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Abstract

For a given finite subset S of a compact Riemannian manifold (M, g) whose
Schouten curvature tensor belongs to a given cone, we establish a necessary and
sufficient condition for the existence and uniqueness of a conformal metric on
M \ S such that each point of S corresponds to an asymptotically flat end and
that the Schouten tensor of the conformal metric belongs to the boundary of the
given cone. As a by-product, we define a purely local notion of Ricci lower
bounds for continuous metrics that are conformal to smooth metrics and prove a
corresponding volume comparison theorem. © 2022 The Authors. Communica-
tions on Pure and Applied Mathematics published by Wiley Periodicals LLC.
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Let (M™, g) be a compact Riemannian manifold of dimension n > 3. Tt is well-
known that if the scalar curvature R is positive, then the conformal Laplacian
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operator —Lgy = —Ag + 481;_21)Rg has a unique positive Green’s function G, €
C°°(M \ {p}) with pole at a given point p € M such that
(1.1) LeGp =8, 0n M,

where §), is the Dirac measure centered at p. At the leading order, the singularity
of G, at p is the same as that of the Green’s function for the Laplacian on R”,

Gp(x) = dg(x, )" (1 + o(1)).

(n—2)|S"1]

Here d, is the distance function with respect to g.

The purpose of the present paper is to establish the existence, the nonexistence,
and uniqueness of (generalized) Green’s functions when the conformal Laplacian
in (1.1) is replaced by other nonlinear operators arising in conformal geometry.

Let Ricg, Rg, and A, denote, respectively, the Ricci curvature, the scalar cur-
vature, and the Schouten tensor of g,

1 1
Ag = ——| Ricg ——R ,
g n2( £ om—1) gg)
and let A(Ag) = (A1....,A,) denote the eigenvalues of A, with respect to g. For
a positive smooth function u, let g, = u T g. We have
2 2n 2
Ag =——u 'Wu+ —— _u2du®du— ———u?|dul>g + A,.
We are interested in constructing solutions to the equation

A(Ag,) € O and u > 0 away from a given finite number of points in M

where
I' ¢ R” is an open convex symmetric cone with vertex
(1.2) at the origin
satisfying
Ip:={AeR"|[A;>0,1<i<n}CcTcCly
(1.3)

n
= ;A c R” in >0}.

i=1

Standard examples of such cones are the [, cones, | < k < n,
Iy ={AeR":0j(A) >0forl <j <k},

where oy, is the k™ elementary symmetric function

oM = Y Aiyrer iy

i <-<ig
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1556 Y. Y. LI AND L. NGUYEN

Note that, under (1.2)—(1.3), there exists a function f satisfying (see Proposition
A.1 in Appendix A)

f € C(T") N C%T) is homogeneous of degree one

(14) and symmetric in A;,

f>0inT, f =0ondl,
(1.5) fa,; >0inI' V1 <i <n,
(1.6) f is concave in I,

The partial differential relation A(Ag,) € dI" can thus be re-expressed in a more
familiar form

We adopt the following definition.

DEFINITION 1.1. Assume m > 1 and let pq,..., p, be distinct points of M and
c1,-..,Cm be positive numbers. A function u € Clooc (M \{p1...., pm}) is called
a Green’s function for I" with poles py, ..., pm and with strengths ¢y, ..., cp if u
satisfies
(1.7) A(Ag,)edlandu >0 inM\{p1,..., pm}.
(1.8) lim dg(x, p)" 2u(x) =ci, i=1,....,m.

X—>Di

In the above definition, (1.7) is understood in the viscosity sense; see, e.g., [37]
for the definition. It follows that if u is C2, then u satisfies (1.7) in the classical
sense, and if u € C11, then u satisfies (1.7) almost everywhere; see, e.g., [44,
lemma 2.5].

It should be clear that when I = I'y, the solution to (1.7)—(1.8) is given uniquely
as a linear combination of Green’s functions for the conformal Laplacian with poles
at p;, namely u = (n — 2)|S" 7| Y7L, ¢; Gy, .

It was known that when (M, g) is conformal to the standard sphere and m = 1,
there exists a unique Green’s function for every given pole and strength. In the
case n = 4 and I' = I',, this was proved in Chang, Gursky, and Yang [9] under
C V! regularity. For general cones in any dimension, this was proved in Li [36,37]
under C%! regularity and in a joint work of the authors with Wang [43] under
CO regularity. In fact, in this particular case the asymptotic condition (1.8) is not
needed; it follows from these works that solutions to (1.7) satisfy (1.8) for some
positive constant ¢ .

We note that, by (1.2)—(1.3), equation (1.7) is degenerate elliptic. Furthermore,
it is not locally strictly elliptic if a3, N T # @.

The motivation to consider Green’s functions as in Definition 1.1 comes from
the study of the o -Yamabe problem

(1.9) ok(M(Ag)) =1, A(Ag,) €Tk, u>0inM.

This problem was first studied by Viaclovsky [54]. An important aspect in the study
of (1.9) is to understand if the set of solutions to (1.9) is compact, say in C 2 when

SWIA, A 33§ *[£20T/T1/60] U0 Areiqiy auruQ K1 ‘sareiqr Asioarun) sy Aq ++0zz eda/z001° 01/10p/wos Kaim’ Areiqrautjuoy/;:sdny woiy papeo[umo( ‘8 ‘70T ‘T1£0L601

o)) aanear) aqesrjdde ayy Aq pauIaA0S are sa[dMIR Y 1SN JO SA[NI 10J AIeIqI AUIUQ AJ[IA UO (SUONIPUOI-PUB-SULIA) W0 K1 KIeIqI[aul[uo//:sdy) suonipuo)) pue

ASULDIT suow



GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1557

(M, g) is not conformally equivalent to the standard sphere. This compactness
property of the solution set has been established when k = 2 and n = 4 [8], or
(M, g) is locally conformally flat [38], or k > n/2 [23], or k = n/2 [41]. (For
related works in the case k > n/2, see also [51].)

The case 2 < k < n/2 remains a major open problem. The role that Green’s
functions play in this context lies in the expectation that, under suitable condi-
tions on (M, g), appropriately rescaled blowup solutions to (1.9) converges along
a subsequence to a Green’s function for [';. Whether this scenario holds for all
manifolds (M, g) and all 2 < k < n/2 remains to be understood. For this reason,
we believe that understanding the existence of Green’s functions as well as up-to-
second-order estimates near the punctures for them (and rescaled solutions to (1.9)
which are close to some Green’s function) will be extremely desirable.

As introduced in Li and Nguyen [42], let

MF be the unique number such that (—uff, l,...,1)eadl.

It is known that Mff e[0,n—1].
For example, when I' = I, ,qu = % In particular, qu > 1 if and only if

k < % and MF,( = 1 for k = %. It is known that there is a distinctive difference
between the cases k > 7, k = 7, and k < 7; see, e.g., Chang, Gursky, and
Yang [9], Guan, Viaclovsky, and Wang [21], and Viaclovsky [54]. Likewise, for
general cones I', the differential inclusion A(Ag) € I is sensitive to whether ,uF
is larger, smaller, or equal to 1; see [42]. The existence of Green’s functions is also
influenced by Mf: ; namely, we show that they exist if and only if ;LIJE > 1 unless
(M, g) is conformal to the standard sphere and m = 1. We also prove that Green’s
functions, if they exist, are unique. We would like to remark that the uniqueness is
not straightforward, in light of the known failure of the strong maximum principle
for (1.7); cf. Li and Nirenberg [45].

THEOREM 1.2 (Necessary and sufficient condition for existence and uniqueness).
Let (M, g) be an n-dimensional smooth compact Riemannian manifold withn > 3.
Assume that T satisfies (1.2) and (1.3) and that A(Ag) € T in M. Let S =
{p1...., pm} be a nonempty finite subset of distinct points of M and cy, ...,cy €
(0, 00).
) If MF > 1, then there exists a unique Green’s function u € ClgC(M \ 9)
for T" with poles p1,..., pm and with strengths c1,...,Cm. Furthermore,
u belongs to Ckl)’c1 M\ S).
i) If ;Lff < 1, Green’s functions for I" with poles p; and strengths c; exist if and
only if (M, g) is conformal to the standard sphere and m = 1.

In Section 5, we give a preliminary result demonstrating how Green’s functions
may show up in the study of blowup sequences for nonlinear Yamabe problems.

We list here some additional useful properties of the Green’s function u obtained
in Theorem 1.2 when MIJE > 1 and for given p; and ¢;.
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1558 Y. Y. LI AND L. NGUYEN

(a) The Green’s function u is the minimum of the set of all functions v in
CO (M \ S) that satisfy

loc
MAg,) €T andv > 0in M \ {p1,..., pm},

xli)n})i de(x.p)" 2v(x)=c¢i, i=1,...,m.
See Step 2 in Section 4.4.
(b) The metric g,, is an asymptotically flat metricon M \ {p1...., pm}: There

exists a diffeomorphism ®; from a punctured neighborhood of each p; into
the exterior of a ball in the Euclidean space R" such that relative to the local
coordinate functions x/ = @~/ (-) one has

gu(dys.0x0) = 8j + O(x|77V)

where p is any number in (1, uff] N (1, 3); see Remark 4.3.

(c) As a consequence of (a), Green’s functions depend monotonically on T'.
More precisely, if ' € T’ and u’ is the corresponding Green’s function
for T'” with the same poles and the same strengths, then u > u’. Similarly,
the monotonicity of Green’s functions with respect to the strengths ¢;’s also
holds.

(d) There holds u > (n—2)[S" 1| 3"/, ¢; Gp,;, where Gp, is the Green’s func-
tion for the conformal Laplacian with pole at p;.

The existence part in Theorem 1.2 is proved by a suitable elliptic regulariza-
tion, since equation (1.7) is genuinely degenerate elliptic. To solve the regularized
equations as well as to show that the obtained solutions converge to a solution u
of (1.7)—(1.8), we construct suitable upper and lower barriers. Furthermore, our
procedure allows us to construct smooth strict sub- and supersolutions of (1.7) that
approximate the solution ¥ which we obtained. The uniqueness part then follows
from a standard comparison principle argument.

1.1 Lower Ricci bounds for continuous and conformally smooth metrics

The nonexistence of smooth Green’s functions when uff <1 and (M, g) is not
conformally equivalent to the standard sphere is a consequence of the rigidity of
Bishop-Gromov’s relative volume comparison theorem and the fact that A(Ag) €
T with /Li—t_ < 1 implies Ricg > 0. In order to prove our result, we need a version
of relative volume comparison theorems for continuous metrics.

When I' = I’y with & > n/2 (so that MF < 1), it was proved in the work
of Gursky and Viaclovsky [23] that Bishop-Gromov’s relative volume comparison
theorem (including its rigidity) holds for metrics g, € Cllél where u is the Clz)’ca
limit of a sequence of smooth functions u; that are bounded in Cl(z)C and satisfy
A(Aguj) el.

Our treatment for Bishop-Gromov’s relative volume comparison theorem is dif-
ferent from [23]. Note that our definition of Green’s functions u only gives the
continuity of the metric g,,. We exploit the fact that metrics of interest to us are
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conformal to smooth metrics. For this class of metrics, we can define a notion of
(purely local) lower Ricci curvature bounds in the sense of viscosity; see Defini-
tion 2.1. This is naturally coherent with the notion of viscosity (super-)solutions for
(1.7). We establish the following purely local relative volume comparison theorem
(see Section 2 for terminologies):

THEOREM 1.3 (Relative volume comparison). Let (M", g) be a smooth complete
Riemannian manifold of dimension n > 2, f € Clgc (M), and k be a constant.
Suppose Ric(e2/ g) > (n — 1)k in some ball Bo2r g (p, R) centered at p and of
radius R > 0 with respect to the metric e2f g in the viscosity sense. If k > 0,

suppose further that R < ﬁ? Then, for r € (0, R), the function

VOlezfg (Bezfg (p’ r))
vin,k,r)
is a nonincreasing function, where v(n, k,r) is the volume of a ball of radius r in

the simply connected constant curvature space form Sy.

In addition, if it holds for some p € M and r > 0 (and 8r < ﬁ; ifk > 0)
that Noly27 o (Be2r o (p,8r)) = v(n,k,8r), then f is smooth in Byasg(p,r) and
Be2r o (p.1) is isometric to a ball of radius r in the simply connected constant
curvature space form Sy.

It would be interesting to relate our notion of lower Ricci bounds in the viscos-
ity sense to notions of lower Ricci bounds related to Bakry-Emery inequalities or
convexity of entropies. For the latter, see Ambrosio [1] and the references therein.

1.2 Asymptotics of Green’s functions

It is well-known, in the case of the scalar curvature, that the Green’s function
G, can arise as the limit of a suitably rescaled blowup sequence of solutions to the
Yamabe problem. This limit object G, has an asymptotic expansion near p (cf. Lee
and Parker [32]) which contains local as well as global geometric information about
(M, g). In particular, in a conformal normal coordinate system at p, when3 <n <
5 or when the Weyl tensor of g vanishes suitably fast near p, we have

Gp(x) = (dg(x. P~ + 4, + O(dg(x. p))).

(n—2)|S"1]

4
In such case, the metric GF g is asymptotically flat and scalar flat on M \ {p}
and its ADM mass (see [3]) is, up to a dimensional constant, the constant A, in the
above expansion. The positivity of the ADM mass plays an important role in the
resolution of the compactness problem for the Yamabe problem (see Brendle and
Marques [4], Khuri, Marques, and Schoen [28], and the references therein) and
more generally in the study of scalar curvature.
It is therefore of interest to study Green’s functions and their asymptotic behav-
iors in the current fully nonlinear setting, and, in particular, to understand what
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1560 Y. Y. LI AND L. NGUYEN

geometric information they encode. The following result gives a first step in this
direction. Since its proof is of different nature than what is being discussed in this
paper, it will appear elsewhere.

