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Abstract Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC)
previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate-driven
increases in fire and thermokarst may play a key role in OC mobilization by thawing permafrost and promoting
transport of OC. Yet, the extent of OC mobilization and mechanisms controlling terrestrial-aquatic transfer

are unclear. We demonstrate that hydrologic transport of soil dissolved OC (DOC) from the active layer and
thawing permafrost to headwater streams is extremely heterogeneous and regulated by the interactions of

soils, seasonal thaw, fire, and thermokarst. Repeated sampling of streams in eight headwater catchments of
interior Alaska showed that the mean age of DOC for each stream ranges widely from modern to ~2,000 years
B.P. Together, an endmember mixing model and nonlinear, generalized additive models demonstrated that
A“C-DOC signature (and mean age) increased from spring to fall, and was proportional to hydrologic
contributions from a solute-rich water source, related to presumed deeper flow paths found predominantly in
silty catchments. This relationship was correlated with and mediated by catchment properties. Mean DOC ages
were older in catchments with >50% burned area, indicating that fire is also an important explanatory variable.
These observations underscore the high heterogeneity in aged C export and difficulty of extrapolating estimates
of permafrost-derived DOC export from watersheds to larger scales. Our results provide the foundation

for developing a conceptual model of permafrost DOC export necessary for advancing understanding and
prediction of land-water C exchange in changing boreal landscapes.

Plain Language Summary In high latitude environments, soils that have been frozen for millennia
are thawing, releasing organic carbon (OC). Thawing and export of OC to downstream aquatic ecosystems is

a potential biogeochemical feedback that may accelerate climate warming if large amounts of ancient OC are
transformed and released to the atmosphere as greenhouse gases. The magnitude and timing of ancient OC
thaw and mobilization are not well defined, so predicting these patterns at local to global scales is challenging.
Using a suite of diverse headwater catchments in the discontinuous permafrost zone of Alaska, USA, we
identify the main controls on the mobilization of ancient OC from thawing landscapes into adjacent streams.
Our surveys show that ancient OC export depends on the complex interaction between fire history, soil type and
thawing characteristics, and seasonal warming. We find that all of these factors play a role, resulting in highly
heterogeneous release of ancient OC to headwater streams.

1. Introduction

Arctic and boreal regions represent one of the largest pools of legacy carbon (C) susceptible to mineralization
due to changing climate conditions (Schuur et al., 2015). Shifts in and/or intensification of local and regional
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hydrologic regimes directly impact the structure and biogeochemical functioning of northern ecosystems (Rawl-
ins et al., 2010; Wrona et al., 2016). Enhanced hydrological connection can promote greater transfer of C from
terrestrial to aquatic ecosystems, leading to greater downstream organic matter decomposition that may increase
emissions of carbon dioxide (CO,) and methane from northern high-latitude aquatic ecosystems to the atmos-
phere (Schuur et al., 2015; Walter Anthony et al., 2016). Of particular concern, the thawing of ice-rich yedoma
deposits in regions of Alaska, Siberia, and Canada can mobilize previously stored, ancient C into the active C
cycle (Drake et al., 2015; Feng et al., 2013; Vonk et al., 2015).

Although permafrost thaw may deliver aged, dissolved organic carbon (DOC) to river networks (Feng et al., 2013;
Neff et al., 2006; O’Donnell et al., 2020; Tank et al., 2016), detailed documentation of this process remains
sparse for most of the arctic and boreal biomes. One understudied region of concern is the discontinuous perma-
frost zone, where ancient C is susceptible to release due to permafrost thaw and increasing wildfire (Jorgenson
et al., 2013). The Yukon River Basin (YRB) spans interior Alaska, U.S.A., and portions of the Yukon Territory
and British Columbia, Canada (Figure 1), and is a representative basin within this region. In recent decades, broad
scale changes in hydrologic flow paths, water source, and water residence times in the YRB have been inferred
from changing river water and solute fluxes (Striegl et al., 2005; Toohey et al., 2016; Walvoord et al., 2012;
Walvoord & Striegl, 2007). Hydrologic changes and permafrost thaw may impact DOC export and/or biological
processing in multiple ways (Striegl et al., 2005; Tank et al., 2016; Zolkos et al., 2019); while there is currently no
sign of ancient permafrost-derived DOC (hereafter “permafrost DOC”) reaching larger rivers of interior Alaska
(Aiken et al., 2014), elevated uranium isotope ratios, an indicator of permafrost thaw (Ewing et al., 2010, 2015),
suggest that solutes released from localized permafrost thaw are entering tributaries in this region (Koch, Ewing,
et al., 2013). Rapid mineralization of thawed permafrost DOC under experimental conditions and from isotopic
studies (Drake et al., 2015; Ewing et al., 2015; Mann et al., 2015) indicates that ancient organic carbon (OC)
cycling could be intense across headwater streams. On the other hand, large potential DOC yields (Wickland
et al., 2018) and relatively low biodegradability of Holocene permafrost DOC in interior boreal Alaska (Textor
et al., 2019; Wickland et al., 2018) point to a high potential for permafrost DOC transport along the aquatic
continuum (Koch et al., 2021; Vonk & Gustafsson, 2013). It is important to better quantify the patterns and driv-
ers of ancient DOC mobilization within the headwaters of the YRB aquatic network in order to understand the
fate of previously stored, aged terrestrial C, and to predict changes to aquatic ecosystems with continued thaw.

