceratiolin, a flavonoid
that quickly decomposes into hydrocinnamic acid (HCA) and
negatively affects plant germination and root length for many her-
baceous Florida scrub plant species (Fischer et al., 1994; David
et al., 2018). Ceratiolin and derivative HCA are documented as the
dominant allelochemicals found in litter and soil of the Florida
scrub habitat (Jordan, 1990) and have been credited with contri-
buting to the patchy structure of the ecosystem (Hunter &
Menges, 2002; Hewitt & Menges, 2008).

Recent studies show that there are distinct soil microbiomes in
rosemary scrub compared with surrounding flatwoods habitat
(Hernandez et al., 2021) and that many of the rare, endemic
plants occurring in the rosemary scrub are strongly influenced by
interactions with the soil microbiome (David et al., 2018, 2020).
For this study, we used soils from 10 sites at Archbold Biological
Station (Venus, FL, USA; 27.18°N, 81.35°W) and collected
seeds of 13 perennial, herbaceous plant species from across Arch-
bold that vary across a spectrum of life history traits.

Allelochemical treatment of the microbiomes

To capture the abiotic variation in our study system, we chose
soils to test allelopathic effects across a realistic sampling range of
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two important metrics in the system (Menges et al., 2017). We
collected soils from 10 Florida rosemary scrub patches (i.e. open
habitat patches dominated by C. ericoides that occur at relatively
high elevations above the water table; Supporting Information
Table S1) with a range of fire histories – time since fire and total
number of fires experienced within the last 52 yr. We collected c.
5 kg of soil from open sand gaps (at least 3 m from C. ericoides to
minimize the effects of ambient environmental HCA) at each of
the 10 sites, and then stored soils for 2 d before applying the alle-
lochemical treatment. Hydrocinnamic acid concentrations have
been shown to decrease rapidly with increasing distance (> 2 m)
from the host plant in this ecosystem (Quintana-Ascencio &
Menges, 2000). The allelochemical addition treatment was per-
formed using 250 ppm hydrocinnamic acid (3-phenylpropionic
acid; HCA) diluted in ultrapure H2O. Hydrocinnamic acid con-
centration was selected based on previous studies from the field
that identified natural concentrations of HCA ranging from 15
to 418 ppm (Jordan, 1990), and a manipulative study that found
250 ppm HCA effectively impacted plant performance (David
et al., 2018). 1250 ml of soil from each site was equally split
among sterilized aluminum trays (34 cm9 24 cm9 7 cm,
n = 20) to receive the control (ultrapure H2O) or allelochemical
addition (HCA+) treatment. Each tray was soaked with 50 ml
(4% volume) using a sterile 2-l pump sprayer of either treatment
3 d per week in a temperature-controlled environment (25°C)
for 5 wk, leading to a total HCA concentration of 150 ppm.

Soil microbiome extraction, amplification, sequencing and
bioinformatic processing

DNA was extracted from homogenized soil samples after the alle-
lochemical addition treatment concluded (n = 20; 10 soil sources
and 2 allelochemical treatments) using the DNeasy PowerSoil
Pro QIAcube HT Kit (Qiagen) with an adapted protocol without
QIAcube (see Methods S1 section for full description; Revillini
et al., 2021). DNA was quantified with a Qubit 4 fluorometer
(Qiagen) and normalized to 5 ng ll�1. Libraries were prepared
for sequencing using a two-step dual indexing protocol (Gohl
et al., 2016). PCR was targeted for archaeal/bacterial (16S) and
broad fungal (ITS2) ribosomal DNA (rDNA) using primer pairs
515F-806R and ITS7o-ITS4, respectively. Index and Illumina
flowcell sequences were added in second-step PCR. All targeted
amplicon products were pooled in equimolar quantities, and sent
to the Duke University Microbiome Core Facility (Durham,
NC, USA). Libraries were sequenced on a MiSeq Desktop
Sequencer (v.3, 300 bp paired end; Illumina Inc., San Diego,
CA, USA).

