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Non-Hertz-Millis scaling of the anti-
ferromagnetic quantum critical metal via
scalable Hybrid Monte Carlo

Peter Lunts 1,2 , Michael S. Albergo 3,5 & Michael Lindsey4,5

A key component of the phase diagram of many iron-based superconductors
and electron-doped cuprates is believed to be a quantum critical point (QCP),
delineating the onset of antiferromagnetic spin-density wave order in a quasi-
two-dimensional metal. The universality class of this QCP is believed to play a
fundamental role in the description of the proximate non-Fermi liquid beha-
vior and superconducting phase. A minimal model for this transition is the
O(3) spin-fermionmodel. Despitemany efforts, a definitive characterization of
its universal properties is still lacking. Here, we numerically study the O(3)
spin-fermion model and extract the scaling exponents and functional form of
the static and zero-momentum dynamical spin susceptibility. We do this using
a Hybrid Monte Carlo (HMC) algorithm with a novel auto-tuning procedure,
which allows us to study unprecedentedly large systems of 80 × 80 sites. We
find a strong violation of the Hertz-Millis form, contrary to all previous
numerical results. Furthermore, the form that we do observe provides good
evidence that the universal scaling is actually governed by the analytically
tractable fixed point discovered near perfect “hot-spot’" nesting, even for a
larger nesting window. Our predictions can be directly tested with neutron
scattering. Additionally, the HMC method we introduce is generic and can be
used to study other fermionic models of quantum criticality, where there is a
strong need to simulate large systems.

Quantum critical phenomena play an important role in condensed
matter physics1. Of particular interest are quantumphase transitions in
metals, since they are ubiquitous in strongly correlated materials dis-
playing exotic quantum phenomena, most notably high-temperature
superconductivity.

These phase transitions are notoriously difficult to study
theoretically2. This is due to the presence of an extensive number of
gapless fermionicmodes on the Fermi surface and the strong coupling
between these modes and the transition order parameter. These dif-
ficulties render nearly all analytical perturbative approaches

uncontrolled. On the numerical side, these difficulties are manifested
in a large amount of entanglement and nearly ubiquitous sign pro-
blems, making it hard for controlled numerical techniques such as
tensor networks and quantum Monte Carlo (QMC) to make progress.

Themost commonof such phase transitions inNature is the onset
of antiferromagnetic (AF) spin-density wave (SDW) order in a metal.
This transition exists in many material classes of interest, such as
electron-doped cuprates3, iron-based materials4, and heavy fermion
compounds5, in which it is believed to generically be a continuous
transition. It is often accompanied by a superconducting ‘dome,’
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where the maximal Tc occurs near the putative zero-temperature cri-
tical point. This makes the (near-critical) SDW fluctuations a strong
candidate for the ‘glue’ of Cooper pairs in those materials.

Due to its importance, the theory of this phase transition has
received a considerable amount of attention in the last three
decades6–13. Very early on it was believed to bewell described byHertz-
Millis theory14,15, although it was soon realized that, due to the
dimensionality, the arguments of Hertz-Millis theory are invalid6–8.
Crucially, the large-N expansion was shown to fail9, which left the
theorywithout a controlled approachuntil the introductionof the fully
local ϵ-expansion10,11. Using these controlled results as guidance, in
ref. 12 it was shown that there exists a parameter regime where the
theory naturally develops a small control parameter,w, which is a ratio
of velocities, without the need for any dimensional modification. It is
then possible to compute observables perturbatively in w, giving the
only fully controlled analytical calculation of the universal low-energy
data for the unmodified problem. However, the parameter regime, or
‘basin of attraction,’ of this solution could not be determined from the
arguments of ref. 12. It is therefore not clear whether this solution
exists for physically relevant parameter values, or only in a minuscule
slice of parameter space. One of the central goals of this work is to
answer this question.

In the last decade, the SDW transition in metals has also been
studied extensively using numerical techniques. The seminal work of
ref. 16 introduced a microscopic two-bandmodel of the effective field
theory for this transition, which crucially lacks a sign problem. This has
led tomany studies of this model with Determinantal QuantumMonte
Carlo (DQMC)17–25, as well as works that have studied other sign-
problem-free models of quantum criticality26–32.

A recent such DQMC work21 focused on the critical scaling of the
spin susceptibility, in particular seeking a comparison to the predic-
tions of ref. 12 by tuning the UV value of the nesting parameter, v
(explained in detail in Section “Theoretical analysis near perfect nest-
ing”) close to the value at the fixed point of ref. 12, v = 0. However, at
criticality, the spin susceptibility was actually observed to have a
(nearly-perfect) Hertz-Millis form, contradicting the theoretical
finding6–8 that the Hertz-Millis arguments are not valid in two dimen-
sions. Importantly, the maximal system size studied in ref. 21 was
V = L × L = 14 × 14. With such a small system size, it is often difficult to
convincingly extract long-wavelength behavior of a critical system.
Therefore, even though ref. 21 is the current state-of-the-art for this
problem, it is very desirable to revisit the problem at much larger L.

Although DQMC provides a numerically exact and unbiased way
to study the properties of these phase transitions, it is severely hin-
dered in its ability to simulate systemswith large spatial volumeVby its
computational scaling of at least ~βV3, where β is the inverse tem-
perature (in the case of small fermion density, this can be reduced by
exploiting the low-rank structure of the fermionic determinant33,34).

The true scaling may in fact be worse due to the need to take smaller
steps in high dimensions in order to maintain a nonvanishing Metro-
polis acceptance probability, as well as the presence of ‘critical slowing
down,’ discussed further below. Improving the computational scaling
with respect to V is of great interest in the study of quantum criticality.
Indeed, in order to extract scaling properties near a quantum critical
point (QCP), it is crucial to be ‘close enough’ to the thermodynamic
limit V→∞. This ‘close enough’ is never possible to determine a priori,
and, in principle, due to potential semi-stable fixed points, there is
never any reason to expect that it has been reached, unless the
observed scaling matches a predicted result.

In this paper, we use a different QMC method to study the
microscopic model of ref. 16, namely Hybrid Monte Carlo (HMC),
which is sometimes referred to as Hamiltonian Monte Carlo. This
method is the main numerical tool in the study of lattice quantum
chromodynamics (LQCD). Its primary advantage over DQMC is the
potential for improved computational scaling with respect to V, which
we explain in more detail below. HMC has seen a recent revival in
condensed matter physics35–37. Several works have used it to study the
half-filled Hubbard model on various lattices (square, honeycomb,
hexagonal)37–43, electron-phonon models37,44, as well as extended and
long-rangeHubbardmodels of graphene45–49. Nearly all of these results
point to extremely favorable scalingwithV. However, to thebestofour
knowledge, HMC has not yet been applied to a model of quantum
criticality in the presence of a Fermi surface.

Using our large-scale simulations, we find that the critical theory
does in fact strongly deviate from the Hertz-Millis prediction. By tun-
ing the nesting parameter, v, closer to the fixed-point value of v =0, we
observe a systematic reduction of the dynamical critical exponent z
below the value of z = 2 predicted by Hertz-Millis. The prediction of
ref. 12 is that z→ 1+ as v→0. Additionally, we find that the momentum
dependence of the critical spin susceptibility is O(2)-symmetric at
intermediate momenta, as predicted by Hertz-Millis, but at lower
momenta the symmetry gets reduced to C4, as predicted in ref. 12.
These two findings provide strong numerical evidence that the criticial
point theory is governed by thefixedpoint of ref. 12, even at values of v
that are appreciable. This is summarized in Table 1. Our predictions for
the dynamical spin susceptibility can be directly tested with neutron
scattering.

In our largest computations we reach system sizes Nτ × L × L given
by Nτ = 200, L = 80 and Nτ = 800, L = 20, where Nτ is the number of
slices in the imaginary time direction. Going to such large scales turns
out to be necessary for extracting accurate critical scaling behaviors at
the critical point.

