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Strongly lensed gravitational waves (GWs) from binary coalescence manifest as repeated chirps from the
original merger. At the detectors, the phase of the lensed GWs and its arrival time differences will be
consistent modulo a fixed constant phase shift. We develop a fast and reliable method to efficiently reject
event pairs that are not-lensed copies and appropriately rank the most interesting candidates. Our method
exploits that detector phases are the best measured GW parameter, with errors only of a fraction of a radian
and differences across the frequency band that are better measured than the chirp mass. The arrival time
phase differences also avoid the shortcomings of looking for overlaps in highly non-Gaussian sky maps.
Our basic statistic determining the consistency with lensing is the distance between the phase posteriors of
two events and it directly provides information about the lens-source geometry which helps inform
electromagnetic follow-ups. We demonstrate that for simulated signals of not-lensed binaries specifically
chosen with many coincident properties so as to trigger false lensing alarms none of the pairs have phases
closer than 3σ, and most cases reject the lensing hypothesis by 5σ. Looking at the latest catalog, GWTC3,
we find that only 6% of the pairs are consistent with lensing at 99% confidence level. Moreover, we reject
about half of the pairs that would otherwise favor lensing by their parameter overlaps and demonstrate good
correlation with detailed joint parameter estimation results. This reduction of the false alarm rate will be of
paramount importance in the upcoming observing runs and the eventual discovery of lensed GWs. Our
code is publicly available and could be applied beyond lensing to test possible deviations in the phase
evolution from modified theories of gravity and constrain GW birefringence.
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I. INTRODUCTION

Ground-based gravitational wave (GW) observatories
coherently detect the space-time perturbations produced
by merging compact objects such as binary black holes.
The phase evolution of these signals encode information
about their gravitational properties, astrophysical origin
and cosmological propagation. The LIGO-Virgo–KAGRA
(LVK) [1–3] detectors have already accumulated observa-
tions of about a hundred compact binaries during the first
three observing runs [4].
Compact binary coalescence signals are inevitably

affected by the intervening matter along their travel path.
The effect of such gravitational interaction is typically
negligible. However, for sufficient alignment between the
source and the matter distribution, the latter acts as a lens

magnifying and possibly distorting the original signal. For
large lenses such as galaxies or clusters of galaxies, strong-
lensing effects can lead to nearly identical chirps of the
same signal arriving at the detectors days to months apart.
The probability of observing strongly lensed GWs depends
heavily on the source and lens populations, but for galaxy
lenses rates can be up to 1 lensed event in every 1000 events
[5–7]. As we expect hundreds to thousands of mergers
within the fourth and fifth observing runs, the first GW
lensing detection could be within the coming years.
Confidently identifying strongly lensed GWs is however

a challenging task. Each of the repeated instances of the
lensed signals hide within large catalogs in which not-
lensed events can easily mimic lensed ones [8]. Past
strongly lensed searches [9–12] have focused on computing
the overlap between parameters of different events in order
to account for the likelihood of lensing [13] before
launching a more computationally costly joint parameter
estimation [14,15]. However, with current sensitivities,
the physical parameters describing the binary are not
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well-constrained and degenerate among each other, making
it common to find large overlaps in not-lensed pairs.
Therefore, in order not to miss any lensed event, many
false alarms would have to be followed up.
In this work we develop a fast and reliable method to

identify strongly lensed candidates through the consistency
of the best measured GW quantities, the phases at the
detectors. We borrow some of the tension statistics devel-
oped in cosmology [16] to compute the confidence level
(CL) of agreement between two events. The advantage of
our method is that it establishes a well-defined measure
of how inconsistent (in “tension”) a pair of GWs is with
the strong-lensing hypothesis. Thus, by construction, our
method generates a highly complete catalog of lensing
candidates while also reducing the number of false alarms
compared to previous methods. A code that implements our
method, PHAZAP, is publicly available.
We begin the paper in Sec. II showing how to efficiently

reconstruct the main GW observables at the detectors—
detector phases, time delay phases and polarization states,
from preexisting parameter estimation posteriors. In Sec. III
we then show how those observables are affected by strong
lensing. In Sec. IV we outline our method to analyze lensed
candidates. We apply the method to a set of simulated
events and to the latest LVK catalog in Secs. V and VI
respectively. Our results are compared with other methods
in Sec. VII. We then explore the implications for current
and future strong lensing searches in Sec. VIII. We
conclude in Sec. IX with the main results and possible
extensions of our method including those beyond lensing.
In a series of appendices we provide further details on our
method and conventions. In particular, we detail our
reference frame conventions, demonstrate how to compute
the phase at a new frequency, show how to break the sky
localization bimodalities, estimate the errors of the detector
phases, specify the settings of the simulated GWevents and
report the detector phases for the real GWs analyzed in
Appendixes A, B, C, D, E, and F, respectively.

II. GRAVITATIONAL WAVE OBSERVABLES

The gravitational wave emission of a compact binary
coalescence depends on the intrinsic parameters of the
source, such as the masses (mi) and spin vectors (  Si), and
can be described by the two tensorial polarizations hþ
and h×. The detected GW strain hdðtÞ at each detector also
depends on the extrinsic parameters; the distance to the
source dL, its sky location as determined by the line of sight
 n ¼ fra; decg, the polarization orientation ψ and arrival
time td, the orbital inclination ι and phase ϕref at a reference
frequency fref,

hdðt − tdÞ ¼ Fþhþ þ F×h×

¼
Z

∞

−∞
h̃dðfÞe2πifðt−tdÞdf; ð1Þ

where Fþ;× ¼ Fþ;×ð  n;ψ ; tdÞ are the antenna pattern func-

tions, h̃dðf;m1;2;  S1;2; ι; dL;ϕrefÞ is the complex-valued
Fourier transform of the real-valued function hdðtÞ, and
the subscript d labels quantities evaluated at each detec-
tor (see Appendix A for conventions on the different
reference frames). For the rest of the paper we will focus
on the positive frequency modes, whose negative frequency
counterparts can be computed by the reality condition
h̃ðfÞ ¼ h̃�ð−fÞ.
Before projecting into the detector frame, we can further

decompose the frequency domain signal of a given polari-
zation in the radiation frame into a sum of frequency-
dependent amplitudes and phases for each multipole mode
at emission. For cases with precession, this is usually done
in a coprecessing frame and there the dominant mode is
l ¼ jmj ¼ 2 which we will refer to as the 22-mode. Higher-
order modes are only sizable when the binary has highly
asymmetric component masses or eccentricity. On the other
hand since precession and higher modes are part of the
standard analysis they impact parameter degeneracies and
inference regardless of whether they are detected in a given
event or not. For our analysis, we will therefore use
waveform models containing these effects.
From the observation of the amplitudes, phases and

arrival times at each detector one can reconstruct the
properties of the detected signal with Bayesian para-
meter estimation. Despite the precise measurement of
the frequency-dependent phase of the signal, the high
dimensionality of the parameter space of compact binary
coalescences, 15 dimensions for quasicircular binaries
accounting for eight intrinsic fm1; m2;  S1;  S2g and seven
extrinsic fra; dec;ψ ; ι; dL; tref ;ϕrefg parameters, leads to
poorly constrained marginalized posteriors for each of
the parameters individually and complicated joint posteri-
ors due to their degeneracies, see e.g., [17]. Still, one can
computationally efficiently use the full parameter estima-
tion to derive the well-constrained posterior probability for
the phases of the 22-mode at every frequency and detector,
which we hereafter refer to as the “detector phases”,

ϕdðfÞ ¼ ϕ22ðfÞ þ χd22ð  n;ψ 0; ι0; tdÞ; ð2Þ

where ϕ22ðfÞ is the global phase of the 22-mode,1

χlm¼ arctan½Fþ;almðι0ÞF×�, and alm ¼ ð1− rlmÞ=ð1þ rlmÞ
with the ratio of the circular polarization amplitudes
rlm ¼ jhlmL j=jhlmR j; see Appendix B for technical details
on how to derive this expression with a waveform-based
decomposition of the polarization state. For the 22-mode,
a22ðιÞ ¼ 2 cos ι=ð1þ cos2 ιÞ. This defines the phase of the

1Specifically, for precessing binaries this is associated to the
phase of the 22-mode in the co-precessing  L-frame. With our
conventions and exploiting the equatorial symmetry, this is
built from the phase of the co-precessing l ¼ 2, m ¼ −2,
þ-polarization mode for positive frequencies.
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22-component of the detector strain at frequency f at
the arrival time t ¼ td. Note that precession causes a
frequency-dependent rotation of the linear polarization
angle, ψ 0 ¼ ψ þ ζðfÞ, as well as a frequency-dependent
inclination angle ι0 ¼ ιðfÞ or circular-polarization state.
The error in the detected phase scales inversely with the

signal-to-noise (SNR) at the detector, δϕd ∼ 1=ρd [18,19].
(see Appendix D for a simple derivation). While the phase
at a given frequency will give us an absolute phase that
will be important for the lensing consistency, the phase
difference Δϕf;d ¼ ϕdðfÞ − ϕdðf0Þ will be relevant to
assess the orbital phase evolution, accounting for the
number of cycles, which encodes information about the
masses of the binary through the detector frame chirp
mass Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5.
In Fig. 1 we show the reconstructed phase as a function

of frequency at a given detector for GW150914, the first
GW [20] using data from the latest analysis [21]. The errors
in the phase are a fraction of a radian over a large range of
frequencies. Importantly, as we will show later, the phase
difference is a better discriminator than the chirp mass due
to its smaller relative error and larger range that reduces the
probability of consistency by random chance. In addition, it
can be seen that the best measured phase is around 40 Hz,
higher than the fiducial reference frequency of 20 Hz but
lower than the frequency where the amplitude peaks,
∼150 Hz [20]. This is because at lower frequencies there
are more cycles and larger SNR is accumulated as long as
the signal is in band. At 40 Hz the standard deviation in
the phase at the Hanford detector ϕH is 0.15 radians, or
δϕHð40 HzÞ ∼ 3=ρH. Note that this order unity factor
multiplying the 1=ρd scaling can vary from event to event
but we will use ∼3 as a rough guide for estimation purposes
later. In large part, this variation is due to events with high
masses and short in-band durations where the 22-phase
becomes hard to distinguish especially in the presence of
other parameters (see Appendix D).