Paired-end molecular sequence data were processed using
QIIME2 v.2021.4 (Bolyen et al., 2019). Briefly, denoising was
performed with the DADA2 algorithm (Callahan et al., 2016),
which removes chimeric sequences and truncates 16S and ITS
amplicon forward and reverse sequences to an equal length.
Naive Bayes classifiers were constructed using the Greengenes
database v.13.8 (99%) and the UNITE database v.7.2 (99%) for
archaeal/bacterial and fungal amplicons, respectively, and then
amplicon sequence variants (ASVs) were classified using the

sklearn algorithm (Pedregosa et al., 2011). Multiple sequence
alignments were performed using MAFFT v.7 (Katoh & Stand-
ley, 2013), an unrooted tree was created using FASTTREE2 (Price
et al., 2009), and then the midpoint root method was used to cre-
ate a rooted tree for phylogeny-based analyses (e.g. weighted Uni-
Frac). Amplicon sequence variants that were not present in at
least two samples were filtered out, and diversity metrics and dis-
similarity matrices were calculated using the QIIME2 commands
diversity core-metrics-phylogenetic (sampling depth = 6500) and
diversity core-metrics (sampling depth = 9000) for archaea/bacteria
and fungi, respectively. All microbiome data from QIIME2 was
read into R v.4.1 (R Core Team, 2020) using the QIIME2R pack-
age v.0.99.6 (https://github.com/jbisanz/qiime2R).

Allelochemical-selected microbiome–plant performance
experiment

To determine the magnitude of microbial effects on plant perfor-
mance in the rosemary scrub and how these effects depend on the
microbiome’s exposure to the dominant allelochemical (HCA)
found in rosemary scrub soils (Fischer et al., 1994), we conducted
a 29 2 factorial growth room experiment manipulating micro-
biome presence (presence vs absence) and allelochemical selection
on the microbiome (control vs HCA+) replicated using soil
microbiomes collected from 10 rosemary scrub patches (see
Methods S1 section for full description). We first sterilized half
of the soil from each allelochemical treatment by autoclaving
three times (121°C, 2 h). The 13 rosemary scrub plant species
were each grown in sterilized pots (66 ml) inoculated with soil
microbiomes from all 40 factorial combinations of soil source,
allelochemical treatment, and microbiome presence. Each pot
was filled with 50 ml of sterilized background rosemary scrub soil
and topped with 10 ml of inoculum from one of the 40 treatment
combinations. To ensure that the majority of soil in each pot had
similar abiotic properties, and thus the only manipulation was
the different soil microbiomes present in the inocula, background
soil in this experiment was collected from a single large open sand
gap at Archbold > 5 m from Florida rosemary and autoclaved 49
at 121°C. After seeding directly into inoculum soil, a 2-ml ‘cap’
of sterile, background soil was added to prevent seed desiccation.
The number of seeds sown per pot reflected previously deter-
mined differences in germination rates among these plant species
(David et al., 2020; Revillini et al., 2021), and all pots were
thinned to one plant shortly after germination. Overall, our
experiment included 10 microbiome sources in each of the four
allelochemical9microbial treatment combinations, each with
three replicates for each of the 13 plant species (except for Liatris
ohlingerae, which had five microbiome sources due to lack of
seed), totaling 1500 pots. All pots were watered with c. 2 ml of
sterile water daily for 1 month and subsequently every other day.
Plants were grown under full spectrum lights (c. 162
(lmol m2)�1 s�1 PAR; Tran & Braun, 2017), with a 14 h : 10 h,
light : dark schedule until harvest c. 5 months after the start of
the experiment (Table S2). Germination percentages were deter-
mined based on species-specific seeding rates per pot. Shoot and
root biomass were determined after oven drying at 50°C until
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reaching constant mass. Root : shoot biomass ratios were calcu-
lated to determine plant allocation responses.

Evaluating microbiome effects on hydrocinnamic acid
concentration in soils

To determine the potential for microbial degradation of HCA in
soils, we conducted a follow-up study with soils from the same
10 soil sources used in the larger experiment. We maintained
either live microbiomes or sterilized the soils by autoclaving three
times (121°C, 2 h), and then applied the same 250 ppm HCA
solution over the same 5-wk time period using the same methods
described in the Allelochemical treatment of the microbiomes
section above. Soil samples were then stored at �80°C prior to
High-Performance Liquid Chromatography (HPLC) analysis.
We randomly selected five of 10 soil source pairs for HPLC ana-
lysis. To create a standard curve, we spiked autoclaved soil sam-
ples with HCA standards according to previously described
methods (Jordan, 1990). Briefly, we added 2.5 ml of each HCA
standard to 25 g of soil to a final concentration of 16, 32, 64,
100, or 200 lg g�1 soil. The samples were equilibrated, in the
dark, for 2 h without shaking. To extract the HCA from the soil,
we added 50 ml of deionized water to each sample and incubated
for 2 h at room temperature while shaking at 100 rpm. We then
vacuum-filtered the mixtures with 0.2 lm Whatman filter paper
followed by syringe filtration with a 0.45 lm filter. We analyzed
the filtrate using a Dionex 3000 HPLC from Thermo Scientific
equipped with an Agilent Zorbax Eclipse XDB-C 18 column
(2509 4.6 mm, 5 lm particle size). For the gradient elution, we
used mobile phases (A) acetonitrile and (B) deionized water and
acetic acid (99.5 : 0.5). The stepwise gradient was set from 50%
A to 100% A over 7 min with a 1-min equilibration step between
samples. The analysis was performed at 257 nm.