Now we give an overview of the computational scaling properties
of our approach that allow us to achieve these results.Within the HMC
algorithm, the number of ‘integration steps’ per effective sample can
enjoy scaling as low asO(d1/4), where d =O(βV) is the dimension of our

Table 1 | Summary of results

z(θ) Symmetry Functional form

This work ∈ (1.665(29), 1.953(35))
for θ∈ (0. 5°, 8°)

C4 χ!1ðωÞ∼ ∣ω∣Δ zΔ 2 ð1:466ð14Þ,1:521ð15ÞÞ
χ!1ðqxÞ∼ ∣qx ∣zΔ Δ 2 ð0:880ð12Þ,0:779ð12ÞÞ

χ!1ðqÞ∼ ∣qx ∣zΔ + ∣qy ∣zΔ for θ 2 ð0:5$,8$Þ

Ref. 12 z→ 1+ as θ→0 C4 χ!1ðωÞ∼ ∣ω∣Δ
χ!1ðqxÞ∼ ∣qx ∣zΔ zΔ,Δ! 1+ as θ! 0

χ!1ðqÞ∼ not determined

Hertz-Millis z = 2 ∀ θ O(2) χ!1ðωÞ∼ ∣ω∣
χ!1ðqxÞ∼q2

x
χ!1ðqÞ∼q2

x +q
2
y

Themain results of this paper,which pertain to thecritical spin susceptibility, χ(ω,q).We list its dynamical critical exponent z, spatial symmetry, and functional form, as compared to that predicted in
ref. 12 andbyHertz-Millis theory, all for the varyingnestingangleθwestudy (hereweuseθ insteadof thenestingparameter v = tanðθÞ thatweuse in the rest of the paper). The formsquoted for ref. 12
are neglecting the logarithmic flow of v.
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discretized field to be sampled50. This scaling may be worse in the
presence of ‘critical slowing down’ for critical models, yielding a
number of integration steps per effective sample of potentially
Oðβ1=4+ z1V 1=4+ z2 Þ, where z1, z2 > 0. Even in the presence of criticality, z1
and z2 may be reduced via the choice of the ‘metric’ within HMC, as
discussed below. For the critical model, our algorithm in fact achieves
z2 ≈0 and z1≲0.5. Each of the integration steps within HMC requires
the solution of linear system of size O(βV), which constitutes the bot-
tleneck for the algorithm.Our approach for solving the linear system in
fact scales linearly with respect to V for fixed β and permits fast GPU
implementation. In conjunctionwith the scaling z2 ≈0observed above,
this performance yields overall wall clock scaling with exponent
approximately 5/4 with respect to V. See Section “Numerical Perfor-
mance” for further details.

In our implementation we in fact develop several augmentations
of the basic HMC algorithm. First, we introduce an auto-tuning pro-
cedure, which tunes our hyperparameters in an initial warmup phase.
This procedure is common practice in statistics and industry applica-
tions ofHMC51,52 but to the best of our knowledge has not yet been fully
applied in condensed matter physics. Moreover, relative to such
works, our translation-invariant physical setting allows us to tune the
aforementioned HMC metric with operations that scale linearly in βV,
up to log factors.

In the Results Section, we introduce the low-energy effective
theory of the SDW transition, both in the continuum and on the lattice,
we review the theoretical results near perfect nesting of ref. 12 and
derive its predictions for the observables that are computed numeri-
cally in this work, and we show our main results. In the Methods Sec-
tion we give a brief review of HMC, followed by a detailed presentation
of our implementation and its numerical performance.

Results
Continuum effective action
Our starting point is the theory that describes the low-energy degrees
of freedom near a metallic AF SDW quantum critical point in two
spatial dimensions. These are the order parameter for the transition,
which is the collective spin excitation, and the electrons near points on
the Fermi surface called ‘hotspots’ that are connected by the AF
orderingwavevector. For concreteness,we consider a single bandwith
C4 symmetry and an ordering wavevector equal to (π,π), as shown in
Fig. 1. Generically for such a Fermi surface there are four pairs of
coupled hotspots. The Euclidean-time action for this low-energy the-
ory is then given by

S =
X4

n= 1

X

m= ±

X

σ =",#

XNf

j = 1

T
X

ωk

Z
dk

ð2πÞ2

ψðmÞ*
n,σ,jðkÞ iωk + e

m
n ðk; vÞ

! "
ψðmÞ
n,σ,jðkÞ

+T
X

ωq

Z
dq

ð2πÞ2
1
2

ω2
q

c2
+ ðq2

x +q
2
yÞ+ r

" #

ϕðqÞ %ϕð!qÞ

+
gffiffiffiffiffiffi
Nf

q
X4

n= 1

X

σ,σ0 =",#

XNf

j = 1

Z
dτ
X

r

ϕ % ψð+ Þ*
n,σ,jτσ,σ0ψ

ð!Þ
n,σ0 ,j +h:c:

h i
+
u
4

Z
dτ
X

r
ðϕ %ϕÞ2:

ð1Þ

In Eq. (1), k = (ωk, k) consists of the fermionicMatsubara frequency
and the two-dimensional momentum k = (kx, ky). T is the temperature.
The ψðmÞ

n,σ correspond to electrons at the hot spots labeled by
n∈ {1, 2, 3, 4} andm∈ {+, −} (cf. Fig. 1), and spin σ∈ {↑,↓}. The axes are
chosen as follows: k̂x is in the direction fromhot spot (2, +) to (2,−) and
k̂y is in the direction from hot spot (1, −) to (1, +). Given this choice of
axes, the ordering wave vector connecting the paired hot spots is
QAF = ð±

ffiffiffi
2
p

πk̂x , ±
ffiffiffi
2
p

πk̂yÞ up to the reciprocal lattice vectors

ffiffiffi
2
p

πðk̂x ± k̂yÞ. See Fig. 1 for details. The linearized electron dispersions
are given by e ±

1 ðk; vÞ= ! e ±
3 ðk; vÞ= vkx ± ky, e ±

2 ðk; vÞ= ! e ±
4 ðk; vÞ=

∓kx + vky, where the momentum k is measured relative to each hot
spot. For any v ≠0, the curvature of the Fermi surface (Oðk2Þ terms)
can be ignored, since the linearized dispersions at the coupled host-
pots are not parallel to each other, and therefore the problem is still
fully two-dimensional. The component of the Fermi velocity alongQAF

has been set to one by rescalingk. v is the component of Fermi velocity
that is perpendicular toQAF. It controls the degree of nesting between
coupled hot spots and can be written as v= tanθ, where θ is the
nesting angle (c.f. Fig. 1).ϕ(q) is the three-component boson field that
describes the AFM collective mode in the fundamental representation
of O(3), with frequency ωq and momentum q. Note that while the
collective spin is centered at QAF, ϕ is centered at zero, since QAF is
already incorporated into the hotspot label. c is the bosonvelocity, and
u is its quartic interaction. r is the squared mass of the boson, as is
tuned drive the boson to criticality. g is the Yukawa coupling between
the boson and the electrons, which scatters the electrons between hot
spot pairs via the spin-spin interaction. These couplings represent all
the relevant and marginal terms obeying the symmetries of the pro-
blem. τ consists of the three generators of the SU(2) group. We have
also generalized the action from one to Nf fermion flavors. This gen-
eralization was used in the large Nf expansion in previous renormali-
zation group studies7,9, and we use this general form in subsequent
sections.

Sign-problem-free UV completion
The action in Eq. (1) captures theuniversal low-energyproperties of the
system associatedwith the divergent correlation length near the phase
transition. Since the electrons far away from the hotspots do not enter
into the theory, the precise shape of the Fermi surface beyond the
momentum cutoffs does not play a role in the critical phenomena of
this theory (the complete validity of this has recently been called into
question inRef. 53). Therefore, we can change the band structurewhile
ensuring that the action of Eq. (1) is not modified. One such UV com-
pletion was given in ref. 16 and has the real-space action of

S =
Z

dτ
X

σ =",#

X

α = x,y

XNf

j = 1

X

r,r 0

ψ*
α,σ,j,r ð∂τ ! μÞδr,r0 ! tα,r,r 0

! "
ψα,σ,j,r 0Z

dτ
X

r

1
c2

ð∂τϕr Þ
2 +

1
2
ð∇ϕr Þ

2 +
r
2
ðϕr Þ

2 +
u
4
ðϕr Þ

4
$ %

+
gffiffiffiffiffiffi
Nf

q
X

σ,σ 0 =",#

XNf

j = 1

Z
dτ
X

r
eiQAF %r

ϕr % ψ*
x,σ,r τσ,σ0 ψy,σ0 ,r +h:c:

h i
:

ð2Þ

Here, the number of bands has been doubled (α = x, y represents a
band index). The bosonnow scatters electrons between the twobands.
The band-dependent hopping amplitude tα,r,r 0 still respects the C4

symmetry of the lattice, provided that thebands are also interchanged.
The location of the hotspots and the dispersion linearized about them
is unchanged from the one-band model. Note that the axes of this
model are rotated 45° relative to themodel of Eq. (1). The advantage of
this model is that it now contains an inter-band anti-unitary symmetry
that guarantees the positivity of the fermionic determinant16 and
makes it amenable to sign-problem-free Monte Carlo
simulations17–21,24,25.