In addition to the phase, detected GWs have timing
information, which is used to triangulate the sky position
of the source. Typically, in the parameter estimation, the
arrival time of the signal tc is defined by the arrival of the
maximum of the time domain strain,AðtÞ2 ¼ jhþj2 þ jh×j2,
as measured at a common GPS time in the Earth frame. The
maximum of the signal is chosen to approximately track the
coalescence time of the binary.We can reconstruct the arrival
time at each detector as

td ¼ tc −  n ·  rd=c; ð3Þ
where  rd is the position of each detector. We use the relative
arrival time at different detectors to define the additional
phases

τd1d2ðfÞ≡ 2πfΔtd1d2 ¼ 2πf  n ·  rd2d1=c; ð4Þ

where  rd2d1 ≡  rd2 −  rd1 . The advantage of these time delay
phases is that they largely remove degeneracies in localiza-
tion as we shall now discuss. In general, the arrival time
difference between two detectors constrains one angle,
 n ·  rd1d2 , defining a ring in the sky of possible source
locations. With three detectors, two angles are constrained,
 n ·  rd2d1 and  n ·  rd1d3 , defining two rings in the sky that
intersect at two points where the event localization is
possible. These two possible localization regions correspond
to a reflection symmetry of the time delays across the
hemispheres delineated by the plane defined by the position
of the three detectors, i.e., distinguished by the sign of
 n · ð  rd1d2 ×  rd1d3Þ. As an example, we plot the time delay

FIG. 1. Reconstructed detector phase as a function of frequency
for the first detected event, GW150914 [20], in the Hanford (H)
detector. In this frequency range, the phase runs approximately
over six cycles with errors of a fraction of a radian with respect to
the mean evolution ϕ̄HðfÞ. Data is from the latest GWTC-2.1
catalog [21].

FIG. 2. Time delay phase contour lines as a function of the right
ascension (ra) and declination (dec) for GW150914 [20]. Dotted
lines indicate contours for Hanford and Livingston (τHL), while
dashed lines are for Hanford and Virgo (τHV). The shaded orange
and blue regions correspond to the 95% CL from the recon-
structed time delays, τHL and τHV respectively. The dash-dotted
line indicates the plane defined by the position of the HLV
detectors. The intersection of both shaded regions occurs in
reflection symmetric positions above and below the detector’s
plane and correspond to a bimodality in the localization from time
delays.
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phase contour lines of τHL and τHV as a function of right
ascension and declination for GW150914 in Fig. 2. The
shaded regions corresponds to the 95% CL for the recon-
structed time delay phases and their intersection indicates
the possible sky localization above and below the plane of
the detectors. Note that GW150914 was not measured by
Virgo and thus τHV is derived from the localization supplied
by the two LIGO detectors rather than measured directly.
For sufficiently high SNR, the amplitude and polarization
information enters into the localization and this information
breaks the time delay reflection symmetry. In detector
networks with more than three detectors, this degeneracy
is also broken and more than two time delay phases can be
computed. On the other hand, these multiple phases always
redundantly parametrize the two sky angles.
Finally, the amplitude information in GW events carries

information beyond the localization. The overall amplitude
serves to quantify the distance to the source and the lensing
magnification while the relative amplitudes between detec-
tors help fix the polarization state through the polarization
angles β and ζ, respectively (see Appendix B for details).
As with the time delay phases, by deriving the detector
phases from the parameter posteriors rather than directly
measuring them in each detector, we encode some of this
extra information on the polarization state into the inferred
parameters.
In summary, for the current network of three detectors

LIGO Hanford (H), LIGO Livingston (L), and Virgo (V),

we can construct six parameters; three detector phases
ϕH, ϕL, ϕV and two arrival-time phases τHL and τLV by
evaluating (2) and (4) at a given frequency, as well as the
orbital phase evolution parameter Δϕf (our default choice
is to reconstruct this phase difference at H, Δϕf ≡ Δϕf;H,
although the detector dependence of the difference is
minimal when derived from the full parameter estimation).
This is to be compared with the five extrinsic parameters

ra, dec, ψ , ι, ϕref and the intrinsic parameter, the detector
frame chirp mass Mc (as well as the remaining of the
original 15 parameters which are marginalized over). By
inferring constraints on the former set from the latter set,
we efficiently encapsulate the information from parameter
estimation into quantities that are closer to the direct
observables and hence have reduced degeneracies and
multimodality.
To exemplify this transformation, a plot of the recon-

structed phases compared to the original parameters for
GW150914 is presented in Fig. 3. Here one can also see
that the relative error in the orbital phase evolution Δϕf is
smaller than in the chirp mass. Moreover, the errors in the
ϕH and ϕL are similar as the SNR in both detectors is
comparable and information is shared in the reconstruction,
whereas their difference ϕH − ϕL is even better constrained.
Similarly despite GW150914 having no Virgo data, the
phase that Virgo would have seen, ϕV, is still constrained
from the parameter estimation, although not as well as H
and L due to parameter degeneracies that are not broken by

FIG. 3. Comparison between the waveform parameters and the reconstructed phases for GW150914. On the left, the posterior
distributions reference phase at the 20Hz reference frequency (ϕref ), the polarization angle (ψ), the inclination at the reference frequency (ι),
the right ascension (ra), the declination (dec) and the detector frame chirpmass (Mc). On the right, the detector phases (ϕH;L;V) and the time
delay phases (τHL;HV) at our pivot frequency of 40 Hz, and the phase evolution between 20 Hz and 100 Hz (Δϕf). In both plots the contour
lines indicate the 68% and 95% credible intervals, while the quoted ranges in the titles are the median and 68% credible interval.
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direct measurement. Likewise, the time delay τHV is also
constrained by inference. For this loud event the full sky
localization degeneracy is partially broken and the 95%
localization region contains only the lower intersection
region in Fig. 2 contributes. This also helps in having a
well-constrained reconstructed phase in Virgo. However, in
lower SNR events, as we will see later, the phase in the
detectors not online is typically unconstrained.
Overall, though, the better constraints using our derived

detector phase parameters vs the original binary parameters
illustrated in Fig. 3 reflects the advantage of our approach
in capturing the GWobservable and carries over to lensing
identification as we shall see next.

III. GRAVITATIONAL WAVE STRONG LENSING

In the regime of strong lensing, multiple instances of the
same event are produced, each of them acquiring a change
in amplitude, arrival time and phase [22]

h̃jlensedðfÞ ¼
ffiffiffiffiffiffiffi
jμjj

q
einjπ=2h̃ðfÞ;

tjd ¼ td þ Δtj ð5Þ

with nj ¼ 0, 1, 2 for type I, II and III images respectively
and Δtj as the time delay compared to the signal without
lensing. Therefore, if the detectors were in the same
positions relative to the source for each image (see
Sec. IV), the detector phase of two lensed images j and
k should only differ by their Morse phase

Δϕd
jk ¼ ðnj − nkÞπ=2; ð6Þ

meaning that their phase should be identical if they are the
same image type or differ by a multiple of π=2 otherwise.
Distances to the source and arrival times will be biased by
the magnification and time delay and thus cannot be used
to reject the lensing hypothesis in a given pair of events,
though with additional astrophysical assumptions both can
be informative.
In the regime of geometric optics, the polarization

rotation is of the order of the deflection angle and, as a
consequence, negligible for ground-based detectors [23].
All instances of the original event should then have the
same polarization state as a function of frequency. For
example, the degree of circular polarization can be para-
metrized by

r ¼ jhLj=jhRj; ð7Þ

the ratio of the left- and right-handed polarization ampli-
tudes (see Appendix B for other quantities defining the
polarizations). As discussed in the previous section, this
information is encoded in the detector phases inferred
from parameter estimation. Future observations of the

polarization states could be used, for instance, to test the
spin consistency among the lensed events.
Altogether, in order to identify strongly lensed GWs we

can look at the consistency of the detector phases and time
delays. For the current network of detectors, the polariza-
tion state is not separately well-constrained and for that
reason we do not consider its consistency directly. Focusing
on the GW detector phases is advantageous over individual
waveform parameters since their large degeneracies and
measurement uncertainties make them easily overlap by
chance, leading to high false alarm rates [7,8,14]. This is
evident, for example, when looking at Fig. 3. Previous
analyses have ranked lensed candidates by computing
overlaps in the redshifted component masses, spins and
sky positions as we will discuss in Sec. VII.
It is also important to note that for this consistency test

to work, the standard parameter estimation should use
models that are a good description of the lensed signals.
This is the case for the type-I and type-III images, but the
phase shift of type-II images could induce waveform
distortions that are not included within the family of
(not-lensed) general relativity waveforms [23]. Therefore,
for type-II images the parameter estimation of sky positions
and inclinations could be biased [24]. However, we have
checked with simulated type II images, where the Morse
phase shift is applied directly to each frequency, the
detected phase is well-recovered and consistent with
the expected signal-to-noise ratios of current detectors.
Extraordinarily loud type-II images, specially when having
asymmetric masses in close to edge on binaries [23,25,26],
could be identified directly by including the phase factor in
the parameter estimation. We expect similar results to hold
for strongly lensed images that are also lensed by smaller
lenses inducing waveform distortions; if the distortion is
large enough to bias the parameter estimation, it could be
identified as lensed by targeted searches.