Permafrost thaw and DOC mobilization in the YRB and other discontinuous permafrost regions in the boreal
biome may be further accelerated by increasing fire frequency and intensity. Recent work in interior Alaska
has shown that permafrost thaw is connected to recent fire occurrence using geophysical techniques (Minsley
et al., 2016) and remote sensing (Brown et al., 2016). Linking the effects of thaw to catchment DOC export is
complex, and highly dependent on soil type and fire history (Jorgenson et al., 2013), and the interaction between
infiltrating water and soils (Carey & Woo, 2001; Koch, Ewing, et al., 2013; Koch et al., 2017; Petrone et al., 2006;
Prokushkin et al., 2007). Soil stratification often limits deep percolation, resulting in significant lateral flow along
the organic-mineral soil boundary in the shallow subsurface (Koch et al., 2017; Quinton & Marsh, 1999) that can
quickly transport DOC to streams (Carey, 2003). The DOC exported to slower, deeper flow paths may be decom-
posed or sorbed to mineral particles before reaching the stream (Agren et al., 2007; Koch, Runkel, et al., 2013;
Prokushkin et al., 2007). In contrast, macropores and/or soil pipes formed as a result of thermokarst or fire may
enhance rapid transport of water and DOC to streams (Carey & Woo, 2000, 2002; Koch et al., 2014), and lead
to thermal degradation of the frozen boundary and further enhancement in the transport of thawed materials to
streams (Koch, Ewing, et al., 2013). Matrix flow along flow paths near the top of degrading permafrost may also
serve as mobilization pathways of aged DOC (Walvoord et al., 2019). Because matrix flow is a slower pathway
for solute transport than preferential flow, it can promote DOC sorption and microbial processing rather than
export (Agren et al., 2007; Striegl et al., 2005). Recent observational and modeling studies provide consistent
support for the increasingly widespread development of shallow taliks (perennially unfrozen zones) as both depth
to permafrost and the seasonal active layer depth increase (Connon et al., 2018; Parazoo et al., 2018; Streletskiy
et al., 2015; Walvoord et al., 2019). Wildfire has been shown to enhance talik development in interior Alaska
(Nossov et al., 2013; Rey et al., 2020). Yet, it is currently unclear how fire history interacts with other watershed
features to influence aged DOC fluxes in headwaters of the YRB.

Transitional, discontinuous permafrost regions of the YRB are critical locations for permafrost DOC mobilization
and processing (Aiken et al., 2014; Striegl et al., 2005). This region is highly susceptible to disturbance, given
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Figure 1. Map of study region. Red solid boundary denotes the Yukon River
watershed spanning the U.S. (State of Alaska) and Canada. The red dashed
box denotes the study region, and inset panel shows the individual study
catchments (black boundaries) that were sampled along the road (gray line).
The probability distribution of permafrost to 1 m depth (Pastick et al., 2015)
is shown.

2. Methods

2.1. Description of Study Region

climatic changes that are leading to increasing permafrost thaw, thermokarst,
and talik formation (Jorgenson et al., 2013; Minsley et al., 2016; Nossov
et al., 2013; Rey et al., 2020; Walvoord et al., 2019). Our goal is to under-
stand how these disturbances impact the transport of DOC from terrestrial to
aquatic systems. By capturing landscape heterogeneity in our sampling effort,
we begin to address the potential for biases in the interpretation of aquatic
DOC cycling patterns due to widespread underrepresentation of much of
the circumpolar landscape in current sampling efforts (Bogard et al., 2019;
Metcalfe et al., 2018). Here, we provide a broad evaluation of patterns and
drivers of permafrost DOC input into aquatic networks within the transitional
discontinuous permafrost zone of the YRB in interior Alaska (Figure 1). We
explore how properties of individual catchments (varying combinations of
permafrost extent, soil texture, and fire history) interact with seasonal soil
thaw to shape the relative importance of aged DOC to the bulk surface water
DOC pool. Few studies have directly linked patterns of headwater DOC
radio-isotopic composition to hydrologic conditions (Campeau et al., 2019;
Neff et al., 2006), especially across seasons for multiple catchments having
varying soil properties, fire history, and permafrost extent. Therefore, this
work provides a new level of detail to help explain environmental controls on
potential global C-climate feedbacks (Schuur et al., 2015) that may facilitate
greater C processing and emissions under changing climatic conditions in
high-latitude, permafrost landscapes.

This study was conducted in the discontinuous permafrost zone of interior Alaska, within the boreal forest biome.