Data analysis

To identify a baseline for soil microbiome organization after
allelochemical addition, we calculated the core microbiome
for both bacteria and fungi using the core function from
the ‘MICROBIOME’ package in R (http://microbiome.github.com/
microbiome). The core microbiome here represents taxa with a
> 0.1% relative abundance detection threshold that also occur
in > 60% of all samples that experienced allelochemical addi-
tion (Busby et al., 2017). The allelochemical effects on bacterial
and fungal alpha diversity metrics (ASV richness, Shannon’s H,
Pielou’s evenness, and Faith’s phylogenetic diversity) were
assessed using paired t-tests, with allelochemical addition as the
factor of interest and microbiomes paired by soil source. To
determine allelochemical effects on bacterial (weighted uniFrac)
and fungal (Bray–Curtis dissimilarity) community composition,
a PERMANOVA stratified by soil source was performed using
the adonis2 function in R package VEGAN v.2.5-7 (Oksanen
et al., 2020). To identify which microbial taxa responded
strongly to allelochemical addition, analysis of differential
microbial relative abundances from allelochemical control
(‘reference’ factor level) to samples that underwent

allelochemical addition was performed using the DESeq func-
tion in R package DESEQ2 v.1.32 (Love et al., 2014).

We used the PICRUSt2 algorithm (Douglas et al., 2020) to
calculate the predicted bacterial metagenome based on our 16S
reads in order to assess the effect of allelochemical addition on
important functional genes in nutrient release or transfer. We tar-
geted analyses on genes associated with important carbon (C),
nitrogen (N), and phosphorus (P)-cycling functions. Paired
t-tests were performed on individual genes (e.g. nifQ or amoA)
or sums of gene sets that comprise functional pathways for nitrite
reduction (nirBDK), phosphonate (organic P) cleavage and trans-
port (phnCDEJ), as well as phosphate transport (ugpACQ), to
identify increases or decreases in predicted bacterial function after
allelochemical addition.

To understand how allelochemical effects on the soil micro-
biome contributed to plant performance responses, we con-
structed linear mixed models. Our models considered how plant
performance responded to the presence or absence of soil micro-
biomes and whether or not soils experienced allelochemical addi-
tion. All 13 plant species were included in analyses of
germination rates, but two species with the lowest germination
rates, Hypericum cumulicola (Small) P. Adams and Paronychia
chartacea Fernald, were excluded from analyses of productivity or
biomass allocation due to insufficient degrees of freedom. To
meet the assumption of homogeneity of variances across species,
z-scores were calculated for all plant response metrics within each
plant species prior to analysis. Germination percentages were
arcsine-square-root-transformed prior to z-score calculations to
improve normality. Using these data, we first ran global models
for all plant species combined. Terms in these models included
microbiome presence (presence vs absence), allelochemical selec-
tion on the microbiome (control vs HCA+), and their interaction
as well as plant species identity and interactions between plant
species and all of the other terms. We also included a random
effect of the soil collection site. After finding significant interac-
tions with plant species identity in the global models, we con-
structed follow-up general linear models for each of 11 plant
species individually. These models included the same micro-
biome and allelochemical main effects and their two-way interac-
tion term. We conducted linear mixed models using the lmer
function in R and model output was determined using Type III
sums of squares, which are independent of the input order of pre-
dictor variables.