We study the lattice model defined in Eq. (2) using HMC. Our
method is described in detail in Section “Methods”. As explained there,
in order for our algorithm to function, we must work with an even Nf,
and we choose Nf = 2. Unless stated otherwise, we fix the parameter
values to be u=0, g =0:7

ffiffiffi
2
p

≈ 1, c= 3. We study five different Fermi
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surfaces, with the following values of the nesting parameter:
v1 ≈0.149, v2 ≈0.072, v3 ≈0.036, v4 ≈0.018, v5 ≈0.0092, correspond-
ing to nesting angles of θ1 ≈ 8. 5°, θ2 ≈ 4.13°, θ3 ≈ 2.05°, θ4 ≈ 1.03°,
θ5 ≈0.53°, respectively. We illustrate the Fermi surface corresponding
to v = v1 and v = v5 in Fig. 2. The non-zero hopping amplitudes and
chemical potentials corresponding to each are th,x = tv,y = 1 and

~t
ð1Þ
v,x = ! ~t

ð1Þ
h,y =0:45, μð1Þ

x = ! μð1Þ
y = ! 0:47 ð3Þ

~t
ð2Þ
v,x = ! ~t

ð2Þ
h,y =0:48, μð2Þ

x = ! μð2Þ
y = ! 0:46 ð4Þ

~t
ð3Þ
v,x = ! ~t

ð3Þ
h,y =0:498, μð3Þ

x = ! μð3Þ
y = ! 0:44 ð5Þ

~t
ð4Þ
v,x = ! ~t

ð4Þ
h,y =0:505, μð4Þ

x = ! μð4Þ
y = ! 0:44 ð6Þ

~t
ð5Þ
v,x = ! ~t

ð5Þ
h,y =0:5085, μð5Þ

x = ! μð5Þ
y = ! 0:44: ð7Þ

Here, th,α, tv,αdenote the nearest-neighbor hopping amplitudes in the x
and y directions, respectively, which are the same for all nesting
parameter values; ~t

ðiÞ
h,α ,~t

ðiÞ
v,α denote the next-nearest-neighbor hopping

amplitudes in the x and y directions, respectively, for nesting
parameter value i; μðiÞ

α are the chemical potentials for the nesting
parameter value i.

The reason for choosing these specific parameter values is to
make contact with ref. 21, where the authors in turn tried to make
contact with ref. 12. Of course, it is important to scan the values of
u, g, c to check the stability of our results and look for new behavior.
However, such a detailed study is beyond the scope of the present
work, and is left for future studies.

Theoretical analysis near perfect nesting
Although in general the theory in Eq. (1) cannot be understood ana-
lytically using a controlled approach, there exists a parameter regime
where a controlled solution in the IR can be obtained12. This parameter

Fig. 2 | Occupation number. The total occupation number nq =
P

α,σ hψ
y
α,σ,qψα,σ,qi

of one flavor of fermions for the free theory, summed over spin and band degrees
of freedom. Here, we have incorporated the phase shift eiQAF %r into the α = y band.
The nesting values shown are (a) v = v1 and (b) v = v5, which are the two extremeswe
study. Note that the Fermi surface at the hot-spots is actually connected, but due to
the very small nesting parameter, that is hard to show graphically.

Fig. 1 | The Fermi surface. a The first Brillouin zone of themodel in Eq. (1). Note the
axes rotatedby45°. The shaded region corresponds to theoccupied states. The SDW
ordering wavevectorQAF is denoted by red arrows. The hot spots are the red points
connectedbyQAF. At eachhot spot, the linearizedFermi surface is shownwith ablue
line. b A close-up of linearized dispersions of the paired hot spots (1, ±). One has
been shifted byQAF, to show their crossing. The angle between them θ is called the
`nesting angle', and its tangent v= tanðθÞ is called the `nesting parameter'.
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regime is primarily characterized by a small nesting parameter v≪ 1
and an effective coupling of intermediate strength, leading to strong
correlations. We start by reviewing this IR fixed point of refs. 11,12,54.

At criticality, the UV the theory is best described in terms of the
ratios λ & g2c2

v , x & g2

c , κ ≡ u c2, and w= v
c. (We note that compared to

refs. 11,12,54, the action of Eq. (1) has ϕ→ϕ/c). The renormalization
group flow of the UV theory to the IR fixed point is two-fold and is
shown in Fig. 3, which is reproduced from ref. 11. Initially, there is a fast
(algebraically in the running energy scale μ) flow of λ and x to w-
dependent Oð1Þ values and κ to zero. Once the first step of the flow is
complete, the couplings will keep flowing along the one-dimensional
manifold defined by the fixed point values λ, x, κ. This one-dimensional
manifold defines the only remaining free coupling of the theory. We
note that since λ∼Oð1Þ is the effective coupling of the UV theory, this
manifold represents the theory in the strongly correlated regime.
Crucially, due to all the coupling inter-dependencies, along the mani-
foldw becomes a function of v only.We can choose to parametrize the
manifold byw(v). This choice is useful, since it turns out that theory on
the manifold has a perturbation theory that is organized in powers of
w(v) (along with powers of logðwÞ). However, since w(v) is only a
function of v, such that w(v)→0 with v→0, perturbation theory can
also be done in v itself.

Finally, once the theory sits on the one-dimensional manifold, the
remainingflow is towardsw(v)→0.However, unlike thefirst part of the
flow, the flow of w(v) in this second part happens at a rate that is sub-
logarithmic in μ. Therefore, for all practical purposes we can take
w(v) (and therefore v) to be fixed (scale independent) on thismanifold.
An important point is that due to the initial fast flow, the value of v on
the manifold is different than the bare (UV) value vB. However, given
that the bare parameters of the theory are tuned to minimize the
length of this initial flow, we assume that v ≈ vB in the analysis of
Section “Results”.

If the value of w(v) is small enough, the theory can be studied
using perturbation theory in w(v) to a finite order. Focusing on the
critical spin susceptibility χ(ω, q), its leading order in w(v) behavior is
given by (here we use the axes of Eq. (1))

χ!1ðω,qÞ= ∣ω∣+ cðwðvÞÞ ð∣qx ∣+ ∣qy∣Þ: ð8Þ

Here, c(w(v)) is a new emergent boson velocity, not related to the
bare value c, and dependent on the only coupling in the theory. It has
its own expansion in powers ofw(v)12. This formbreaks theO(2) spatial

symmetry (a ∣q∣ dependence) of the spin susceptibility down to the C4

symmetry of the Fermi surface. This is a key prediction of the small v
fixed point theory12. Equation (8) can be thought of as the tree-level
susceptibility at the fixed point, and perturbations to it are computed
in powers of w(v). The deviations of the scaling are encoded in the
dynamical critical exponent z and the anomalous boson dimension ηϕ,
which were computed to leading order in ref. 12,

z = 1 +
3

4πNf
wðvÞ ð9Þ

ηϕ =
1

2πNf
wðvÞ log

1
wðvÞ

& '
: ð10Þ

Reference12 also computed the dependence ofw(v) on v to lowest
order in v,

w=4
ffiffiffiffiffiffi
Nf

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v

logð1=vÞ

r
: ð11Þ

Together these relations give the leading contributions to z, ηϕ for
small v.

In order to make a connection between the leading-order per-
tubation theory in w(v) results of ref. 12 and the theory of Eq. (2) at
finite v, we need to use the non-perturbative renormalization group
(RG) equation. This equation for χ(ω, q) at criticality (r = rc) is
given by

Δðηϕ, zÞ+ω ∂
∂ω + 1

z q % ∂
∂q +T ∂

∂T

h

+ 1
z

1
L

( )
∂

∂ 1
Lð Þ

%
χðω,;q;T , LÞ=0,

ð12Þ

where Δðηϕ, zÞ=
1!2ηϕ!ðz!1Þ

z . Here, we have used the fact that v ≈ vB is
approximated as being constant as a function of scale (otherwise its
beta functionwouldenter in Eq. (12)). Since at criticality the correlation
length is absent fromEq. (12), wehave includedT, L−1 as relevant energy
scales. We note that for a scaling theory different from that of ref. 12,
the RG equation would be the same, with the only modification being
the form of Δ. The only requirement is that the flow of the couplings
can be ignored, which is a good approximation when the couplings
flow at most logarithmically in the running scale.

