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Abstract
For a given finite subset of a compact Riemannian manifold whose
Schouten curvature tensor belongs to a given cone, we establish a necessary and
sufficient condition for the existence and uniqueness of a conformal metric on

such that each point of corresponds to an asymptotically flat end and
that the Schouten tensor of the conformal metric belongs to the boundary of the
given cone. As a by-product, we define a purely local notion of Ricci lower
bounds for continuous metrics that are conformal to smooth metrics and prove a
corresponding volume comparison theorem. © 2022 The Authors. Communica-
tions on Pure and Applied Mathematics published by Wiley Periodicals LLC.
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1 Introduction
Let be a compact Riemannian manifold of dimension . It is well-

known that if the scalar curvature is positive, then the conformal Laplacian
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operator has a unique positive Green’s function
with pole at a given point such that

(1.1) on

where is the Dirac measure centered at . At the leading order, the singularity
of at is the same as that of the Green’s function for the Laplacian on ,

Here is the distance function with respect to .
The purpose of the present paper is to establish the existence, the nonexistence,

and uniqueness of (generalized) Green’s functions when the conformal Laplacian
in (1.1) is replaced by other nonlinear operators arising in conformal geometry.

Let Ric , , and denote, respectively, the Ricci curvature, the scalar cur-
vature, and the Schouten tensor of ,

Ric

and let denote the eigenvalues of with respect to . For
a positive smooth function , let . We have

We are interested in constructing solutions to the equation

and away from a given finite number of points in

where
is an open convex symmetric cone with vertex

at the origin(1.2)

satisfying

(1.3)

Standard examples of such cones are the cones, ,

for

where is the th elementary symmetric function
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Y. Y. LI AND L. NGUYEN1556  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 3

Note that, under (1.2)–(1.3), there exists a function satisfying (see Proposition
A.1 in Appendix A)

is homogeneous of degree one
and symmetric in ,

(1.4)

in on
in(1.5)

is concave in(1.6)

The partial differential relation can thus be re-expressed in a more
familiar form

We adopt the following definition.

DEFINITION 1.1. Assume and let be distinct points of and
be positive numbers. A function is called

a Green’s function for with poles and with strengths if
satisfies

and in(1.7)

lim(1.8)

In the above definition, (1.7) is understood in the viscosity sense; see, e.g., [37]
for the definition. It follows that if is , then satisfies (1.7) in the classical
sense, and if , then satisfies (1.7) almost everywhere; see, e.g., [44,
lemma 2.5].

It should be clear that when , the solution to (1.7)–(1.8) is given uniquely
as a linear combination of Green’s functions for the conformal Laplacian with poles
at , namely .

It was known that when is conformal to the standard sphere and ,
there exists a unique Green’s function for every given pole and strength. In the
case and , this was proved in Chang, Gursky, and Yang [9] under

regularity. For general cones in any dimension, this was proved in Li [36,37]
under regularity and in a joint work of the authors with Wang [43] under

regularity. In fact, in this particular case the asymptotic condition (1.8) is not
needed; it follows from these works that solutions to (1.7) satisfy (1.8) for some
positive constant .

We note that, by (1.2)–(1.3), equation (1.7) is degenerate elliptic. Furthermore,
it is not locally strictly elliptic if .

The motivation to consider Green’s functions as in Definition 1.1 comes from
the study of the -Yamabe problem

(1.9) in

This problem was first studied by Viaclovsky [54]. An important aspect in the study
of (1.9) is to understand if the set of solutions to (1.9) is compact, say in , when
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 15574 Y. Y. LI AND L. NGUYEN

is not conformally equivalent to the standard sphere. This compactness
property of the solution set has been established when and [8], or

is locally conformally flat [38], or [23], or [41]. (For
related works in the case , see also [51].)

The case remains a major open problem. The role that Green’s
functions play in this context lies in the expectation that, under suitable condi-
tions on , appropriately rescaled blowup solutions to (1.9) converges along
a subsequence to a Green’s function for . Whether this scenario holds for all
manifolds and all remains to be understood. For this reason,
we believe that understanding the existence of Green’s functions as well as up-to-
second-order estimates near the punctures for them (and rescaled solutions to (1.9)
which are close to some Green’s function) will be extremely desirable.