To identify the relationships between plant performance
responses and the microbiome responses to allelochemical addi-
tion, each of the five measured plant performance metrics were
regressed on the 23 bacterial and fungal ASVs (aggregated at the
lowest taxonomic level and with ‘unidentified’ ASVs removed),
and also on five predicted bacterial functional genes that were
observed to change after allelochemical addition (nifQ, amoA,
nir, ugp, and phn). Collection site (patch) and plant species iden-
tity were set as random effects. The Benjamini–Hochberg proce-
dure was used to account for multiple comparisons. Finally, to
determine whether there were differences in allelochemical con-
centration in the soil with or without a live soil microbiome from
our degradation experiment, we performed a paired sample t-test.
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Results

Allelochemical-selected microbiome

We identified 44 core bacterial ASVs and 42 core fungal ASVs in
the allelochemical-selected microbiome. For bacteria, the allelo-
pathic core microbiome was dominated by two taxa in the Bur-
kholderiaceae – Burkholderia tuberum (34% of identified ASVs)
and Burkholderia byrophila (29%) – with the remainder of core
microbiome taxa coming from the Solibacteraceae, Mycobacter-
iaceae, and Nitrosphaeraceae (Table S3). Notably, four bacterial
families in the control bacterial core microbiome fell below the
core thresholds for soils experiencing allelochemical addition,
and taxa in the Burkholderiaceae emerged only with allelochem-
ical addition, becoming the second most prevalent allelopathic
core member (Fig. 1). Of the 42 ASVs in the fungal core micro-
biome, 19% were from the genus Talaromyces, and the remaining

ASVs were fairly equally distributed across 11 identified genera
(Table S3). We observed the appearance of two new genera in
the core fungal microbiome with allelochemical addition, Gelasi-
nospora and Chaetomium, as well as increases in the prevalence of
taxa in the Gibberella and Veronaeopsis (Fig. 1).

Allelochemical addition also significantly shifted overall bac-
terial community composition (pseudo-F = 2.35, P = 0.002;
Fig. 2a), but did not significantly affect overall fungal community
composition (pseudo-F = 1.31, P = 0.08; Fig. S1). However, dif-
ferential abundance analysis of both bacteria and fungi revealed
highly responsive taxa that significantly increased or decreased in
relative abundance after allelochemical addition. Bacterial ASVs
in the families Solibactereaceae (Acidobacteria) and Acetobactera-
ceae (Alphaproteobacteria) increased with allelochemical addi-
tion, with a 22 log2-fold change (LFC) for both, while
abundance of three ASVs in the Thermogemmatisporaceae
decreased by c. 20 LFC (Fig. 2b). Of the 65 total bacterial ASVs
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Fig. 1 Core microbial taxa without allelochemical addition (left) and with the addition of hydrocinnamic acid (right). Colored by prevalence and organized
by relative abundance detection thresholds for core bacterial families (upper panels) and core fungal genera (lower panels). Stars, addition to core
microbiome after allelochemical treatment; circles, removal from core microbiome after allelochemical treatment; arrows, increase in prevalence after
allelochemical treatment.
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that shifted after allelochemical addition, the majority (24 and 15
ASVs) were identified as two species: B. tuberum and Burkhol-
deria bryophila, respectively.

Differential abundance analysis showed that 19 fungal ASVs
also significantly responded to allelochemical addition (18 fungal
taxa across eight genera plus one ‘unidentified’; Fig. 2c). Changes
in abundance of fungal taxa after allelochemical addition
were comparable in strength to LFCs observed in the more
allelochemical-responsive bacterial community (�23 to +21
LFC). Two taxa in the genera Gibberella and Paraphaeosphaeria
and an unidentified taxon in the order Eurotiales all increased in
abundance by approximately +20 LFC, and the putative plant
pathogen, Pseudopithomyces, had the largest decrease after allelo-
chemical addition (Fig. 2c).

Of the 11 bacterial functional genes/gene sets associated with
C, N, and P cycling we examined, five were significantly affected
by allelochemical addition; nifQ, amoA, nir, phn, and ugp
(Fig. 3). Allelochemical addition increased predicted gene abun-
dances for nitrogen fixation (nifQ; P = 0.003) and decreased pre-
dicted gene abundances for ammonia oxidation (amoA;
P = 0.039), nitrite reduction (nirB, nirD, and nirK; P = 0.004),
phosphate transport (ugpA, upgC, and upgQ; P = 0.004), and
phosphonate uptake and breakdown (phnC, phnD, phnE, and
phnJ; P = 0.022).