THEOREM 1.4 (Estimates for Green’s functions). Let (M, g) be an n-dimensional
smooth compact Riemannian manifold with n > 3. Assume that T satisfies (1.2)
and (1.3), uf > 1 and that AM(Ag) € T in M. Let S = {p1.....pm} be a
nonempty finite subset of distinct points of M and c1, ..., € (0,00), and u €
Clgc(M \S) be the Green’s function for T with poles py, ..., pm and with strengths

C1,...,Cm. Thenu € Cl:);] (M \ S), and there exist constants k > 0, rg > 0, and
C > O such that, fori = 1,...,mand x € B(p;, rg), there holds

(1.10) |u(x) — cidg (x. pi)* ™| < Cdg (x, pi)* ",
(1.11) IV (u(x) — cidg (x. p)*™")| < Cdg(x. pi)' ",
and

IV2u(x)| < Cdg(x, pi) .
If it holds in addition that (1,0, ...,0) € T, then
(1.12) V2 (u(x) — cidg(x. pi)>™)| < Cdg(x., pi) " T

It would be interesting to see if estimate (1.12) holds for all cones I (with 1 <
/Lff < n —1),or at least for [y with2 < k < % It is readily seen that the metric
gu 1s asymptotically flat. If estimates (1.10)—(1.11) and (1.12) hold for I' = T
for some « > ’}{f]k, then it can be shown that g, has a well-defined k-mass (see
Li and Nguyen [40] and Ge, Wang, and Wu [17]). It is of much interest to study
whether a generalized mass (as in [17,40] or a variant of such) can be defined
for g, (including the case I' = ['x), what role it plays, or whether it enjoys a
similar positive mass result, etc. (Note that, when (M, g) is locally conformally
flat and not conformally equivalent to the standard sphere, the positivity of mass
is a consequence of [42, theorem 1.2]. See also [18] when (M, g) is conformally
flat.)

In a sense, the gradient and Hessian estimates in Theorem 1.4 can be viewed
as ones for “the linearized equation” of (1.7) near the fundamental solution. We
believe that these estimates and their analogues for solutions to (1.9) that are close
to the fundamental solution, if held, should be of importance in understanding
compactness issues for (1.9).

Similar notions of Green’s functions for fully nonlinear elliptic Hessian-type
equations have been studied in the literature; see e.g. Armstrong, Sirakov and
Smart [2], Harvey and Lawson [24], Jin and Xiong [26], Jorgens [27], Labutin
[30], Trudinger and Wang [50]. We mention here a recent paper by Esposito and
Malchiodi [13] where a related result was established in a context involving log-
determinant functionals.

We conclude the introduction with the following question:
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Question 1.5. Is the Cll’cl viscosity solution to (1.7)—(1.8) constructed in Theorem
1.2 smooth in a punctured neighborhood of the p;, at least for I' = I'?

This question is motivated by a result of Lempert [33], which asserts that for any
strictly convex and analytically bounded 2 C C”, any real analytic ¢ : 02 — R,
and any pg € €2, there exists Co > 0 such that for all C > Cy there exists
a unique solution, real analytic in € \ {po} and pluri-subharmonic in €2, to the
degenerate complex Monge-Ampére problem (dd)*u = 0in Q \ {po}, u(z) =
Cln|z — pol + O(1),and u = ¢ on 0L2.

The rest of the paper is structured as follows. In Section 2, we define a suitable
notion of lower Ricci curvature bounds for continuous metrics that are conformal to
smooth metrics and prove a version of Bishop-Gromov’s relative volume compari-
son theorem for these metrics. In Section 3, we use the relative volume comparison
theorem to prove part (ii) of Theorem 1.2. The proof of part (i) of Theorem 1.2 is
then carried out in Section 4. Section 5 is devoted to a result illustrating the rele-
vance of Green’s functions in the study of nonlinear Yamabe problems. The paper
also includes two appendices, one on the construction of a concave function whose
zeroth-level set is d[" and another one on the convexity of the set of eigenvalues of
matrices belonging to a convex set.

2 Lower Ricci Bounds for Continuous and Conformally Smooth
Metrics and Volume Comparison

In this section, we introduce a notion of lower Ricci bounds in the viscosity
sense for continuous metrics that are conformal to smooth metrics. We establish
Theorem 1.3, a version of Bishop-Gromov’s relative comparison theorem. This
will be used to prove statement (ii) in Theorem 1.2, i.e., the nonexistence of solu-
tions to (1.7)—(1.8) when Mff <1.

It is instructive to note the fact that if g is a smooth metric and f is a smooth
function, then a bound for the Ricci tensor of the conformal metric ¢2/ g translates
to a second order, although nonlinear, partial differential inequality for the function
/. One can thus define the notion of a lower Ricci curvature bound for e2f g when
[ is merely continuous in the viscosity sense, as one does for nonlinear second-
order elliptic equations. See Definition 2.1.

A nice feature of this way of defining lower Ricci curvature bounds is that if
a metric has a lower Ricci curvature bound, then it can be approximated by lo-
cally Lipchitz metrics that also satisfy related lower Ricci curvature bounds. See
Proposition 2.4.

We then proceed to approximate locally Lipschitz metrics with lower Ricci cur-
vature bounds by smooth metrics. While it is desirable to keep a pointwise lower
Ricci curvature bound for the approximants, we are content with keeping a suitable
integral lower Ricci curvature bound. See Proposition 2.6. The relative volume
comparison is then drawn from results of Peterson and Wei [47,48] and Wei [56]
on smooth metrics of integral lower Ricci curvature bounds.
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1562 Y. Y. LI AND L. NGUYEN

Last but not least, a subtle point in the proof of the rigidity of relative volume
comparison is to prove that the metric space isometry between the given continuous
metric and the corresponding constant curvature metric is a smooth Riemannian
isometry with respect to the given smooth structure. We again exploit the fact that
the given continuous metric is conformal to a smooth metric and show that the
isometry in fact satisfies the n-Laplacian equation, which is the Euler-Lagrange
equation of a conformally invariant functional. We then appeal to the regularity
theory for the n-Laplacian to reach the conclusion.

2.1 Two notions of Ricci lower bounds

Assume that g is a smooth metric on a smooth (compact or noncompact) mani-
fold M" of dimension n > 2, and f is a continuous function defined on an open
subset 2 € M. Let us first start by defining what we mean by a lower Ricci bound
for €2/ g.

DEFINITION 2.1. Let k and f be continuous functions defined on an open subset
Q2 of a smooth Riemannian manifold (M, g). We say that Ric(e2f g) > (n — Dk
in the viscosity sense in € if, for every xo € € and for every ¢ € C?(2) such that
©(x0) = f(xp) and ¢ < f in a neighborhood of xq, one has

Ric(€2?g)(x0) — (n — 1)k(xg) 9“0 g (x¢) is nonnegative definite.

It is clear that Ric(e2/ g) > (n — 1)k in the viscosity sense if and only if, for
any continuous nonnegative definite (2, 0)-tensor a defined on €2, it holds that

ainiCij (ezfg) = —(n—2)a" Vii f —trg(a)Ag f
+ (n—2)a(df, df ) — (n — 2)|df |} trg (a) + a" Ric;;(g)
> (n— 1)k trg(a)
in the usual viscosity sense. In addition, if f is C 2 and satisfies Ric(ezf g) >
(n — 1)k in the viscosity sense, then Ric(e2/ g) > (n — 1)k in the classical sense.

If f is Lipschitz-continuous, the quadratic term in the expression for Ric(e2/ g)
is integrable. This motivates the following definition.

DEFINITION 2.2. Let k£ be a continuous function and f be a locally Lipschitz
function defined on an open subset Q2 of a smooth Riemannian manifold (M, g).
We say that Ric(e2/ g) > (n — 1)k in the weak sense in S if, for every smooth
compactly supported nonnegative definite (2, 0)-tensor a defined on €2, there holds

/ [0 = 2)Vi £ Via + Vi f Viteg(a) + (n — Da(df. df)
Q
2.1) — (n —2)|df |2 trg (@) + a¥Rici; (8)] dvg

> / (n —Dktrg(a)dvg.
Q
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We will prove later that if f is Lipschitz and if Ric(e?/ g) > (n — 1)k in the
viscosity sense, then Ric(e2/ g) > (n — 1)k in the weak sense; see Proposition 2.5.

One key property concerning metrics with lower Ricci bounds in the viscosity
sense that we will establish is the following result. Roughly speaking, every con-
tinuous metric e2/ ¢ whose Ricci curvature is bounded from below in the viscosity
sense can be approximated by smooth conformal metrics e2/t g whose Ricci curva-
tures are bounded from below in the L?-sense for all 1 < p < co. More precisely,
we prove the following:

PROPOSITION 2.3. Let Q be a bounded open subset of M and f,k € C(Q) such
that Ric(e2 g) > (n—1)k in the viscosity sense in 2. Then there exists a sequence
of functions { fy} C C°(Q) that converges locally uniformly to f such that, for
any 1 < p < oo and open w € €2,

lim {max(—/ll(Ric(ezf‘"g)) + (n— Dk,0)}" dvg =0,

{—00 J
where ll(Ric(esz g)) is the smallest eigenvalue of Ric(ezf{ g) with respect to
lee g

PROOF. This is an immediate consequence of Propositions 2.4 and 2.6 below
concerning the stability of our notion of Ricci lower bounds under two different

regularization processes: the inf-convolution and the convolution against a kernel.
g

2.2 Stability of Ricci lower bounds under inf-convolutions

In this section, we prove that every continuous metric e2f g whose Ricci curva-
ture is bounded from below in the viscosity sense can be approximated by Lipschitz
conformal metrics e2/¢ g whose Ricci curvatures are also bounded from below in
the viscosity sense. We prove:

PROPOSITION 2.4. Let (M, g) be a smooth complete Riemannian manifold. Let
Q be a bounded open subset of M and f,k € C(Q) be such that Ric(e?/ g) >
(n — 1)k in the viscosity sense in Q. Then, for all sufficiently small ¢ > 0, there
exist functions fe € Clgél (Q) N C(Q) that are locally semiconcave and 8, € C(2)
such that Ric(e2/¢ g) > (n— 1)k — 0, in S in the viscosity sense, fy — f in C(Q),
and 6, — 0 in ClgC(Q) as e — Q.

We will use inf-convolutions to regularize. Let €2 be a bounded open subset
of M. For f € C(2) and small & > 0, we define

£ = inf [f(y) + g, y)z} ceQ.
yeQ &

where d denotes the distance function of g. We note that f; satisfies the following
properties; see, e.g., [7, chap. 5] or [43, sec. 2].
(i) f. € C(Q) is monotonic in & and f; — f uniformly as ¢ — 0.
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1564 Y. Y. LI AND L. NGUYEN

(ii) fe is punctually second-order differentiable (see, e.g., [7] for a definition)
almost everywhere in © and V2 f; < C(Q2,g)e™'g a.e. in Q.
(iii) For any x € Q, there exists x4« = xx(x) € €2 such that

1
(2.2) fold) = flxn) + —dg(x, )%,
(iv) For any nonempty open subset w of €2, there holds
C(S, R S
IV fel < —( : g)[sup f — min f]2 a.e.in w.
£2 w Q

W) If | f(x) — ()] < m(dg(x,y)) forall x,y € Q and for some nonneg-
ative continuous nondecreasing function m : [0, 00) — [0, o0) satisfying
m(0) = 0, then

(2.3) dg(x. x:) < [em((C(R. g)esup| £)/?)]"2.
Q

PROOF OF PROPOSITION 2.4. Since € is compact, it is enough to consider the
case that €2 is contained in a single chart of M. Fix a compact subset w of €2 and
a point x° € w. We will prove that for every ¢ € C2(2) such that ¢ < f; in a
neighborhood of x? and ¢(x°) = £:(x?), it holds that

(2.4) Ric(e*?g)(x%) = [(n — Dk(x?) —0.(1)] > (x%) g (x7),
where here and below o, (1) denotes some constant that depends only on || f|| @)

e, dist(w, 9Q), and the moduli of continuity of f and k on Q such that 04(1) — 0
ase — 0.
By the definition of f¢, f(x) > fe(y) — %dg(x, y)? forall x, y € Q. Thus, for

x, y close to x9,
1
F0) 2 9(0) — _dg(x. ).
Now if x¢ = x4 (x?) is defined as in (2.2) and if y is a C? map on a neighborhood

of x? into Q such that y(x?) = x©, then

1
JO) Ze(y(x)) = —dg (x, y(x)* =: ¥ (x) near x° and f(x%) =y (x).
Hence, as Ric(e2/ g) > (n — 1)k in the viscosity sense, we have that
(2.5) Ric(e?V g)(x0) > (n — Dk(x)e?V g,

We will deduce (2.4) from (2.5) by a judicious choice of y.

For expository purposes and to motivate our later argument, let us first present
the case where €2 is a Euclidean domain and g is the Euclidean metric. The general
case will be treated subsequently.

When g is the Euclidean metric,

Ric(e??g) = —(n —2)V2¢p — Apld + (n —2)dg ® dg — (n — 2)|de|* 1d.
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Now let

y(x) =x +x%—x?
so that Vi (x2) = Vp(x%) and V2y (x0) = V2¢(x?). Estimate (2.4) is therefore
readily seen from (2.5) and (2.3).

Let us now turn to the case when g is a general Riemannian metric. The proof
above uses strongly the fact that, when (€2, g) is Euclidean, the tangent and cotan-
gent spaces of M at x° and x can be naturally identified, and this identification
does not interfere with the equation. This has the advantage that in our choice of
the function y, the e-dependent contribution in the test function ¥ is a constant. In
the general setting, special care must be given.

An inspection leads to the following choice of y:

y(exp,o(z+)) = expyo(z)

where z = Pzx € TxoM and P : T, oM — Ty oM is the parallel transport map
along the (unique) minimizing geodesic y,0 ;0 connecting x% to x°. The map y
translates a neighborhood of x? to that of x° along the geodesic Y0 x0-

By the first- and second-variation formulae for length (see, e.g., [16, theorems
3.31 and 3.34]), we have that

d
— dg(expyo(tz),exp,o(tz«)) = 0,
dt|,=o .