As introduced in Li and Nguyen [42], let

be the unique number such that

It is known that .
For example, when , . In particular, if and only if

and for . It is known that there is a distinctive difference
between the cases , , and ; see, e.g., Chang, Gursky, and
Yang [9], Guan, Viaclovsky, and Wang [21], and Viaclovsky [54]. Likewise, for
general cones , the differential inclusion is sensitive to whether
is larger, smaller, or equal to ; see [42]. The existence of Green’s functions is also
influenced by ; namely, we show that they exist if and only if unless

is conformal to the standard sphere and . We also prove that Green’s
functions, if they exist, are unique. We would like to remark that the uniqueness is
not straightforward, in light of the known failure of the strong maximum principle
for (1.7); cf. Li and Nirenberg [45].

THEOREM 1.2 (Necessary and sufficient condition for existence and uniqueness).
Let be an -dimensional smooth compact Riemannian manifold with .
Assume that satisfies (1.2) and (1.3) and that in . Let

be a nonempty finite subset of distinct points of and
.

(i) If , then there exists a unique Green’s function loc
for with poles and with strengths . Furthermore,

belongs to loc .
(ii) If , Green’s functions for with poles and strengths exist if and

only if is conformal to the standard sphere and .

In Section 5, we give a preliminary result demonstrating how Green’s functions
may show up in the study of blowup sequences for nonlinear Yamabe problems.

We list here some additional useful properties of the Green’s function obtained
in Theorem 1.2 when and for given and .
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Y. Y. LI AND L. NGUYEN1558  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 5

(a) The Green’s function is the minimum of the set of all functions in
loc that satisfy

and in

lim

See Step 2 in Section 4.4.
(b) The metric is an asymptotically flat metric on : There

exists a diffeomorphism from a punctured neighborhood of each into
the exterior of a ball in the Euclidean space such that relative to the local
coordinate functions one has

where is any number in ; see Remark 4.3.
(c) As a consequence of (a), Green’s functions depend monotonically on .

More precisely, if and is the corresponding Green’s function
for with the same poles and the same strengths, then . Similarly,
the monotonicity of Green’s functions with respect to the strengths ’s also
holds.

(d) There holds , where is the Green’s func-
tion for the conformal Laplacian with pole at .

The existence part in Theorem 1.2 is proved by a suitable elliptic regulariza-
tion, since equation (1.7) is genuinely degenerate elliptic. To solve the regularized
equations as well as to show that the obtained solutions converge to a solution
of (1.7)–(1.8), we construct suitable upper and lower barriers. Furthermore, our
procedure allows us to construct smooth strict sub- and supersolutions of (1.7) that
approximate the solution which we obtained. The uniqueness part then follows
from a standard comparison principle argument.

1.1 Lower Ricci bounds for continuous and conformally smooth metrics
The nonexistence of smooth Green’s functions when and is not

conformally equivalent to the standard sphere is a consequence of the rigidity of
Bishop-Gromov’s relative volume comparison theorem and the fact that

with implies Ric . In order to prove our result, we need a version
of relative volume comparison theorems for continuous metrics.

When with (so that ), it was proved in the work
of Gursky and Viaclovsky [23] that Bishop-Gromov’s relative volume comparison
theorem (including its rigidity) holds for metrics loc where is the loc
limit of a sequence of smooth functions that are bounded in loc and satisfy

.
Our treatment for Bishop-Gromov’s relative volume comparison theorem is dif-

ferent from [23]. Note that our definition of Green’s functions only gives the
continuity of the metric . We exploit the fact that metrics of interest to us are
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 15596 Y. Y. LI AND L. NGUYEN

conformal to smooth metrics. For this class of metrics, we can define a notion of
(purely local) lower Ricci curvature bounds in the sense of viscosity; see Defini-
tion 2.1. This is naturally coherent with the notion of viscosity (super-)solutions for
(1.7). We establish the following purely local relative volume comparison theorem
(see Section 2 for terminologies):

THEOREM 1.3 (Relative volume comparison). Let be a smooth complete
Riemannian manifold of dimension , loc , and be a constant.
Suppose Ric in some ball centered at and of
radius with respect to the metric in the viscosity sense. If ,
suppose further that . Then, for , the function

Vol

is a nonincreasing function, where is the volume of a ball of radius in
the simply connected constant curvature space form .