Plant performance responses

Across all plant species, effects of allelochemical addition on pro-
ductivity were microbially mediated, where allelochemical-
selected microbiomes mitigated negative impacts to total plant
biomass (Table 1). Both shoot and total biomass were signifi-
cantly reduced by allelochemical addition (P = 0.019 and 0.026,
respectively), but for total biomass, this response was significantly
mitigated by the soil microbiome (P = 0.034; Fig. 4a), whereas
microbial mitigation was marginal for shoot biomass (P = 0.073;
Table S4). Plant species varied significantly in their response to
the microbiome treatment across all plant performance metrics
that we examined (P ≤ 0.009; Figs S2, S3), but only for root :

shoot ratio was there significant interspecific variation in the
degree to which allelochemical treatment modulated this
response (P = 0.016; Table 2), ranging from a 106% decrease
(for Balduina angustifolia (Pursh) B. L. Robinson) to a 137%
increase (for Liatris tenuifolia Nuttal) in root biomass investment
when the microbiome was present to mediate allelopathic effects
(Fig. S3). Surprisingly, individual plant species models revealed
only one species with a significant allelochemical9microbiome
treatment interaction (Fig. 4b; Table S5). In B. angustifolia, the
allelochemical9microbiome interaction was significant for three
plant performance responses: Both aboveground shoot biomass
and total plant biomass were significantly higher when a micro-
biome was present to alleviate the effects of allelochemical addi-
tion (P = 0.0001 and 0.027, respectively), while investment in
roots was significantly lower when the microbiome was present to
mediate allelopathic effects (P = 0.0001; Table S5).

Relationships between microbiomes and plant performance
responses

Of the 23 microbial taxa and four bacterial functions significantly
affected by allelochemical addition, we identified six microbial
taxa (three bacterial and three fungal) and two bacterial functions
that had significant relationships with at least one of the mea-
sured plant responses: germination, total biomass, or root : shoot
biomass ratio (Fig. 5). The fungal species Exserohilum rostratum,
which increased after allelochemical addition, had the strongest
positive relationship with both shoot biomass and total biomass
(t = 2.27, P = 0.03; t = 2.12, P = 0.034, respectively), while the
bacterial genera Rhodoplanes and Bacillus, which decreased and
increased after allelochemical addition, respectively, had the
strongest negative effects on shoot biomass and root biomass
(t =�3.15, P = 0.009; t =�2.14, P = 0.032, respectively). The
two predicted bacterial functions nir and ugp, both of which
decreased after allelochemical addition, also explained variation
in plant performance that was significant, but moderate (Fig. 5).
Nir genes, which code for nitrite reduction, had slight negative
effects on germination (P = 0.012), while ugp genes, which code

Fig. 2 Microbial responses to allelochemical addition in this experiment. (a) Principal coordinate analysis of bacterial community composition (weighted
UniFrac) colored by allelochemical treatment. Bacterial composition is significantly different after allelochemical addition (Allelo). Significant log2 fold
change (LFC) of bacterial abundance at the family level, colored by bacterial phylum (b), and of fungal abundance at the genus level, colored by fungal
order (c). Points represent mean LFC and lines represent SE from DESEQ2.
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for organic P solubilization, had slight positive effects on germi-
nation and negative effects on root : shoot biomass ratio
(P = 0.024 and 0.025, respectively).

Microbial degradation of dominant soil allelochemical

A paired t-test revealed no difference in the allelochemical con-
centration in soils with a sterile or live soil microbiome after 5 wk
of allelochemical addition. In fact, the trend was in the direction
of more allelochemical being present in the live soil treatment,
indicating that the soil microbiome in these soils does not

significantly degrade the native allelochemical (t4 =�0.643,
P = 0.55; Fig. S4).

Discussion

Allelopathy strongly affected soil microbiome structure and pre-
dicted functions in this study. The allelopathic chemical derived
from the dominant native shrub (C. ericoides) in this system
altered the core microbiome, bacterial composition, and relative
abundances of bacterial and fungal taxa. Allelochemical-treated
microbiomes also showed evidence of functionally important

Fig. 3 Predicted bacterial functional genes
that responded significantly to allelochemical
addition (Allelo). A nitrogen fixation gene,
nifQ, increased with allelochemical addition
(a), and amoA, responsible for ammonia
oxidation, decreased after allelochemical
addition (b). Sums of genes responsible for
nitrite reduction (nirB, nirD, and nirK) are
presented for ‘nir’ (c), sums of genes
responsible for the uptake and breakdown of
phosphonates (phnC, phnD, phnE, and phnJ)
are presented for ‘phn’ (d), and sums of
genes responsible for phosphate transport
(ugpA, ugpC, and ugpQ) are presented for
‘ugp’ (e). Black dots represent mean gene
abundance and lines represent SE.