IV. METHOD

Our goal is to design a fast and reliable method that
rejects as many nonlensed events as possible while select-
ing the most promising events for more detailed study. For
that reason, instead of reanalyzing each candidate pair
using joint parameter estimation, we efficiently postprocess
the original posterior samples from the parameter estima-
tion that are performed for every detection.
We analyze the events of a given GW catalog in pairs,

aiming to first discard those pairs whose phases are not
compatible with the strong-lensing hypothesis and then rank
the remaining candidates for priority in a joint parameter
estimation campaign. We generically label the events in the
pair as “event 1” and “event 2”. To compare the detector
phases of two events, we need first to fix the reference
frequency and establish a common detector reference frame.
We fix the reference frequency to 40 Hz, which for

planar, quasicircular inspairaling binaries and advanced
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LIGO and Virgo detectors approximately gives the best
measured phase. Note that this choice is different from the
standard fref ¼ 20 Hz of LVK catalogs, but it is easy to
compute the detector phases at a new frequency; see
Appendix B. Unlike Ref. [17], we cannot optimize this
frequency per event since we need a common parametriza-
tion between pairs. Still, if a more optimal strategy is
desired, one could alternately choose the frequency for
which the joint errors are minimized at the computational
expense of reprocessing per pair. As a bonus, at the best
measured frequency, the detected phases decorrelate from
other intrinsic parameters such as the chirp mass. This is
not in general the case at other frequencies. We defer such
optimizations to future studies.
In place of the chirp mass we take the phase difference

across the widest frequency range where the detected phase
is well-constrained. Our results are not very sensitive to the
precise value since the larger phase errors of a larger range
are compensated by the increase in the number of cycles.
Our default choice is from 20 Hz to 100 Hz, which matches
the well-constrained region of the fiducial case displayed in
Fig. 1. Similarly, we compute the orbital phase evolution at
Hanford, although the detector’s dependence essentially
drops out.
As discussed in the previous section, the detector phases

between the two lensed events will differ by multiples of
π=2 only if the detectors are in a common reference frame
between events. We fix the reference frame to the arrival of
event 1. For event 2, this can be achieved by shifting the
mean of the arrival of event 2,

t2 → t2 − ht2i þ ht1i: ð8Þ

Note that this changes the detector phases of event 2 by
changing χd in Eq. (2). With this choice we are comparing
the actual “detected phases” of event 1 with the inferred
“detector phases” of event 2, defined by what the detectors
would have seen, had they been in the orientations of event
1 given the parameter estimation of event 2. The main
caveat in this approach is that the detector phases of event 2
will generally have poorer constraints, larger degeneracies,
and less Gaussian distributed posteriors than the detected
phases of event 2.
Likewise, the time delay phases for event 2 reflect only

the localization of event 2 through Eq. (4) and do not
directly reflect the arrival times of event 2 at the actual
positions of the detectors. Therefore, due to the ring
degeneracy of a localization inferred from a phase differ-
ence, explained below Eq. (4), event 2 time delay phases
will generically inherit a ring-like structure that is typically
bimodal. This bimodality can be separated into individual
modes by distinguishing the samples that come from above
or below the plane of the detectors in their actual positions
for event 2 (see Appendix C for details). By analyzing these

two modes separately, we mitigate the non-Gaussianity of
the inferred time delays for event 2.
In order to quantify the consistency of a set of posterior

samples of parameters of event 1, θ1, with the same
parameters of event 2, θ2, we focus on the probability
density of their difference Δθ ¼ θ1 − θ2 [16],

PðΔθÞ ¼
Z

Pθ1ðθÞPθ2ðθ − ΔθÞdθ; ð9Þ

which is the convolution of the two posterior probabilities
Pθ1 and Pθ1 . Support for large values of jΔθj indicates that
the two parameter sets are not compatible.
For any two posteriors, we can compute the distribution

of Δθ numerically and set confidence intervals for con-
sistency [27]. Moreover, if the two posteriors are approx-
imately Gaussian, we can estimate consistency very simply.
The width σ of the Gaussian PðΔθÞ is determined by the
sum of the covariances C1 and C2, so that the distance in
units of σ is given by [16]

D12 ≡Dðθ1; θ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔθTðC1 þ C2Þ−1Δθ

q
: ð10Þ

Inconsistencies between data sets can be defined at differ-
ent CLs. Note that for non-Gaussian posteriors the
Gaussian approximation in Eq. (10) will typically lead
to overly conservative distances, as residual multimodality
will inflate the covariances leading to shorter distances. An
example of this behavior for the time delay phases, which
can be multimodal as described above, is presented in
Appendix C.
For a given number of χ2-distributed parameters, we

can relate the distance to the CL. For example, for 1=4=6
degrees of freedom, a 95% CL corresponds to 2.0σ=
3.1σ=3.5σ, 99% CL corresponds to 2.6σ=3.6σ=4.1σ, and
99.9% CL corresponds to 3.3σ=4.3σ=4.7σ. If the uncer-
tainties in a given parameter make the data uninformative
the effective degrees of freedomNeff that are constrained by
the data can be smaller than the total N. In such cases the
posterior has support across the whole prior range and we
can quantify the effective number of degrees of freedom as

Neff ¼ tr½ðCprior þ C1 þ C2Þ−1Cprior�; ð11Þ

where Cprior is the covariance of the priors. For example,
for a bounded flat distribution in a single parameter the
covariance is C ¼ ðθmax − θminÞ2=12 [16]. If the data is
informative, Cprior ≫ C1 þ C2, then Neff → N, the true
number, while in the opposite limit, Cprior ≪ C1 þ C2,
one gets Neff → 0. In practice given our 6 actual param-
eters, we compute Neff for the three detector phases only
so that the total number of effective parameters is
Ntot ¼ Neff þ 3, effectively taking infinite prior covarian-
ces for the other parameters. Because detector phases can
differ under the lensing hypothesis by multiples of π=2,

EZQUIAGA, HU, and LO PHYS. REV. D 108, 103520 (2023)

103520-6



we set the detector phase priors ϕd for an informa-
tive measurement so that Cprior ¼ δd1;d2ðπ=2Þ2=12 for
d1; d2 ∈H;L;V.
Since strong lensing introduces a constant phase shift of

the detected phases, we compute the distance for all the
possible phase shifts,

Dn
12 ¼ Dðϕ1;ϕ2 þ nπ=2Þ; ð12Þ

for n ¼ 0;�1;�2. A true lensed pair will have consistent
parameters in both orderings and so we define a pair-
ordered distance that maximizes over the ordering,

Dn
J ¼ maxðDn

12; D
−n
21 Þ; ð13Þ

where the relative phase shift and hence n switches sign
under a change in ordering. Conversely, since each n is a
possible lensing outcome, we minimize the pair-ordered
distance over lensing types to obtain the final joint distance

DJ ¼ minnðDn
JÞ: ð14Þ

This DJ will be our basic metric in the analysis. Note that
by virtue of this formalism, we get directly the phase shift n
most consistent with the lensing hypothesis, which carries
information about the image types and therefore the lens
model. This is not possible with methods that compute the
posterior overlaps that do not include phase information
(see Sec. VII).
Finally, with the joint distanceDJ and the total number of

effective parameters Ntot we compute the confidence level
of consistency with the lensing hypothesis and produce a
catalog of pairs that are consistent with lensing. In our
analysis of simulated and real events in Secs. V and VI we
draw the line at 99%CL but our same analysis could trivially
output results at different levels, trading purity for complete-
ness, though the probabilistic inference will depend on how
Gaussian the tails of the parameter posterior are.
Since pairs that pass the distance consistency threshold

may do so simply because the parameter errors are so large
as to encompass lensing as a possibility, we can further
rank them according to a statistic that measures how well
the parameters are constrained. Because the errors in the
parameters for a given event scale inversely with the SNR,
one possibility is to rank pairs in terms of expected scaling
of total errors with the network SNR,

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ−2ntw;1 þ ρ−2ntw;2

q
; ð15Þ

where

ρ2ntw ¼ ρ2H þ ρ2L þ ρ2V ð16Þ

is the median “optimal SNR” across the posterior para-
meter distribution [see Eq. (D3)], combining those of each

detector. The drawback is that there can be events with high
SNR and poor parameter errors when compared relative
to different events with very different binary parameters. In
fact, as discussed above when the 22-mode is the dominant
detection, all detector phase errors should scale with R with
the same-order unity coefficient (∼3) so that a para-
meter error-based ranking can be constructed using just
the parameter volume of the three detector phases
θ∈ fϕH;ϕL;ϕVg

Vθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCθÞ

p
: ð17Þ

For a pair we take the sum over each volume

VJ ¼ V1 þ V2: ð18Þ

Unlike for the parameter distance and Neff , this covariance
and the associated volume is computed in the reference
frame of individual events with the detectors in their true
orientations so as to better reflect the scaling with SNR of
all of the derived parameters.
In our default analysis we compute the parameter

distance and consistency of the six phases; fϕH;ϕL;ϕV;
Δϕ; τHL; τLVg. This can be extended to include any addi-
tional parameter, properly including their correlations. In
particular, in the future, the polarization-amplitude ratio
rðfÞ could be an additional discriminator that measures
spin or precession consistency, though it is currently not
independently well-measured.
As we will show in the next sections, since the phase

difference is the more constraining parameter at the
moment, when constructing a candidate lensing catalog
we recommend employing both DJ and Δϕf, rejecting
those pairs inconsistent with either at the chosen CL
Our method is implemented in a public code, PHAZAP,2

which includes both the postprocessing tools to rapidly
obtain the detector phases as well as the tension statistics
that are relevant for lensing searches.

V. ANALYSIS OF SIMULATED EVENTS

In order to test our method, we simulate a set of lensed
and not-lensed GW detections, which we refer to as
injections. Our set of injections contains a reference GW
event with zero phase shift denoted “Type I”, an image
of this event (demagnified and phase shifted by π=2)
denoted “Type 2”, and a third unrelated event which is
not-lensed, denoted “Not-lensed”. This accounts for one
lensed pair (type I and type II) and two not-lensed pairs
(type I/II and Not-lensed). Within each set we tune their
luminosity distance so that there is a low-SNR con-
figuration (ρntw ∼ 12–16) and a high-SNR configuration
(ρntw ∼ 22–30) across the detector network. We study a

2https://github.com/ezquiaga/phazap.
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LIGO-only two detector network (HL) and a LIGO-Virgo
three detector network (HLV). We make these choices to
represent different observing scenarios. In all the cases we
perform the standard parameter estimation that is applied
to real data in LVK catalogs using bilby [28] and the
projected sensitivities of LIGO and Virgo for the fourth
observing run, see Appendix E for details. Our goal is to
test the robustness of the method for situations in which it is
easy to confuse a pair of unlensed events as being lensed
due to the similarity of their parameters.
We first consider the case of a “vanilla” binary black hole

with masses comparable to GW150914, i.e., Mc ∼ 30M⊙.
In order to test the method in a situation in which standard
posterior overlap analysis could lead to false alarms, we
consider the case in which the nonlensed injection has the
same intrinsic parameters as the lensed injection. We only
change the phase, polarization angle, and sky position. The
sky position is chosen so that for a LIGO-only detector
network the sky maps of the lensed and not-lensed events

overlap, i.e., on the degeneracy ring of the time delay τHL
(see Fig. 2). Details of these injections are given in Table II,
Injections 1–12.
To get a sense of the method, we first consider the most

optimistic scenario with high SNR and an HLV network.
We present the posterior distributions for the different
phases of the three injection in Fig. 4. The lensed pair,
Type I—Type II, displays agreement when shifting the
detector phases by −π=2, while it is clear by eye that
the not-lensed event shows inconsistency with them. To
quantify the (in)consistency of the pairs, we compute the
distance DJ of the simulated lensed and not-lensed pairs.
For the lensed pair, the minimum distance in the six-
dimensional phase space is 0.6 when shifting the type-II
image phases by −π=2. Any other phase shift, 0; π=2;�π,
would lead to distances > 11. On the other hand, for the
not-lensed pairs, all possible phase shift configurations lead
to disagreements with DJ > 70. This large distance is
dominated by the time delay phase τHV that alone rejects

