Putting a Teaspoon of Programming
into Other Subjects

By
Mark Guzdial, Emma Dodoo, Bahare Naimipour, Tamara Nelson-Fromm, Aadarsh Padiyath

Programming is such a powerful tool that as early as the 1960’s scholars like C.P. Snow and Peter Naur
were worried about its potential negative impacts on society’. They called for everyone to learn to
program in order to democratize access and to inform citizens about how computational processes
worked. At the same time, Alan Perlis argued for teaching programming to all university students because
of the disciplinary benefits. He saw that computing gave us a new way to understand in many disciplines.
His words have proved to be prescient.

Historians, scientists, humanities scholars, mathematicians, and artists today use programming to
advance the goals of their own disciplines. They are using programming for their own agendas, for
problems other than professional software development. These professionals are likely using a broad
range of tools, like Excel, MATLAB, Python, R, and JavaScript. Domain-specific languages (DSLs) are a
class of languages designed explicitly for domain experts to use in solving problems for which
programming is a useful tool.

We aim to bring domain-specific programming into classrooms. Only about 5% of American high school
students take a course in computer science?. If we were to integrate programming into a broad range of
classrooms, especially in subjects other than computer science, we might help to democratize access to
programming and give all students the opportunity to learn programming for all the reasons that Snow,
Naur, and Perlis raised, not for the purpose of creating more software developers.

DSLs are designed for solving problems in the domain. Students do not know the domain nor
programming. Teachers outside of computing have domain expertise, but typically no programming
experience. They are also gatekeepers. Teachers make the decisions for what to bring into their
classroom and what will help their students the most.

Our approach is to make programming more accessible by making new languages that are even easier to
use than DSLs. We work with social studies and mathematics teachers who do not currently use any form
of programming in their classes. They have no interest in learning programming for its own sake.
However, they want to incorporate activities that require students to program, as a way to learn more
within their discipline. We design programming languages with and for these teachers. We create Task-
Specific Programming (TSP) languages since they are made just for the teacher’s tasks. We call these
teaspoon languages — we are adding a teaspoon of programming into other-than-CS subjects.

The teaspoon languages we have built so-far have three defining characteristics:

! https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-to-be-taught-
to-everyone-but-not-about-getting-a-job-a-historical-perspective/
2 https://advocacy.code.org/stateofcs

1. They can be used by students for a task that is useful to a teacher. Integrating into formal,
mandatory schooling through teachers is the best way to get broad access and participation.

2. They are programming languages, i.e., a notation for defining a computational process.

3. They can be learned within 10 minutes, so students can learn and use them within a single class
session. A larger language requires more time to learn. To be worthwhile, that cost has to be
amortized across many sessions to be worthwhile. That is a big investment for a teacher who
hasn’t used programming previously..

Participatory Design of Teaspoon Languages

We started building teaspoon languages in collaboration with Dr. Tammy Shreiner, a history professor at
Grand Valley State University. All US states require Social Studies classes (including history) to teach
data literacy, but not all teachers include it in their classes. We have brought a variety of data
visualization tools to her course for teachers, Data Literacy for Social Studies. We have her students try
them out and tell us what would fit best into their courses. Some of these tools required programming and
others did not.

Some teachers valued programming for specifying data visualizations. With a drag-and-drop tool, it's not
always easy to understand how you got to a particular visualization or how to change it. Social Studies
teachers often want to generate two visualizations for comparison, so efficiently specifying multiple
visualizations is important to them. Teachers appreciated the declarative programming language in one of
the tools we showed them, Vega-Lite, for its simplicity, clarity, and parsimony.

Figure 1 is a screenshot of a teaspoon language for data visualizations that we have developed. In Data
Visualization for Learning (DV4L), the two visualizations appear on the right. The code for defining the
visualizations is in the center, inspired by Vega-Lite. Menus for controlling the visualization are on the left.
These are linked. Changing the code changes both the graph and the settings in the menus. Changing
the menus changes the graph and the code. There is a “Driving Question” above the visualizations on
the right. Social Studies teachers told us that students need to be reminded why they’re playing with
visualizations, so we built the driving question into the interface.

History In Data Graphs

Visualizations Are there any noticeable differences in the trend of population growth in the following countries? Why?

Rwanda (oa)
Data
Graph 1:

Database (DB): Populations

14000000
uuuuuuu

T—]

£ soooo0
Loeation: Rwanda g

Ve Rarge) €D

§ 6000000

oooooo

Graphtypes bar ~ | Color:]

Y y &
&8 FEIIETELELESSS S

Graph 2: o

Database (DB): Populations

Location: Ageria

Vear Range: €0 €D

Graph ype: bar - Color Il
SUBMIT p 45000000

Light

0000

uuuuu

e
» I |||||||u|ml|||||u||IIMI\HIIIIIIlllll|||ﬂ|||||||||\||||||||m|ﬂ |‘|
R FESESE, &,

SRR R

RIS TS

Yea

Figure 1: DVA4L Scripting

We use participatory desigh methods to create teaspoon languages. We put existing programming
languages in front of teachers as design probes, guide their use of the tools, then ask them to reflect on
what worked and what didn’t. We typically work closely with a co-designer, like Dr. Shreiner, who is both a
teacher and a domain expert. The teachers who participate in our sessions are design informants. They
inform us about their values, like the importance of having two visualizations at once, having the driving
question be visible at all times, and of what they value in a code notation.