Table 1 Significant results from linear mixed models of z-score standardized plant performance responses.

Response
Plant
species1 Microbiome

Allelochemical
(Allelo) Microbiome9 Allelo Plant9Microbiome Plant9 Allelo Plant9Microbiome9 Allelo

Germination < 0.0001 – – – 0.008 – –
Total
biomass

< 0.0001 – 0.029 0.034 0.0001 – –

Root : Shoot < 0.0001 – – – 0.005 0.002 0.016

Model predictor terms are column headers, P-values are presented when P ≤ 0.05.
1P-values presented are from performance responses prior to within plant species standardization.
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changes, such as notable increases in abundance of putative bene-
ficial bacteria (i.e. Burkholderiales) and putative fungal pathogens
(Fig. 2) as well as shifts in predicted bacterial functional genes
including an almost sevenfold increase in the abundance of the
nifQ gene, coding for N2-fixation. Notably, we determined that
the native soil microbiome did not degrade the allelochemical
tested in our study and suggests an important role of microbial
compositional or functional shifts in the mediation of plant per-
formance responses under allelopathy. We found significant, but
overall weak effects of allelochemical-altered microbiomes on
plant performance responses (productivity) in the manipulative
growth experiment (i.e. Fig. 4a). Similar to previous studies, the
microbiome exhibited a net positive effect on plant productivity,
one of the most important performance metrics for perennial

germinants in this habitat (Menges & Kohfeldt, 1995), in the
presence of allelopathy (Cipollini et al., 2012; Mishra
et al., 2013). Our study explicitly reveals the link between
allelochemical-altered soil microbes and plant performance.
While previous studies have identified allelopathy-induced shifts
in microbiomes and/or plant performance, the vast majority
could only infer microbiome-mediation (but also see Hu
et al., 2018). However, the effect sizes we observed tended to be
fairly modest, such that when combined with the smaller sample
sizes within individual species, only one of the 11 species (B.
angustifolia) registered a significant effect. We also suspect the
lack of novelty of the allelochemical weapon in this ecosystem has
led to previous adaptive responses of these plants that allow them
to tolerate allelochemical-induced shifts in the microbiome (i.e.
representing a stable community exhibiting weak–neutral
responses; Shade et al., 2012). The novelty of an ecological
weapon has a direct relationship with the frequency of a stressor,
where high frequency would present a more common weapon
and low frequency would represent a more novel weapon. We
propose that the strength of microbial mitigation or exacerbation
of plant responses to disturbance is negatively related to the fre-
quency of the ecological stressor in question (Fig. 6).

Microbial composition shifted distinctly with allelochemical
addition, indicating strong direct effects of allelochemical addi-
tion on soil microbiomes. Soil bacteria were notably more respon-
sive to allelochemical addition than fungi, as has been found in
previous studies (Kong et al., 2008), and also appear to have
shifted towards a structure and functions that would promote
greater plant growth. In particular, we found significant increases
in Burkholderia (many putative N-fixers), as well as Rhidopila glo-
biformis (Acetobactereaceae), a nitrogen-fixer that may contribute
to alternative N2-fixation via the vanadium-dependent nitrogen-
ase pathway (Imhoff et al., 2018). By contrast, fungi exhibited
increases in multiple putative pathogens after allelochemical addi-
tion (Wang et al., 2021). These included an increase in prevalence
of Gibberella, a known fungal pathogen (Bai et al., 2021). Inter-
estingly, there was also an increase in the dark septate endophytic
genus Veronaeopsis, which has been shown to mitigate infectivity
of other fungal pathogens (Khastini et al., 2012). Thus, the
increased relative abundance of this taxon may indicate a fungal
mechanism for reducing allelochemical-induced stress to plant
roots. These shifts reveal increased dominance for putative benefi-
cial bacteria and putative pathogenic fungi among their respective
soil consortia, and this apparent positive–negative balance of
representative microbial taxa might contribute to the weakly posi-
tive microbial mediation effect of the soil microbiome on plant
performance responses in our manipulative growth experiment
(Vandenkoornhuyse et al., 2015).