FIG. 4. Lensing consistency test for a simulated pair of lensed events (type-I and type-II images) and a not-lensed event. The
reconstructed phases at each detector (ϕd) and the time delay phases (τd1d2 ) are computed at 40 Hz, while the orbital phase evolution
(Δϕf) is between 20 Hz and 100 Hz. We are comparing the consistency of both the type-I image and the not-lensed event to the type-II
image. For the three injections the posteriors correspond to the high signal-to-noise, 3-detector configuration (specifically Injections 10–
12 described in Appendix E). In this six-dimensional phase space, the lensed pair is consistent within a distance of 0.6, while the not-
lensed pairs are rejected with distances > 70. Contours are drawn at 68% and 95% credible intervals.
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the lensing hypothesis with a distance of 67. However,
the three detector phases alone would also strongly reject
lensing, with a three-dimensional distance Dϕd

> 15,
thanks to the well-constrained direction ϕH − ϕL. On the
other hand, in this case where we have intentionally set
the mass to be the same the orbital phase evolution Δϕf

alone would agree within a one-dimensional distance of
DΔϕf

∼ 1, consistent with noise. In any of the pairs, all
three detector phases are informative, with a total effective
number of detector phases Neff ¼ 2.7 and a total number of
effective parameters Ntot ¼ 5.7. For this number of param-
eters both DJ > 70 and Dϕd

> 15 indicate an entirely
negligible probability of being a lensed pair.
Moving forward, our goal is to test how well we can

reject the nonlensed hypothesis for pairs that share many
common parameters in different configurations. For this
first set of 12 injections we study all the possible low-/high-
SNR and HL/HLV configurations for a total of 12 ×
11=2 ¼ 66 possible pairs. Each injection has a different
noise realization and their parameters are summarized in
Appendix E. We find that the not-lensed pairs are always
rejected with distances DJ > 3 in the six-dimensional
phase space or, equivalently, > 94% CL when taking into
account the effective number of informative degrees of
freedom. Only 2 of the 32 not-lensed pairs are consistent
with lensing at 99% CL even in this situation in which most
of the parameters of the simulated GWs are the same.
For injections with high-SNR or HLV configurations (9 out
12), nonlensed pairs are always rejected with distances
larger than 5. On the other hand, we find all lensed pairs to
be consistent within a distance of 2.5, where recall that the
median expectation for Ntot ¼ 6 is ∼2.3.
The distribution of distances for all simulated pairs is

presented in Fig. 5. There we also plot the detector phase
volume in the vertical axis. The distance itself is the one
determining the consistency with the lensing hypothesis.
VJ, on the other hand, provides the ranking of the events
that pass the lensing consistency test for follow-up analy-
ses. In particular, we clearly see that HLV pairs have
smaller volumes as expected.
To understand how the masses of the binary play a role in

the method, we then study a lower mass binary withMc ∼
12M⊙ (corresponding to Injections 13–15 in Table II). The
relation between the three injections is the same as before,
but in order to enlarge the cases tested we choose a different
inclination and sky position to the previous case for
injection 3 and change the arrival times in all cases.
This defines the “low-mass” version of the Type I, Type
II, and Not-lensed injections. In this case we only consider
the low-SNR, HLV configuration. Therefore, when putting
this together with the previous injections we analyze a total
of 15 injections and 105 possible pairs. We find similar
results as before, rejecting the not-lensed pairs with
distances > 3, see Fig. 5. No additional not-lensed pair
is consistent with lensing at 99% CL, reflecting the fact that

the original set was designed to be difficult to distinguish,
and so the false-alarm rate goes down to 2 out of 70 of the
injection pairs. Moreover, this new set of injections allow
us to compare with the previous injections to see how two
events with all equal parameters but masses and arrival
times could be distinguished. Thanks to incorporating the
phase difference Δϕf, events with different masses are
rejected at higher significance. Moreover, we find that the
phase difference can be a more stringent discriminator than
the chirp mass. In this case DΔϕf

∼ 10DMc
∼ 100, though

as we shall see in the next section a more typical number for
DΔϕf

=DMc
is 2–3 for distances that are more consistent

with the lensing hypothesis.
Finally, we look at the effect of inclination. We do

so by simulating high-SNR HLV triggers with the
same parameters of Type I and II, but with a dif-
ferent inclination, θJN ¼ 2.3 compared to θJN ¼ 0.8;
cf. Injections 10,11 to 16,17 in Table II for details.
We find that for all pairs with these different inclina-
tions, the lensing hypothesis is rejected through the
phases at the detectors. This implies that ϕd encodes the
inclination information, or circular polarization ratio r,
as expected. We also look for the agreement in the
polarization ratio r alone. We find that only HLV-
injections are able to discern between the two cases
due to parameter degeneracies. In particular, the incli-
nation will be degenerate with other polarization state

FIG. 5. Analysis of simulated gravitational wave events. We
compare the distance (DJ) and phase volume (VJ) statistics for all
136 pairs from 17 injections. Lensed and nonlensed pairs are
indicated with green and red colors respectively. Point shapes
indicate pairs in which in both events there were HL (þ) or HLV-
detectors (⧫). The vertical dashed line delineates 3σ in distance
(DJ ¼ 3) and note that all lensed pairs lie below this threshold
(shaded green) and all nonlensed pairs above (shaded red). The
volume serves to quantify how well-constrained the detector
phases are compared to their prior volume and can be used to rank
candidates for follow-up analyses, from larger to smaller 1=VJ.
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parameters in generic precessing systems. An example
of this behavior is presented in Fig. 15 in Appendix B.
Altogether, for the 17 injections and 136 pairs, including

both HL and HLV configurations, we find that the detector
phases can carry relevant information. When computing the
number of effective degrees of freedom, we find that all
pairs have at least one effective phase, and> 40% have two
effective phases, with > 25% having Neff > 2.5 (a compi-
lation of the detector phases posteriors is presented in
Appendix E). However, given our specific choices for the
injections, this does not represent a full characterization of
an astrophysical population and observing run. For exam-
ple, in this catalog of simulated events, ∼40% of pairs are
HLV detections. A detailed study with a fair selection of
simulated not-lensed events from an astrophysical popu-
lation for different observing scenarios is left for future
work, though as we shall see next, the known real events
provide a proxy.

VI. ANALYSIS OF REAL EVENTS

Having validated our method with simulations in the
previous section, we proceed to analyze the latest LVK
catalog, GWTC-3 [4].3 We focus on binary black holes
with a high probability of having astrophysical origin,
pastro > 0.8, and a network SNR > 8, for a total of 67
events or 2211 pairs.
With the current catalog, where the chirp masses are

distributed over a wide range of values and the Virgo
detections are low SNR at best, we expect the main com-
ponent of the distance discriminator to be the phase
difference between frequencies Δϕf. As previously dis-
cussed, Δϕf is a better constrained parameter than the
detector-frame chirp mass, leading to distances which are
typically at least a factor of 2–3 times larger as shown in
Fig. 6. This leads to a significant advantage when testing
the lensing hypothesis. If we compute the 1D distance
consistency DΔϕf

determined by Δϕf alone, we find that
only 11% of the pairs are consistent with the lensing
hypothesis at 99% CL. This is to be compared with theMc
consistency alone where more than double that number
23% are consistent with lensing at 99% CL.
While the joint distance DJ automatically accounts for

DΔϕf
, the detector phase differences are only significant in

a fraction of the pairs in the current catalog. Quantitatively,
only 31% of the pairs have more than one effectively
constrained detector phase at 40 Hz. In other words, for
most of the pairs, the detector phases have errors larger
than π=2, a precision that is necessary to distinguish
between all the possible lensing phase shifts (and that is
a factor of 4 smaller than the naive 2π prior range of the

phases, requiring a factor of 4 higher SNR to be inform-
ative). The number of pairs with Neff > 1 increases to 45%
when focusing on pairs with three detectors online. As
shown in Fig. 7, pairs with a low number of effective phases
are those with large volumes and R statistic [see Eq. (15)].
Note though that the scatter around this trend is large and

FIG. 6. Comparison of the one-dimensional distance in the
derived orbital phase evolution Δϕf and the detector frame chirp
mass Mc for real gravitational wave events. Δϕf efficiently
rejects 89% of the pairs as being not-lensed at 99% CL, while the
same threshold on Mc more than doubles the number of the
pairs. Colors denote the 99% CL cut on DJ alone and note that
some pairs are ruled out by DΔϕf

but not DJ (see text for
discussion). Point shapes indicate pairs in which both events had
at least 3 detectors (⧫), 2 detectors (þ) or 1 detector (•) online.

FIG. 7. Detector phase volume VJ as a function of R for real
gravitational wave events. R weights the inverse network SNR of
the pair, see Eq. (15). We color the pairs by their number of
effective detector phases Neff . Smaller R tends to correspond to
larger 1=VJ and a higher Neff albeit with large scatter, mainly
associated with the poorer phase measurements for high chirp
mass events. Point shapes indicate the number of detectors as
in Fig. 6.

3It is to be noted that GWTC-3 includes the catalog GWTC-2.1
[21] that reanalyzed the events in the first two observing run with
the newest waveforms used during the third observing run.
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that the pairs in Fig. 7 with small R but large volume are
associated to events with high chirp mass.
The large scatter to higher VJ also implies that there can

be cases where lensing is excluded by DΔϕf
but marginally

allowed by DJ. Within the current catalog and a 99% CL
threshold, this occurs in 16 pairs. Recall that we compute
the p-value for DJ using the Neff , see Eq. (11). In order to
avoid cases where a strong rejection in the one-dimensional
space is diluted by poor and potentially non-Gaussian
measurements in the higher-dimensional phase space, we
require both DΔϕf

and DJ to pass the 99% CL consistency
test in the current catalog. This brings our total to 131 out of
2211 pairs or ∼6% that are consistent with lensing.
We display these cuts and the final lensing catalog in

Fig. 8. As expected, three detector (HLV) events with
higher SNR display smaller volumes and reject the lensing
hypothesis more strongly. Notice also that some of the
structure in the distribution of distances and volumes in
Fig. 8 is inherited from the astrophysical population of
chirp masses discussed in Fig. 7.

For each pair in the final lensing catalog, our method
provides information about the image types through the
phase shift which gives the minimum distance. The pair
GW170104–GW170814 stands out as the most interesting
candidate given its small-phase volume, log10ð1=VJÞ¼1.2,
and distance,DJ ¼ 1.3, for a phase shift of�π. This would
correspond to type-I–type-III image pairs. This pair was
identified early on by [29,30], and remains the pair with
highest coherence ratio [11,31] (see also Sec. VII). When
including astrophysical priors about the lens model and

population of lenses, the lensing hypothesis is however
disfavored under those model assumptions [10].