In addition, if it holds for some and (and if )
that Vol , then is smooth in and

is isometric to a ball of radius in the simply connected constant
curvature space form .

It would be interesting to relate our notion of lower Ricci bounds in the viscos-
ity sense to notions of lower Ricci bounds related to Bakry-Émery inequalities or
convexity of entropies. For the latter, see Ambrosio [1] and the references therein.

1.2 Asymptotics of Green’s functions
It is well-known, in the case of the scalar curvature, that the Green’s function
can arise as the limit of a suitably rescaled blowup sequence of solutions to the

Yamabe problem. This limit object has an asymptotic expansion near (cf. Lee
and Parker [32]) which contains local as well as global geometric information about

. In particular, in a conformal normal coordinate system at , when
or when the Weyl tensor of vanishes suitably fast near , we have

In such case, the metric is asymptotically flat and scalar flat on
and its ADM mass (see [3]) is, up to a dimensional constant, the constant in the
above expansion. The positivity of the ADM mass plays an important role in the
resolution of the compactness problem for the Yamabe problem (see Brendle and
Marques [4], Khuri, Marques, and Schoen [28], and the references therein) and
more generally in the study of scalar curvature.

It is therefore of interest to study Green’s functions and their asymptotic behav-
iors in the current fully nonlinear setting, and, in particular, to understand what
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Y. Y. LI AND L. NGUYEN1560  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 7

geometric information they encode. The following result gives a first step in this
direction. Since its proof is of different nature than what is being discussed in this
paper, it will appear elsewhere.

THEOREM 1.4 (Estimates for Green’s functions). Let be an -dimensional
smooth compact Riemannian manifold with . Assume that satisfies (1.2)
and (1.3), and that in . Let be a
nonempty finite subset of distinct points of and , and

loc be the Green’s function for with poles and with strengths
. Then loc , and there exist constants , , and

such that, for and , there holds

(1.10)

(1.11)

and

If it holds in addition that , then

(1.12)

It would be interesting to see if estimate (1.12) holds for all cones (with
), or at least for with . It is readily seen that the metric

is asymptotically flat. If estimates (1.10)–(1.11) and (1.12) hold for
for some , then it can be shown that has a well-defined -mass (see
Li and Nguyen [40] and Ge, Wang, and Wu [17]). It is of much interest to study
whether a generalized mass (as in [17, 40] or a variant of such) can be defined
for (including the case ), what role it plays, or whether it enjoys a
similar positive mass result, etc. (Note that, when is locally conformally
flat and not conformally equivalent to the standard sphere, the positivity of mass
is a consequence of [42, theorem 1.2]. See also [18] when is conformally
flat.)

In a sense, the gradient and Hessian estimates in Theorem 1.4 can be viewed
as ones for “the linearized equation” of (1.7) near the fundamental solution. We
believe that these estimates and their analogues for solutions to (1.9) that are close
to the fundamental solution, if held, should be of importance in understanding
compactness issues for (1.9).

Similar notions of Green’s functions for fully nonlinear elliptic Hessian-type
equations have been studied in the literature; see e.g. Armstrong, Sirakov and
Smart [2], Harvey and Lawson [24], Jin and Xiong [26], Jörgens [27], Labutin
[30], Trudinger and Wang [50]. We mention here a recent paper by Esposito and
Malchiodi [13] where a related result was established in a context involving log-
determinant functionals.

We conclude the introduction with the following question:
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Question 1.5. Is the loc viscosity solution to (1.7)–(1.8) constructed in Theorem
1.2 smooth in a punctured neighborhood of the , at least for ?

This question is motivated by a result of Lempert [33], which asserts that for any
strictly convex and analytically bounded , any real analytic ,
and any , there exists such that for all there exists
a unique solution, real analytic in and pluri-subharmonic in , to the
degenerate complex Monge-Ampère problem in ,

ln , and on .
The rest of the paper is structured as follows. In Section 2, we define a suitable

notion of lower Ricci curvature bounds for continuous metrics that are conformal to
smooth metrics and prove a version of Bishop-Gromov’s relative volume compari-
son theorem for these metrics. In Section 3, we use the relative volume comparison
theorem to prove part (ii) of Theorem 1.2. The proof of part (i) of Theorem 1.2 is
then carried out in Section 4. Section 5 is devoted to a result illustrating the rele-
vance of Green’s functions in the study of nonlinear Yamabe problems. The paper
also includes two appendices, one on the construction of a concave function whose
zeroth-level set is and another one on the convexity of the set of eigenvalues of
matrices belonging to a convex set.