2

d
7729 (ExXpr0(12). expyo(124)) = O((dg (x®, x2) + |t/|z4]g)|2x|) for small J¢].

Hence

dg (expyo(2), expo(zx)) = dg (x°, x0) + O(dg (x%, x7)) |23,

and so

Y (expya(22)) = 9lexpun(@) — +dg(x°.x9)” + o(1zs 2).

Loosely speaking, this means that the e-dependent contribution in the test function
Y is constant up to a super-quadratic error. (In fact, the choice of y that ensures
this property is unique up to quadratic terms in the Taylor expansion of y around
x9.) We hence obtain

(2.6) dy(x)(2x) = de(x°)(2).
.7 V(D) (zx. 24) = Vao(x®)(z. 2).

Now, recall from (2.5) that

Ric(ezl/’g)‘xg(z*,z*) > (n— l)k(xg)e2wx’9)\z*|§.
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1566 Y. Y. LI AND L. NGUYEN

Using (2.6), (2.7), and the fact that the transformation z+ +— Pzs = z (from
T oM to Tyo M) is length preserving, we obtain

—(n = 2)Vze(x)(z.2) — Ag(x?) |2[3
+(n = 2)[do(x*) (@) — (n = 2)|dol3 (x°)|z]3 + Ric(g)] o (24, 24)
2 (n - Dk(x)e?? ORI 7
Recalling (2.3), we obtain (2.4), which concludes the proof. [l

2.3 Viscosity Ricci lower bounds imply weak Ricci lower bounds for Lipschitz
conformal factors

In this subsection, we prove the following:

PROPOSITION 2.5. Let (M, g) and Q be as in Proposition 2.4. Assume that f €
Clgél (Q) and k € C(Q). IfRic(e2f g) > (n — 1)k holds in the viscosity sense in
Q, then it holds in the weak sense.

PROOF. Without loss of generality, we can assume that €2 is bounded, d€2 is
smooth, k € C%(Q), and f € C%!(Q). Furthermore, by using Proposition 2.4,
we may further assume that f is almost everywhere punctually second-order dif-
ferentiable and that V2 f < C a.e. in Q.

We will establish (2.1) for an arbitrary smooth (2, 0)-tensor a defined on € such
that a = 0 on dQ2. Writing a = ) ; ¥xa for a suitable partition of unity {yy} if
necessary, it suffices to consider the case that 2 is contained in a single chart.
Furthermore, by considering a + 8¢g~' (instead of a) for all sufficiently small
§ > 0 and some ¢ € C®(Q) satisfying ¢ > 0in Q and ¢ = 0 on 2, we may
assume that a is positive definite in €2.

Set b/ = (n —2)a" + trg(a) g” and

h=V;b" Vi f — (n = 2a(df.df ) + (n = 2)|df |5 trg (a)
— a"Ricij(g) + (n — Dk e? trg(a) € L®(Q).
We note that (b/) is positive definite in . Since the subdifferential map of a
convex function has a closed graph (see, e.g., [49, theorem 24.4]) and is single-
valued almost everywhere in its domain, we can, without loss of generality, identify

h with its lower semicontinuous representative.
To prove (2.1), we show that

(2.8) —V; (b V; f) = hin Q in the weak sense.

Step 1. We start with showing a comparison principle for f. For a subdomain
w C Q with smooth boundary dw, let v,, be the solution to

L(vy) i= —Vi(h” Vjvy) = hinw

subjected to the Dirichlet boundary condition v, = f on dw. We claim that
Ve < finw.
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Indeed, since  is lower semicontinuous, there exists a sequence of smooth func-
tions iy < h — % which converges pointwise to & as [ — oo. Let v; solve

Liv;))=hjinw, v;=f— ; on dw.

To prove the claim it suffices to show that m; := inf,(f — v;) > 0. Assume by
contradiction that m; < 0. Pick some small 1 € (0, |m;]|) for the moment and let
§ =&, = f—v;—m;—nand I't be the convex envelope of —§~ = — max(—£, 0).
By the Alexandrov-Bakelman-Pucci estimate [7, Lemma 3.5] (which applies since
f is semi-concave and €2 is contained in a single chart), the set {§ = I'¢} has
nonempty measure. Thus there is a point x; ,, in this set where £ is punctually
second order differentiable and

(2.9) —1 < E(x1,9) < 0,188 (xp )| < C, and € (xz) = 0,
where d denotes the partial derivatives and C is independent of 7. At this point, f
is punctually second order differentiable and so
Ric(e? )(x1,y) = (1 — Dk(xp e Fn T gy ),
which implies
Lf 1) = () = hy(xpg) + 7
In view of (2.9), this implies that

1
Lw@unzhﬂmm%+7—Cn>hﬂmmL

provided 7 is chosen sufficiently small. This contradicts the definition of v;. The
claim is proved.

Step 2. We now proceed to prove (2.8). Fix a sequence of smooth functions
{f1} € C°°(Q) which converges uniformly to f in € and satisfies f; < f in Q.
Fix some subdomain @ € 2 with smooth boundary dw. Let &; be the solution to
the (obstacle) variational problem

min{/[bifvisvjs—hs]dvg:seHl(w),s\aw = fily, & = fi inwy.

It is well known that the minimizer &; to the above problem exists uniquely and §&;
satisfies
L(&;) = h in the weak sense in w,

and
L(&) = h in the weak sense in {& > f;}.
Hence, by Step 1, we have
§1= finw.
Consequently, by the uniform convergence of f; to f, we have that {&;} converges

uniformly to € on w and so L f > h in the weak sense in w. Since w is arbitrary,
we have thus proved (2.8). O
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2.4 Stability of Ricci lower bounds under convolutions
against a smooth kernel

We have seen above that the inf-convolution “preserves” Ricci lower bounds and
improves the regularity of conformal factors from continuity to Lipschitz continu-
ity. In this subsection, we are concerned with approximations with better regularity.

Throughout this subsection, we assume that f € Clg’cl (£2) unless otherwise
stated.

Let o : R — [0, o) be an even smooth function of compact support such that

o0
@“w[r“me=L
0

and define gz (f) = ¢ "0(e~'r). A smoothing { f;} of f is then obtained by con-
volution against Qg:

ﬁ(x) = /M 0s(d(x,y)) f(y)dvg(y) forx € Q¢ 1= {x € Q : d(x,0) > &}.

Noting that
(2.10) L@wa@@wmww%@wﬂmanx

we see that f; — f in C]g’C“(Q) for any @ € (0, 1) and Vf.— Vfae. ingQ.

The following result establishes the stability of pointwise Ricci lower bounds
for C%! conformal metrics. The stability we obtain is an integral stability, which
suffices for our purpose.

PROPOSITION 2.6. Let (M, g) and Q be as in Proposition 2.4. Assume that f €
c! (Q), k € C(Q), and Ric(e2/ g) > (n — 1)k in the viscosity sense in Q. Then,

loc

forany 1 < p < oo and open w € 2, the smallest eigenvalue Ay (Ric(ezf& g)) of
Ric(e2/s g) with respect to e2/¢ g satisfies

lim / {max(—Al(Ric(ezfsg)) + (n— Dk,0)}” dvg = 0.

e—0

In addition, if f € CY(Q), then, for all sufficiently small & > 0, there exists 0(¢) >
0 (which possibly depends on w, f, and k) such that Ric(e?/s g) > (n — 1)k — 0(¢)
inwand B(g) - 0as e — 0.

The very rough idea of the proof is as follows. Ignoring lower derivatives, one
can roughly think of a lower bound for Ric (e g)asa requirement that the Hes-
sian of f belongs to a certain convex subset in the bundle of symmetric (0, 2)-
tensors. The convolution is in fact an averaging process and thus, in principle, pre-
serves such convexity. For example, Greene and Wu showed in [19, prop. 2.2] that
continuous geodesically strictly convex functions can be approximated by smooth
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geodesically strictly convex functions. As we are dealing with “convexity con-
straint” in the viscosity sense, the argument in [19] does not apply directly. In fact,
our proof below does not work if we relax f € C%'to f e CO.

Before establishing a lower Ricci bound for the metric e2/e g, we briefly discuss
some facts about the distance function d(x, y) on M (with respect to the smooth
background metric g). When y is sufficiently close to x, and if y is a unit-speed
minimizing geodesic connecting x to y, then

Vid(x,y) = —y'(0) and Vyd(x.y) = y'(d(x. ).
Thus, if P(x,y) : TyM — TxM denotes the parallel transport map along the
unique shortest geodesic connecting x and y, then

P(x, y) can also be considered as an element of 7, ;)M x M by letting

Px,y)(X,Y) = g(X, P(x,»)Y).

P is then a covector field on an open neighborhood of the diagonal of M x M.

In the sequel, we represent P in local coordinates by using two indices (which
can be casually raised or lowered using the metric g): the first index refers to the
x-factor and the second stands for the y-factor. For example, as a transformation
of T, M into Tx M, we have

P(x,y) = P j(x, )0 ®dy’,
while, as a covector field, we have
P(x,y) = Pij(x.y)dx" dy’.
We make a few observations:

(P1) P(x,x) =1d.

(P2) For any compact subset K of M, there exists § = §(K) such that P is smooth
in{(x,y)e Kx K :d(x,y) <6}

(P3) VxP(x,x) = 0and V, P(x,x) = 0. To see this, pick any geodesic y(z)
emanating from x (so that y(0) = x). Then P(x, y(¢)) is parallel along
¥y, ie., VyyP(x,y(t)) = 0. As p’(0) was chosen arbitrarily, this gives
Vy, P(x,x) = 0. Likewise, Vx P(x,x) = 0.

(P4) Tt holds that

@.11) g ) = g7 ) P e ) Pl ().

To see this, take any covector Y € T, M andlet X = (P(x, y)YH, e M.
Then X; = P;'(x, y) Y; and so
gD Y Yy = gV () Xi X; = gV () P (. y) P ) Vi Y.

Since Y is arbitrary, this implies the asserted identity.
Note that (2.11) implies that

[2:1 ()Y (x) Pi*(x, )] P’ (x,y) = 6L,
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1570 Y. Y. LI AND L. NGUYEN

which further implies that

P (x, 9)[grk (0) €7 (x) Pi*(x, y)] = 8F

and
(2.12) g1 (%) = g () P (x. ) Pi*(x, y).

PROOF OF PROPOSITION 2.6. We start with a decomposition of the leading-
order term in Ric(e2/¢ g). We compute

VoV i) = /M ViV 0s(d(x, 7)) f(0)dvg ()
_ /M Vi [PF (1) V06 (d (. y )] £ (1) dvg (7)
_ /M Pk (6, )V, Yy 0s(d(x, 1)) £ (1) dg ()
- [V A seulde ) ) dve ()
- /M P (x, ) Vi 06 (d(x. 1)) Vi £ () dvg (v)
+ /M Vi P (e 0) Vi 0s(d(x, 7)) £ (0)dug (v)
_ /M Vi PR (e, 9) Ve 0e(d (e, 1)) £ (1) dvg (v)
= 10 (0) + 1700 + 10 ().

An analogous calculation also gives

ViV, Ze(x) = /M Vo Pi%(x, y) Vi 0s(d(x, ) dvg ()

— /M V,i ij(X, y)Vka.s(d(x, y)dvg(y),

where Z, is as defined in (2.10). Keeping in mind that

VxP(x,x)=0 and V,P(x,y) =0,
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we thus deduce that

P00+ TP W),
_ ‘ [ o P Va0 DI 0) = F 0l ()
_ /M Vi PR, y) Vyr0e(d e, 1) LF () = £00)] dug () +

T () Vyi Vi Ze(x)

g
< oM flcor -

where, here and below, 0(1) denotes some constant such that limg_.q o(1) = 0.
We also have

7 (x) = / PR (e, y) V06 (d (. y) Vi f(0)dvg (7)
’ M
- _/M Pi*(x. y) Pl (x. )V, 106(d(x. y) Vi f(3)dvg (¥)
. /M V[ P (e, ) PG, 9)0e(d(x, )] Ve £ () dvg ()
+ 759 (x)
= T (1) + 15" ().

4
where |77 (x)|g < o(D)]| £ co1(@)-
We thus have
—n—=2)Vife—Agfog > —(n—2TQ —trg (T g —0(D) | fllco@)-

Since V f; — V£ in L? () (and uniformly if £ € C'()), to establish the

loc
result, it suffices to show that

(2.13) —(n=)TO —rg (T g = F
where the (0, 2)-tensor F is defined by
Fy) = [ Fua) PG PG y) autd(e, )y,

Fij =—m=2)Vi fV; f + (n = 2)|df |2 gij — Ricij(g) + (n — Dk >/ gy;.

Let a be some nonnegative symmetric (2, 0)-tensor a with compact support
in Q. Define a (2, 0)-tensor a, defined by

ak(y) = fMa"f (1) P (x. y) P (x. ¥) 0s(d(x. 1)) dvg (x).
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1572 Y. Y. LI AND L. NGUYEN

Then a, is symmetric and nonnegative, as it holds for any covector V € Ty*M that

as(y)(V, V) = /Ma"f' () Py *(x, ) Vi PLx, p)Vioe(d(x, v))dug (x)

= /Ma(X)(P(xvy)(V), P(x,y)(V)) 0e(d(x, y))dvg(x) = 0.
>0

We have
/M a'l ()T (x)dvg (x)
. / ali (x) f V[P y)PLx, 3)0s(d(x, )]V e £(3)dvg (v)dug (x)
M M
=— / Vi f(3) / Vi [a" (x) Pi* (x. y) Pl (x. y)0e(d (x, y)) |dvg (x)dvg (¥)
M M
= [ V)T (v )
M
In addition, since

trg(ae)(y) = gr1(v)ak ()

= /M a'’ (x) g1 (V) P (x, y) PL(x, ¥) 0e(d(x., y))dvg (x)

2.12)
="gij(x)

_ /M trg (@) (1)0e(d(x. y))dvg (x).
we also have that

[ @@ (1@ )
M

[ @)
M
: /M g7 (x) Pi* (x. y) Pl (x. y) Vi 0e(d(x. ¥)) Yy £ () dvg (y)dvg (x)

@11
=gkl (y)

. / trg (@) (x) / ()Y, 106(d(x. 1))V, £()dg () dvg (x)
M M

. / g’“(y)vykf(ywy/{ / trg (a)(0)2s (d (x. y))dvg (1) dvg ()
M M

. /M Vi F ()9 trg (@) (7)dvg ().