Pixel Equations (screenshot in Figure 2) is a teaspoon language for mathematics classes. We developed
Pixel Equations for a collaboration between a Detroit Public School and robotics faculty at the University
of Michigan. The Detroit school wanted to develop an Engineering course for their 11th grade students
(about 16 years old) where they would be asked to visualize data from a sensor. We interviewed
undergraduates who had solved the same problem in their robotics course to identify what was difficult
about the task. We also worked with mathematics teachers and mathematics education researchers to
identify learning objectives in the task.

Pixel Equations is used to define image filters. We identified three learning objectives that were
particularly difficult for the undergraduates and were important to the teachers.

1. Equations that define parts of a plane (e.g., x < 0) can be used to define regions of a picture to
which a filter might be applied.

2. We can use mathematics to define colors (e.g., to define the amount of red, green, and blue in a
color).

3. Pixel colors can be queried (e.g., increase the red wherever blue > 120) to specify pixels to
change.

In Pixel Equations, regions are specified in the first column. Wherever the logical expression is true, the
right side color specification is applied. The three columns to the right specify the red, green, and blue
components for the pixel color. Expressions can use the old value of the color to define a new value (e.g.,
2 * red to double the red in a color).

A Pixel Equations program is a program without for loops or explicit if statements. It’s clearly limited in
scope and only good for one task (defining image filters). Nonetheless, it's a motivating task that
addresses learning objectives relevant to engineering, mathematics, and art classes.

If this is true Set Red Set Green Set Blue

Si esto es cierto Asignar RojoAsignar Verde Asignar Azul
x<0 12*red)))
blue > 120) | azul | verde /2

Step 3: Run Equations

Result Picture Appears Here:

-200 ‘-100‘ ‘ | ‘o ‘400 | ‘500 | ‘600 | 700

‘100 | 200 300 |

100

Figure 2: Pixel Equations

Building in support for Multilingual Students

Figure 2 demonstrates one of the features that we have been exploring in teaspoon languages. Pixel
Equations supports the use of red, green, and blue for specifying color components, and also rojo, verde,
and azul. Since we are defining entirely new programming languages, we do not have to be constrained
in our choice of words. We do not have to maintain the hegemony of the English language in
programming.

Wherever we can, we support non-English choices for keywords. A different teaspoon language, for
defining chatbots, supports the mapping of keywords to many languages. We currently include English-
based, Spanish-based, and Spanglish-based chatbot languages. We built our Charla-bot teaspoon
language based on an explicit challenge from Dr. Sara Vogel, whose work on translanguaging in bilingual
CS classes inspired us. We asked her to review an earlier version of the chatbot tool and asked, “Would

you like this with Spanish keywords?” She responded, “Could you make it so that the students could pick
their own keywords?”

Research Challenge #1: Programming is Interpretation

While our teaspoon languages are understandable and usable in under 10 minutes, the users are still
programming. Whenever you are programming, you are specifying a process for a computational agent
who doesn’t understand the human world. Mismatches occur between desired intent and actual
execution. Teaspoon language programmers still have to learn how to debug.

Our work with teaspoon languages gives us new insights about what students need to learn to develop
“computational thinking”. Beginning programmers have to understand that programming is not like a
word-processor or presentation tool. The input (program) does not look like the output (execution). There
is a process of interpretation or translation by the computer on the input to get to the output. Many users
of smartphone or web apps have never experienced an explicit process of interpretation of a notation. We
are working to help teaspoon language users to navigate programming bugs for the first time.

Research Challenge #2: Adoption

While our teaspoon languages score highly with teachers on measures of usability and usefulness, they
have not been widely adopted. There are many barriers to adopting programming for the first time. Not
many history teachers have computers for all their students. New Social Studies teachers might have
learned about building data visualizations, but they are unlikely to push their more senior colleagues
towards new methods in their first years. When pressed for time, teachers often jettison the technology
first.

We are conducting studies to understand the factors that influence adoption. Today, we work closely with
a handful of adopting teachers, to understand what works for them and how we can better facilitate their

use. These teachers use teaspoon languages because they believe that they help students learn in their
subject.

An Interdisciplinary Research Direction to Broaden
Participation and Access

Teaspoon languages are a new target for programming language design, developed with HCI design
processes with non-programmers to achieve education goals. Using Teaspoon languages really is
programming, in the way that Snow, Naur, and Perlis meant it. Teaspoon languages are about
democratizing access to the activity, about increasing understanding of computational processes, and
about applying programming to advancing disciplinary goals. Maybe students will get interested and want
to do more programming, but our goal is to meet the teacher’s disciplinary needs, not convert students to
computing.

We see teaspoon languages as a strategy for broadening participation in programming. Few American
high school students take a computer science class, but 100% of these students take history,
mathematics, and science. Helping to integrate programming across the curriculum gives all students the
opportunity to discover programming and how it can be useful to them in their lives and careers, even if
they never become part of the computing field.