Functional changes in soil microbiomes after allelochemical
addition indicate a range of responses to allelopathy that also
likely contributed to the neutral-to-positive microbial mediation
of plant performance observed here. Multiple bacterial functional
genes shifted after allelochemical addition, with increases in
potential N-fixation via the nifQ gene, which donates molybde-
num to nifH for biosynthesis of the FeMo nitrogenase enzyme
(Hernandez et al., 2008). On the contrary, we observed decreases

Fig. 4 Plant performance responses to allelochemical addition (Allelo)
treatments, colored by microbiome treatment. (a) Plant total biomass
responses for all plant species combined. The figure presents mean values
for each plant species (n = 11) per treatment combination as dots. Overall,
total biomass exhibited microbiome-mediated effects of allelochemical
addition. (b) Microbial-mediation of allelochemical effects in Balduina
angustifolia. Total biomass of B. angustifolia was less inhibited by allelo-
chemical addition in the presence of a microbiome. The allocation of bio-
mass to roots was significantly lower when the microbiome was present to
mediate allelochemical effects. All data were converted to z-scores prior to
analysis to standardize results within each plant species and are presented
as standard normal deviates from the mean. Bars in (a, b) equal the mean
and SE.
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Table 2 Individual plant species general linear model results.

Response Plant species Microbiome Allelochemical Microbiome9 Allelo

Germination Chapmannia floridana F = 8.32, P = 0.003 F = 3.95, P = 0.046 –
Eryngium cuneifolium F = 5.41, P = 0.019 F = 8.33, P = 0.003 –
Polygonella robusta F = 4.61, P = 0.031 – –

Total biomass Balduina angustifolia – – F = 4.85, P = 0.027
Chamaecrista fasciculata F = 14.68, P = 0.0001 – –
Eryngium cuneifolium F = 4.5, P = 0.033 – –
Polygonella robusta F = 10.89, P = 0.0009 – –

Root : Shoot Balduina angustifolia – F = 13.216, P = 0.0002 F = 18.75, P < 0.0001
Chamaecrista fasciculata F = 27.9, P < 0.0001 – –
Chapmannia floridana F = 12.09, P = 0.0005 – –
Eryngium cuneifolium – – F = 3.82, P = 0.05
Lechea cernua – F = 5.17, P = 0.022 –
Polygonella robusta F = 5.1, P = 0.023 – –

For each performance response, only plant species with a significant effect are presented (P ≤ 0.05). Shading in gray indicates a negative main effect on
plant performance, while main effects without shading indicate a positive main effect.

Fig. 5 Significant (P < 0.05) linear mixed-
effects model (LMM) estimates between
three plant performance responses and
relative abundance of microbial taxa and
predicted bacterial functions that responded
significantly to allelochemical addition. Points
represent mean LMM parameter estimates
and lines represent SE.

Fig. 6 Potential framework explaining the
relationship between stress frequency and
post-disturbance plant–microbial interaction
(PMI) responses. We propose that infrequent
stressors can strongly affect belowground
communities (as in Revillini et al., 2021),
which leads to equally strong effects on
microbial mediation of plant performance
(size of PMI), while a frequent stressor
ultimately results in moderate-to-weak
microbial mediation of plant performance
(this study). Size of PMI interaction (�) is
relative to microbial mediation effect under
different stress conditions.
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in ammonia oxidation, nitrite reduction, phosphonate reduction,
and phosphate transport that suggest a suppressive effect of allelo-
pathy on bacterial N and P cycling belowground (Fig. 3). While
these results are predicted using the PICRUSt2 algorithm, which
can underestimate certain gene frequencies (Toole et al., 2021),
they still indicate a functional mechanism – via increased
N2-fixation – that may have contributed to the mitigation of alle-
lopathic stress on plant productivity found in our across plant
species analysis (Fig. 4). To build on these findings, we advocate
for future research exploring differential responses of bacterial
and fungal functions to allelopathy using targeted methods such
as metagenomics or quantitative stable isotope probing to assess
impacts on microbiome functional responses and subsequent
plant–microbial interactions (Hungate et al., 2015).