SuIR, Ay 338 *[£20T/21/60] U0 Areiqr aunuQ KA ‘seuriqr Ausioatun s1oSiny £q pp0TZ edd/Z001 01/10p/wod Ko[ia Kreiqraujuoy/:sdny woiy papeojumod ‘8 ‘€20 ‘TIE0L60L

o)) aanear) aqesrjdde ayy Aq pauIaA0S are sa[dMIR Y 1SN JO SA[NI 10J AIeIqI AUIUQ AJ[IA UO (SUONIPUOI-PUB-SULIA) W0 K1 KIeIqI[aul[uo//:sdy) suonipuo)) pue

ASULDIT suow



GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1573

It hence follows that

/ a'l (x)[~(n = DT () — trg (TW) gy Jdvg (x)
M
N /M Vo [0 — 2V,0aK (3) + V¥ trg(ae) (9) [ dvg (7).

Now since Ric(e2/ g) > (n — 1)k in the weak sense (by Proposition 2.5) and a; is
nonnegative definite, we arrive at

/M a ()~ (n — 2T () — trg(TV) gi; ]dvg (x) = /M Fij(v)al (y)dvg ().
from which (2.13) is readily seen. This completes the proof. U

2.5 Volume comparison

We are now ready to give the proof of the relative volume comparison theorem
for continuous and conformally metrics with lower Ricci bounds.

PROOF OF THEOREM 1.3. By Propositions 2.4 and 2.6, there exists a sequence
of smooth functions { f¢} such that, as e — 0, f¢ — f locally uniformly in €2, and
{ f¢} satisfies an integral Ricci lower bound

lim {max(—x\l(Ric(ezfsg)) + (n— Dk,0)}’ dvg =0

e—>0 J,

for any open w € Q and any 1 < p < oo.
Let

Ag(w, p) = / {max(—)tl(Ric(ezfsg)) + (n— Dk, 0)}” du,.

w

Then, for p > %, the relative volume comparison theorem of Petersen and Wei [47,
theorem 1.1] (see also [56]) implies for O < r < R that

L L
VOleZFFg(Be27Fg(p’ R)) > _ VOleZ/FSg(Be2FEg(p’ r)) 2P
v(n,k,R) v(n, k,r)

< C(R)As(w,p)ﬁ-

(Here we assume R < #E if K > 0.) Sending ¢ — 0 we obtain the first conclu-

sion.

We turn to the second conclusion. By another theorem of Petersen and Wei [48,
theorem 1.5], there is a map ¢ @ Byar,(p.r) — Si that preserves the distance
function. We need to show that ¢ and f are smooth.

We represent ¢ (B2 (p, 7)) as a ball B(0,7) C R" equipped with a confor-

mally flat metric gean = e2F Zflat Where ggq is the flat metric on R” and F is a
smooth function. Let {x!, ..., x"} be a local coordinate system on M relative to
which g is smooth. Let {y!, ..., y"} denote a standard coordinate system on R”.
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1574 Y. Y. LI AND L. NGUYEN

Observe that ¢ considered as a map from (B,274(p,7), g) into (B(0,7), gaar)
is locally Lipschitz-continuous (since f is locally bounded). Hence ¢ is differ-
entiable almost everywhere. Likewise, ¥ := ¢! is differentiable almost every-
where.

We claim that e2F gg, = ¥ *(e2/ 2), ie.,

k 1
?i;ﬁi (y)a—w.(y) a.e.in B(0,7).

y ayl

We will use the following formula (see, e.g., [5, theorem 2.7.6]) for the length
of a Lipschitz curve y : [a,b] — X in a metric space (X, d) where the distance
function d is generated by a metric e2*/ where u is continuous and / is smooth:

2.14) 2P0 = 2TVOD g (w(y))

b
ngmdwqmbn)=y/ FOOy (1) dr.

a
(Here we are using that

lim d(y(t +98),y()) _ 0O) Jim dp(y(t +98),y()) _
§—0 ) §—0 8

at points where y is differentiable.)
We note that, since i preserves the distance, it preserves lengths of curves.
Hence if y : [a, b] — B(0,7) is a Lipschitz curve, then

b
/’eF”wwanﬁmdr
= Length,r 5 (y([a. b])) = Lengthyar o (¥ o y (. b))

b
_ / T VoY (1) (t)dt
a g

Oy 1)l

d
E(W oY)

b ki d ¢ . d 12
=/ ef°w°7’(f)(g OWOVd—(W oy)—(¥ OV)) dt.
a t dt
Now, for eachi € {l1,...,n}, consider the family of curves

Pyt onnyn ) = 10tV ),

where the hat above y’ indicates that this entry is absent. We then have

b b koa.IN1/2
FO si o a a
f e vy = / et 1//(gkl (¥) awi E;pi )
a a yo oy

Y=V, i

1om¥l, yn

for almost all (yy,..., )7, ..., ¥n) € R? "1 and for all a, b such that
Yy1oo§i vy (@5 0]) C B(0,T).

This implies that, for every i € {1,...,n},
AN .
€2F(y) = ezf(w(y))gkl (W(Y)) ayl (y) ayl (y) a.c. 1 B(O’ 7)
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1575

Similarly, by considering the family of curves tangential to d,,; + d,,;, we have, for

every i, j € {1,...,n},

202UG) —er("’(y”gkz(w(y))( oy Wk )

1
( W ) a.e. in B(0,7).

The claim (2.14) follows from the above two equations.
For D C R” and u € W1 (D), consider the functional

1us D) = [ Vil done = [ Vel dve,
D D
Similarly, for D ¢ Q andu € W' (D, g), consider
Ju; D] = /D \Vezfgu|z2fg dvparg = /D |Vguly dvg.

Observe that, by convexity, for each 1 < i < n, the function y’ on B(0,7) C R”
satisfies, for D C B(0,7), that

I[y*; D] < I[u; D] forallu € W'*(D) such that u = y* on D.

yj’

Noting that y*(y) = ¢’ (¥ (y)), and using the fact that the change-of-variable
formula holds for Lipschitz transformation (see, e.g., [15, p. 99]), we have, for
D C Bez_fg(p, r),

J[¢'; D] < Ju; D] forallu € W' (D, g) such that u = ¢ on aD.

It follows that ¢’ satisfies
(2.15) divg (| V¢’ \Z‘zvgqsi) = 0in Barg(p, 7).

Noting also that \Vy"|gﬂal =1, wecanfind C > 1 suchthat C~! < |Vg¢i|g <C
in B,2s4(p,r). It follows that equation (2.15) is a uniformly elliptic quasilinear
equation. A regularity result of Ladyzhenskaya and Uraltseva for quasilinear and
uniformly elliptic (scalar) equations in divergence form [31, chap. 4]) implies that
¢’ belongs to WI(%CQ and CloC for some « € (0,1). (The C'* regularity also

follows from [12, 14, 34,52, 53] where |Vg<]§ |¢ is allowed to vanish.) We then
recast equation (2.15) in nondivergence form,

AR (Vo) Vi Vig' = 0,

which is understood in the almost everywhere sense and where the coefficients Akl
are uniformly elliptic. Now, as a function of x, AX! (Vgp(x)) is C* continuous,
and so elliptic regularity implies that ¢’ is C2®. The smoothness of ¢ follows
from bootstrapping. Recalling that e2/ g = ¢*(gean), we deduce that f is smooth
and conclude the proof. O
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1576 Y. Y. LI AND L. NGUYEN

3 Nonexistence of Green’s Functions for ;LIT <1
In this section, we prove part (ii) of Theorem 1.2. In fact, we have:

THEOREM 3.1. Let (M, g) be an n-dimensional smooth compact Riemannian man-
ifold withn > 3. Assume that I" satisfies (1.2) and (1.3) and that A(Ag) € ' in M.
Let S = {p1,....pm} be a nonempty finite subset of distinct points of M and
C1,---,¢m € (0,00). Ifuif < 1, then the following are equivalent

(i) there exists a function u € CO(M \ S) such that
A(Ag,) eTandu>0in M\ {p1.....pm}.

(3.1) lim dg(x, pi)" *u(x) =c¢;, i=1,....m,
x—>pi

where dg denotes the distance function with respect to the metric g;
(1) (M, g) is conformal to the standard sphere and m = 1.

PROOF. It is clear that (ii) implies (i). Conversely, assume that (i) holds. Then,
by the relative volume comparison theorem (Theorem 1.3), forany p € M \ S, the

function
., Yolg, (Bg, (p.1)
Wy T

is nonincreasing, where w, is the volume of the unit n-dimensional Euclidean
unit ball. On the other hand, as » — 0, the above function tends to 1, and,
as r — oo, it tends to m (thanks to (3.1)). It follows that m = 1 and that
Volg, (Bg, (p. 7)) = w, r" for all r > 0. By the rigidity part of the relative vol-
ume comparison theorem, we have that u is smooth and (M \ S, g,) is isometric
to the Euclidean space R”. We then proceed as in [23, sec. 7.6]: The metric g is
conformally flat on M \ S and so is locally conformally flat on M by the vanishing
of the Weyl tensor for n > 4 and of the Cotton tensor for » = 3. In addition, M,
being a one-point compactification of M \ §, is homeomorphic to S”, and hence is
simply connected. A theorem of Kuiper [29, theorem 6] then implies that (M, g)
is conformally equivalent to the standard sphere. 0

4 Existence and Uniqueness of Green’s Functions for ui': >1

In this section we prove part (i) of Theorem 1.2. For simplicity, we will only
present the proof in the case where S consists of a single point and ¢c; = 1. The
proof can be easily adapted to treat the general case.

4.1 Nondegenerate elliptic Dirichlet boundary value problems
Let " satisfy (1.2) and (1.3) and f satisfy (1.4)—(1.6). It is easily seen that
equation (1.7) is the same as
f(A(Agu)) =0onM\{p1,..., pm}.

We will eventually regularize this equation by replacing the right-hand side by
small positive constants.
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1577

THEOREM 4.1. Let n > 3 be an integer and (N, g) be an n-dimensional smooth
compact Riemannian manifold with nonempty smooth boundary ON. Assume that
(£.T) satisfies (1.2)—(1.3) and (1.4)—(1.6). Let v € C®(N x R), ¥ > 0, and
¢ € C®(IN). Assume that there exists a function i € C°°(N) such that i = ¢
on N and
F(A(Agp)) = ¥ (- . u)in N.

Then, there exists a solution u € C®(N) N C%Y(N) (withu < u in N) to the
boundary value problem

4.1) f(AMAg,)) =¥ (-.u)inN,
4.2) U = @ on dN.

Moreover, there exists a constant C > 0 depending only on (N, g), (£.T), ¥, ¢,
[1In 77||C3(1V) and A(Ag..) such that

||ln“||co.1(ﬁ) <C,

and for every compact subset K of N and every | > 2, there exists Ck ; depending
onlyon K, 1, (N.g), (f.1), ¥, ¢, Ilnitll o3 5), and A(Agy) so that

Inulcixy < Ck,i-

When (£, ') = (all/k, I'z), the result was proved in Guan [20]. In fact, in this
case, the proof therein yields a C2-estimate up to the boundary. We chose to forgo
such an estimate in full generality as it is not needed for our current purpose. We
instead circumvent the issue by “opening up” I to larger cones I'; where a double
normal derivative estimate for I'; can be obtained fairly easily. The procedure
in [20] can then be applied to prove the existence of solutions corresponding to
those cones [';. Letting I'; converge back to I', we obtain Theorem 4.1 above.

PROOF. Replacing g by g if necessary, we may assume that A(Ag) € T". Let
u be the solution to

Leu=0inN,
u = ¢ on ON.
By (1.3), u is a subsolution to (4.1). In particular ¥ < u. We will construct

a solution to (4.1)—(4.2) that satisfies ¥ < u < u. We will argue according to
whether (1,0,...,0) € T or not.

Step 1. Assume for the moment that (1,0, ...,0) € I'. We adapt the argument
in [20] to the case at hand.

By means of a degree-theoretic argument (and Evans-Krylov estimates), it suf-
fices to show that there exists a constant C such that if u is a solution to (4.1)-(4.2)
satisfying u < u < u, then

4.3) lullc2vy < C.

SWIA, A 33§ *[£20T/T1/60] U0 Areiqiy auruQ K1 ‘sareiqr Asioarun) sy Aq ++0zz eda/z001° 01/10p/wos Kaim’ Areiqrautjuoy/;:sdny woiy papeo[umo( ‘8 ‘70T ‘T1£0L601

o)) aanear) aqesrjdde ayy Aq pauIaA0S are sa[dMIR Y 1SN JO SA[NI 10J AIeIqI AUIUQ AJ[IA UO (SUONIPUOI-PUB-SULIA) W0 K1 KIeIqI[aul[uo//:sdy) suonipuo)) pue

ASULDIT suow



1578 Y. Y. LI AND L. NGUYEN

Since (0,...,0,1) € I" and f is homogeneous of degree 1, there exists § =
8(f.T) > 0 such that for every compact set £ C T, there exists R = R(J, E) > 0
such that, forall A = (A{,...,A;) € E and R > R,

1
@44) s An1, A+ R) = Rf(EA +(0,....,0, 1)) > RS > 0.

(This implies [20, eq. (1.13)].) Also, we claim that

n
(4.5) Y = f(1... 1) >0inT
i=1

(This is equivalent to [20, eq. (1.10)].) To see this, let e = (1,...,1). For every
A el and u > 0, we have A + pe € I' due to (1.2)—(1.3). The concavity of f
then gives f(A + pue) < f(A)+ ) ; fi,(4). Dividing by u and letting u — oo,
we obtain (4.5) in view of the homogeneity of f.