We study systems of fixed size and temperature. We focus on two
limits of Eq. (12). In the first limit, q =0, the solution is given by

χðωÞ= ∣ω∣!Δðηϕ ,zÞf ω=T ,ωLz
( )

, ð13Þ

where f is somenon-universal crossover function. Here, T and 1/L act as
IR cutoffs to the critical scaling. In other words, there is some effective
IR frequency cutoff given roughly by ωIR ∼ maxð2πβ , ð2πL Þ

zÞ, and the
function f ω=T ,ωLz

( )
is afinite constant forω≫ωIR. On the other hand,

the scaling equation itself only holds below some non-universal UV
cutoff Λω. Therefore, the pure algebraic scaling of
χðω,q =0Þ∼ ∣ω∣!Δðηϕ ,zÞ can be observed in an intermediate frequency
window, ωIR≪ω≪Λω.

Now we turn to the case of ω =0. For simplicity, we first also set
qy = 0. Analogously to χ(ω), χ(qx) is given by

χðqxÞ= ∣qx ∣!zΔðηϕ ,zÞ gðqx=T
1=z , qxLÞ: ð14Þ

Here, g is another non-universal crossover function. The critical scaling
χðqxÞ∼ ∣qx ∣!zΔðηϕ ,zÞ holds in the intermediate region of qIR≪ qx≪Λq,
where qIR = maxðð2πβ Þ

1=z , 2π
L Þ and Λq are IR and UV momentum cutoffs,

respectively. Once the intermediate-scale algebraic scaling of both

Fig. 3 | Renormalization group flow. RG flow of the theory in Eq. (1), computed
using the epsilon expansion, reproduced from ref. 11. The axes are w, !x = x=10,
!λ= 10λ. Initially, there is a fast flow (blue lines) to a fixed one-dimensional manifold
(dashed orange line). The flow along this manifold is slow, and towards w =0. The
flow of κ is excluded, since its flow towards zero is the fastest.
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χ(ω) and χ(qx) are known, z is computed directly from their ratio:
zΔ(ηϕ, z)/Δ(ηϕ, z).

When we turn on qy, the RG equation does not say anything about
the functional formof the dependence of χ(q) on qx and qy, whichmust
be deduced by other means. All that is known from the tree-level form
of Eq. (8) is that the spatial dependence must be C4-symmetric.
Jumping ahead to Section “Results”, theMonte Carlo data suggests the
form

χ!1ðqÞ= ð∣qx ∣zΔðηϕ ,zÞ + ∣qy∣zΔðηϕ ,zÞÞ

gðð∣qx ∣+ ∣qy∣Þ=T
1=z , ð∣qx ∣+ ∣qy∣Þ LÞ,

ð15Þ

which we take as our conjecture.
As as aside, we note that this way of extracting critical exponents

from a system at fixed L, β is not the usual one of finite size scaling.
Although the latter is more systematic, it would require the simulta-
neous scaling of L and β∝ Lz. Since we do not know what z is a priori,
this requires an additional scan over its potential values. Also, the z
value we find later on is always z > 1.6, which implies the need for a
large β in the finite size scaling. Both of these are very computationally
expensive, and we therefore opt for the present method.

Numerical results
The phase diagram of the theory in Eq. (2) as a function of r and T is
shown in Fig. 4.

At large values of r the system is a paramagnetic (PM) metal. As a
function of decreasing r, for any finite T (below some large tempera-
ture) there is a sharp crossover to a SDWmetal. This crossover will not
become a true second-order phase transition in the thermodynamic
limit, since the dimensionality and symmetry of the order parameter
prevent the system from ordering due to the Mermin-Wagner theo-
rem. However, if we infinitesimally couple stacks of this two-
dimensional system (as is the situation in many relevant experi-
ments), order will be stabilized and the transition will become a true
one. We can identify the sharp location of this potential second-order
transition, rc(T), by studying finite-size scaling diagnostics, such as the
Binder cumulant (c.f. Supplementary Note 1 for details). The line of
these transition points terminates at T =0 and r = rc, which is the
quantum critical point. This is the familiar picture of quantum
criticality.

For all nesting parameters we see no superconductivity down to
the lowest measured temperatures. This is consistent with the argu-
ments outlined in ref. 21 that the superconducting transition

temperature Tc of the spin-fermion model is suppressed with
decreasing v as Tc ∼ g2 sinðarctanðvÞÞ.

To study the critical scaling we tune r = rc and vary β ≡ 1/T. Fol-
lowing Section “Theoretical analysis near perfect nesting”, we look at
the dependence of the spin susceptibility on frequency and momen-
tum, χ(ω), χ(qx), χ(q). Here, we use the axes of Eq. (1), in order to
compare to Section “Theoretical analysis near perfect nesting”. From
the scaling of χ(ω) and χ(qx) in the intermediate scaling regions we
obtain the exponents Δ(ηϕ, z) and zΔ(ηϕ, z), as illustrated in Fig. 5.
FromΔ(ηϕ, z) and zΔ(ηϕ, z)wedetermine z and ηϕ, which are plotted in
Fig. 6 as functions of v. An important point is that the intermediate
regime of power-law scaling in Fig. 5 is chosen by eye, and different
choices yield slightly different forms of z(v) and ηϕ(v). The specific
choiceweuse in Fig. 5 is described in SupplementaryNote 1, alongwith
howwe compute the corresponding error bars. However, crucially, for
all (reasonable) choices of the scaling region boundaries, z(v) mono-
tonically decreases with decreasing v, starting froma value slightly less
than z = 2 (which is the Hertz-Millis prediction) for v1. Similarly, ηϕ(v)
monotonically increases from ηϕ ≈ −0.75 with decreasing v.

In addition to thedependenceof z(v) andηϕ(v) on v, wedetermine
the spatial symmetry of χ(q) and its functional form. In Fig. 7 we show
density plots of χ−1(q) for v = v5. We plot contours at various values.We
can see that at largemomenta, the symmetry of the contours is that of
the lattice, C4. At intermediate momenta, the contours are circles,
indicating an O2 symmetry, indicating that those momenta are small
enough that cosðkxÞ+ cosðkyÞ≈ 2! k2=2 is a good approximation.
However, at smaller momenta the contours transform again to a

Fig. 4 | Phase diagram in T and r. The red (white) region is a metal with AFM (no
magnetic) order. The blue points denote the intersection of curves of the Binder
cumulant for different system sizes at fixed temperatures. The error bars denote
the finite resolution in r that we have in those intersection points. The phase dia-
gram for all nesting parameters studied is the same up to our resolution. Super-
conductivity is absent for all the parameters we study.

Fig. 5 | Scaling of critical spin susceptibility. The (a) dynamic and (b) static spin
susceptibility, shown on log-log plots for all nesting parameters vi studied. The
error bars are given by the one sigma statistical uncertainties from the stochastic
calculation. The different curves are shifted relative to each other for visual clarity.
We showonly the largest (a) β and (b) L values thatwe simulated in order to extract
the intermediateω and qx regimes of power-law scaling. For each curve, we choose
the regions that look the most straight by eye (if there are two such regions, as in χ
−1(ω), we choose the one with smaller ω or qx). Choosing slightly different bound-
aries leads to slightly different exponents, but the trend with v is always the same.
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C4-symmetric form, with the maxima/minima now rotated by 45°. In
Supplementary Note 1, we show more density plots at smaller L, in
order to illustrate that this effect gets more pronounced as L increases
and is therefore a true long-wavelength effect present in the thermo-
dynamic limit.

It is not possible to provably determine the exact functional form,
as there are many forms that obey the C4 symmetry. However,
∣qx ∣zΔ + ∣qy∣zΔ seems to fit very well. We illustrate this in Fig. 8, along
with a comparison to ∣q∣zΔ. We therefore conjecture that
χ!1ðqÞ∼ ∣qx ∣zΔ + ∣qy∣zΔ is the correct long-wavelength form.

These two features of the boson susceptibility—i.e., the mono-
tonic forms of z(v), ηϕ(v) and the symmetry reduction of O(2)→C4 in
the long-wavelength limit—provide strong numerical evidence in favor
of the critical scaling at the SDWQCP being governed by the theory of
ref. 12 for all the nesting values we study.