VII. COMPARISON WITH OTHER METHODS

GW strongly lensed candidate pairs can be ranked by
the amount of overlap of their parameters. This posterior
overlap method [13] uses

BL
U ¼

Z
dΘ

pðΘjevent1ÞpðΘjevent2Þ
pðΘÞ ð19Þ

as its basic statistic where Θ are the set of parameters over
which overlaps are computed, pðΘjeventÞ are their pos-
terior distributions and pðΘÞ their prior distribution.
Previous analyses [9–12] have computed overlaps over 8
parameters: detector-frame masses, dimensionless spin
magnitudes, the cosine of spin tilt angles, the cosine of
orbital inclination θJN and sky position. The BL

U statistic is
therefore a ratio of marginalized posteriors that is agnostic
to astrophysical assumptions. The BL

U is however sensitive
to the prior range of its parameters, in particular the detector
frame masses. Moreover, being a statistic that it is not
normalized or calibrated intrinsically, the interpretation of a
BL
U is subject to prior knowledge of the expected values for

a population of lensed and not-lensed sources. Aided by
background studies, one can then translate a BL

U into an
odds ratio or p-value [10,11]. Since we want to compare the
posterior overlap method with our phase consistency
approach that it is agnostic to astrophysical modeling or
assumptions about the likelihood of the lensed and not-
lensed hypotheses, we therefore restrict to BL

U and inter-
preting it as a Bayes factor. Correspondingly, for illustra-
tion purposes, we assume that only pairs with BL

U < 0.1
reject the lensing hypothesis.
In the past BL

U has been used to select interesting
candidates to follow with joint parameter estimation. In
the first half of the third observing run 19 pairs of super-
threshold events with BL

U > 50 were followed up [10],
although four of them involved a GW event (GW190424_
180648) that was later downgraded to subthreshold [21].
In [10], the O2 pair GW170104-GW170814 was also
analyzed in joint PE. In the second half of O3 pairs with
a false positive probability (FPP) of < 1% were further
analyzed [11], with the FPP computed after a large
injection campaign. In the second half of O3, events were
also filtered using the machine learning code LensID [32]
and the rapid joint parameter estimation version of Golum
[31]. This accounted for another 14 joint parameter
estimation pairs. In total there are 30 pairs of superthres-
hold events that we can compare with. For all these pairs,
the joint parameter estimation provides the coherence ratio
CL
U, defined as the ratio of the lensed and not-lensed

evidences, and it is (mostly) agnostic to astrophysical
priors on the population of sources and lenses [10].

FIG. 8. Analysis of real gravitational wave events. We compare
the distance (DJ) and detector phase volume (VJ) statistics for
67 binary black holes in GWTC3 with probability of having
astrophysical origin larger than 0.8 and network SNR > 8. We
use different symbols to indicate the number of detectors online
and different colors to show the confidence level of agreement
with the lensing hypothesis for both the joint phase distance and
phase evolution (Δϕf ∧ J), for only phase evolution (Δϕf) or for
neither. 94% of pairs are rejected at 99% CL. Point shapes
indicate the number of detectors as in Fig. 6.
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LVK analyses [10,11] also computed the Bayes factor that
accounts for the final likelihood of lensing taking into
account reasonable astrophysical expectations.
Following [9–11], we compute the posterior overlap of a

given pair approximating the posterior distributions with a
kernel density estimator (KDE) for the first seven param-
eters and computing the sky overlap independently. Prior
volumes are specified in Appendix F. Importantly, the sky
overlaps in this approach are not normalized. Alternative
sky map overlap statistics have been studied in [33]. We
note that the numerical calculation of the six-dimensional
KDE is significantly more demanding than the distance
calculation, which is typically 1000 times faster.
We begin by analyzing our injection set. Figure 9

presents the distance statistic DJ versus the posterior
overlap BL

U for all possible pairs. Noticeably most lensed
pairs display a large BL

U. However, there are also many not-
lensed pairs with similar overlap that are rejected by their
phase consistency. Moreover there are no pairs with BL

U <
0.1 and DJ > 3 which would represent a more efficient
rejection via overlap. This demonstrates the potential of our
method to better reduce the number of false alarms.
Because of not being normalized, the overlap statistics
show a tendency to predict HLV-pairs with higher BL

U,
regardless of lensing.
We then analyze the catalog of real binary black holes in

Fig. 10. We find that with the posterior overlap statistic 9%
of pairs are consistent with the lensing hypothesis as
determined by log10 BL

U > −1. This is to be compared to
the 6% found with the phase consistency at 99% CL. The
rejection of the lensing hypothesis in the posterior overlap
analysis is mainly triggered by nonoverlapping sky maps,
with 30% of pairs having no sky-overlap. This is due
mostly to the majority of events in the catalog being

relatively heavy (due to selection effects) leading to larger
errors in their masses, and agrees with previous expect-
ations [8]. When excluding the sky localization informa-
tion, 18% of pairs are consistent with lensing.
In terms of the purity of the BL

U > 0.1 pair catalog, the
phase consistency method disfavors (at 99% CL) 44% of
candidate pairs, for a total of 82. In Fig. 10, these are the
upper right blue points. From them, some exhibit strong
consistency with the lensing hypothesis through their
overlaps, BL

U > 100, but are rejected by the phase con-
sistency at high confidence. This is because in the posterior
overlap method a single parameter can outweigh the rest,
while the phase consistency accounts more equally from
the consistency in all the phases. This demonstrates the
complementarity and advantages of our new method
compared to existing analyses.
Conversely, in terms of the purity of the phase consis-

tency catalog, 19% of pairs consistent with lensing by their
phases have BL

U < 0.1. In Fig. 10, these are the 25 lower left
blue points, i.e., less than a third of the false alarms of BL

U.
These are cases in which the Gaussian distance estimator
provides an overly conservative agreement for an intrinsi-
cally non-Gaussian posterior, especially in the time delay
phases of two detector events where the degeneracy forms
rings (see Appendix C). In this case, spot checking our
phase-based pair catalog for sky-overlap consistency can
be helpful. More generally, one can automate tests for
significantly non-Gaussian distributions such as a differ-
ence between the mean and mode. For such cases, a non-
Gaussian tension estimation for phase consistency can be
efficiently achieved using machine learning methods [16].
We leave the implementation of such tools for future work.
Finally, we compare our phase consistency distance

statistic DJ with the joint parameter estimation coherence
ratio CL

U and the posterior overlap BL
U for the 30 pairs in

which this information is available. As shown in Fig. 11 all
pairs display a large BL

U since this was the criteria for joint

FIG. 9. Comparison between the phase consistency and the
posterior overlap methods for simulated gravitational wave
events. Phase consistency is determined by the distance DJ,
while posterior overlap is quantified by the BL

U statistic. We
follow the same plotting conventions of Fig. 5. The minimum BL

U

is set to 10−5.

FIG. 10. Comparison between the phase consistency and the
posterior overlap methods for real gravitational wave events. We
follow the same plotting conventions of Fig. 8. The minimum BL

U
is set to 10−10.
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parameter estimation follow-up. We can also see that only
GW170104-GW170814 favors lensing with log10 CL

U > 0.
In fact, many of them are rejecting the lensing hypothesis
log10 CL

U < −1. Noticeably, our distance statistic is able to
reject six pairs at 99% CL with large BL

U but small CL
U. The

anticorrelation between DJ > 3 and CL
U demonstrates the

benefit of incorporating the phase consistency in future
strong lensing searches. Our method also correctly iden-
tified the pair GW170104–GW170814 as the most signifi-
cant given the consistent distance and small volume, as
discussed in the previous section.

VIII. CURRENT AND FUTURE STRONG
LENSING SEARCHES

Our analysis of real GW events in the first three
observing runs together with the simulations of lensed
and not-lensed events with the sensitivity of the fourth
observing run allow us to draw some expectations for the
upcoming and future multiple image searches. As we have
seen in the previous sections, our ability to test the lensing
hypothesis depends on how well we can reconstruct the
different phases. Past detector sensitivities were such that
the distance measuring the (in)consistency of a given pair
with the lensing hypothesis was dominated by the orbital
phase evolution information, as the detector phases were
typically not well enough constrained to distinguish
between the possible lensing phase shifts (see Fig. 19 in
Appendix F for the actual posterior distributions of ϕd). In
fact, when looking at the distribution of detector phase
volumes, see Fig. 12, one can see that pairs consistent with
the lensing hypothesis are skewed towards larger volumes,
making ranking by VJ even more important. In other
words, most of the pair catalog is composed of events
with poor parameter constraints and/or low SNR.
The situation with our simulated events shows more

promise for the future. During the fourth observing run

there should be more events where the phases are better
constrained and provide a better discriminant for the
lensing hypothesis. Still, we observed large difference in
the constraining power of our optimistic, high-SNR simu-
lated events to our more common, low-SNR injections and
in any given observing run low-SNR events will always be
more numerous than high-SNR events.
In general, for the detector phases to be informative

we need to distinguish between the possible π=2 phase
shifts within the pair. Thus, the effective σ from the
lensing prior is π=2

ffiffiffiffiffi
12

p
. From data SNR per detector is

3
ffiffiffi
2

p
=ρd, so nominally for the detector phases to be

informative it is necessary that ρd > 12
ffiffiffi
6

p
=π ∼ 10 or

R < π=12
ffiffiffi
6

p
∼ 0.1 for a two detector network. Within

the real events that we analyzed in GWTC3, that is
true for only about 20% of pairs, see Fig. 7. The
distribution of SNRs for a given detector network is
(quasi)universal [34].4 It follows pðρntwÞ ¼ 3ρ3th=ρ

4
ntw,

where ρth is the threshold for detection. Therefore, it
is to be anticipated that for a fixed network, the majority
of events will be of low significance close to the
threshold. Still, future observing runs will improve their
sensitivity, making distant events with higher chances of
experiencing lensing better measured and easier to
identify. Within our current data, if we increase the
network SNR cut to 12, the catalog size reduces to 36
events (630 pairs) and the fraction of pairs consistent
with lensing also reduces to 3%, or 18 pairs. Given the
current computational cost of joint parameter estima-
tion analyses, reducing the number of pairs to follow-up
in a “golden catalog” of lensed candidates would be

FIG. 11. Comparison between the phase consistency distance
(DJ), the joint parameter estimation coherence ratio (CL

U) and the
posterior overlap statistic (BL

U) for real gravitational wave events.
The joint parameter estimation results are taken from [10,11].