In view of (4.5), the proof of [20, theorem 3.3 and theorem 3.4] can be applied
directly to the present setting yielding

m]\ellx|Vlnu| < Cq and m]\e]lx\Vzlnm < C,,

where Cy depends on (M, g), (f, "), maxy |Inu|, maxyy |V Inu| and C; depends
on (M,g), (£.T), maxy |Inu|, C; and maxyy |V?Inu|. (To dispel confusion,
note that the function u appearing in [20] is In % in our present setting. Also, the
parameters s and ¢ therein are taken to be 1.) As u is pinched between u and u,
maxyy |V Inu| is bounded in terms of |V¢|, |0,|, and |0, u|, where v is the unit
normal to dN. Thus, to establish (4.3), it suffices to show that

(4.6) 'V2u| < C on 9N,

where C depends on (N, g), (£.T), ¥, ¢, lull o1 ary> and A(Agy).

For xg € N, let ey, ..., e, be an orthonormal frame about xq obtained by par-
allel transporting an orthonormal local frame e, ..., e,—1 on dN and the inward-
pointing unit normal e, to dN along geodesics perpendicular to N .

Let L = ), i F AV V; be the principal part of the linearized operator for
J(A(Ag,)) at u. Using (4.4), one can check that [20, lemma 2.2] holds in the
present setting: For any B > 0, there exist small positive constants ;¢ and § and a
large positive constant NV such that the function

u

1 2 1
v = —1n:—-(1nﬁ) ¥ pud(-,dN) — =Nd2(-,N)
u 2 U 2

satisfies

Lyl <-B-BY F"
i
We can now follow the proof of [20, egs. (2.10) and (2.12)] to obtain
[Viju(xo)| + [(Ag,)ij (x0)| < Co provided (i, j) # (n,n).
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Since u is superharmonic (with respect to the conformal Laplacian), this implies
that

Vnntt(x0) = —C and (Ag, )nn(x0) = —C.

It remains to give an upper bound for V,,u(xg), where our argument differs
from (and is much easier than) that in [20] (where some algebraic properties of
the oy -equation play more of a role). Since (1,0,...,0) € I', there exists some
Ci > O such that if |a;;| < C% for (i, j) # (n.n) and a, = 1, then A((a;i;)) € I’

and f(A((aij))) > C%

If (Ag, )nn(x0) < Cp C1, we are done. Otherwise, we have
1
W) = £, G0 = (s a0 (3 e A0 ) )

1
> (Agu)nn(xo)c_l-

This implies that (Ag,)nn(x0) < Ci ¥ (x0,u(xp)) < CC;. We have thus estab-
lished (4.6), and thus established the theorem when (1,0,...,0) € I.

Step 2. We now return to the general case where (1,0, ..., 0) may or may not
belong to I'. For f € [%, 1], define

Iy ={AeR” | tA+(1—1t)oy(A)e € T} wheree = (1,...,1),
fi() = feA + (1 —1)o1(d)e).

It was proved in [38] that ( f;, [';) also satisfies (1.4)-(1.5).
Note that (1,0,...,0) € I'y fort < las (1,1 —¢,...,1 —t) € ', C I
Furthermore, we have f;(1) > f(tA) = (£ (1) and so i satisfies

ft(A(Ag,)) >ty (-, i) in N.

Thus, for ¢ < 1, there exists u; € C%°(N) such that u; < 7 in N, u; = ¢ on N,
and

f((Ag, ) = 19 (- u)in N.

As mentioned above, ||Inu; ”Cl( ) is uniformly bounded as # — 1. Further-
more, as ¥; < u, known interior first derivative estimates [10, 22], [37, theorem
1.10], [55], and interior second derivative estimates in [22] and [38, theorem 1.20]
give

nusllcrgy < Ck.i

for every compact subset K of N and every [ > 1, where Cg ; is some constant
independent of 7. Consequently, along a sequence #; — ¢, {u,,} converges in
CS9(N) to some solution u € C®(N) N CO%1(N) of (4.1)~(4.2). The proof is
complete. U
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1580 Y. Y. LI AND L. NGUYEN

4.2 Construction of supersolutions

The following gives a supersolution for Green’s functions with a single pole
of unit strength. It is clear that a similar construction can be done for any finite
number of poles.

PROPOSITION 4.2. Let (M, g) be an n-dimensional smooth compact Riemannian
manifold with n > 3. Let I satisfy (1.2) and (1.3) and that pLi-'? > 1. Assume
that A(Ag) € T in M. Then, for every p € M, there exists a function u, €
C(M \ {p}) such that

4.7 AMAgy,) € 'andup > 0in M \ {p},

: n—2-— _
xh_r)np dg(x, p)" “up(x) = 1.

Furthermore, for every u € (1, MF] N (1,3) and § € (u,3) and for every suffi-
ciently small ri > 0, one can arrange, for some a > 0, that

n—2
1

(48) ljp()(f) = (dg(x7 p)_M+1 +a— dg(x’ p)_”“'i_s),u_f
Jor0 < dg(x,p) <r1/2,
up(x) =1 fordg(x, p) > ry.

PROOF. Fix p € M. Let r(x) := dg(x, p). Fix some pu € (I,MF] and 6 €
(u, 3). Consider, for a > 1, the functions

v=v, =" 4a —r_‘”‘s)z%zl.
We will show that there exists some 7, € (0, 1) and ¢g > 1 such that
4.9) Ag(Ag,, —Ag) € I'in{0 <r < rp}foralla > ap,

where A, signifies that the eigenvalues are computed with respect to g.
We adapt the proof of [41, lemma 3.5]; the main difference is to allow the
possibility that p = ufﬂ. In the sequel, C denotes some positive constant that

will always be independent of a. Observe that, in local normal coordinates x! =

.4 .
X1,...,x" = x, at p, the (0, 2)-Schouten tensor of the metric v7—2 g satisfies

X X
Agv=X1g—)(27®;+z4g+err1+err2,
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1581

where x ® x = x; xj dx' dx/,
_ 2 2 PP
= T (n—2)% v?

2D+ (—p+ Hr2)((u — Da — (§ — 1)r—1+8)
- (—1)2r3 (1l +gri—1 — pd-1)2

2 vy P
2T 20 r (n—2)2 v2
201D —p)

(u— D381 + arp—1 —pi-1)

El

=+ Dy —

and

2
lerry| < C rofxal,
erry| < Cro W | +r2v 2 W) < ——.
erra| = Crv™' V1) <
As 1 < p < 8, we can assume that ag is sufficiently large and r; is sufficiently

small such that p

>
A= Cr3—r( +ark—1)2

It is important to note that, as g;; x' = x/,

> 0.

X X
Ag(xlg—)(z7 ® 7) =1 =22, X1, X1)s
and so, as (y1 — y2) > —My1 > —p,if)(l (where we have used § > ), we have

X X
Aglxig —x2—®—Jel.
r r

We would like to turn the above relation into a more quantitative form so that it can
be used to control the error term.
We have

(4.10) lerra| < Cr3~# @™ + r " Yy,.

For sufficiently large a¢ and sufficiently small rq, the right-hand side of (4.10) is
smaller than y. Thus, as Az (Ag) € I"'in M and M is compact, there exists vg > 0
such that

Ag(Ag + erry + errp) € I' wherever y; < vg.

Thus, by Lemma B.1, we have
Ag(Ag,, —Ag) € Iin{x : 0 <r(x) <rz, y1(x) < vo}.

We assume henceforth that y; > vg. We have, as u < §,

1
(1 B E) Tzt @ T,
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1582 Y. Y. LI AND L. NGUYEN

which implies in view of the definition of MIJE and the fact that y < ,uff that

dist ((1 — E, 1,..., 1),R" \ F) >C min(rgil‘ (@' +r*H 0,

X1

and, as y1 > vy,
(4.11) dist ((x1 — x2. x1.-.-. x1),R*\I') = C min(r5* (@' + 4N, Dy,

The eigenvalues A = (A1,...,A,) of 4 ¢, — Ag with respect to the metric g
satisfy (cf. [41, lemma A.1])

n
A= G — x|+ Y & = xal < C(lerr| + [erra|)
i=2
<ClP e + Y + %0

Hence, in view of (4.11), we deduce that there is some r, > 0 and ag > 1 such
that X € ["in {0 <r <rp}fora > ap. As A(Ag) € I, the assertion (4.9) is then
readily seen from Lemma B.1.

We now turn to the construction of u,,. Fix some & € (0, 11—0). In what follows,
the constants C will be also independent of £. We assume also that 1y € (0,r3) is
sufficiently small so that

/ 1
4 < v <(1+§)aandM§§
(4.12) v

C _,—
in{r1/2<r<r1}f0ralla>Erlu '

Fix some ¢ € C°({r < —rl,) such that ¢ = lin {r < —rl, and define

Up =vg¢ +a(l —o).

To conclude the proof it suffices to check that, for some sufficiently large a > 1,

(4.13) MAgg,) € Tin{ri/2 <r <ri}.
Using (4.12), we compute in {r1/2 <r <ry},
-1 _
ﬁ;lvgﬁp — v_lvgv‘g = Mvgv + v Vep < CE,
p P g

‘LFIV Up — U, Vzvg‘g

— 1
= a(w ) g -l-v_—avézr(ﬂ-i-_—(dl)@d(p-i-d(ﬂ@dv)
v Uy ip ip

< CE¢.
g

Thus, we can write

Agy = (Ag, — Ag) + (Ag + O(8)).
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1583

We now choose £ sufficiently small such that A(Ag + O(§)) € T'in {r < r»} and
then fix some a > max(ay, % ry ® 71) (recall (4.12)). The above computation is
then valid, yielding (4.13) as desired. O

4.3 Existence
Fix p € M and let r(x) = dg(x, p). Let G, be the unique smooth solution of

—AgGp + Ry Gp =0and G, > 0in M \ {p},

n—2
4(n—1)
lim 7(x)"2G,(x) = 1.
xX—p

It is well known that such (_}p exists and furthermore (cf. [32]),
(4.14) Gp=r>"(1+ O(@r))asr — 0.

It should be clear that G, = W
the conformal Laplacian with pole at p.

If ' = I'y, we are done. Assume from now on that I" # I['y.

Let f be as in Proposition A.1.

Let 1, be as in Proposition 4.2 for some p € (1,2). By (4.8) and (4.14), there
exists some ro > 0 such that it, > G, in {0 < r < ro}. On the other hand, by
4.7,

Gp, where G, is the Green’s function for

_ n—2 _ .
_Aup + ng Up = 0in M \ {p}.
Hence, by the maximum principle,
(4.15) i, > G,in M\ {p}.

For small § > 0, let

cg = min A(Az-)) > 0.
I M\Bg(p) f( ( gu))

(Here we have used the smoothness of 1, to establish the positivity of ¢s.) By

Theorem 4.1, for every ¢ € (0,cs), there exists a function ug . € cOl(M \
Bs(p)) N C°(M \ Bs(p)) satisfying

(4.16) f(/\(Agu&c)) =candug, > 0in M \ Bs(p),
4.17) ug . = up on dBs(p).
Furthermore, {Inug ¢ }ce(0,c5) 18 uniformly bounded in

C®' (M \ Bs(p)) and C3(M \ Bs(p)).
It follows that, along a sequence ¢; — 0, {us ¢; } converges in Ckz)C (M \ Bs(p)) to
some smooth functions ug € C®1(M \ Bs(p)) N C®(M \ Bg(p)) satisfying
(4.18) A(Ag,,) € 9T and ug > 0in M \ Bs(p),

us = up on dBs(p),
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1584 Y. Y. LI AND L. NGUYEN

Using (4.7), (4.18) and the maximum principle, we see that
ug < upin M\ Bs(p).
Hence, for each compact subset K of M \ {p}, there exist constants Cx > 0 and
0 < ¢§,k < cg such that

us.. < Cg provided ¢ < ¢s k.

O
By known first and second derivative estimates, for every compact subset K’ of K,
there holds
lus.cllc2xry < Ck,x forall ¢ < ¢5 k.,

where Cg k- is independent of §. Sending c to zero, we obtain that
lusllc2xry < Ck k-

In other words, the family {ug} is bounded in C2 (M \ {p}). Hence, there is some

loc

8j — 0 such that {ug, } converges in Chl)’ca(M \ {p}) for any & € (0, 1) to some
e Col (M \ {p}).
Asus < up, wehave u < up, in M \ {p}. On the other hand, by (4.16),

n—2
4(n—1)
In view of (4.15), (4.17), and the maximum principle, we thus have ug . > Gp
in M \ Bs(p). It follows that v > G, in M \ {p}. On one hand, this implies
(1.8). On the other hand, this implies ¥ > 0 in M \ {p}, and so by (4.18) and the

convergence of {ugj} to u, we obtain (1.7). We have thus proved the existence of a
solution to (1.7)—(1.8).

—Agug . + Rgus.>0in M \ Bs(p).

Remark 4.3. By construction, we have Gp < u < up. Hence, for any u €
(1, uf 1N (1,2), one has
r(x)"2u(x)—1 r(x)"2u(x) -1

O =it et = e =

If there are multiple poles with multiple strengths, we have

\—2 _ \n—2 _
Ofllmlnfdg(x’ pl) M(‘xz Cl Ehmsup dg(.x, pl) M(‘xz Cl
X—=>pi dg(x, pi)/’“_ X—>pj dg(X, Pi)“_

When p = /LF < 2, this is in a sense sharp. See [42, theorem 1.2], where it is

shown that if /\(AU 4 ) € 0T on a punctured ball of the flat space (R”, ggyc)

n=2 gryc
and if ;Lff > land (1,0,...,0) € T, then U can be expressed in the form

n—2
+ o
U(x) = (clx| 74 4 ad(x))er !

for some nonnegative bounded function 1 that is either positive or identically zero.
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4.4 Uniqueness
In this subsection, we prove that (1.7)—(1.8) has a unique continuous viscosity
solution. Let u € Ckl)’c1 (M \ {p}) be the solution to (1.7)—(1.8) that was constructed
in Section 4.3. Assume that v € Clgc (M \ {p}) is also a solution to (1.7)—(1.8).
Step 1. We show that v < u. To this end, we show that v < u forall 8 € (0, 1).
By construction, there exist sequences r; — 0, &; — 0, and {u;} C C°(M \
By, (p)) such that {u; } converges to u in Clz);a(M \ $) and

(4.19) ,ﬂM@anqmmW>omM\&ﬂm,
(4.20) lim 7772 sup uj = lim 777> inf u; =1.
j—o0 0By, (p) j—o00 2By, (p)

Clearly, by (1.8) and (4.20), for sufficiently large j, 6v < u; on 9By, (p).
We claim that v < u; in M \ Erj (p). Indeed, if this is not true, there are
some o € (0,1) and ¢ € M \ By, (p) such that «fv < u; in M \ B,,(p) and
afv(g) < uj(g). As )L(Ang) € 0I" and u; is smooth, it follows that

/\(Agui) € R"\ T,
which contradicts (4.19). We have thus shown that v < u; in M \ Erj (p).
Sending j — oo and then 8 — 1, we arrive at v < u in M \ {p}.