For a detailed overview of the YRB, see Brabets et al. (2000). The region consists of rocky alpine zones in the

Ray and White Mountains of the Yukon-Tanana Upland terrain, and silty ice-rich permafrost in valley bottoms

that formed syngenetically during loess deposition in the Pleistocene (Péwé, 1975). Mean annual air temperature

in the region ranges from <—5 to —2°C (Walvoord et al., 2019) and mean annual precipitation across the basin
is 483 mm yr~! (range: 254-3,302 mm yr~!) (Brabets et al., 2000). Soil landscapes are generally described as
alpine rocky, upland rocky, upland silty, or lowland organic-rich terrain (Jorgenson et al., 2013). Silty uplands

and peaty lowlands tend to host open black spruce (Picea mariana) forests with groundcover dominated by

moss (Sphagnum spp. and feathermosses) and lichens (Cladina spp.). Upland rocky sites are better drained and

commonly host deciduous trees (Jorgenson et al., 2013). Following low severity fire, spruce self-replacement is

common, whereas deciduous species or mixed stand replacement tends to follow high severity fire (Johnstone

et al., 2020). Thermokarst is present in the silty ice-rich landscapes in both upland and lowland settings (Jorgen-

son et al., 2013). Differences in the hydrologic and thermal properties of rocky, silty, burned, and unburned soils

were quantified by Ebel et al. (2019). The impact of thermokarst and fire on groundwater-surface water interac-

tions and groundwater flows in the rapidly warming boreal Alaskan landscapes have been typically investigated

based on the hydrology of large rivers and lowland lakes (Callegary et al., 2013). Contrary to findings for other

major Arctic rivers, studies have not documented increases in total annual discharge of the Yukon River, although

groundwater inflows are increasing (Toohey et al., 2016; Walvoord & Striegl, 2007). The hydrologic features of

headwater streams are comparatively less studied.

2.2. Field Sampling Approach

Sites investigated in this study are headwater catchments located in interior Alaska along the Dalton and Steese

Highways over a 210 km latitudinal gradient (Figure 1) The eight catchments were chosen based on the pres-

ence of a headwater stream and selected to encompass a wide range of landscape types and subsequently vary-
ing soil properties, vegetation types, fire history, and estimated permafrost distribution (see Section 2.5 and
Table 1). Many of the sites display complex hydrology, including the presence of ephemeral streams, seeps and
gullies, macropores, and soil pipes that allow rapid drainage of slopes and transport of solutes and sediments.
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= ° have not been biogeochemically altered by in-stream processes (Aiken et al., 2014;
98 Koch, Runkel, et al., 2013). Samples were collected from more than one tributary per
ET|° 832 g2 R"° catchment, when present, to capture variability in runoff chemistry. We sampled each
2% stream (n = 6) and one or more flowing tributaries (n = 0-2) in each study catchment
2 during each site visit, resulting in a total of 28 stream and 39 tributary samples. Sites
§ Sl + 0 d & 0 © © + « were visited three times in 2016 (May, mid-July, and late August or early September)
§ and twice in 2017 (May and September) to capture seasonal changes in stream chem-
istry associated with active layer thaw. Stage was measured continuously in the six
g RS T S B R N B N streams using Rugged Troll 100 (In-Situ Inc.) pressure transducers and discharge was
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Figure 2. Three-endmember mixing model input terms using specific conductivity and dissolved organic carbon concentrations for (a) May and (b) July through

September.

(Picarro) at the University of Washington. All water chemistry data from this study and additional details on
analytical methods are publicly available in Foks et al. (2020).

2.4. Hydrologic Mixing Model

An endmember mixing model was used to determine the dominant sources of water in the streams. Previous work
identified SpC and DOC as useful tracers of the source of boreal waters given that shallow soils are dominated
by organic material (i.e., the dominant DOC source) and deeper soils are more mineral rich (the dominant SpC
source) (Koch et al., 2014). Stable isotopes of water were also considered as a potential tracer, but ultimately
rejected because of limited variability among observations and small differences in endmembers. Endmembers
were chosen by plotting all of the stream chemistry in x-y space (Figure S1 in Supporting Information S1) and
comparing to endmembers from Koch et al. (2014) (precipitation, organic layer flow, and mineral layer flow) that
were collected from one of the study catchments (West Twin Creek). We found that the previously determined
precipitation endmember also effectively bounded the most dilute stream water measured in this data set, which
is presumably derived from direct rainfall on the stream and rapid runoff through shallow soils and/or overland
flow related to snowmelt and summer storms. The existing organic layer flow endmember for West Twin Creek
(Koch et al., 2014) did not fully capture the wider range of variability observed in DOC concentrations and so
needed to be adjusted upward. Finally, we determined that a previously unobserved solute-rich (i.e., high SpC and
high DOC) endmember was needed to bound the stream data. Our highest SpC, DOC samples were measured in
two seeps in the Richardson catchment, which burned in 2003 and is characterized by high silt content, has active
thermokarst and shows geochemical evidence of permafrost thaw (Koch, Ewing, et al., 2013). We set the solute-
rich endmember equal to the mean plus one standard deviation from the Richardson seep samples, which bound
all but one of the observed water chemistries in the mixing space (Figure 2). One site, Globe 3, was excluded from
the mixing analysis because the samples displayed unusually high SpC especially early in the summer, which we
attributed to contamination from road salts.
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Upon defining the endmembers, we developed a three-component mixing model based on water and solute mass
balances:

i+ o+ fi=1 (D
Cifi+Cifa+Cifs = Clum @

where f; is the fractional contribution of each source to stream discharge and Cj is the concentration of the tracer i
(SpC or DOC) for endmember j (precipitation, organic, and solute-rich endmembers). The equations were solved
in MATLAB (Mathworks) to determine the proportion of endmembers contributing to each stream sample.