FIG. 12. Distribution of detector phase volume for all the pairs
analyzed in GWTC3, and those consistent with the lensing
hypothesis. Consistency with lensing is defined at 99% CL as
in the main text. This represents 6% of the pairs.

4The strict universality holds in a Euclidean universe where
sources are uniformly distributed in distance. This is a good
approximation for low-redshift observations.
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advantageous and with our technique can be achieved
through cuts in VJ. As demonstrated in Fig. 11, our
distance measure correlates nicely with the joint param-
eter estimation coherence ratio and can be used to
reduce the candidate list compared to other methods.
Besides the GW information, electromagnetic follow-

ups of strongly lensed candidates will be essential to
conclude the lensed origin of a set of GW events. This
can be achieved in different fashions. Targeted follow-ups
and archival searches can look for lensing signatures of the
host galaxy or other galaxies in the line of sight of the joint
sky localization of the pair [35,36]. Similarly, one may
search for other lensed transients that might be associated
with the GW signals [37]. In any case, information about
the lens model is key to achieve an efficient cross-
correlation. In that respect, our method is also advanta-
geous as it provides a fast lensing consistency check with
additional information about the image types through the
preferred lensing phase shift. Image type information
together with the time delay and magnification ratios
can be used to model the lens.

IX. CONCLUSIONS

The detection of lensed gravitational waves remains
elusive in current datasets. The key signature for GWs
traveling through a massive lens would be repeated
copies of the emitted signal, arriving at different times,
sharing the same frequency evolution and polarization
state, but with different amplitudes and specific
differences in absolute phases. The quest of discovering
strongly lensed GWs thus entails identifying these
repeated chirps within a large catalog of not-lensed
events. The crux is that many not-lensed pairs of events
may look alike, simply because their parameters are not
well enough constrained to discern the difference.
We have developed a new method to efficiently reject

event pairs that are inconsistent with the lensing hypoth-
esis and construct a catalog of candidates for further
study. Our method’s main ingredients are 1) reconstructing
the best measured GW parameters and 2) determining the
consistency of the events rather than account for the
degree of their parameter overlap. This design allow us to
efficiently produce a highly complete catalog that is also
more pure than previous methods. Efficiency comes from
the fact that we postprocess the full-parameter estimation
posterior samples to obtain the phases that would have
been measured by each detector. We demonstrate that at
40 Hz such phases are constrained within a fraction of a
radian and that its change through the frequency spec-
trum precisely quantifies the orbital phase evolution with
better relative errors than the chirp mass. Moreover, we
show that the phases associated to the arrival time
differences of the signal at the detectors are also well-
constrained and reduce the degeneracies of typical sky
localizations.

The degree of completeness vs purity is controlled
by computing the distance between two events in the
multidimensional space of their phases. Because the phases
are better constrained, their distributions are more
Gaussianly distributed than the original waveform param-
eters and so we apply a Gaussian approximation to the
distance whose evaluation is computationally trivial. From
the pairs consistent with lensing, we rank them by their
phase volume so as to de-emphasize the remaining candi-
date pairs with low SNR and poor parameter measure-
ments. The code behind this pipeline, PHAZAP, is publicly
available.
Because we are working directly with the GW phases,

we can determine for a given candidate pair the most
probable lensing phase shift and hence their image types.
This information together with the ability of our technique
to rapidly consider all possible pairs makes our method a
valuable tool for electromagnetic follow-ups, as it could
then inform the potential lens model. Moreover, due to the
good correlation of our distance statistic with the full joint
parameter estimation inference (as measured by the coher-
ence ratio, cf. Fig. 11), our method is well-positioned to
handle the ever-growing number of possible pairs in future
catalogs.
In its application for searching for lensed GWs, our

method could be extended in several ways. Consistency
between a pair could not only be evaluated in terms of the
detector phases, but it could also include the polarization
state as a function of frequency: this would effectively
determine spin consistency. In addition, it could be used to
forecast the prospects of detecting lensing with future
ground- and space-based GW facilities. In this respect,
our method is expected to improve rapidly with the number
of detectors in the GW network, and aspect that we will
explore in future work.
We have also found that the orbital phase evolution

is more constraining than the chirp mass, typically
by a factor of 2–3 in terms of parameter distance. For
any given threshold in detection or distance this substan-
tially enhances the purity of the catalog and may even be
useful for subthreshold searches. Similarly, the time delay
phases offer an interesting opportunity to improve over the
largely unlocalized subthreshold triggers. In terms of its
current implementation, PHAZAP could be improved with
machine learning algorithms to compute the distance in low
significance, non-Gaussian posteriors.
Although we focused on its use to discover lensed GWs,

the code developed to postprocess GW phases has far
reaching applications. For example, tracking the phase
evolution at different frequencies one could test the theory
of gravity, and by looking at the phase difference of the
polarization states one could probe birefringence. Finally,
while we have focused on the dominant quadrupole mode,
comparing the phases of different modes can potentially
address waveform systematics.
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APPENDIX A: REFERENCE FRAMES AND
POLARIZATION BASIS CONVENTIONS

The gravitational wave signal emitted during a compact
binary coalescence can be defined in different reference
frames, see Fig. 13. To simplify comparisons with existing
codes, we will follow the LALSuite conventions for gravi-
tational wave data analysis [38] (used by LVK, waveform
modelers, e.g., [39], and numerical relativists [40]).

The source frame defines the reference frame at a given
epoch where the intrinsic parameters of the binary are
inputted. We fix this initial frame to a reference frequency
of the GW fref and anchor it to the orbital-angular
momentum of the binary at the time the reference frequency
is emitted in the 22-mode,  L0 ¼  LðfrefÞ, which defines the
z-axis. Therefore, we call the axes of this reference frame
fx̂L0

; ŷL0
; ẑL0

g. The x̂L0
-axis connects the compact objects,

and ŷL0
¼ ẑL0

× x̂L0
. The propagation direction  Nð¼ −  nÞ

pointing from the source to the observer has the spherical-
polar angles ðιðfrefÞ; π=2 − φrefÞ, related to the inclination
and phase at the reference frequency. The radiation frame
(also known as wave frame) is defined by  N with the x-axis,
which defines the þ polarization, along the transverse
projection of  L0. Note that for a precessing binary the total
angular momentum  J defines an alternate inertial frame.
In terms of the observer, the Earth detector frame is

defined by the coordinate system fx̂d; ŷd; ẑdg at a fixed
time td with the origin at the center of the Earth.5 In the
detector frame the sky position of the source is fθ;φg.

Conversely, the sky frame is defined by fêθ; êφ;−  Ng and

π=2 − ψ is the angle of the transverse projection of  L0

which describes the orientation of the polarization.
Following these LVK conventions [41,42], the antenna

response functions for a fiducial detector at the center of the
Earth with arms in the  xd and  yd directions are given by

Fþ ¼−
1þ cos2θ

2
cosð2φÞcosð2ψÞ− cosθ sinð2φÞ sinð2ψÞ;

F× ¼ 1þ cos2θ
2

cosð2φÞ sinð2ψÞ− cosθ sinð2φÞcosð2ψÞ:
ðA1Þ

It will be convenient for later to introduce the responses to
the left and right circular polarization states

FL ¼ Fþ þ iF×ffiffiffi
2

p ≡ jFLjeiα;

FR ¼ F�
L ¼ jFLje−iα; ðA2Þ

where α ¼ argðFLÞ ¼ atan½Fþ; F×�. Notice that under a
change in the polarization angle ψ at fixed ðθ;φÞ, FL, and
FR pick up a pure phase of equal and opposite sign.
Since for a precessing binary, spins and inclination are in

general frequency dependent, we define them at the source
frame fixed by fref and  L0. Related to the three vectors  J,  N,
and  L0, there are three relevant angles; the angle between
 J and  N, θJN , defined by cos θJN ¼  J · N=j  Jjj  Nj ¼ Nz,
and the two spherical polar angles of  J in the  L0 frame
fθJL0

;ϕJL0
g, that is cos θJL0

¼  J ·  L0=j  Jjj  L0j and
cosϕJL0

¼ JxL0=ðJ2xL0 þ J2yL0 Þ.
6 The inclination of thebinary

ι is defined by the angle between  L0 and  N. The component
spins  S1 and  S2 are defined by their sixCartesian coordinates.
It is common however in parameter estimation to refer
instead to their dimensionless spin magnitudes χ1 and χ2,
their tilt with respect to the Newtonian orbital angular
momentum  LN (which is always perpendicular to the
binary’s orbital plane) denoted as ϕ1 and ϕ2, and ϕ12 the
difference in azimuthal angles of  S1 and  S2.
To obtain the actual response of each individual detector

we rotate from Earth detector frame to the individual
detector frames given their orientations and the source
position in Earth detector coordinates ðθ;φÞ to (ra, dec)
using the Greenwich Mean Sidereal Time of the observa-
tion (ra ¼ φþ gmst and dec ¼ π=2 − θ). Conveniently,
LALSuite has integrated routines to easily change from
the Earth detector (also known as Earth fixed) frame to each

5Note that for current detected sources and detector sensitivity
one can assume that the detector frame is fixed throughout the
duration of the signal. This will change with next-generation
ground-based detectors where the Earth rotation should be taken
into account, and certainly for LISA where signals could last
years in band.

6Note that in the GW literature it is common to simply denote
the angles θJL0

and ϕJL0
as θJL and ϕJL, specifying that they are

defined at the reference frequency.
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of the actual detector frames, for our analysis Hanford,
Livingston, and Virgo.

APPENDIX B: MEASURED PHASE
AT A NEW FREQUENCY

The GW signal is constructed following a given wave-
form model with intrinsic and extrinsic parameters defined
at a reference frequency fref. Specifying fref is necessary as
for precessing binaries the spin components vary over time.
LVK analyses typically fix fref ¼ 20 Hz, which for typical
signals does not correspond to the frequency of the best
measured phase. Our goal here is to demonstrate how to
consistently reconstruct the detected phase of a GW at a
new frequency. This will also serve to illustrate the working
procedure of the PHAZAP package.