Step 2. We show that v > u. Similar to the previous step, we in fact show that
v > Guforall 8 € (0,1).
Clearly, there exists some rg > O such that

v > 6uin Bry(p) \ {p}.
Let u; be as before in Step 1. It is more convenient to work with w = u i3,
j_%, and § = v™i22 . We then have
Ag(Aw), Ag(Ag) € ' in M \ {p},
(4.21) f Qg (Aw))) = ejwy " in M\ By, (p),

where here and below A signifies that the eigenvalues are computed with respect
to the metric g and

wj =u

1
Ay = V2 — ﬁw@g + ¥ Ag.

As {w;} converges in C2_(M \ {p}) to w, which is positive on M \ {p}, there

loc
exists some i > 0 such that, for all sufficiently large j,

w; > 2pin M \ By, (p).
Fix some u € (0, jt) for the moment. We have

I

Ay, = Ay, + —mM—
v R 2w (wj — )

dwj|} g + 1 Ag.
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1586 Y. Y. LI AND L. NGUYEN

As M is compact and A4 (Ag) € I, there is some § > 0 such that
Ag(Ag —26g) e I'in M.
We now write,
M 2
Ay, — 88 = Aw,— Ag —26 6+ ———|dw; .
=8 = Ay + (g = 280) + (8 + 5wy 2 )«
On the other hand, by (4.21) and the fact that {w; } is uniformly bounded in
C*(M \ Bro(p)). Ag(Ay, —38g) € R"\ r

in M \ B;,(p) for all sufficiently large j. Invoking Lemma B.1 again, we thus
have

(4.22) AMAy;—p) € R™\ Fin M\ By, (p) for all sufficiently large ;.
Using (4.22), we can argue as in Step 1 to show that, for all sufficiently large j,

§ < 07" (wj — p) in M\ Byy(p).
Sending j — oo and then p — 0, we obtain that
v>0uin M\ By,(p).
Recalling the definition of rg, we conclude that v > fu in M \ {p}, which upon
letting & — 1 yieldsv > uin M \ {p}.

Combining Step 1 and Step 2, we conclude that v = wu; i.e., the solution to (1.7)—
(1.8) is unique. This completes the proof of Theorem 1.2. U

5 Green’s Functions as Solutions to Nonlinear Equations
with Dirac Delta Measures on the Right-Hand Side

In this section, we illustrate that Green’s functions may show up as suitable
rescaled limits for certain blowup solutions to the nonlinear Yamabe problem

(5.1) f(/\(Agu)) =landu > 0.

More general scenarios of blowup will be considered elsewhere.

Let (M, g) be a compact Riemannian manifold and i (M, g) its injectivity radius.
Suppose for some 0 < rg < i(M, g) that {u;} is a sequence of smooth solutions
to (5.1) on some balls Bg (pi, ro) in M such that u; (p;) = maxg, (p; ro) Ui —> OO
and p; — poo asi — co. We say that {u; } has an isolated blowup point if
(H1) there exists C > 0 independent of i such that dg(-, p,-)%ui < C in
We say that {u; } has tame geometry in Bg (p;. ro) if
(H2) there exist C > 0 and 8 € [0, 1) independent of i such that

. _46_ .
(5.2)  |Ricg, lg, < Cmax(l,ui(pi)i-2dg (-, pi)*) in Bg(pi.ro).
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Note that, by [42, prop. B.1], for I' = [y, with 2 < k < n, (5.2) can be replaced
by

_46_ .
Rg, < Cmax(1.ui(pi)"2dg(-. pi)*®)in Bg(pi.ro).

When § = 0in (H2), we say that {u; } has bounded geometry. It should be noted
that, by [41], when (M, g) is not conformal to the standard sphere, equation (5.1)
on M has no blowup sequence of solutions with bounded geometry on the whole
of M.

It should also be noted that, under (H1), it is easy to show (in view of estimate
(5.4) and Lemma 5.2) that estimate (5.2) holds with 8 = 1, i.e.,

. _4 .
[Ricg, |g,, < Cmax(l,u;(p)72dg(-. p1)®) in By (pi.ro/2).

It is clear from the above that, under (H1), if (H2) holds for some 6 = 6y, then it
holds for all 6 € (6, 1), after a shrinking ro. We do not know yet whether (H1)
implies (H2) in general.

THEOREM 5.1. Let (M, g) be an n-dimensional smooth compact Riemannian man-
ifold with n > 3. Suppose that (f, ") satisfies (1.2)—(1.6) and that Mf: > 1. Sup-
pose that {u;} is a sequence of solutions to (5.1) on some balls Bg(pi.ro) C M
with 0 < ro < 1(M,g) independent of i which has an isolated blowup point
and has tame geometry (i.e., (H1) and (H2) hold). Then, upon extracting a sub-
sequence, U; = uj(p;)u; converges in Ckl)’ca(Bg(poo,ro/2) \ {poc}) for every
0 < a < 1 to a positive function Ues € C°(Bg(Poo.70/2) \ {Po}) satisfying

Agine = 01n Bg(poo,70/2) \ 1o}
hm d(xv pOO)n_ZiZOO(x) € (0’ OO)
X—>Poo

n+2k

Furthermore, if (f,T) = (U,i/k, [y) for some 1 <k < 5, thenii," > oy ()\(Agﬁi))
weakly* converges in B(pso.¥o/2) in the space of measures to a Dirac measure
My, k8po. With an explicit my j > 0.

The conclusion of the above theorem holds if we replace the right-hand side of
(5.1) by a smooth positive function 7(x), in which case the limit measure changes
t0 7(Poo) "2/ 2m,, 1 6p.. -

The rest of this section contains two subsections. The proof of Theorem 5.1
is given in Section 5.1. We first show that (H1) and (H2) rule out a phenomenon
usually known as bubbles on top of bubbles; see Lemma 5.3. Using a suitable
barrier construction, we then show a suboptimal upper bound for u; (see (5.7))
which is sufficient to establish the weak* convergence of % §"+4)/ ("_2)02 (A(A g7, )
and to identify its limit; see Lemma 5.4 and Corollary 5.5. Exploiting further
condition (H2), we then derive a sharper upper bound for #; in Lemma 5.7 and
deduce the convergence of #;, which concludes the proof. In Section 5.2, we use
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1588 Y. Y. LI AND L. NGUYEN

the divergence structure associated with the o operator to prove a compensated-
compactness-type result for the o equation (see Proposition 5.10). This is not
directly related to the proof of Theorem 5.1 but may be relevant in the study of
Green’s functions.

5.1 Isolated blowup sequences with tame geometry

Let {u; } be a sequence of smooth local solutions to the nonlinear Yamabe equa-
tion (5.1)

f(/\(Agui)) = 1 and u; > 0 on some ball Bg(p;,ro)

with 0 < rg < i(M, g). We suppose that {u;} has an isolated blowup point and
has tame geometry, i.e. we have that u; (p;) = maxg, (p, ro) Ui —> 00, Pi —> Poos
and that conditions (H1) and (H 2) hold.

We aim to show that i#; = u;(p;)u; converges to a solution tieo of A(Ag; ) €
dl (in fact Ag; = = 0) with uso(x) = ¢(1 + 0(1))dg (x, Do)~ "2 near po for
some constant ¢ € (0, 00) and, when (f, ") = (O’li/ k, I'z), to identify the weak*

n+2k
limit of the sequence ;"™ oy (A(A g7,))-

Preliminary analysis

We start with some well-known facts. By local gradient and second-derivative
estimates [10,22,37,38,55], we have

(5.4)  |Vinu;(x)] < Cdg(x. pi) in Bg(poo.3r0/4) \ {pi} for £ = 1,2.
For x € R” and A > 0, let

n—>2
2

Uy () A
x)=x| ————
A L+ A2x2)

where | - | denotes the Euclidean norm and x = »( f, ') is a (normalizing) positive

constant so that
f(MA;?uA )) = lonR” forall A > 0,

where g denotes the Euclidean metric on R”.
Define amap ®; : R"” ~ T, (M, g) — M by

2
xn—2Xx
2 b

D; (x) = expy,
ui(pi)n—2

and let
i (x) = xui(pi)~ ui o ®i(x), xeR”.
Then #; satisfies

. 2 2
(5.5 ok (A(A gy, ) = Lin{lx] < do 272 ui(pi) =2},

where g; 1= = U; (p,-)*% ®* g and Jy is the injectivity radius of (M, g). It

is clear that §; — £ in C2_(R™). Furthermore, #;(0) = x and #; < x in {|x| <
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1589

8o = u;( pi)ﬁ}. By known local first- and second-derivative estimates, it
follows that {Ini;} is uniformly bounded in C? on any compact subset of R”. By
Evans-Krylov’s theorem and the Schauder theory, {ii; } is uniformly bounded in C 3
on any compact subset of R” and converges, along a subsequence, in Clﬁéa (R™) to
some positive il € CZ(R") that satisfies x = ii,(0) = max i, and

Uk(A(Ag;ﬁ*)) = 1lonR".

By the Liouville theorem [39, theorem 1.3], we have &t = Uj. In particular,
passing to another subsequence if necessary, we have for an arbitrarily fixed N > n

that i < u,-(p,-)n%z and
. Nija. o

LEMMA 5.2. Under the assumptions of Theorem 5.1 except for (H2), there exists
C > 1 (independent of i) such that, after passing to a subsequence,

1 _ —(n—2) . 2 _ 2
ui(x) > Eui(Pi) Yy (x, i)~ in {ro > dg (x, pi) = %72u; (p;) 72},

PROOF. In the sequel, C denotes some positive constant that will always be
independent of ;.
Let Ly = Ag — 481—__21)R ¢ denote the conformal Laplacian of g. We have that

Lgu; > 0. A calculation shows that there exist large K and small § such that, for
every p near peo, the function

Gp(x) 1= dg(p, x)>™ = Kdg(p.x)3 " — (8> — K§37")
satisfies (see, e.g., [41, lemma 3.3])
LeG,>0in B(p.5)\ {p}.
Now note that, by (5.6) and with r; = %”%ZM i( pi)_n%z, we have for large i that
1 o~
uj(x) = Eui(pi) "G, (x) on dB(pi. ;).

Clearly u;(x) > 0 = %ui(pi)_lépi (x) on dB(pi,8). An application of the
maximum principle then shows that

1 = 1 _ _n.
ui(x) = Zuilpi) 1Gpi(x) > cvi(pi) Ydg(pi,x)>™" in B(pi,8) \ B(pi.ri).
The conclusion follows from the gradient estimate (5.4). Il

Simplicity of blowup sequences
In this subsection, we show that if {u; } has only one isolated blowup point and
has tame geometry, then {u;} is simple in the sense that
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1590 Y. Y. LI AND L. NGUYEN

(H3) there exists r(’) > ( independent of 7 such that the functions

n—2

r 2

AL i (x)d Sy (x)
|0Bg (pi.7)|g /33.;)(17[,7) l ¢

. L 2 _2_
are nonincreasing in (2xn—2u; (p;)~n2,1¢).

LEMMA 5.3. Under the assumptions of Theorem 5.1, the sequence {u;} is simple,
namely (H3) holds.

The proof is by contradiction. We suppose that the sequence {u;} is not simple
and rescale it to a situation in which simplicity holds and appeal to the following
result.

LEMMA 5.4. Let (M, g) be an n-dimensional smooth compact Riemannian man-
ifold with n > 3. Suppose that (f,T") satisfies (1.2)—(1.3) and (1.4)—(1.6) and
that /L#T > 1. Suppose that {u;} is a sequence of solutions to (5.1) on some balls
Bg(pi.ro) C M with 0 < ro < i(M,g) independent of i that has an isolated
simple blowup point, i.e., (H1) and (H3) hold. Then, for any 0 < 68 < 1, there
exists C > 0 (independent of i) such that, after passing to a subsequence,

_ _d+4+60)(n=2)
(5.7) ui(x) < Cui(pi)Pdg(x, pi) 2

in{ro/2 > dg(x, pi) = %%iui(pi)_%}.

An immediate consequence of the above result for 6 € ( Z;glli’ 1) is that

— 2k +2k
wi(pi) 2 / w05 dvg
{

2 _ 2
ro/2>dg(x,pi)>=xn—2iu;(p;) n—2}

<Ci 150 (n+2k)—2k

— 0.

This together with (5.6) gives the following:

COROLLARY 5.5. Under the assumptions of Theorem 5.1 and with
(£.0) = (0", Tp),

we have for any fixed r < ro/2 that

~11+22k n—2k n+22k
u;" (rk(Agﬁi)dvg = u;j(pj) n2 u;"? dvg
B(pisr) B(pisr)

n—2k n+2k
— Up(0) n—2 / U,"? dx.
To prove Lemma 5.4 before that of Lemma 5.3, we will need the following
lemma.