Despite the similarities, there are two parts of the data that are
seemingly in contrast to the predictions of ref. 12. The first is the fact
that ηϕ is negative, whereas Eq. (10) predicts that as ηϕ→0+ as v→0.
However, Eq. (10) is only the leading order correction, and it particular,
in obtaining it, terms ofOðwðvÞÞ were ignored in ref. 12. Therefore, it is
perfectly possible that the actual leading-order coefficient behaves as
ηϕ ∼wðvÞðlogð1=wðvÞÞ ! aÞ, where a >0 is a constant, which would lead
to a sign-change in the leading-order behavior when 1≫w(v) > e−a. On
the other hand, the leading term of z from Eq. (9) does not suffer from
a similar problem, and its sign can be trusted at small w(v).

The second part of the data that is seemingly in contrast to the
predictions of ref. 12 is that z(v) and ηϕ(v) do not convincingly exhibit
the limiting behaviors z→ 1 and ηϕ→0 as v→0. We conjecture the
following explanation. As noted in Section “Theoretical analysis near
perfect nesting”, we assume that the renormalized value of v is close to
the bare one. However, as we decrease v we are not tuning g, so the
bare value of λ = g2c2/v is increasing, not staying fixed. This increases
theRG-timeneeded toflow to theone-dimensionalmanifold discussed
in Section “Theoretical analysis near perfect nesting”. The large bare
value of the effective coupling λ might be renormalizing v to larger
values, before the one-dimensional manifold it reached. Remedying
this requires decreasing g with decreasing v such that λ remains fixed.
This task is beyond the scope of this paper, and we leave it for
future work.

Finally, we show the fermion occupation function at criticality in
Fig. 9 (as well as Supplementary Note 1), where we can see the renor-
malizationof the hot-spots by theYukawa interaction aswell as the gap
appearing at the hot-spots in the ordered phase. Unfortunately, within
our spatial resolution it is not possible to measure the renormalized
nesting parameter v, and therefore confirm the conjecture from the
above paragraph.

Discussion
In this work, we study the critical theory of the O(3) spin-fermionmodel
as a model of the antiferromagnetic transition in two-dimensional
metals.We use a novel HMCmethod that we extensively develop. Below
we discuss some consequences of our work and outlook.

Implications of theoretical results
Our study of the critical spin susceptibility χ(ω, q) provides one of the
few controlled numerical studies of a model where there is an
observed violation of Hertz-Millis scaling. The critical exponents and
C4-symmetric form of χ(ω,q) can be directly tested experimentally
with neutron scattering in materials where the bare hot-spot nesting
value vB is small.

Fig. 6 | Critical exponents. The (a) dynamical critical exponent z and (b) the
anomalous boson dimension ηϕ as a function of v. The error bars are computed
using a bootstrap method on the fitted data, allowing for duplicates (c.f. Supple-
mentary Note 1).

Fig. 7 | Density plots of the static critical spin susceptibility. All are for v = v5,
β = 20 and L = 80. We are interested in showing the equal-density contours (we do
not showa color bar as it is irrelevant for this purpose). The threeplots are different
levels of zooming in toq =0. In awe show the entireBrillouin zone, alongwith three
dashed-line equal-density contours (passed through a Gaussian filter for smooth-
ness), at large, intermediate, and small momenta. We can see that the largest
contour has aC4-symmetric form, due to the lattice. Inbwe zoom in to focus on the

inner two contours, whichweoverlaywith two red circles at radii 0.63, 1.33, inorder
to illustrate their symmetry. The larger circle overlays with the contour extremely
well, indicating an O(2) symmetry at those momenta. The smaller circle overlays
with its contour poorly, since that contour ismuchmore square-like, indicating that
at smaller momenta the symmetry is again C4. To show this more convincingly, in
c we zoom in further to enlarge this smallest contour.
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Additionally, we provide strong evidence that the physics of the
quantumcriticalmetal is governedby thefixedpoint of ref. 12, even for
appreciable nesting parameter values v. If one believes this evidence,
the implication is that the theory of ref. 12, valid at small v, augmented
with numerical calculations at larger v, can be used to generate a fully
controlled quantitative solution to the problem. For example, non-
equilibrium properties such as conductivity, which are generally very
difficult to resolve with imaginary time methods, but are the most
common observable used to experimentally identify the quantum
critical fan, can be computed using small v perturbation theory about
the fixed point of ref. 12 and supplemented with non-perturbative
numerical calculation of the critical exponents. If valid, this approach
would provide an unprecedented advance in the understanding of
experimentally observed strange metals proximate to itinerant anti-
ferromagnetism, characterized by, e.g., linear-in-temperature DC
resistivity and present in many materials displaying unconventional
superconductivity.

Future directions with HMC
As noted in the main text, Fig. 6 does not convincingly show that z→ 1
as v→0, and the most likely reason for this is the increasing value of
λ = g2c2/v as we decrease v. It is therefore desirable to revisit this pro-
blem, while keeping λ fixed by tuning g. We intend to address this in a
future work.

In this work, we focus on only two critical exponents of the spin-
fermion model, z and ηϕ, for the most straightforward comparison to
the nearly-nested fixed point theory of ref. 12. There are several other

pieces of critical data that remain to be examined for a more com-
prehensive comparison. The two most important ones are the critical
exponent ν that relates the correlation length to thedeviation fromthe
critical point, and the scaling of the fermion Green’s function. Mea-
suring the critical scaling of thermodynamic quantities like specific
heat is also an important task. One can also tune g to a large enough
value to see the onset of superconductivity in order to track the
dependence of Tc on v and compare to the prediction of Tc(v) made in
ref. 12. Finally, hereweonly study the parameter values u =0, c = 3, and
five small values of v. An obvious question is how the conclusions of
this work change with varying parameters u, c, as well as larger values
of v.

TheHMCalgorithmweuse in thiswork is quite general and can be
applied to many other theories of interest. The main restrictions are
that the configuration (boson) field be continuous and that the num-
ber of fermions can be doubled without qualitatively changing the
physics of the model (this is not necessary if the fermion matrix is
purely real). Some immediate candidates are other sign-problem-free
‘designer’ models of various flavors of quantum criticality, such as
easy-plane XY17 and Z231 antiferromagnetic transitions in metals, the
Ising nematic transition in metals26, fermions coupled to emergent
gauge fields55–61, Kondo lattice physics62–64, disorder-averaged
criticality65, Gross–Neveu–Yukawa criticality66, and models of flat
band physics67–70. Other classes of models are Hubbard-type models
and electron-phonon models, which have been recently
studied35–47,49,71,72 using various HMC and DQMC algorithms. We note
that for theories with dynamical gauge fields of continuous gauge

Fig. 9 | Measured occupation number. The total occupation number
nq =

P
α,σhψ

y
α,σ,qψα,σ,qi for the (a) free theory, and the interacting theory (b) at

criticality (r = rc ≈ 1.26) and (c) slightly in the ordered phase (r = 1.15). This explicitly

shows the renormalization of the Fermi surface near the hot spots due to fluc-
tuations of the order parameter. All plots are for v = v1 and β = 20, L = 80.

Fig. 8 | Scaling form of static critical spin susceptibility. χ−1(q) − χ−1(0) plotted
against (a) ∣qx ∣zΔ + ∣qy∣zΔ and (b) ∣q∣zΔ . Both plots are forβ = 20 and L = 80. The error
bars are again the one sigma uncertainties. The curves for different vi are shifted to
separate them for visual clarity. The initial region, up to qzΔ ~ 1.7 is fit with both

forms. The C4 is much better in this region; see the solid lines in a and b, and
compare the coefficients of determination R2 from awith R2

1 from b. However, over
larger momenta (up to qzΔ ~ 3.6) the O(2) fit it much better; see the dashed line as
well as R2

2 in b.
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groups or non-linear-sigma models, HMC is less efficient due to the
trouble it has in sampling the various topological sectors viamolecular
dynamics. In these cases, perhaps an HMC augmented with generative
model samplingmightmake for a very efficient sampling73. This issue is
not present in the present model, since the magnitude of the O(3)
bosonic field is not restricted.