2.5. Catchment Properties

Remote sensing and GIS analyses were conducted to quantify and summarize differences in catchment size,
climate indices (i.e., mean annual air temperature and mean annual precipitation), soil landscapes, generalized
geology, permafrost extent, topography (i.e., elevation, slope), burned area, and wetland and vegetative cover.
Catchment boundaries were manually delineated using ridge crests evident on a USGS 60-m digital elevation
model (DEM, National Elevation Data set (Gesch et al., 2002)). Climate indices were derived from downscaled,
historical (1984-2015) climate data generated by the Scenarios Network for Alaska + Arctic Planning (https://
uaf-snap.org/). Mapping of soil landscapes and generalized geology was done through manual image interpreta-
tion following previously developed approaches (Jorgenson & Grunblatt, 2013; Jorgenson et al., 2009). Estimates
of near-surface (within 1 m) permafrost occurrence (Pastick et al., 2015) served as a proxy for permafrost extent.
Topography indices were developed using the DEM. Burned area was estimated using the fire-history-perime-
ter database (1984-2016) obtained from the Alaska Interagency Coordination Center (https:/fire.ak.blm.gov/
predsves/maps.php). Estimates of vegetative and wetland cover were gathered from the 2016 National Land
Cover Data set (NLCD [Dewitz, 2019]). Data for each property were extracted from within the catchment bound-
aries and summarized with ArcGIS (ESRI).

2.6. Statistical Analyses

The effects of hydrology, soil texture, and fire on values of A*C-DOC (and thus mean DOC age) were evaluated
using Generalized Additive Models (GAMs). GAMs are tools to model nonlinear associations between predic-
tor variables and responses, using the sum of unspecified smooth functions to estimate trends and have been
widely used recently to model complex data sets (Webb, Hayes, et al., 2019; Webb, Leavitt, et al., 2019; Wiik
et al., 2018). They are a useful tool because they allow for flexibility between the response and predictor varia-
bles by not assuming a linear relationship. A Gaussian distribution was used for the response variable to account
for the negative A'*C-DOC values. Model fit was determined by examining the deviance and distribution of the
residuals, comparing the residuals against the linear predictor, and the response versus fitted values. Basic statis-
tical analyses (OLS regression) were conducted in R (version 4.0.3 [R Core Team, 2020]) using the Im function.
GAMs were estimated using the mgev package (version 1.8-33 [Wood, 2011]), and graphics were plotted with
package ggplot2 (Wickham, 2009) for R.

3. Results
3.1. Catchment and Stream Properties

The study watersheds varied across a broad range of landscapes, from alpine to lowland, rocky to silty, low to
high fraction burned (Table 1). Catchment areas spanned from 48 to ~7,000 ha, ranged over 350 m in elevation,
and contained variable proportions of permafrost cover (30%-87%), burn area (0%—88%), and vegetative and
wetland cover (Table 1). Mean instantaneous discharge in the six continuously monitored study streams during
May to September of 2016 and 2017 ranged from 0.08 to 0.65 m? s~! (Koch et al., 2020). Instantaneous discharge
in eight tributaries ranged from 7.0 E=5 to 2.4 E—2 m? s~!. Total summer discharge was 2.0 + 0.8 times higher
in 2016 relative to 2017 for the three streams with full records over both summers (from 20 May to 30 August).
Based on summer precipitation measured at the Fairbanks, AK airport, 2016 was the fifth wettest summer during
1950-2021, with a total rainfall of 270 mm, which was 1.7 times higher than approximately average summer
rainfall in 2017 (163 mm, relative to a 72-year mean of 152 mm).
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Table 2

Endmember Chemistry for the Two Tracers, Specific Conductance (SpC) and Dissolved Organic Carbon (DOC), Showing

the Initial Values (Reported in Koch et al., 2014) and Updated Values

Endmember - tracer Initial value

Value in this work

Description

Precipitation-SpC 33 33
Precipitation-DOC 1.0 1.0
Organic-SpC 31.9 27.0
Organic-DOC 29.1 442
Solute-rich-SpC - 765.8
Solute-rich-DOC - 28.9

Initial values retained because they
effectively bound dilute samples

Updated to reflect purer organic sample
(i.e., higher DOC, lower EC)

Mean plus 1 stdev from 4 Richardson
catchment seep samples

3.2. High-Solute Loads in Endmember Mixing Model

Across sites and seasons, we observed a wide range in stream DOC, SpC, and §'30-H,0. DOC concentrations
ranged from ~3.3 to 45 mg L=, SpC from ~10 to 830 pS cm~!, and §'80-H,0 from —23.6 to —17.9%.. We found
that once the active-layer soils had thawed (i.e., excluding the May samples), streams generally fell on a mixing

line between precipitation and the solute-rich endmember (except for the West Fork of Dall Creek; r? = 0.82,

p < 5E—6; Figure S2 in Supporting Information S1), whereas tributaries fell on a mixing line between either

precipitation and organic soil or organic soil and the solute-rich endmember. All chosen endmembers (Table 2)
had similar 8'30-H,0 concentrations (Figure S2 in Supporting Information S1) indicating limited utility of

8180-H,0 as a tracer in this system during the summer.