1. Polarization states

The frequency domain waveform of an emitted GW is
described by the real and imaginary parts of the two tensor
polarizations.7 These polarizations can be described in
different bases, see [43] for a review, and are fully
characterized by four real numbers, two amplitudes and
two phases. For example, for the linear polarizations of a
monochromatic signal this corresponds to h̃þ ¼ Aþe−iϕþ

and h̃× ¼ A×e−iϕ× . We follow Appendix C of [44] and
perform a Stokes decomposition to construct a more
physically intuitive set of parameters; fA;ϕ; β; ζg, where
A and ϕ describe the global amplitude and phase of the GW
signal, whereas the angles β and ζ characterize the relation
between the two polarization components. In order to
connect the new set of parameters to the ones of the
polarizations, it is convenient to move to the circular basis

h̃L ¼ ðh̃þ − ih̃×Þ=
ffiffiffi
2

p
; ðB1Þ

h̃R ¼ ðh̃þ þ ih̃×Þ=
ffiffiffi
2

p
; ðB2Þ

which can also be decomposed in an amplitude and a phase
h̃L ¼ ALeiϕL and h̃R ¼ AReiϕR . The global amplitude and
phase are defined by

ϕ ¼ ðϕL þ ϕRÞ=2; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
L þ A2

R

q
: ðB3Þ

The angle β is related to the ratio of the semimajor and
minor axes

tan β ¼ 1 − r
1þ r

ðB4Þ

where r is the amplitude ratio r ¼ AL=AR. The difference in
the phases describes the orientation of the semimajor axis
or equivalently a rotation of the þ;× basis

ζ ¼ ðϕL − ϕRÞ=4: ðB5Þ
The circularly-polarized modes can then be written as

h̃L ¼ hRre−4iζ ¼
Arffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p e−iðϕþ2ζÞ; ðB6Þ

h̃R ¼ ARe−iϕR ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p e−iðϕ−2ζÞ: ðB7Þ

Purely linear polarization corresponds to β ¼ 0 (or r ¼ 1),
with hþ if ζ ¼ 0 and h× if ζ ¼ �π=4. Purely circular
polarization corresponds to β ¼ �π=4. A graphical repre-
sentation of the angles defining the polarization state is
shown in Fig. 14.
The frequency domain waveform of an emitted GW

defined by a given waveform model is outputted in the
radiation frame. For generic precessing binaries, the orbital
angular momentum  L, polarization angle ψ and inclination ι

FIG. 13. Summary figure of our frame conventions. The source frame (a) defines the coordinate system in which the intrinsic
parameters of the binary are defined: masses, spins and phase. It is anchored to the orbital angular momentum at the reference frequency
 L0. The Earth detector frame (b) serves to define the time of arrival and the position of the sky of the binary event for a fiducial detector at
the center of the Earth, in order to compute the antenna response function of each detector. The sky frame (c) defines the remaining
extrinsic parameters, the inclination ι and the polarization angle ψ . See text for further details.

7As in the main text, we implicitly write all our expressions for
positive frequency and left the negative frequencies to be defined
by the reality condition of the time domain signal.
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all change with time and, therefore, frequency. Similarly, all
fA;ϕ; β; ζg will be frequency dependent. In our default
analysis we will use the IMRPhenomXPHM waveform
model [39] thatwas used to analyze the latestGWcatalog [4].

2. Detected phase at a new frequency

Our main goal is to compute the detected phase of the
GWat any frequency, i.e., Eq. (2). For this we first need the
GW global phase ϕðfÞ in the radiation frame which can be
computed from the left and right phase following Eq. (B3).
This phase can be constructed for any multipole mode,
provided we decompose the signal in its multiple moments
h̃ ¼ P

lm Alme−iΦlm to get fAlm;ϕlm; βlm; ζlmg. In our
analysis we reconstruct the phase of the 22 mode at
different frequencies ϕ22ðfÞ. As noted in the main text,
we define the 22-mode in the coprecessing frame from the
þ-polarization. The equatorial symmetry of this frame
together with the reality condition of the time domain
signal implies h̃lm ¼ ð−1Þlh̃�l−mð−fÞ [45]. Therefore only
one m-mode defines the phase at positive frequencies. In
the conventions of the IMRPhenomX waveform family
[39,45] that we follow, this corresponds to l ¼ 2, m ¼ −2.

The 22-waveform phase at the reference frequency is
then read off directly from the waveform approximant for a
given set of binary parameters using Eq. (B3). We remind
the reader that in the stationary phase approximation (SPA)
it is related to the orbital phase ϕref as

Φ22ðfrefÞjSPA ¼ 2ϕref − 2πfrefðtref − tdÞ þ const ðB8Þ

where tref is the arrival time of the frequency fref. We take
the global waveform arrival time td in Eq. (1) to coincide
with this time td ¼ tref . Therefore, our “detector phase” ϕd

is then the phase of frequency f at the time when fref hits
the given detector.
Given ϕðfÞ≡Φ22ðfÞ, in order to obtain the detector

phase ϕdðfÞ we need to project from the radiation to the
detector frame. At a given detector, the frequency domain
signal of a given lm-mode (although we do not include the
lm label here for notational simplicity) is

h̃d ¼ FLh̃L þ FRh̃R

¼ AjFLjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p e−iϕðreþiðα−2ζÞ þ e−iðα−2ζÞÞ

≡ AdðfÞe−iðϕþχÞ; ðB9Þ
where we have used Eq. (A2), and

tan χ ¼ ð1 − rÞ
ð1þ rÞ tanðα − 2ζÞ: ðB10Þ

Finally, noting that the frequency-dependent polarization
angle ζ can be reabsorbed into a redefinition of ψ 0 ¼ ψ þ ζ,
we arrive at the detector phase

ϕdðfÞ ¼ ϕðfÞ þ χðfÞ

¼ ϕðfÞ þ atan

�
Fþðψ 0Þ; ð1 − rÞ

ð1þ rÞF×ðψ 0Þ
�

ðB11Þ

and amplitude

Ad ¼
AjFLjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 þ 2r cosð2α − 4ζÞ

q
: ðB12Þ

With this derivation, the role of the circular polarization
ratio r and the linear polarization angle ζ become more
transparent. After the multipolar decomposition, the ratio of
the polarization amplitudes, rlm, provides a direct way of
computing the inclination at a new frequency

rlm ¼ jhlmL j
jhlmR j ¼

1 − almðιÞ
1þ almðιÞ

; ðB13Þ

where alm gives the relative strength of the linear polarizations
in the emission direction. For l ¼ jmj modes one gets

al¼jmjðιðfÞÞ ¼
2 cos ι

1þ cos2ι
¼ 1 − rlm

1þ rlm
: ðB14Þ

This shows that a change in the polarization ratio can be
mapped to a change in the inclination, and that both quantities
are in general frequency dependent.
On the other hand, ζ represents a frequency-dependent

rotation of the polarization basis as it is clear in Eq. (B9).
Note that by defining the radiation frame þ polarization
through the projection of  L0 at the reference fre-
quency ζðfrefÞ ¼ 0.
Finally, let us note that the reconstructed detector

phase is typically a well-constrained, monotonic function

FIG. 14. A general gravitational wave h is elliptically polarized,
where the polarization state rotates between the linear polariza-
tion states hþ and h× with ζ defining the orientation of the
principal axes and β defining their relative amplitude.
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in frequency even when other quantities such as the inferred
reference phase as a function of frequency is not. This
illustrates how our choice of parameters removes degen-
eracies between binary parameters, in this case the refer-
ence phase and inclination. With precessing binaries, the
inclination of the orbital plane can precess from a finite
value at the reference frequency to nearly face/edge on
at a different frequency and encounter large degeneracies.
To exemplify this limiting case we draw the frequency
evolution for ϕref, r, and ζ in Fig. 15 for random samples
with small θJN ≪ 1. It is to be noted that the jumps in ϕref
and ζ compensate with r to give a smooth detector phase in
the top panel. Here we can also see how the spread in the
reference phase is much larger than in the detector phase.

APPENDIX C: BREAKING THE BIMODALITY
OF THE TIME DELAY PHASES

As discussed in the main text, constant time delay phases
track rings on the sky which intersect in points for multiple

detector pairs. When the time delays themselves are well-
measured, transforming localization to time delays is
advantageous as it collapses these degeneracies. On the
other hand, when time delays are derived from other
localization information, as is the case for analyzing event
2 in the reference frame of event 1, this collapse does not
fully occur and constraints on the derived delays inherit the
ringlike or multiple-point intersections of the localization.
For three detectors this often leads to a bimodal distribution
of time delays. While the information from localization is
still retained in the joint time delays and can be used in
parameter distances, bimodality implies non-Gaussianity
which degrades our simple Gaussian distance approach.
This bimodality can however be broken when identify-

ing the parameter samples that come from above or
below the plane defined by the three detectors since time
delays are symmetric under reflection across this plane.
Operationally this can be achieved looking at the samples
with positive or negative product,

 n · ð  rd1d2 ×  rd1d3Þ; ðC1Þ

where  rdidj ≡  rdi −  rdj with  rdi as the position of detec-
tor di.
In Fig. 16 we exemplify this construction. We choose

GW190706_222641 as event 1 and GW190519_153544 as
event 2. Event 1 is an HL-detection event, while event 2 is
HLV. Since three detector events are better localized, it is
advantageous to set them as event 2 where the time delay
phases encode that information. By decomposing the
samples of event 2 into those above or below its detector
plane we can identify the two independent modes. This
allow us to asses the (in)consistency of each mode with
respect to event 1 by finding the minimum distance
between the two. For each of them we can compute the
distance using the Gaussian approximation in Eq. (10). If
we were not to break the reflection symmetry, the Gaussian
approximation would determine that these two events are
consistent since its covariance would be forced to cover
both modes.
For reference, in the right-hand side of Fig. 16 we present

the Gaussianization of the same time delay posteriors that
is used to compute the distance DJ. This also serve to
demonstrate how the Gaussianization procedure tends to be
conservative with respect to rejecting not-lensed pairs. Here
the thin arcs in the joint time delay phases are converted to
full ellipses which then are consistent with a wider range of
joint time delays.
Since event 1 and event 2 both have this hemisphere/

planar degeneracy, when in our method described in
Sec. IV we consider both orderings of the events, we are
then taking into account the four sections of the sky that the
two orientations of the detector planes define. If in either
ordering both modes of the pair is inconsistent with lensing
then the lensing hypothesis is rejected.