Potential algorithmic improvements
The implementation could benefit from more sophisticated
approaches to solving the linear system arising from each integra-
tion step within the HMC algorithm. Currently, the computational
cost of our preconditioned CG approach enjoys ideal scaling in the
limit of large L. However, the scaling with respect to Nτ for Δτ fixed,
i.e., the zero-temperature limit, is superlinear with respect to Δτ.
Several approaches to similar linear solves have been introduced in
the LQCD and condensed matter literatures that could pay divi-
dends here. These include Hasenbuch preconditioning40,74, multi-
grid preconditioners and solvers75, and non-iterative ideas based on
Schur complements43. These approaches should also help for larger
values of the Yukawa coupling, when the preconditioner used in
this work would be less effective. Moreover, a mixed-precision
implementation of CG on the GPU could provide significant
speedup76.

There is also room for further investigation into the HMC hyper-
parameter auto-tuning procedure, as there exist alternative criteria for
tuning ε and nleap. For example, one could instead tune ε based on the
average acceptance rate or based on the stability of the numerical
integrator. Meanwhile, the tuning of nleap is by far the most expensive
part of the warmup phase. The current state-of-the-art approach in the
statistics literature for tuning nleap is called the No U-Turn Sampler
(NUTS)77. Implementing NUTS in our setting might offer a similar
advantage.

Methods
QMC path integral with fermions
In order to simulate the action of Eq. (2) we put the system on a finite
square lattice of size L with periodic boundary conditions. The lattice
spacing is set to one. The imaginary time direction is also discretized
into Nτ slices, with the imaginary time spacing, or Trotter step, labeled
as Δτ. We set Δτ =0.1. Fermions and boson obey anti-periodicity and
periodicity, respectively, in the time direction. As in any path integral
quantumMonte Carlo method involving fermions, we start by writing
out the partition function and performing the Grassmann integral over
the fermionic fields:

Z =
Z

dϕ e!SBðϕÞ
Z

dψ*dψ e!SF ðψ,ψ
*Þ!SFBðϕ,ψ,ψ*Þ

=
Z

dϕ e!SBðϕÞ det ðDðϕÞÞNf :
ð16Þ

Here, D(ϕ) is the fermion matrix of size 2 ⋅ 2 ⋅Nτ ⋅ L ⋅ L = 4NτL2,
where the two factors of 2 correspond to the band and spin indices.
Since the fermionic action is diagonal in the flavor index j, Nf enters
trivially as a power of the determinant. Component-wise D(ϕ) is
given by

DðϕÞðα,s,τ,x,yÞ,ðα0 ,s0 ,τ0 ,x0 ,y0Þ = δα,α0δs,s0 δx,x0δy,y0 δτ,τ 0 ½!1! Δτ μα (
(n

+ δτ + 1,τ0 ½1! 2 δτ,Nτ!1(
*
! δτ,τ 0 Δτ tα,ðx,yÞ,ðx0 ,y0Þ

o

+ δx,x0δy,y0δτ,τ 0 Δτ g eiQAF %ðx,yÞ ϕðτ, x, yÞ % τσ,σ0 σ
ðxÞ
α,α0 ,

ð17Þ

which is read directly from the action in Eq. (2). Here, τ is in the range
{0,…,Nτ − 1}, and x, y are in the range {0,…, L − 1}. δa,b is the Kronecker
delta function. σðxÞ

α,α0 is the usual Pauli matrix, but acting on the band
indices instead of the spin indices.

Stochastic formulation of the determinant
In the rest of this section, we will use the notation ϕ (not bold) to
denote the bosonic field, to emphasize its interpretation alternatively
as either a vector of length 3NτL2 or an array of size 3 ×Nτ × L × L,
depending on context, as opposed to its equivalent representation as
3-component field ϕ =ϕ(τ, x, y).

In the usual BSS algorithm78, the determinant in Eq. (16) is
rewritten as

detðDðϕÞÞ= det 1+
YNτ!1

l =0

BlðϕÞ

 !

, ð18Þ

where 1 and the Bl(ϕ) are square matrices of size 2 ⋅ 2 ⋅ L ⋅ L = 4L2. This
reduces the cost of exact computation of the determinant from the
naive scaling ofOðð4NτL

2Þ
3
Þ to the improved scaling ofOðNτ ð4L

2Þ
3
Þ for

every configuration ϕ. Although this is better than the direct compu-
tation of the larger determinant, the scaling with respect to L is
nonetheless quite severe.

As an alternative to the exact computation of the determinant, we
use the pseudofermion method79,80 to evaluate it stochastically. This
method is based on the expression

detðAÞ /
Z

DφDφ* e!φ*A!1φ, ð19Þ

where φ is an auxiliary complex bosonic field (called a ‘pseudo-
fermion’) and A is any Hermitian positive definite matrix.

Although the anti-unitary symmetry of ref. 16 guarantees that
detðDðϕÞÞ is always non-negative, D(ϕ) itself is not necessarily positive
definite. However, we can write

det ðDÞNf = ðdetðDÞdet ðDÞ*Þ
Nf =2

= ðdetðDÞdetðDyÞÞ
Nf =2 = det ðDDyÞ

Nf =2:
ð20Þ

The matrix D(ϕ)D(ϕ)† is guaranteed to be positive definite. Note
that when Nf is odd, the integral in Eq. (19) comes with a fractional
power, which limits us to the case of even Nf. From here on, we set
Nf = 2, andmoreover this value is used in our simulations. Rewriting the
determinant in this way, the partition function becomes

Z =
Z

dϕdφ*dφ e! SBðϕÞ+SPF ðϕ,φÞð Þ, ð21Þ

where SPF ðϕ,φÞ=φ*ðDðϕÞDðϕÞyÞ
!1
φ. Note that the dimension of φ is

the same as D(ϕ), i.e., 4NτL2. This new partition function defines a joint
distribution p(ϕ,φ), which can be sampled with Markov chain Monte
Carlo (MCMC).

Solving the linear system
While Eq. (21) introduces amatrix inverse to the action, the expression
can be evaluated efficiently by treating the application of ðDDyÞ

!1
to φ

as the solution to a linear system:

ðDDyÞη=φ, ð22Þ

whereη is the unknown. Awide classof iterative solvers are available to
tackle this problemefficiently. Additionally, other non-iterative solvers
have recently been employed in the application of HMC to the
Hubbardmodel43. Here, we use the conjugate gradient (CG) method81,
a commonly used technique with practical advantages for Hermitian
positive definite systems.

Choice of preconditioner. Iterative solvers can often be precondi-
tioned with a transformation that improves the conditioning of the
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linear system. For any preconditioner P, the equation P−1(DD†)η = P−1ϕ
has the same solution as the original system but may be better con-
ditioned. Within the CG algorithm, we choose a preconditioner as
follows.

Note that D(ϕ) as defined in Eq. (17) can be split into two terms,

DðϕÞ=K +V ðϕÞ, ð23Þ

where the first term, K, i.e. the fermionic kinetic energy, consists of all
terms in Eq. (17) that are independent of ϕ. Since K is a translation-
invariant operator (modulo fermionic imaginary-time antiperiodicity),
it can be diagonalized and inverted efficiently using fast Fourier
operations and then used to construct an efficient preconditioner.

Towit, letF denote the discrete Fourier transformwith respect to
the spacetime lattice indices (τ, x, y), and let T be the unitary diagonal
‘twist’ operator defined by

T ðα,s,τ,x,yÞ,ðα0 ,s0 ,τ0 ,x0 ,y0Þ = δðα,s,τ,x,yÞ,ðα0 ,s0 ,τ0 ,x0 ,y0Þ e
πiτ : ð24Þ

Note that T transforms imaginary-time-periodic fields to
imaginary-time-antiperiodic fields, and as such we can write

K = eF bK eF
*
, ð25Þ

where eF : = T F is the ‘twisted’ Fourier transform and bK is diagonal.
Our preconditioner is then defined by

P : = ðKKyÞ
!1

= eF bP eF
*
, ð26Þ

where bP = bKbK
y
is diagonal. As such, P can be applied with computa-

tional cost that is linear (up to log factors) in the spacetime volume
NτL2. In the limit where the coupling constant g→0, this is the perfect
preconditioner, P = ðDDyÞ

!1
, achieving convergence in a single CG

iteration. More generally, the preconditioner is effective in addressing
poor conditioning due to the unboundedness of the differential
operator term of D as the imaginary time step Δτ is refined, in analogy
with, e.g., Laplacian preconditioners82 in the numerical PDE literature.