LEMMA 5.6. Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 3. Assume that ( f, ") satisfies (1.2)—(1.3) and (1.4)—(1.6) and that uff > 1.
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1591

For g € (0,n — 2), there exist some r1 > 0 and C > 1 such that for every p € M
and a,b > 0, the function

o(x) =ar(x)™ 1+ br(x) "D inx e Bg(p.r1) where r(x) = dg(x, p)
satisfies
1 4
FOAg) = &z0 72 in Bp. o)\ {7

PROOF. In the sequel, C denotes some positive constant that will always be

independent of a, b. Observe that, in local normal coordinates xV=xq,...,x" =

Xy at p, the Schouten tensor of the metric g, satisfies
X X
Ag, = Xlg*X27®7+Ag 4+ erry + errp,

—_ . oy i j
where x ® x = x; x; dx' dx/,

2 ¢ 2 e’
M= T T o
n—2rp {m—-2)? ¢
_ 2
C (n—2)?

(agr=9 +b(n —2—q)r" "2 (a(n —2 — q)r~9 + bgr~""27))

292
. 1 C
Cr2’' r2 )’

21 " ¢’ 2n |(P,|2
X2 = ¢ —— —

n—2; r _(n—2)2 @2
2ab(n —2 —2q)?
=2)1— 5
(n—2r"g
and
lerry | < C,

lerra| < C(rv ™ 'W| + r2v 2 V%) < C.

It follows that the eigenvalues A = A(Ag,) (With respect to g,) satisfy

n

__4 __4 __4

A1 —@ 2 (1 — x2)| + E |Ai —@ 2y < Cop 72,
i=2
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1592 Y. Y. LI AND L. NGUYEN

Noting that, as /Lli' > 1,(—1,1,...,1) € I'. It thus follows, for sufficiently small
ri,that A(Ag,) € ['in{0 <r <rq}and

FO(Ag) = 9 T2 0 f T G = x2) 1o 1) + O™ 72)

__4_ __4_
=9 nile.f(_]’]""’])—i_O((p "72)
1
zmgﬂ_ﬁ in{0<r<r1},

which concludes the argument. U

PROOF OF LEMMA 5.4. In the sequel, C denotes some positive constant that
will always be independent of i.

Letr; = x%ui(pi)*ﬁ. By (5.6), we have
ui (x) < Cui(pi) ™ dg (x. pi) ™" on B(pi. iry).
Thus, by isolated simplicity and the gradient estimate (5.4),

n-2 n—2

dg(X,Pi)%ui(x) < Cui(pi)~'r; 2 =Ci~ 2

1
in{ir; <dg(x,p;i) < ro}.

(5.8)

It thus follows, for some constant Cq > 0, that

Co —:45. .
S Ag, ) = 1< 25 77 indini < dg(x. pi) < ro}.

Letg = &2("_2) By Lemma 5.6, for all ¢;, b; > 0 the functions

@i (x) = aidg (x, pi)™ + bidg (x, p;) "2

satisfy for some sufficiently small r; € (0, rg) that

1 4 Co 4.
(5.9 f(A(Ag,)) = 2% "> 2,29 "2 in {0 < dg(x. p;) < r1}.

Fix some r1 > s > ir;. We choose a; = ajs := maxyp(p, .s) u;s? and b; =
bu;(p;)~? for some large » > 0 (which is independent of i) so that, in view of
(5.8), i = u; on dB(p;i,s) and on dB(p;,ir;). We then deduce from (5.8)—(5.9)
and the comparison principle that

(5.10) uj < g@;inf{ir; <dg(x, pi) <s}.

Recalling the isolated simplicity and the gradient estimate (5.4), we deduce from
(5.10) that

n—2
—q,.
N 2 al’s

n—>2 n—>2
=5 2 max u; <Cd.(x,p) 2 @;i(x
BB(ons) i = g( p) @i (x)

n—2__ _ _n—2
< Cajsdg(x,pi) 2 1+ Cui(p))Vdg(x, pi)~"2 T4
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 1593

in{ir; < dg(x, p;) < s}. Picking x € dB(p;,s/C) for some sufficiently large
C and noting that g < %, we deduce that a; s < Cu; (pi)0s—(n=2-24) which
gives

max u; = ajes”9 < Cui(pi) 572D,
dB(pi,s)

‘We have thus shown that there is some C > 1 so that
ui < Cui(p)) s> in {Ciry < dg(x. pi) <11}

Estimate (5.7) follows from the above inequality, the gradient estimate (5.4) (ap-
plied in the region {dg(x. p;) > ri}), and (5.8) (applied in the region {ir; <
dg(x. pi) < Cri}). 0
PROOF OF LEMMA 5.3. Letr; = %n%ui(pi)_n%z and
1
uj(r) = —/ Ui (x)dSg(x).
’ 0B (pis)lg JoB, (i) y

Suppose by contradiction that (H3) does not hold. Then, in view of (5.5), there
exist p; — 0, p; > ir; such that r%ﬁi (r) is decreasing in (2r;, p;) and

d

drlr=p,

Define amap V; : R” ~ 7}, (M, g) - M by

Wi (x) = expp, (i x).
and let
v;(x) = ,oin%2 u; o W;(x), xeR"
Then ¥; satisfies

(5.11) FA(AG, ) =Tin{lx] <8op; '},

where ﬁ,- = pizCD;"g and d¢ is the injectivity radius of (M, g). Note that {ﬁi}

converges in le’) .(R™) to the Euclidean metric g on R”. Clearly,

n—2 n—
(5.12) sup U = 0;(0) =p; > ui(pi) >i > S oo,
{IxI<80 71}

As {u;} is an isolated blowup sequence, we have

n—

sup  |x|"T0i = sup dg(x,p) T u; < C.
{\x\<50071} {dg(x,pi)<b0}

As {u;} has tame geometry, we also have for some 6 € [0, 1) that

. ~ 46 . _
(513)  [Ricqy,, () n,, < COi(0)7=2|x[*% in {|x| < 8o p; '}.
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1594 Y. Y. LI AND L. NGUYEN

Furthermore, if we let

1 ~
)= e / e oy TS )
then by the contradiction hypothesis,
(5.14) r%ﬁi (7) is decreasing in (2%11%2 U; (O)_H%Z, 1)
and
(5.15) % r:1(”%5i (r) = 0.

In effect, in view of (5.12)—(5.14), we have rescaled {u;} to obtain an isolated
simple blowup sequence of solutions to (5.11) that has tame geometry. We can
then follow the proof of Lemma 5.4 to show that, for any 8 € (0, 1),

a+hm-2 . . _
2 in {irip; 1< |x] < 1}.

(5.16)  Di(x) < C30;(0) % |x|”
Fix some e with |e| = 1. Define
1

— ;.
bie) '

~

v =

By (5.4), we have
IVEIn; (x)| < Clx| “in{0 < |x| < 8o p; '} forl = 1,2.
Hence, as v;(¢) = 1, {v;} converges, along a subsequence, in Ckl)’ca (R™) to some
positive function U € Clz)él (R™), which in view of (5.11) and (5.16) satisfies
MA§,;*) € al in R™ \ {0}.

By the Liouville theorem [37, theorem 1.18] and the classification result [42, theo-
rem 2.2], we have

n—2
n

U (x) = Us(|x]) = (C1]x|™™ + C2) 7
for some constants m > 0 and C1,Cy > 0 with C; + C, > 0. By (5.14), we

have that r%f)* (7) is decreasing in (0, 1) and so C; > 0. By (5.15), we have that
C2 = C]. So

(5.17) Ux(x) = Cu(Ix|7™ + 1)% for some Cy > 0.
On the other hand, by (5.13), we have
. ~ A 46 . _
[Ricqh,);, ()i, < COie)™20;(0)72 x> in {|x] < 8o o5 '}.

In view of (5.16), we have 3; (¢)D; (0)? — 0 asi — oco. This then implies (see [41,
sec. 3.1, step 6]) that
Ricg = 0in R™\ {0}.
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On the other hand, by (5.17), we have

2 n+2
o = — yn—2 o
Rg,;.* n_2v* Agv*7—é0
and have thus reached a contradiction. |

Upper bound for #; and proof of Theorem 5.1
The following lemma gives the sharp upper bound for u; away from ps.. Com-
pare Lemma 5.2.

LEMMA 5.7. Under the assumptions of Theorem 5.1, for every r € (0, ro/2), there
exists C = C(r) > | (independent of i ) such that, for all sufficiently large i,

ui(x) < C(rui(pi)~"in {ro/2 > dg(x, pi) > r}.

PROOF. Fix some r > 0. Suppose by contradiction that there exists {g;} C M
with rg/2 > dg(qi. pi) > r such that, along a subsequence,

ui(qi)ui(pi) — oo.

Consider the sequence

. 1
U = uj.
" ui(g)
We have 11;(g;) = 1, and by the first- and second-derivative estimates (5.4), {u; }
converges, along a subsequence, in Ckl)’c“ (Bg (Poo.3r0/4) \ {Poo}) to some positive

function ties € C\o2! (Bg(Poos 370/4) \ {Poc})- By (H2),

Ricg, lg, < Cui(gi) 2 max(l.ui(p)i 2dg (-, pi)*®) in Be(pi. ro).
On the other hand, by Lemma 5.4, we have that
ui(qi)ui(p,-)g —0asi — oo.
We claim that this implies o is smooth in Bg(peo, 370/4) \ {poo} and
(5.18) Ricg, = 0in Bg(poo,3ro/4) \ {Poo}-

Indeed, from the above, we have that

n+2
—Lgtt; = o(1)u)"~> in Bg(p;,3ro/4)
where o(1) denotes some function that goes to 0 uniformly as i — oco. The con-
vergence of 1; t0 1l then implies that 1, satisfies

—Lgiico = 00n Bg(poo, 370/4) \ { peo} in the weak sense.

Elliptic regularity theories then imply that 1, is smooth on M \ {pso}. We can
then follow [41, sec. 3.1, step 6] to obtain (5.18). The claim is proved.

Since —Lglioo = 01in Bg(Poo, 370/4)\{Poo}, We have tino (y) = aGp, +b(y)
for some constant @ > 0 and some function b smooth in Bg(peo.370/4), where
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1596 Y. Y. LI AND L. NGUYEN

Gp., is the Green’s function for the conformal Laplacian with pole at po. By
Lemma 5.3, a > 0. Note also that, by (H2),

n+2 40 .
~Lgu; = Kyu? and [K;| < € max(Loui (pi) "2 dg (- pi)*®) in By (pi. ro)-

We now follow an argument in [35] (see the equations (2.14)—(2.18) there) to reach
a contradiction. Indeed, multiplying the above equation by u;(¢;) ™! and integrat-
ing over a ball B, (p;,r1) with 0 < r; < ro, we get on one hand that

limsupui(qi)_I/ Leuidx < limsupui(qi)_I/ Agu; dx
Bg(pi,r1) Bg(pi,r1)

i—0 i—0

= / N (aGp )dS + 001 <0,
aBg(Poo;rl)

and on the other hand that, by Lemma 5.4 and for % <6 <1,
1 n+2
wia™ [ K dx
Be(pir1)

<u;i(gi)"

46 nt2
- f{d( oy (g dy
g (Pi,X)<xn=2iu;(p;) n—2
46—(n+2)6’

—1
+ui(qi)” ui(pi) 2

’
20— a+e ;(714“2)

, dg(x,pi) dx

/{rlzdg(p,-,x)zxnfziuf(p,-)n—2}
<ui(g) i (p)ro(1) — 0,

which amounts to a contradiction. O

PROOF OF THEOREM 5.1. By Lemma 5.7, {i{;} is bounded in
Coc(Bg(Poor70/2) \ {poo))-

By estimate (5.4), {ii;} converges along a subsequence in Cli(’;a(Bg (Poo-F0/2) \
{Poo}) to some positive function i € CI});I (Bg(Poo-70/2) \ {Poo}). Moreover,
the same argument giving (5.18) shows that loe € C®°(Bg(poo.70/2) \ {Poo})
and

Ag;;oo = 01in Bg(Poo-70/2) \ {Poo}-

We claim that
¢ = lim Uoo(X)dg (x, Poo)™ 2 exists and is positive.
dg (x,P00)—0

First, by Lemma 5.2,
c:= liminf foo(x)dg (X, poo)” 2

is finite and positive.
dg (X,P00)—0
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The claim is then proved by following step 4 in the proof of [41, theorem 1.3],
which we briefly outline here for readers’ convenience. By (5.4), this implies that

C:= limsup #oo(x)dg (X, poo)” 2 is finite and nonnegative.
dg(x,poc)—>0

Now if ¢ < ¢, then by performing a blowup argument at p~,, we would obtain a
function v € Cl’l(R” \ {0}) satisfying /'\(Ag;v) € dIy in R™ \ {0} and

loc
min ¥(x) < sup v(x),
Ix|=1 Ix|=1
which would contradict the symmetry result [37, theorem 1.18]. We conclude that

¢ = ¢ and so c¢ exists as desired; see [41] for details.
n+2k

By Corollary 5.5, the restriction of #/'~** oy (Agﬁi) t0 B(poo,r0/2) weakly*
converges to m, x8p., with (see also Proposition 5.10)

n—2k n+2k
my g = Up(0) =2 / U,"? dx.
The proof is complete. U

5.2 A divergence identity and its consequences

In this subsection, we present a divergence identity for the Newton tensors as-
sociated with the (1, 1)-Schouten tensor.

For a symmetric (1, 1)-tensor A4, the symmetric functions o¢(A4), ..., 0,(A) are
defined by

det(AI — A) = Y (=DFor(A)A"*.
k=0

(k)
It is clear that o, (A4) = o} (A(A)). The Newton tensors 7 (4),k =0,...,n—1,
of A are defined by

(k) i 0
(T () = ().

It is well-known that

(k) ‘ k-1 k-1
T'(A) =Y (=) o)A,

[=0
and, forO <k <n-—1,
(k)
(5.19) tr T (A) = (n — k)or (A),
(k+1) (k)
(5.20) T (A)=—-AT (A) + o1 (A1,

(5.21) (AT (A)) = (& + Do (A)
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(%)
In the sequel, for a given metric g, we use T (Ag) to denote the Newton tensors
of the (1, 1)-Schouten tensor A.

(k)
When g is locally conformally flat, it is well-known that 7" (Ag,) has a di-
vergence structure; see [54]. The following lemma gives a generalization of that
statement.