FIG. 15. Frequency evolution for the detector phase (ϕH) in
comparison to the 22 reference phase (ϕref ), the polarization
amplitude ratio (r) and the polarization phase difference ζ for
random samples close to face-on. The colors indicate the value of
the angle between the total angular momentum  J and the line of
sight  N. The samples correspond to the simulated Type I, low-
SNR, HLV event. The reference frequency is at 20 Hz.
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APPENDIX D: SNR SCALING
OF PHASE ERRORS

In order to estimate the errors in the detected phase
and its correlation with other parameters one can use the
Fisher information matrix, which is a good approximation
in the limit of high signal-to-noise. If we define the noise-
weighted inner product

ðajbÞ ¼ 4Re

�Z
a · b�

SnðfÞ
df

�
; ðD1Þ

with SnðfÞ being the one-sided noise power spectrum
density of the noise, we can compute the Fisher matrix

Fij ¼
�
∂h
∂θi

���� ∂h
∂θj

�
; ðD2Þ

where θ is the set of intrinsic θint and extrinsic θext
parameters describing the signal h and the derivatives
are evaluated at the true parameters h ¼ hTðθÞ. The
covariance matrix is then simply F−1. The diagonal of this
matrix give us a measure of the standard deviation
σθi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
. For a given model hT given detector d,

ρd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhT jhTÞ

p
; ðD3Þ

known as the “optimal SNR”.
To estimate the errors in phaselike and amplitudelike

parameters, we use a simple two-parameter toy model that
can be thought to describe the signal at a fixed frequency

hT ¼ Aeiϕ: ðD4Þ

From here it is easy to derive that the phase and amplitude
will be uncorrelated with standard deviation

σϕ ¼ σA=A ¼ 1=ρd: ðD5Þ
In general, the signal will be chirping, and one needs to

vary over the reference time and the intrinsic parameters
describing the phase evolution like chirp mass. At leading
post-Newtonian order for the quadrupolar radiation of a
quasicircular inspiraling binary this can be done analyti-
cally [18,19]. Then one finds that the phase is correlated
with the time of arrival and the chirp mass, enlarging the
errors by a factor of a few. As discussed in the main text,
GW150914 has, for example, σϕH

ð40 HzÞ ≃ 3=ρH. The
precise number depends on the frequency domain signal
and the detector’s noise. Importantly, heavier binaries will
have more weight on their merger and ring down, making
the measured parameter errors larger for a given ρd and
this simple inspiral approximation less reliable. Similarly,
signals that do not fit well with the data where ðhjhÞ differs
substantially from ðhT jhTÞ, for example if the precession is
not properly modeled or glitches remain in the data, can
downgrade the errors of the 22-phase.
Moreover, Fisher estimates only include statistical errors

whereas our parameter-based phase inferences include all
errors that are modeled in the original binary parameter
inference. LVK analyses marginalize over calibration
uncertainties, enlarging amplitude and phase errors.
Calibration upper limit errors in LIGO detectors during
the third observing run are < 0.07 radians (< 4 degrees)
within 20–2000 Hz at 68% CL, although generically they
are ∼0.02 radians [46,47]. In the first and second observing
run LIGO detector had an upper calibration error ≲0.05

FIG. 16. Time delay phases for a pair of events analyzed under the lensing hypothesis. Event 1 corresponds to GW190706_222641
and Event 2 to GW190519_153544. Event 2 phases are reconstructed at the reference frame determined by Event 1. The above and
below samples of Event 2 are defined with respect to its detector plane, i.e.,  n · ð  rHL ×  rHVÞ negative and positive respectively. The right-
hand plot corresponds to the Gaussianization of the posteriors.
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radians (≲3 degrees) [48]. Note however that these errors
are correlated across different frequencies and our phase
inference at any given frequency combines information
from all frequencies.
For reference, we present in Fig. 17 the product of the

standard deviation of the detector phase and the (median)
optimal SNR over the parameter posteriors of the events
considered in our analysis. The full posterior distribution of
the detector phases is given in Fig. 19. One can see how for
most of the events the error is ∼few=ρd, although there are
some outliers with larger errors. It is to be noted that,
GW191109_010717, the heaviest event in the second half
of the third observing run has the largest error. However
this event had glitches overlapping with the signal in both
detectors and has been shown to keep some anomalies even
after removing those, see Appendix A. 3. in [49].

APPENDIX E: DETAILS ON THE SIMULATED
GRAVITATIONAL WAVES

In this appendix we detail all the configuration settings
for the simulated events. A table with the parameters of the
injections is presented in Table II, where we follow the
standard parameter definition of bilby [28]. For triggers
1, 2, and 3 we perform injections for both HL and HLV
detector configurations. For the rest of injections we only
set HLV configurations. In total we analyze 17 injec-
tions. In all our analyses we use the projected sensitivites
for the fourth observing run as described by the amplitude
spectral densities aligo_O4high for both LIGO detec-
tor and avirgo_O4high_NEW for Virgo in the public
LIGO Document T2000012-v1 (https://dcc.ligo.org/LIGO-
T2000012-v1/public). The optimal SNR (for the true

FIG. 17. Detector phase standard deviation ðσρdÞ times median “optimal” detector SNR (ρd) for the binary black holes analyzed in this
work (GWTC3 with pastro > 0.8 and ρntw > 8). The color bar indicates the median detector-frame chirp mass. Detector phases are
at 40 Hz.

TABLE I. Summary of the true optimal signal-to-noise ratio (ρd) in each detector and the network SNR for all
simulated events. Each injection has a different noise realization. The network SNR is computed as
ρ2ntw ¼ ρ2H þ ρ2L þ ρ2V.

Injection Characteristics Network ρH ρL ρV ρntw

1 Type I, low SNR HL 9.0 12.3 � � � 15.2
2 Type II, low SNR HL 6.7 9.1 � � � 11.3
3 Not-Lensed, low SNR HL 8.0 8.9 � � � 12
4 Type I, low SNR HLV 9.0 12.3 6.9 16.7
5 Type II, low SNR HLV 6.7 9.1 4.8 12.3
6 Not-lensed, low SNR HLV 8.0 8.9 3.3 12.4
7 Type I, high SNR HL 17.2 23.5 � � � 29.1
8 Type II, high SNR HL 12.8 17.4 � � � 21.6
9 Not-lensed, high SNR HL 15.2 16.9 � � � 22.7
10 Type I, high SNR HLV 17.2 23.5 13.1 31.9
11 Type II, high SNR HLV 12.8 17.4 9.1 23.4
12 Not-lensed, high SNR HLV 15.2 16.9 6.2 23.6
13 Type I, low SNR, low mass HLV 9.5 11.1 9.9 17.6
14 Type II, low SNR, low mass HLV 7.1 9.6 6.1 13.4
15 Not-lensed, low SNR, low mass HLV 7.5 10.0 5.0 13.5
16 Type I, high SNR, new θJN HLV 16.8 23.8 13.4 32.1
17 Type II, high SNR, new θJN HLV 12.7 17.8 9.3 23.8
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injected values) for all the injections is summarized in
Table I.
In Fig. 18 we present the posterior distributions for

the detector phases of all the injections. For most of

the cases, except the HL detections, the detector phases
68% CL is comparable or smaller than π=2

ffiffiffiffiffi
12

p
, indi-

cating that they are informative against the lensing
hypothesis.

TABLE II. Summary of the physical parameters for the injections described in Table I: detector frame component masses (m1;2),
dimensionless spin magnitudes (a1;2), the azimuthal angle of the spin vectors (ϕ1;2), the difference between the azimuthal angles of the
individual spin vectors (ϕ12), the difference between total and orbital angular momentum azimuthal angles (ϕJL), the angle between the
total angular momentum and the line of sight (θJN), right ascension (ra), declination (dec), polarization angle (ψ ), phase at reference
frequency (ϕref ), luminosity distance (dL), and reference time (tref ). The reference frequency is at 20 Hz. Injections with Morse phase
equal to 0, π=2 and π correspond to type-I, type-II and type-III images respectively.

Injection m1½M⊙� m2½M⊙� a1 a2 ϕ1 ϕ2 ϕ12 ϕJL θJN ra dec ψ ϕref dL[Mpc] tref [sec] Morse phase

1, 4 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.0 0.52 0.7 2.0 1900.0 0.0 0
2, 5 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.0 0.52 0.7 2.0 2650.0 517988 π=2
3, 6 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 0.3 0.18 0.5 3.77 2900.0 3451153 0
7, 10 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.0 0.52 0.7 2.0 1000.0 0.0 0
8, 11 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.0 0.52 0.7 2.0 1394.0 517988 π=2
9, 12 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 0.3 0.18 0.5 3.77 1526.0 3451153 0
13 15.4 12.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.0 0.52 0.7 2.0 823.0 79121.0 0
14 15.4 12.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.0 0.52 0.7 2.0 1147.87 428696 π=2
15 15.4 12.6 0.2 0.1 0.6 0.3 1.2 0.5 0.8 1.41 0.54 0.5 3.77 1256.16 4918029 0
16 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 2.34 1.0 0.52 0.7 2.0 1000.0 0.0 0
17 35.6 30.6 0.2 0.1 0.6 0.3 1.2 0.5 2.34 1.0 0.52 0.7 2.0 1394.0 517988 π=2

FIG. 18. Posterior distribution of the detector phases centered at their median value for the set of simulated GWevents. The blue ticks
indicate the 68% credible interval and the dashed vertical lines indicate the prior width for an informative phase of π=2

ffiffiffiffiffi
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p
, see main

text for details.
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APPENDIX F: DETAILS ON THE
GRAVITATIONAL WAVES ANALYZED

To complement the analyses of the main text, in
Fig. 19 we present the posterior distribution of the

detector phases for all the real events that we have
analyzed; 67 binary black holes with pastro > 0.8
and ρntw > 8 in GWTC3 [4]. Following the LVK
convention, we use the full name for all the events:

FIG. 19. Posterior distribution of the detector phases centered at their median value for the GW events analyzed in this paper:
pastro > 0.8 and ρntw > 8 in GWTC3 [4]. The blue ticks indicate the 68% credible interval and the dashed vertical lines indicate the prior
width for an informative phase of π=2

ffiffiffiffiffi
12

p
as in Fig. 18.

EZQUIAGA, HU, and LO PHYS. REV. D 108, 103520 (2023)

103520-22



UTC date with the time of the event given after the
underscore.
From Fig. 19 one can realize that the Hanford and

Livingston phases are typically within a fraction of a
radian, while Virgo phases are less constrained and in
many cases cover the whole prior range.

For the calculation of the posterior overlap, we follow
[9–11,13] and compute the overlap in fm1z;m2z; ra; sindec;
a1; a2;cosϕ1;cosϕ2; cosθJNgmaking the following choices
for the prior ranges: m1z;2z ⊂ ½2;200�M⊙, ra ⊂ ½0;2π�,
sin dec ⊂ ½−1; 1�, a1;2 ⊂ ½0; 1�, cosϕ1;2 ⊂ ½−1; 1� and
cos θJN ⊂ ½−1; 1�.
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