2 Lower Ricci Bounds for Continuous and Conformally Smooth
Metrics and Volume Comparison

In this section, we introduce a notion of lower Ricci bounds in the viscosity
sense for continuous metrics that are conformal to smooth metrics. We establish
Theorem 1.3, a version of Bishop-Gromov’s relative comparison theorem. This
will be used to prove statement (ii) in Theorem 1.2, i.e., the nonexistence of solu-
tions to (1.7)–(1.8) when .

It is instructive to note the fact that if is a smooth metric and is a smooth
function, then a bound for the Ricci tensor of the conformal metric translates
to a second order, although nonlinear, partial differential inequality for the function

. One can thus define the notion of a lower Ricci curvature bound for when
is merely continuous in the viscosity sense, as one does for nonlinear second-

order elliptic equations. See Definition 2.1.
A nice feature of this way of defining lower Ricci curvature bounds is that if

a metric has a lower Ricci curvature bound, then it can be approximated by lo-
cally Lipchitz metrics that also satisfy related lower Ricci curvature bounds. See
Proposition 2.4.

We then proceed to approximate locally Lipschitz metrics with lower Ricci cur-
vature bounds by smooth metrics. While it is desirable to keep a pointwise lower
Ricci curvature bound for the approximants, we are content with keeping a suitable
integral lower Ricci curvature bound. See Proposition 2.6. The relative volume
comparison is then drawn from results of Peterson and Wei [47, 48] and Wei [56]
on smooth metrics of integral lower Ricci curvature bounds.
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Y. Y. LI AND L. NGUYEN1562  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 9

Last but not least, a subtle point in the proof of the rigidity of relative volume
comparison is to prove that the metric space isometry between the given continuous
metric and the corresponding constant curvature metric is a smooth Riemannian
isometry with respect to the given smooth structure. We again exploit the fact that
the given continuous metric is conformal to a smooth metric and show that the
isometry in fact satisfies the -Laplacian equation, which is the Euler-Lagrange
equation of a conformally invariant functional. We then appeal to the regularity
theory for the -Laplacian to reach the conclusion.

2.1 Two notions of Ricci lower bounds
Assume that is a smooth metric on a smooth (compact or noncompact) mani-

fold of dimension , and is a continuous function defined on an open
subset . Let us first start by defining what we mean by a lower Ricci bound
for .

DEFINITION 2.1. Let and be continuous functions defined on an open subset
of a smooth Riemannian manifold . We say that Ric

in the viscosity sense in if, for every and for every such that
and in a neighborhood of , one has

Ric is nonnegative definite

It is clear that Ric in the viscosity sense if and only if, for
any continuous nonnegative definite -tensor defined on , it holds that

Ric tr

tr Ric
tr

in the usual viscosity sense. In addition, if is and satisfies Ric
in the viscosity sense, then Ric in the classical sense.

If is Lipschitz-continuous, the quadratic term in the expression for Ric
is integrable. This motivates the following definition.

DEFINITION 2.2. Let be a continuous function and be a locally Lipschitz
function defined on an open subset of a smooth Riemannian manifold .
We say that Ric in the weak sense in if, for every smooth
compactly supported nonnegative definite -tensor defined on , there holds

tr

tr Ric

tr

(2.1)
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 156310 Y. Y. LI AND L. NGUYEN

We will prove later that if is Lipschitz and if Ric in the
viscosity sense, then Ric in the weak sense; see Proposition 2.5.

One key property concerning metrics with lower Ricci bounds in the viscosity
sense that we will establish is the following result. Roughly speaking, every con-
tinuous metric whose Ricci curvature is bounded from below in the viscosity
sense can be approximated by smooth conformal metrics whose Ricci curva-
tures are bounded from below in the -sense for all . More precisely,
we prove the following:

PROPOSITION 2.3. Let be a bounded open subset of and such
that Ric in the viscosity sense in . Then there exists a sequence
of functions that converges locally uniformly to such that, for
any and open ,

lim max Ric

where Ric is the smallest eigenvalue of Ric with respect to
.