The endmember mixing model indicated a broad distribution in the importance of the high solute endmem-

ber to the water chemistry of each stream (Figure 3). Eight streams or tributaries from three different catch-

ments displayed contributions from the solute-rich endmember of over 20%. These three catchments, Erickson,
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Figure 3. Endmember fractions for each stream and tributary, where streams are denoted by capital letters corresponding to
watersheds in Figure 1 and Table 1, and “t” and “2” indicate a primary and secondary tributary, respectively. The red dashed
line indicates the division between rocky sites (to the left), and silty sites (to the right), which tend to have higher solute-rich

endmember contributions.
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'2 3 1:1 the immediate catchment. In the Erickson watershed, we sampled two simi-
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Figure 4. Seasonal changes in the mean age of dissolved organic carbon
(DOC) (calculated from A'*C-DOC values) were not uniform across sample
sites. Each data point (n = 9) represents sites that were sampled twice in
2016 (May and late August/September for all sites except Richardson Creek
Tributary, sampled May and again on 22 July), with the mean age of DOC on

the x- and y-axes,

0 500

DOC Mean Age Spring (yr BP)

respectively.

uniform across sample sites. Overall, DOC at all sites had an average mean
age of 253 years B.P. (range = 0-1,900 years B.P.). Sites with the oldest
mean age of DOC in May tended to have relatively aged DOC in July through
September (Figure 4; r? = 0.68; p = 0.006; y = 1.56x + 340.1). The mean age
of DOC across sites in May was 119.6 + 230.3 (S.D.) years B.P., but in July
through September it was 361.5 + 459.0 years B.P. The shifts in A*C-DOC
generally corresponded to seasonally increasing stream water SpC, consistent

1000 1500 2000

with active layer thaw and greater access to weathered mineral soils (Figure
S3 in Supporting Information S1).

We observed an inverse relationship between A#C-DOC values and the rela-

tive contribution of the solute-rich endmember, burned area, and silty soil
coverage (Figure 5). These trends were generally stronger in the fall, when mean age of DOC was typically
older (i.e., more depleted A'“C values). Further, there was no clear relationship between the concentration of
DOC and A™C-DOC (Figure S4 in the Supporting Information S1). The difference from spring to fall appeared
larger at sites with a greater relative contribution (>~30%-50%) from the solute-rich endmember (Figure 5a).
Distinct seasonal shifts in A'*C-DOC were also observed across the gradient of relative catchment burn extent
(Figure 5b). Among the catchments, shifts in stream A'*C-DOC relative to fire extent and silt extent were nonlin-
ear, and most pronounced in sites with >50% catchment burned area, with the most depleted A*C-DOC values
(thus oldest mean age DOC) detected in the catchment with the most extensive fire disturbance (>85% catchment
burned). Similarly, the most depleted A'*C-DOC values were found in sites where upland silt soils cover 50% of
the watershed. Seasonal shifts in A*C-DOC were also nonlinear, and most pronounced in catchments with the

most extensive burned area.

The high solute endmember, area burned, and upland silt extent all had significant negative relationships with
A'“C-DOC (Figure 6), with season additionally contributing significantly to each model. Interestingly, estimated
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Figure 5. Seasonal patterns of A'*C values of dissolved organic carbon (DOC) as a function of hydrologic and catchment variability. Among sites, AC value of DOC
was inversely proportional to (a) fraction of stream flow derived from the permafrost (solute-rich) endmember, (b) the fraction of the catchment burned by fire, and (c)
the fraction of catchment underlain by upland silty deposits. Dashed horizontal lines are mean radiocarbon age (years B.P.).

KOCH ET AL.

8 of 16



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Global Biogeochemical Cycles

10.1029/2021GB007242

a) b)
20
0.
£ ! £
G— U 0 ° ®
o o
o o
<G -100 - s}
—‘< "q L ]
d 20
.200.
T T Y B ] 1 g
0.00 0.25 0.50 0.75 May TS Aug-Sept
Mineral layer flow contribution Season
<) d)
0 )
50 -
%t — -251
£ o- £
o Q
2 8 t
4 % 501
Q
-100 -
-751
‘150'| | 1 [ 5 | e | |1 |
0.00 0.25 0.50 0.75 May June Aug-Sept
Burn Area Season
e) f)
50 - 0 .
& ) 3251
Q 0 s
o (8] o
= o
o =
2 (8
< i = -501
<
-100 ?
1 -751
150t I ! S | : . y
0.0 0.1 0.2 0.3 0.4 0.5 May June Aug-Sept
Upland silt fraction Season

Figure 6. Generalized Additive Model (GAM) results, with separate response patterns of stream A “C-DOC (%o) with (a)
fraction of stream flow derived from the permafrost (solute-rich) endmember to stream flow, (c) the fraction of catchment
area burned by fire, and (e) the fraction of catchment underlain by silty deposits. In all cases, season is included as a factor.
(b, d, and f) All three models were significant at p < 0.0001. The response patterns shown are the partial effect splines from
the GAM (solid line in a, ¢, and e; points in b, d, and f) and the shaded area and vertical lines indicates 95% credible intervals.

See Figures S6-S8 in Supporting Information S1 for model statistics and model fit with observed data.
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Figure 7. Revision to the conceptual model of mechanisms regulating aged
dissolved organic carbon (DOC) delivery to stream networks of interior
Alaska. (a) The null model predicts that aged DOC in this boreal landscape
may be widely transported into headwater streams in a uniform way. (b) Our
cross-basin seasonal survey of headwater streams refines this conceptual
model by showing that aged DOC export is not uniform, and the mean age of
DOC increased (and A'*C-DOC values become more depleted) as a function
of the interactive effects of seasonal warming and active layer deepening, the
fraction of the catchment burned by fire, plus the proportion of catchment
underlain by upland silty deposits. The horizontal axis of the graphs in both
panels represents movement through the individual underlying model stream
networks from left to right.