See also ref. 35 for a similar approach to preconditioning based on
a noninteracting model. Note that such a preconditioner may not be
satisfactory in general in the strong coupling limit, and we discuss
possible future improvements in Section “Potential algorithmic
improvements”. For the couplings studied in this paper, we do none-
theless observe improvement due to the preconditioner, as detailed in
Supplementary Note 5.

HMC
Hybrid/Hamiltonian Monte Carlo (HMC) is a Markov chain Monte
Carlo (MCMC) method in which numerical integration of Hamilton’s
equations in a fictitious phase space produces sequential updates in a
Markov chain50,83. Historically used as tool for the study of lattice
quantum chromodynamics (LQCD), HMC is currently the state-of-the-
artmethod in the field, where it has yielded sub-1% errors on over ~1010

degrees of freedom75,84.
We now give a brief overview of HMC as applied to theories with

fermions. As explained above, Eq. (21) defines a joint probability dis-
tribution,

pðϕ,φÞ=
1
Z
e!SBðϕÞ!SPF ðϕ,φÞ, ð27Þ

that needs to be sampled to estimate observables. We adopt a Gibbs
sampler approach to sampling the two fields ϕ,φ, wherein we update
each one conditioned on the other in alternating fashion.

The φ sample can be drawn exactly from the conditional dis-
tribution for fixed ϕ, which is the complex normal distribution

N ð0,DðϕÞDðϕÞyÞ. This is achieved by sampling a standard complex
Gaussian vector χ and setting φ =D(ϕ)χ.

Because the action is not quadratic in ϕ, sampling of this field
remains non-trivial but can be handled with MCMC. We employ the
HMC method for this purpose. The first step is to introduce a field π
that acts as an artificial conjugate momentum to the fieldϕ. Together,
ϕ and π define phase space coordinates for a fictitious Hamiltonian
system

~Hðϕ,φ,πÞ=Kðπ;MÞ+Sðϕ,φÞ= 1
2
π>M!1π +Sðϕ,φÞ, ð28Þ

consisting of ‘kinetic energy’ and ‘potential energy’ terms. The kinetic
energy specifically is defined with respect to a choice of metricM, also
called a mass matrix, which is given to be positive definite. The choice
ofMwill be discussed later. This Hamiltonian allows us to define a new
joint distribution pðϕ,φ,πÞ∼ e!~Hðϕ,φ,πÞ, compatible with our target
distribution after marginalization of π.

The new joint distribution can now be efficiently sampled by
drawing π directly as a normal random vector with covariance M and
then integrating the equations of motion of ~H,

dϕ
dt

=M!1π and
dπ
dt

= !
∂Sðϕ,φÞ

∂ϕ
: ð29Þ

Here, t is a fictitious ‘time’ variable. The trajectory defined by Eqs.
(29) is also known as the molecular dynamics trajectory. Once a new
sample of (ϕ,π) is obtained, its ϕ component is taken as the new
sample of p(ϕ,φ).

With these tools, we can construct the Markov chain update forϕ
as follows:
1. Generate a momentum sample from π ∼N ð0,MÞ.
2. Approximately integrate the molecular dynamics (29) with initial

condition (ϕ,π) for some time to produce new configura-
tion ðϕ0,π0Þ.

3. Accept the new configuration (ϕ0,π0) with prob-
ability α = min 1, e! ~Hðϕ0 ,π0Þ!~Hðϕ,πÞf g

+ *
.

Exact integration of Eqs. (29) is not feasible andmust therefore be
performed numerically in discrete time. A suitable choice of numerical
integration scheme is leapfrog integration85, which preserves phase
space volume and ensures that the final Metropolis accept/reject step
preserves detailed balance.

Scale-invariant sampling
In high dimensions, local MCMCmethods encounter difficulties in the
setting of ‘poorly scaled,’ i.e., severely anisotropic, distributions. In
order to guarantee a nonvanishing acceptance rate without correcting
for this difficulty, the local moves in the MCMC sampler are con-
strained by the smallest scale present in the problem, and as such the
autocorrelation time with respect to the large scales must grow
accordingly. For a critical lattice model, the smallest scale present in
the distribution is not bounded away from zero in the thermodynamic
limit, and this difficulty must be addressed to maintain constant
autocorrelation time in this limit. Existing approaches based on affine
invariance are unsuitable in this context due either to a curse of
dimensionality86 or to unacceptable (i.e., at least quadratic) scaling87

with respect to the spacetime volume NτL2. Relative to these approa-
ches, we are able to exploit the known a priori structure of our model,
i.e., translation invariance, to achieve a fast scale-invariant sampler.
Specifically, within the context of HMC, we learn an optimal metric M
‘online.’ In contrast with44, beyond translation invariance we do not
assume any a priori functional form for the metric, as any a priori
choicemay struggle near criticality. SinceM is updated adaptively, it is
then important to tune the HMC hyperparameters ε and nnleap
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adaptively in a scale-invariant fashion. For this task we adapt best
practices from the statistics literature (as implemented, e.g., in ref. 52)
to our setting, aswe shall discussbelow. Thesequantities (i.e.,M, ε, and
nleap) are all determined during a warm-up phase, after which they are
fixed for the duration of the run.

Online metric estimation. HMC as described above allows for an
arbitrary choice of metric or mass matrix M. When the underlying
probability distribution to be sampled is poorly scaled, the metric
must be adapted to the scaling of the distribution to maintain a con-
stant autocorrelation time. An idealized choice for M is given by the
inverse of the exact covariance matrix Σtrue: = 〈ϕϕ⊤〉 of the underlying
distribution p, i.e., by M =Σ!1

true. In the case where p is the Gaussian
N ð0,ΣtrueÞ, such a choice is equivalent to rescaling p to the standard
(isotropic) Gaussian distributionN ð0, 1Þ.More generally, such a choice
can be viewed as rescaling p to a distribution with unit covariance
matrix.

There are two obstacles to achieving this idealized choice. First,
the exact covariance Σtrue is not known a priori. Second, even if it were
known or estimated as Σ ≈ Σtrue, the cost of even storing this matrix
scales as ∼ ðVNτ Þ

2, which already imposes a computational bottleneck.
Worse still, within theHMC algorithm,wemust generate samples from
N ð0,Σ!1Þ, which in general scales as ∼ ðVNτÞ

2, i.e., as the cost of a
Cholesky factorization of Σ.

The first of these obstacles can be tackled via online estimation of
the covariance matrix Σtrue from samples. To wit, we can choose some
initialization for Σ (typically Σ = 1) and run the HMC algorithm to pro-
duce a batch of S samples ϕ(1),…,ϕ(S) of the bosonic field, then reset
Σ Σest : =

1
S

PS
s = 1 ϕ

ðsÞϕðsÞ,T and repeat the procedure until Σ
converges.

There is an appearance of circular reasoning to such an online
estimation scheme in that it assumes the ability to draw samples ϕ ~ p
via our MCMC sampler (which may be bottlenecked by a long auto-
correlation time) in order to improve the autocorrelationof theMCMC
method itself! However, it is important to realize that in the initial
iteration, the autocorrelation time for the smallest eigenmodes of Σtrue
is not long. Indeed, to get a nonvanishing acceptance probability, the
step size in HMC must be tuned to be on the order of the smallest
eigenvalue of the covariance. Due to anisotropy, thismay result in very
slow MCMC mixing in the highest eigendirections, but this does not
interfere with our ability to estimate the smallest eigenmodes. After
the first iteration, having corrected for the smallest eigenmodes, the
procedure proceeds to correct the next smallest, etc.

Despite its theoretical appeal, there are two problems with this
approach, from the point of view of computational scaling. First, to get
an estimate Σest ≈ Σtrue of fixed accuracy requires a size-extensive
number S of samples, due to the size-extensive numerical rank of Σtrue.
Second, as mentioned earlier, the cost of storing and factorizing Σest is
prohibitive. In fact, both problems can be addressed by exploiting
translation invariance.

Indeed, since Σtrue is translation-invariant, it is equivalently diag-
onal in Fourier space—or more precisely, (3× 3)-block-diagonal with
respect to the vector index l = 1, 2, 3 of ϕ. Therefore Σtrue =F bΣtrue F *,
where F represents the discrete Fourier transform with respect to the
spacetime lattice indices and bΣtrue is block-diagonal. As such the block-
diagonal can be obtained as the expectation diagð½bΣtrue(ll0 Þ= hbϕl ) bϕl0 i,
where samples bϕ are obtained as bϕ=Fϕ from samples ϕ and ‘⊙’
indicates the entrywise product. In practice, for simplicity we consider
only the true diagonal of bΣ, which is sufficient to address the increasing
anisotropy due to large volume. Concretely, we therefore form

bσ bσest : =
1
S

XS

s = 1

bϕ) bϕ ð30Þ

and let Σ=F bΣF *, where bΣ is the diagonal matrix with diagonal bσ.