PROOF. This is an immediate consequence of Propositions 2.4 and 2.6 below
concerning the stability of our notion of Ricci lower bounds under two different
regularization processes: the inf-convolution and the convolution against a kernel.

!
2.2 Stability of Ricci lower bounds under inf-convolutions

In this section, we prove that every continuous metric whose Ricci curva-
ture is bounded from below in the viscosity sense can be approximated by Lipschitz
conformal metrics whose Ricci curvatures are also bounded from below in
the viscosity sense. We prove:

PROPOSITION 2.4. Let be a smooth complete Riemannian manifold. Let
be a bounded open subset of and be such that Ric

in the viscosity sense in . Then, for all sufficiently small , there
exist functions loc that are locally semiconcave and
such that Ric in in the viscosity sense, in ,
and in loc as .

We will use inf-convolutions to regularize. Let be a bounded open subset
of . For and small , we define

inf

where denotes the distance function of . We note that satisfies the following
properties; see, e.g., [7, chap. 5] or [43, sec. 2].

(i) is monotonic in and uniformly as .
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Y. Y. LI AND L. NGUYEN1564  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 11

(ii) is punctually second-order differentiable (see, e.g., [7] for a definition)
almost everywhere in and a.e. in .

(iii) For any , there exists such that

(2.2)

(iv) For any nonempty open subset of , there holds

sup min a.e. in

(v) If for all and for some nonneg-
ative continuous nondecreasing function satisfying

, then

(2.3) sup

PROOF OF PROPOSITION 2.4. Since is compact, it is enough to consider the
case that is contained in a single chart of . Fix a compact subset of and
a point . We will prove that for every such that in a
neighborhood of and , it holds that

(2.4) Ric

where here and below denotes some constant that depends only on ,
, dist , and the moduli of continuity of and on such that

as .
By the definition of , for all . Thus, for

close to ,

Now if is defined as in (2.2) and if is a map on a neighborhood
of into such that , then

near and

Hence, as Ric in the viscosity sense, we have that

(2.5) Ric

We will deduce (2.4) from (2.5) by a judicious choice of .
For expository purposes and to motivate our later argument, let us first present

the case where is a Euclidean domain and is the Euclidean metric. The general
case will be treated subsequently.

When is the Euclidean metric,

Ric Id Id
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 156512 Y. Y. LI AND L. NGUYEN

Now let

so that and . Estimate (2.4) is therefore
readily seen from (2.5) and (2.3).

Let us now turn to the case when is a general Riemannian metric. The proof
above uses strongly the fact that, when is Euclidean, the tangent and cotan-
gent spaces of at and can be naturally identified, and this identification
does not interfere with the equation. This has the advantage that in our choice of
the function , the -dependent contribution in the test function is a constant. In
the general setting, special care must be given.

An inspection leads to the following choice of :

exp exp

where and is the parallel transport map
along the (unique) minimizing geodesic connecting to . The map
translates a neighborhood of to that of along the geodesic .

By the first- and second-variation formulae for length (see, e.g., [16, theorems
3.31 and 3.34]), we have that

exp exp

exp exp for small

Hence

exp exp

and so

exp exp

Loosely speaking, this means that the -dependent contribution in the test function
is constant up to a super-quadratic error. (In fact, the choice of that ensures

this property is unique up to quadratic terms in the Taylor expansion of around
.) We hence obtain

(2.6)

(2.7)

Now, recall from (2.5) that

Ric

 10970312, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22044 by R

utgers U
niversity Libraries, W

iley O
nline Library on [09/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Y. Y. LI AND L. NGUYEN1566  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 13

Using (2.6), (2.7), and the fact that the transformation (from
to ) is length preserving, we obtain

Ric

Recalling (2.3), we obtain (2.4), which concludes the proof. !
2.3 Viscosity Ricci lower bounds imply weak Ricci lower bounds for Lipschitz

conformal factors
In this subsection, we prove the following:

PROPOSITION 2.5. Let and be as in Proposition 2.4. Assume that

loc and . If Ric holds in the viscosity sense in
, then it holds in the weak sense.

PROOF. Without loss of generality, we can assume that is bounded, is
smooth, , and . Furthermore, by using Proposition 2.4,
we may further assume that is almost everywhere punctually second-order dif-
ferentiable and that a.e. in .