Carbon Mean Age

permafrost extent was unrelated to A*C-DOC (not shown). Due to collinear-
ity between the high solute endmember, area burned, and upland silt (Figure
S5 in Supporting Information S1), it was not appropriate to include them all
in the same model, and it is not possible to tease apart the unique contribu-
tions of each to DOC isotopic composition or mean age. Instead, we pres-
ent separate models for each landscape variable with season to demonstrate
the shape of the relationships (Figures 6, S6-S8 in the Supporting Informa-
tion S1). DOC age increased with the solute rich endmember and season
(Figures 6a and 6b; GAM deviance explained = 69.5%, p < 0.001), catchment
area burned and season (Figures 6¢ and 6d; deviance explained = 47.1%,
p < 0.001), and upland silt fraction and season (Figures 6e and 6f; deviance
explained = 51.1%, p < 0.001).

4. Discussion

Boreal regions having sporadic to discontinuous permafrost are highly
susceptible to permafrost thaw, the mobilization and processing of soil OC
stores, and hydrologic change (Karlsson et al., 2021; Serikova et al., 2018)
owing to the presence of warm permafrost and the potential for talik devel-
opment (Jorgenson et al., 2013; Minsley et al., 2016; Walvoord et al., 2019).
Such thaw-induced changes in hydrologic flow paths have major implica-
tions for the fate and transport of aged DOC released with thaw (Striegl
et al., 2005). By sampling distinct catchments in the discontinuous perma-
frost zone of Alaska spanning gradients in season, catchment structure, fire
extent, and hydrology, we provide the spatiotemporal resolution needed to
better constrain the patterns and controls on aged DOC export in headwa-
ters (Figure 7). Values of A*C-DOC and thus the mean age of DOC ranged

widely across catchments and seasons (Figures 4 and 5), consistent with a synthesis of A“C data from broadly
distributed northern watersheds experiencing permafrost thaw (Estop-Aragonés et al., 2020). GAMs (Figure 6)
identified that A*C-DOC values increased with hydrologic contributions from the solute-rich endmember, which
was largest in catchments dominated by upland silty soils and following fire (Figure 7). These results build on

previous studies that have inferred thawing permafrost from changing solute content and composition in major
rivers of the YRB (Striegl et al., 2005; Toohey et al., 2016). The combined effects of long-term warming and
seasonal active layer deepening, plus increased fire disturbance (Pastick et al., 2017) will interactively mobilize

greater quantities of ancient DOC into headwaters in the future, but these responses will likely be quite heteroge-

neous on the landscape (Figure 7).

4.1. Accounting for Seasonal Effects on Aged DOC Export to Streams

Our repeated sampling of DOC isotopic composition, coupled with measurements of SpC and DOC concentra-
tion showed that most sites underwent a seasonal shift to a more aged DOC pool in fall (Figures 4, 5b, and 5c¢).
This is consistent with findings in other permafrost dominated landscapes and in nonpermafrost catchments

having seasonal flow (Mann et al., 2015; Neff et al., 2006). Seasonality was an important predictor of A'*C-DOC
(Figures 6b, 6d, and 6f), and likely accounted for some of the relationship between DOC isotopic composition
and increasing interaction between water and deeper, mineral soils by fall, once soils had thawed. Many of the
sites exporting aged DOC had burned in the last 20 years, but the relationship between burned extent and DOC
mean age and isotopic composition is not monotonic (Figure 5b). Furthermore, two of the sites with depleted
A“C-DOC values have not burned within the last 100 years (Jorgenson et al., 2013). Studies have observed
increasing stream solute loads with seasonal thaw (Harms & Jones, 2012; Koch, Runkel, et al., 2013; Maclean
et al., 1999; Petrone et al., 2007), altered river chemistry with increasing thaw (Dornblaser & Striegl, 2015;
Striegl et al., 2005; Toohey et al., 2016), and export of ancient C following years of extreme thaw (Schwab
et al., 2020), but this study is one of the first to quantify a seasonal trend toward depleted A*C-DOC and thus an

increase in the age of DOC.
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The release of aged soil C stocks undoubtedly had a strong effect on headwater stream DOC at several of our
sites, as the depth of seasonal thaw progressed. Multiple sources could contribute to this aged carbon signature.
Yedoma exists in this region due to syngenetic permafrost development in an eolian depositional environment
during the late Pleistocene, leading to OC ages ranging from 10,000 to 40,000 years BP and deposits that can
be decameters thick (Strauss et al., 2017). A small contribution from such sources could yield the aged DOC
observed at our sites. Alternatively, larger contributions from deeper active layer soils could also drive these
patterns without engagement of yedoma. At one Hess Creek location near our study sites, the age of OC in the soil
active layer at 30-50 cm depth ranged from 460 to 830 years BP (n = 3), while OC age in the shallow permafrost
ranged from 1,205 to 1,385 years BP (Wickland et al., 2018). Thus, although age data are sparse, our observations
confirm that deeper soil layers are actively contributing DOC to headwaters in the YRB.