In order to draw sample momenta π ∼N ð0,MÞ within the HMC

algorithm, observe thatM = Σ!1 = ðF bΣ
!1=2

ÞðFbΣ
!1=2

Þ
*
. Therefore we can

simply draw z ∼N ð0, 1Þ and let π =F ðbσ!1=2 ) zÞ, where bσ!1=2 indicates
the entrywise inverse square root of bσ. The total cost of drawing such a
sample is linear in the spacetime volume L2Nτ, up to a log factor, as is
the cost of evaluating the HMC energy of Eq. (28).

Since the off-diagonal elements of bΣ are known a priori to be zero
(and implicitly set to zero automatically), we only need O(1) effective
samples to estimate bσ to fixed accuracy. Hence the total cost of each
iterative update of bΣ scales linearly in the spacetime volume L2Nτ, up to
log factors.

Online HMC hyperparameter tuning. Within the HMC algorithm,
once the metric M is fixed, it remains to choose (subordinate to this
choice) appropriate values for the integration step size ε >0 and the
number nleap of leapfrog integration steps per proposal.

First we consider the choice of ε. Roughly speaking, one wants to
choose ε as large as possible without sabotaging the acceptance rate.
Quantitatively, let α(ε) denote the expected acceptance probability for
a single leapfrog integration step of size ε. More precisely, recalling
that α =αðϕ,π,ϕ0,π0Þ denotes the acceptance probability of a pro-
posed move ðϕ,πÞ! ðϕ0,π0Þ, we may define αðεÞ= hαðϕ,ϕ0Þiε,nleap = 1,
where the statistical expectation is computed by sampling (ϕ,π) ~ p
and then sampling ðϕ0,π0Þ as a proposal fromϕ according to the HMC
algorithm with step size ε and nleap = 1. Then one wants to maximize ε
subject to the inequality

ð1! αðε=2ÞÞ2 ≤ 2ð1! αðεÞÞ: ð31Þ

The left-hand side estimates the probability of accepting two
steps of size ε/2, whereas the right-hand side estimates the probability
of accepting one step of size ε. Since the former strategy costs twice as
many linear solves ðDDyÞ

!1
φ as the latter, the latter is computationally

preferable as long as the inequality holds.
In practice, we maintain an estimate for α(ε) and α(ε/2) based on

an empirical average over a recent history of samples, and we increase
or decrease ε when Eq. (31) is satisfied or violated, respectively.

Now we turn to the choice of nleap. Within the actual HMC algo-
rithm, we choose nleap uniformly at random from the set f1, . . . ,nmaxg,
independently for each iteration, wherenmax is a hyperparameter to be
determined adaptively. This ‘jittering’ procedure is standard in the
statistics community52. The hyperparameter nmax is determined as the
maximizer of the expected squared jump distance (ESJD)51

ESJDðnÞ : = ðϕ! ϕ0Þ>Mðϕ! ϕ0Þαðϕ,ϕ0Þ
D E

ε,nleap =n
: ð32Þ

Importantly, the metric M is needed here to correctly define the
squared distance ∣ϕ! ϕ0∣2M = ðϕ! ϕ0Þ>M ðϕ! ϕ0Þ.

In practice, similarly to α(ε), we maintain an estimate for ESJD(n)
based on an empirical average over recent history, andwe choosenmax
to maximize it.

During the warmup phase, the three components of ε,nmax andM
are each tuned several times, until they stop changing appreciably.

Note that since the acceptance probability in HMC is directly
determined by the energy conservation error in the integration of
Hamilton’s equations (29), alternative higher-order integration
schemes besides leapfrog can be considered to improve acceptance
rates at the price of more expensive integration steps, cf. for
example88,89.

Estimation of observables
Here we describe the methods we use to compute physical obser-
vables directly in Fourier space, while keeping the computational cost
near-linear in βV.
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Bosonic observables. Bosonic observables can be computed directly
as a sample average over the bosonic field variable ϕ. Specifically of
interest is the SDW susceptibility

χðω,qÞ=
Z β

0

X

r
hϕðτ, rÞ %ϕð0,0Þieiωτ!iq%r dτ: ð33Þ

The SDW susceptibility can be estimated at linear cost (up to log
factors) as

χðω,qÞ= ∣bϕðω,qÞ∣2
D E

Δτ, ð34Þ

where we recall that bϕ=Fϕ is the spacetime discrete Fourier trans-
form of ϕ.

Fermionic observables. Fermionic observables require more care to
estimate while maintaining almost-linear scaling. Of particular interest
are the two-point correlator (in Fourier space)

Gα,sðω,qÞ=
Z β

0

X

r
hψα,sð0,0Þψα,sðτ, rÞ

*ieiωτ!iq%r dτ: ð35Þ

and the superfluid (SF) density, which is defined in Supplemen-
tary Note 3.

The key observation is that all fermionic observables of interest
can be phrased in terms of the expectation value of the diagonal of a
matrix for which it is possible to perform efficient matrix-vector mul-
tiplications, i.e., as

hdiagðOϕÞi, ð36Þ

where the statistical average is taken with respect to the bosonic
density for ϕ and where Oϕ is an operator that depends on the
bosonic field. Rather than compute the diagonal entries individu-
ally, it is more efficient to recover them simultaneously via the
identity

diagðOϕÞ=E½v) ðOϕvÞ(, ð37Þ

where v is a random vector with independent entries that take
values ±1 each with probability 1/2 and ‘E’ indicates the expecta-
tion with respect to this distribution over v. As before, ‘⊙’ indicates
the entrywise product of vectors. This identity defines a rando-
mized matrix-free algorithm for recovering a matrix diagonal from
only O(1) matrix-vector multiplications, which has appeared
before in various works90,91. Moreover, after taking traces of both
sides, one recovers the famous Hutchinson trace estimator92.
During the preparation of this work, this randomized diagonal
estimator has also appeared in ref. 44 for the same purpose of
computing fermionic observables, though their approach to
computing quartic fermionic observables such as the SF density
differ somewhat from ours.

Since wemust average diag(Oϕ) over the bosonic distribution for
ϕ, we can in fact obtain a consistent estimator by independently
drawing a single vector v(s) for each bosonic sample ϕ(s), s = 1,…, S,
where S is the sample size of our empirical average and estimating

diagðOϕÞ≈
1
S

XS

s = 1

vðsÞ ) Oϕv
ðsÞ: ð38Þ

Further details of the implementation of the approach to computing
fermionic observables (i.e., the specification of Oϕ for observables of
interest) can be found in Supplementary Note 3.

Numerical performance
Here we summarize the numerical performance of our algorithm,
with more details provided in Supplementary Note 6. As noted in
the Introduction, in the presence of a critical slowing down, the
HMC algorithm can require a number of integration steps per
effective sample of Oðβ1=4 + z1V 1=4+ z2 Þ, where z1, z2 are to be deter-
mined empirically. To extract these exponents, we benchmark our
algorithm across spacetime lattice sizes at the critical parameters of
the theory, scaling with respect to V = L2 and Nτ separately. We track
the growth of the integrated autocorrelation time τint of the total
SDW susceptibility χ ≡ χ(0, 0) at criticality, and use it to quantify the
wallclock time and number of HMC integration steps per effective
sample: τint × nleap.

We find that our algorithm exhibits constant scaling of τint with
respect to both lattice volume and inverse temperature. For the
exponents, we find z1 ≈0.5, z2 ≈0. This implies an absence of critical
slowing down with respect to the lattice volume V for the auto-tuned
HMC algorithm presented in this work.

The actualwall clock time in turndepends on the cost of the linear
solves of the form Eq. (22). With the preconditioned CG approach
described in Section “Choice of preconditioner”, we observe near lin-
ear scaling in wall clock time per effective sample with respect to V,
while the scaling is superlinear with respect to Nτ. The linear solve can
be approached with more advanced techniques, as well as more
refined GPU parallelism. These directions are discussed in Sec-
tion “Potential algorithmic improvements”.

Data availability
The data analyzed in the current manuscript is available from the
corresponding author upon reasonable request.

Code availability
All the custom codes used in this study can be requested from the
corresponding author.
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