LEMMA 5.8. Let U be an n-dimensional manifold with or without boundary, g be
a smooth Riemannian metric on U, and let 0 < k < n—1. For any smooth positive
function u on U, we have

) .
V] Tjr(Agu)
2 Viur k. .
=~ 20T (Ag,) — (1= K)ok(Ag, )87 |
(5.22) n 1 a2

n—2
k-t @ ;
Y DO (A 2w Vi 4 ! ] (459
g=1

where V is the covariant derivative of g, and W and C are the Weyl and Cotton
tensors of g, and, for k = 0 or k = 1, the summation on the right-hand side is
trivial.

Remark 5.9. 1If we let V denote the covariant derivative of gu, then (5.22) is equiv-

alent to
—~ (k)].
V/ T r(Ag“)

1 n+2 k-1 (@) .
(5.23) = w2 Y (DT (4
g=1

n—2
2w VEu + uct ;)45 9

(k)
(In particular, if g is locally conformally flat or k = O or k = 1, T (Ag,) is
divergence-free with respect to g,.) Similarly, identity (5.25) below is equivalent
to

o~ ~ 1 _n+2
(520Vi4g)' = Vi Ag,) s = Ju =2 Wiyl Vou +

__4_ ]
u "—ZC]','.

n J—

. o 1, k=D s
In view of the identity ox (A) = ztr( T (A)A), the identities (5.23) and (5.24)
give a div-curl structure for the oy operator.

As an application of Lemma 5.8, we establish the following compensated com-
pactness result for the oz equation.
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PROPOSITION 5.10. Let U be a compact n-dimensional manifold with or without
boundary, g be a smooth Riemannian metric on U, and let 1 < k < n. Sup-
pose {u;} is a sequence of smooth positive functions on U which converges in
CY*(U, g) for some 0 < a < 1 and weakly in W2k(U, g) to some positive func-
tionu € CY%(U, g) N W2K(U, g). Then, for all ¢ € C°(U) satisfying ¢ = 0 on
au,

lim [ 0 (Ag, e dvg = [ o134, e du

Jj—00

COROLLARY 5.11. Under the assumptions of Proposition 5.10, one has for all
y € Rand ¢ € C%(U) satisfying ¢ = 0 on dU that

lim Uu}’(rk(k(Aguj))(pdvg:/;]uyok(k(/lgu))godvg.

j—o0

) . . 2
PROOF OF LEMMA 5.8. It is more convenient to work with w = ¥~ »—2 so that
the (1, 1)-Schouten tensor of g, = w™2g is given by

. . 1 . .
(Aw)'j = wV'Vjw — S| Vwlg 8 + w4’

where A = Ay is the (1, 1)-Schouten tensor of g.

In the proof, indices are lowered and raised using g.

Fix a point p and let {x!, ..., x"} be a geodesic normal coordinate system at p.
In particular, T’ilj (p) = 0. The following computation is done at p.

First, we have

Vi(Aw)'j = Vj(Aw)'i
= ViwV!Viw — V;wV! Viw — Vigw VSw §'; 4+ Vjsw Vw8,

1
+ wRiem,-jls Viw + 2w(V,~w Alj —Vjw Alj) + —2w2Clj,-
n J—

1
= —[Viw (Aw)j = Viw (Aw)'i — Vow(Aw)*i 81 + Vew(Aw)®; 8]

(5.25)

1
+wW,~,~lssz+ wZCl;'i,
where Riem is the Riemann curvature tensor of g and where we have used the Ricci
decomposition Riemijls = —Aljgis + Al,-gjs - A,-SSIJ' + Ajsc?l,- + W,-jls.
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Using (5.19), (5.20), and (5.25), we compute

(k+1) .
Vj T ]r(Aw)

5.20 k) . (F
( = ) _vj T jl(Aw)(Aw)lr - T jl(Aw)[vj (Aw)lr - Vr(Aw)lj]
(5.25) *) .
="V T 1(Aw) (A
(k) . 1
= T/ 1(Aw) —[Vjw (Aw)'r = Vrw (4w)';
(5.26) = Vsw(dw)’; 8 + Vow(Aw)’, 5]
1
+w erls Viw + njwz Clrj}
(5.19)
5.20 (k) . k+1
C2) VT 1(Aw)(A) s + eV wop 41 (Ay)
n—k
i Vswoy (Aw)(Aw)’r
(k) . 1
—wT ]I(Aw)|:VerlS Viw + mu} Clrji|.
Identity (5.22) then follows from an induction on k£ using (5.26). 0

PROOF OF PROPOSITION 5.10. The result is clear for k = 1. Suppose that
2<k<n.
Using a partition of unity if necessary, we may assume for simplicity that U is

contained in a single chart.

© ©
Let A; and A denote the (1, I)-Schouten tensor of g;,; and gy, and 7'; and T

denote the £™ Newton tensor of 4; or 4, respectively.
By the hypotheses, A; converges weakly in LK(U, g) to A. Also, for1 < £ <

O . : kL : k/t
k —1,{T;} is bounded in L (U, g) and so converges weakly in L*¥/£(U, g) to

&)
some 7 .

®) ©®)
We first show that T o = 7 for 1 < £ < k — 1 by an induction on £. For

£ = 1, the assertion holds due to the weak convergence of A; to A. Assume that the
assertion holds for some £ < k — 2. Recall that, by Lemma 5.8, the divergence of

©
each column of T ; is bounded in LK/t (U, g), and by (5.25), the curl of each row of
Aj is bounded in Lk (U, g). An application of the div-curl lemma [46] then implies
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@ O
that {A; T j} converges to A T in the sense of distribution. In view of (5.20)-

o ¢+ +1) o
(5.21), this implies that { 7 ;} converges to 7T in the sense of distribution,

“+1) £+1)
from which we conclude that 0o = .
. (k—1) (k—1)
The argument above in fact also shows that {4; 7 ;} convergesto A 7T in

the sense of distribution. By (5.21), this implies that {03 (4;)} converges to o (A)
in the sense of distribution. Recalling that {o%(4;)} is bounded in L1(U, g), we
are done. g

Appendix A Smooth Concave Defining Functions of Cones

In this appendix, we construct for every given " satisfying (1.2)—(1.3) a function
f satisfying (1.4)—(1.5), which was used in the proof of Theorem 1.2(i).

PROPOSITION A.1. Let I' satisfy (1.2)~(1.3). Then there exists a concave function
f e C®(T") N C(T) satisfying (1.4)—(1.5). If in addition (1,0,...,0) € T, then
there exists v € (0, 1) such that

af

af ,
(A.1) a—M(A)ZvZWj(A)foralll =1,....,nand A € I.

We note that condition (A.1) is related to the strict ellipticity of equation (5.1).

PROOF. If I' = I'y, the result is obvious. We assume that [' £ I';. Then the set
Qr =IN{A:[A]:= A1 +...+ A, = 1} isbounded and convex. It is well-known
that Qr admits a concave defining function / such that # > 0 in Qr and 2 = 0 on
IQr (see, e.g., [25, sec. 2.1]). Furthermore, 4 can be chosen in C*(Qr) N C(Qr)
(see, e.g., [11, theorem 7]). (In fact, one can have i € Cﬂ(S_Zp) with § = % if
n>3and 0 < B < 1ifn = 2, but this is not needed in the present argument;
see [6, lemma 1].)

By considering

h(x) = > h(x).
X is a permutation of A

instead of /1, we can assume without loss of generality that / is symmetric.
Let Vr denote the gradient on Q1. Observe that for x € Qr and py € Q2r, the
concavity of & implies that

(A.2) h(x) = Vrh(x) - (x — po) = h(po) = 0.
Let

any number in (0, 1) if (1,0,...,0) € 9T,
1 if (1,0,...,0) e I,
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1602 Y. Y. LI AND L. NGUYEN

and g = h“%. By (A.2), we have

(A3) g(x) = Vrg(x) - (x — po) = h(x)*~'[h(x) —a Vrh(x) - (x — po)]
' > h(x)® (1 —a)h(x) + ah(po)] for any x € Qr and pg € Qr.

Note that the right-hand side of (A.3) is nonnegative and is zero if and only if &« = 1
(e, (1,0,...,0) e M and pg € IQT.
Define f by

A
)= a4t xn)g(m).

We now show that d; f > O and f is concave in I'.

Let

A
2= A et A d)y = =—.
[A] 1+ + A, an ]

We compute
§ii[A]—A;
difA) =gR) +[A]djg) L5
'4)lf( ) =g@) +[A]9jg(1) e
=g(\) +3ig(M) —3;g(A)A; = gA) = Vrg(A) - (V' = p'),
where p! = 8%. Since I' D Ty, it follows that p' € Qr. Hence, by (A.3),

(A

(A.5) i fFA) > h(A)* (1 — a)h(A) + ah(p")] in T.

If (1,0,...,0) € 9I', then @ € (0, 1), and so the right-hand side of (A.5) is larger
or equal to (1 — a)h(A)* > 0. If (1,0,...,0) € T, then p' € Qr and so the
right-hand side of (A.5) is larger or equal to £(A)*~1h(p?) > 0. In either case, we
have

3 f(A) > 0in T.

To prove the concavity of f, we calculate its Hessian. We have

8 1A] — A 81 T4 — A
[A19ij f(A) = akg(k’)% n 8ki§(”)%
g Ay gy 2 A

[A] [A]
= 3;78(X) — O gW)AY — 9158 (M) + O g (W) AR A
Hence, for any p € R”, we have
[A10i; f(A) pi pj = 0i;g(A) pi pj — Okig(A)A} pi pj
—31;8(A)A pipj 4 dk1g (WAL A pi pj
= 8 ¢(A)pipj — 20k €A pilp] + 1&g W)Ap A [p)?
= 358\ ) (pi — X [pD(p; — A;[p]) <0,
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where we have used V%g <0 e Qr. AsI' ¢ I't, [A] > 0in I'. Therefore,
V2f <0inT;ie., f isconcaveinI.
Finally, assume that (1,0,...,0) is in ['; we show that (A.1) holds. For any
x € Qr, define Ly : Qr — R by
Lx(p) = g(x) = Vrg(x) - (x = p) = h(x) = Vrh(x) - (x = p), p€Qr.
Note that L is a linear function, and hence is harmonic with respect to the metric
induced on Qr by the Euclidean metric on R”. Furthermore, by (A.2), Ly is
positive in Qr. Since all p!,..., p” € Qr, it follows from the Harnack inequality
that there is some constant C depending only on Q1 such that
Le(p') < CLy(p/)forallx € Qr,1<i <j <n.
Recalling (A.4), we obtain that
0<0if(A)<Cojf(A)forallel'1<i<j<n,
which implies (A.1). O

PROPOSITION A.2. Let I satisfy (1.2)—=(1.3). If (1,0,...,0) € 9T, then there is
no function f € C®(I') N C(I") satisfying simultaneously (1.4)—(1.6) and (A.1).

PROOF. Suppose by contradiction that there is some f € C°(TI") N C(T) sat-
isfying simultaneously (1.4)—(1.6) and (A.1). By (1.5) and (A.1), it follows that
there is some constant C > 0 such that

(A.6) 0<9;f(A) <Ca; f(A) forallA el 1 <i,j<n.
Let Qr = T N{A : [A] := A1 + ...+ A, = 1} and V7 denote the gradient
on Qr. Then Qr is bounded and convex and & := f|q, is a positive concave

defining function for Q.
We write [A\] = Ay +---+ Ay, and A/ = [i—] Then with pj’- = 8;- (see (A.4)),

(A7) i f(A) = h(X) = Vrh(X) - (X' = p").

For any x € Qr, define Ly : Qr — R by

Lx(p) = h(x) = Vrh(x) - (x — p) = h{x) = Vrh(x)- (x —p) p€Qr.
By (A.6)—-(A.7), we have that

0< Le(p') <CLx(p/)forallx € Qr,1<i,j <n.
In particular, since Ly is a linear function, we have that
0 < Ly(p) <CLx(q)forall x € Qr, p,q € Q.
n

where Q, C Qr is the interior of the convex hull of the points p!,..., p”.
particular, we have

0< Lx(%(l, D)= Lx(%(pl + ...+ p”)) < CLx(x)

=cg(x) forall x € 2,.

In

(A.8)
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1604 Y. Y. LI AND L. NGUYEN

On the other hand, by the concavity of /2 on Qr and the definition of L, we have
Lx(p) = h(p) forall x, p € Qr.

It follows that Lx(3(1,....1)) = h(3(1,....1)) > 0. Returning to (A.8), we
obtain

1
0< h(—(l, cee, 1)) < ch(x) forall x € Q,.
n

Sending x — p! for example, this implies that

1
0<h(—(l,...,l)) <0,
n

which is absurd. The proposition is proved. O

Appendix B Convexity of Sets of Symmetric Matrices
and Sets of Eigenvalues

We give a presumably well-known statement on eigenvalues of sums of matrices
which is used in the body of the paper.

LEMMA B.1. Let G C R" be a symmetric subset of R" and U C Sym™*" be the
set of real symmetric n X n matrices whose eigenvalues belong to G. Then G is
convex if and only if U is convex.

PROOF. It is clear that G is convex if U is convex. To prove the converse, it
suffices to show that, for any symmetric matrices A and B with eigenvalues u and
v, respectively, the eigenvalues w of %(A + B) belongs to the convex hull of the
set X consisting of the permutations of # and v.

Note that there exist orthogonal matrices P and Q such that

1 & .
(B.1) wi = EZ(PI% wj + QFvj)., i=12,....n
=1

Consider the matrix S defined by S;; = P;. As P is orthogonal, S is doubly
stochastic (i.e., the entries of S are nonnegative and each of its rows and columns
sums to 1), and hence by the Birkhoff—von Neumann theorem, S is a linear combi-
nation of permutation matrices. It follows that the vector Su belongs to the convex
hull of the permutations of u.

Noting that (Su); = > i Pii. u;, we deduce from the foregoing paragraph and
(B.1) that w belongs to the convex hull of X, as desired. O
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