4.2. Aged DOC Input Greatest in Catchments With High Stream Solute Concentrations

Streamflow containing aged DOC was sourced from waters containing high concentrations of DOC and SpC
(Figures 5a and 6a). High DOC and SpC in Alaska streams may serve as an indicator of thermokarsting of ice-rich
soils. Elevated SpC indicates that this water has had contact with mineral soils, and near-surface permafrost tends
to have higher OC content and more leachable OC than overlying active layer soils (Wickland et al., 2018). Large
proportions of the high-solute endmember were limited to three locations—Richardson, Erickson, and Isom
catchments (Table 1), all of which are dominated by silt loess (Ebel et al., 2019; Jorgenson et al., 2013). Although
these sites have incised stream channels and seeps flowing through gullies on the hillsides, no relationship was
found between catchment slope and DOC isotopic composition (not shown). Catchments with a greater extent
of silt-rich soils may be a dominant source of aged DOC and high solute loads across northern landscapes,
because the easily eroded soils transfer leachable solutes to the runoff and allow for the creation of soil pipes,
channel incision, and subsequently elevated interactions between runoff and ice-rich permafrost (Koch, Ewing,
et al., 2013). This interpretation is supported by the collinearity between the high solute endmember and the
proportion of upland silts in each catchment (Figure 5), and the importance of upland silt as a predictor of
A'C-DOC (Figure 6¢). The highest proportion of the solute-rich endmember was found in two thermokarst
seeps in the Richardson catchment. One of these seeps is silt laden, flowing through an actively thawing area
containing thermokarst slumps and pits. The second one emanates from a steep hillslope and is slightly incised.
Both seeps flow through a burned area, are deeply incised at their confluence with Richardson Tributary, and
contain elevated uranium isotope concentrations that substantiates export of permafrost-derived solutes (Koch,
Ewing, et al., 2013). The Isom catchment is similar in that it is dominated by silty, low-hydraulic conductivity
soils (Ebel et al., 2019), silt-laden soil pipes and contains several pingos, which provide additional evidence of
preferential subsurface flow and the mobilization of thaw-derived sediments. Two of the four locations with the
high solute endmember (Isom and Erickson Trib) have not burned recently, highlighting that aged DOC may be
mobilized in the absence of recent fire. While catchments with the greatest upland silt fraction tended to have the
most depleted A*C-DOC, there was considerable variability in isotopic values across a gradient of catchment silt
content (Figure 5b). This indicates that while the variables predicting DOC isotopic composition, such as season-
ality, high-solute endmember fraction, and fire extent are important in predicting headwater DOC mean age and
A'YC-DOC, they also reflect some degree of collinearity with soil silt content.

Differences in the mixing tendencies between tributaries and streams suggest that aged DOC can be derived from
shallow subsurface flow paths rather than deep groundwater. Later in the summer (i.e., July through September),
streams roughly fall along a mixing line from precipitation to the solute-rich endmember (except for the West
Fork of Dall Creek, which emanates from a large, lowland wetland complex; > = 0.82, p < 5E—6; Figures 2b and
S3 in the Supporting Information S1), with a larger fraction of the solute-rich endmember in streams draining
silty catchments. Tributaries on the other hand are either a mixture of precipitation and the organic endmember,
or the organic endmember and the high-solute endmember. The lack of a high SpC, low DOC samples, or seep
samples along the stream mixing line suggests that only water that has had substantial contact with organic soils
can attain a high SpC signature in these systems. Although deeper groundwater tends to have elevated SpC, it
does not necessarily contain high DOC concentrations, and thus deep groundwater flow alone cannot explain
the presence of depleted A'*C-DOC in the tributaries. Insignificant differences in 8'%0 concentrations of the
endmembers (Figure S1 in Supporting Information S1) further indicates limited influence of a unique, deep,
or regional groundwater source on tributaries or streams. The combination of high DOC and high SpC may be
indicative of the elevated leachability of solutes from eroding and thawing silty yedoma soils. While we did not
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differentiate yedoma as a specific subset of conditions of upland silty soils, the prevalence of deep thermokarst
lakes within or adjacent to the Erickson, Richardson, and Isom catchments indicates that these basins are domi-
nated by yedoma. Silty yedoma is broadly distributed across the Arctic and Alaska (Kanevskiy et al., 2011;
Péwé, 1975) and has low permeability, which may lead to a substantial fraction of runoff flowing along the organ-
ic-mineral boundary (Koch et al., 2017), thereby picking up a high DOC concentration. Yedoma soils also tend
to have ice-rich permafrost and store substantial quantities of aged C (Strauss et al., 2017) that can be exported to
streams if fire or thermokarst increase erosion and subsequent percolation to the frozen boundary.

Although disturbance may lead to the release of older OC, we do not find evidence that permafrost thaw will
lead to an increase in stream DOC. There was no relationship between DOC concentration and age (Figure S4
in Supporting Information S1), and the high solute endmember had lower DOC (38.9 mg/L) than the shallow
runoff through organic soils (i.e., the organic endmember, DOC = 44.2 mg/L), suggesting that OC contribution
from shallower soils outweighs those from deeper, thawing permafrost. DOC yields have been shown to be
greater from permafrost soils relative to active layer soils (Wickland et al., 2018), so we infer that lower DOC
concentrations from permafrost soils are related to transport limitation. Hydrology plays an important role in C
transport (Koch, Runkel, et al., 2013), and the largest annual flush of water occurs with the spring snowmelt when
soils are still mostly frozen and deep soils cannot be accessed by runoff (Carey, 2003; Koch, Ewing, et al., 2013).
Permafrost-derived DOC can generally only be mobilized later in the year after the active layer has thawed and
new permafrost thaw has initiated, which also tends to coincide with lower hydrologic fluxes.