Significant relationships between allelochemical-responsive
microbial taxa (6 out of 23) and bacterial functions (2 out of 5)
and plant performance may help identify individual microbial
taxa that could be important for the resilience and persistence of
the rare, endemic plants in this system (Fig. 5). Interestingly, our
results relating plant performance with specific members and
functions of the microbiome revealed that not all taxa or func-
tions considered putatively beneficial or inhibitory influence host
performance as expected. For instance, the fungal taxon with the
strongest positive effects on shoot and total biomass, E. rostratum,
is a putative plant pathogen that causes root rot across many
plant families (Sharma et al., 2014). Although the majority of
research indicates that this species negatively impacts plant pro-
ductivity, a recent study found an E. rostratum variant that was
beneficial for plant growth in sunchokes (Khaekhum et al., 2021)
suggesting that this taxon can act as a mutualist under certain
conditions. Negative microbial relationships with plant perfor-
mance were also surprising, because many were found for taxa
known to contribute to plant-growth promotion including
those in the Burkoholderiaceae and Rhodoplanes (Adesemoye
et al., 2009; Carri�on et al., 2018; Anzuay et al., 2021). These rela-
tionships between members of the microbiome and plant perfor-
mance metrics suggest that: (1) many allelochemical-responsive
microbial taxa and functions may play outsized roles impacting
plant performance; (2) putative functional categorizations of
members of the soil microbiome are likely oversimplified; and
(3) functional relationships between individual plants and mem-
bers of the soil microbiome should be studied further to identify
patterns of context-dependency across systems experiencing
disturbance.

We predicted that the nature of the allelopathy stress in this
study system – functioning as a persistent stressor – would lead
to beneficial plant–microbial interaction responses, and our
results supported this prediction. Allelopathy is persistent in the
rosemary scrub, leading to increased opportunities for plant
and microbial adaptation via increased interaction frequency
(i.e. familiarity) compared with infrequent disturbances. We
propose that stress frequency is critical in determining the
strength of the plant–microbial interaction response (Fig. 6).
More specifically, we expect that microbial mediation of plant
response to stress becomes more muted with increased stress
frequency, as the community experiences persistent selection for

greater stability (weaker interactions and responses) in the face
of such a common stressor. This is in contrast to effects
observed from novel or infrequent disturbances (e.g. species
introductions, fire, drought) on plant–microbial interactions.
For instance, our research was conducted in a fire-dependent
system (Menges & Kohfeldt, 1995), where fire is a naturally
occurring disturbance with a return interval of c. 16 yr
(Menges, 2007). In a previous study testing the ability of soil
microbiomes to mediate plant performance responses to pre-
scribed fire with many of the same plant species used here, we
showed much stronger mediation effects of the postfire soil
microbiome on plant performance (Revillini et al., 2021). This
difference in the strength of microbial-mediation of allelopathic
vs fire stress within the same ecosystem could be a feature of
their local adaptation to the dominant and persistent allelo-
chemical stress as opposed to relatively infrequent fire distur-
bance (Fig. 6). To test this prediction, future research should
strive to identify the continuum under which plant–microbial
interactions respond to stressors along a frequency gradient.
Finally, to more broadly confirm our results regarding plant–
microbial interaction responses to allelochemical addition, we
feel it would be valuable to investigate the total effects of the
source allelopathic plants (incorporating roots and the full suite
of phytochemicals) on microbial mediation of plant responses
in future experimental manipulations.

Microbial resistance and resilience to stress, resulting legacies in
soil, and microbiome-mediation of plant responses to stress are still
emerging lines of research in soil ecology (Bakker et al., 2018; Kie-
sewetter & Afkhami, 2021; Philippot et al., 2021), but it is becom-
ing apparent that the strength and frequency of ecological stressors
should be considered a major contributing factor to the functional
relationships between the soil microbiome and aboveground com-
munities. We have shown here that plant–microbial interaction
responses to persistent allelopathy stress are subtle and neutral-to-
positive for plant performance. It is still possible in other systems
that microbial mitigation of allelopathic effects may be stronger if
microbial degradation of allelochemicals reduces the direct effect
of allelopathy, but here we reveal that allelochemical selection on
the soil microbiome can lead to mitigation of allelochemical stress
to plants. While previous studies have begun to identify patterns of
microbial resistance and resilience to disturbance in a broad global
sense (Shade et al., 2012; Rocca et al., 2018), our research focuses
this field by directly testing the link between the stress-selected
microbiome and plant performance responses. Our work suggests
that the soil microbiome has great potential to mitigate plant
responses to abiotic stress, and emphasizes the importance of
future work identifying functional roles of the soil microbiome
that mediate environmental stress.
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Fig. S1 Principal coordinate analysis of Bray–Curtis dissimilarity
for fungal communities that experienced allelopathy (Allelo) or
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allelochemical or control treatments.
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