4.3. Complex Link Between Fire Disturbance Extent and Aged DOC Export

Our results demonstrate that modeling the long-term effects of fire on aged DOC export to streams is complex,
and interactive with soil texture and thermokarst, seasonal active layer thaw, and resulting hydrologic flow paths
(Figures 5-7). Although fires immediately mobilize massive quantities of terrestrial C into the atmosphere and
adjacent headwaters, the longer-term, sustained link between catchment fire disturbance and permafrost C export
varies and is dependent on fire severity and time since the fire event (Rodriguez-Cardona et al., 2020; Yoshikawa
et al., 2003), which is closely correlated to vegetation type, soil moisture, and topography (Brown et al., 2016).
Work in peatlands indicates that we may currently be underestimating the role of fires in mobilizing previously
stored OC (Dean et al., 2019; Gibson et al., 2018). On the other hand, new evidence shows no connection between
fluvial C exports via atmospheric emissions, and increasing fire in northern Canadian watersheds (Hutchins
et al., 2020), suggesting that the export and processing of soil OC may be less impacted by fire than predicted.
Here, our detailed sampling shows a nonlinear relationship between A*C-DOC (mean DOC age) and the esti-
mated extent of past fire disturbance of each study catchment (Figures 5c and 6b). This observation supports the
notion that fires are a significant mobilization mechanism for permafrost OC in the YRB, although the GAM
that included fire had less explanatory power than GAMs including the solute-rich endmember and upland silt
fraction. However, the relative importance of fire may change because fire disturbances are expected to increase
in the YRB linked to climate-driven warming and drying (Pastick et al., 2019) and increased lightning (Poujol
et al., 2021). A greater burn extent in the future will likely enhance permafrost DOC export in YRB catch-
ments over mid-to long-term time scales (years to decades), but these influences will be heterogeneous across
catchments.

4.4. Future Projections for Disturbance and Implications for Stream C Cycling

Our comprehensive sampling provides a new level of understanding of aged DOC mobilization in northern head-
waters (Figure 7). Specifically, it indicates that aged DOC is released primarily from catchments dominated by
runoff that interacts with deeper, mineral soils especially in silty landscapes, following disturbance by thermokarst
and/or fire. Furthermore, this DOC export is regulated by annual thaw cycles. These factors render the mobiliza-
tion of aged DOC extremely heterogeneous among headwater catchments in the discontinuous permafrost zone
of Alaska, and likely elsewhere given the ubiquity of silty soils, thermokarst, and fire in permafrost landscapes.

Our interpretations are based on a mixing model driven by empirical observations of endmembers, and thus
may be improved by a broader sampling effort. The high-solute endmember is the least certain, given that it
is based on a small sample size and not bound by theoretical considerations. For comparison, the precipitation
end member cannot have a much lower concentration. The high-solute endmember could be theoretically bound
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by permafrost OC concentration and yield, but this may not be relevant without understanding the interactions
between water and thawing carbon that ultimately determine leachate chemistry and amount. The fact that the
high solute endmember falls close to the extrapolated relationship between stream DOC and SpC (Figure S3 in
Supporting Information S1) supports the use of empirical, runoff data to define the high-solute endmember. New
samples from these environments may result in small changes in the high solute endmember concentration and
thus in the fraction of the high-solute endmember relative to the other two (Figure 3), but this would not impact
the relative trend between catchments (Figure 3) or the trend between the endmember and A'*C-DOC (Figures 5
and 6). Increasing Arctic precipitation and runoff (Rawlins et al., 2010; Wrona et al., 2016) could also impact the
high-solute endmember concentration by increasing interactions between runoff and permafrost soils.

Although long-term warming and increased fire disturbance (Pastick et al., 2019) could interactively mobilize
great quantities of both modern (Dornblaser & Striegl, 2015) and aged DOC with depleted A!*C values into
headwaters, our findings show that these responses will be heterogeneous on the landscape. In line with this
conclusion, ancient C mobilization into nearby Alaskan lakes has also been shown to be heterogeneous (Bogard
et al., 2019; Elder et al., 2018). The mobilization of aged C into Alaskan headwaters due to warming and fire
disturbance is somewhat analogous to changes underway in temperate regions experiencing increased loading of
aged, OC-rich soils into aquatic networks in response to hydrologic and land use change (Butman et al., 2015;
Drake et al., 2019, 2020; Moore et al., 2013). When aggregated at the global scale, the mobilization of aged
DOC observed in the YRB appears to be part of a broader trend toward increased cycling of ancient C in aquatic
networks. This phenomenon may increase the rate of C exchange between land and the atmosphere, but we
caution against broad extrapolation of observations from individual sites throughout boreal and arctic biomes,
given the extreme heterogeneity of aged DOC inputs among regional watersheds.

Data Availability Statement

All original data generated in this study are available in Foks et al. (2020) (water chemistry data) and Koch
et al. (2020) (continuous discharge data). Generalized Additive Model model and statistical analysis code are
available at https://github.com/MattBogard/stream14C-DOC.
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