We will establish (2.1) for an arbitrary smooth -tensor defined on such
that on . Writing for a suitable partition of unity if
necessary, it suffices to consider the case that is contained in a single chart.
Furthermore, by considering (instead of ) for all sufficiently small

and some satisfying in and on , we may
assume that is positive definite in .

Set tr and

tr

Ric tr

We note that is positive definite in . Since the subdifferential map of a
convex function has a closed graph (see, e.g., [49, theorem 24.4]) and is single-
valued almost everywhere in its domain, we can, without loss of generality, identify

with its lower semicontinuous representative.
To prove (2.1), we show that

(2.8) in in the weak sense.

Step 1. We start with showing a comparison principle for . For a subdomain
with smooth boundary , let be the solution to

in

subjected to the Dirichlet boundary condition on . We claim that
in .
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Indeed, since is lower semicontinuous, there exists a sequence of smooth func-
tions which converges pointwise to as . Let solve

in on

To prove the claim it suffices to show that inf . Assume by
contradiction that . Pick some small for the moment and let

and be the convex envelope of max .
By the Alexandrov-Bakelman-Pucci estimate [7, Lemma 3.5] (which applies since

is semi-concave and is contained in a single chart), the set has
nonempty measure. Thus there is a point in this set where is punctually
second order differentiable and

(2.9) and

where denotes the partial derivatives and is independent of . At this point,
is punctually second order differentiable and so

Ric

which implies

In view of (2.9), this implies that

provided is chosen sufficiently small. This contradicts the definition of . The
claim is proved.

Step 2. We now proceed to prove (2.8). Fix a sequence of smooth functions
which converges uniformly to in and satisfies in .

Fix some subdomain with smooth boundary . Let be the solution to
the (obstacle) variational problem

min in

It is well known that the minimizer to the above problem exists uniquely and
satisfies

in the weak sense in
and

in the weak sense in
Hence, by Step 1, we have

in
Consequently, by the uniform convergence of to , we have that converges
uniformly to on and so in the weak sense in . Since is arbitrary,
we have thus proved (2.8). !
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2.4 Stability of Ricci lower bounds under convolutions
against a smooth kernel

We have seen above that the inf-convolution “preserves” Ricci lower bounds and
improves the regularity of conformal factors from continuity to Lipschitz continu-
ity. In this subsection, we are concerned with approximations with better regularity.

Throughout this subsection, we assume that loc unless otherwise
stated.

Let be an even smooth function of compact support such that

and define . A smoothing of is then obtained by con-
volution against :

for

Noting that

(2.10) in loc

we see that in loc for any and a.e. in .
The following result establishes the stability of pointwise Ricci lower bounds

for conformal metrics. The stability we obtain is an integral stability, which
suffices for our purpose.

PROPOSITION 2.6. Let and be as in Proposition 2.4. Assume that

loc , , and Ric in the viscosity sense in . Then,
for any and open , the smallest eigenvalue Ric of
Ric with respect to satisfies

lim max Ric

In addition, if , then, for all sufficiently small , there exists
(which possibly depends on , , and ) such that Ric

in and as .

The very rough idea of the proof is as follows. Ignoring lower derivatives, one
can roughly think of a lower bound for Ric as a requirement that the Hes-
sian of belongs to a certain convex subset in the bundle of symmetric -
tensors. The convolution is in fact an averaging process and thus, in principle, pre-
serves such convexity. For example, Greene and Wu showed in [19, prop. 2.2] that
continuous geodesically strictly convex functions can be approximated by smooth
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geodesically strictly convex functions. As we are dealing with “convexity con-
straint” in the viscosity sense, the argument in [19] does not apply directly. In fact,
our proof below does not work if we relax to .

Before establishing a lower Ricci bound for the metric , we briefly discuss
some facts about the distance function on (with respect to the smooth
background metric ). When is sufficiently close to , and if is a unit-speed
minimizing geodesic connecting to , then

and

Thus, if denotes the parallel transport map along the
unique shortest geodesic connecting and , then

can also be considered as an element of by letting

is then a covector field on an open neighborhood of the diagonal of .
In the sequel, we represent in local coordinates by using two indices (which

can be casually raised or lowered using the metric ): the first index refers to the
-factor and the second stands for the -factor. For example, as a transformation

of into , we have

while, as a covector field, we have

We make a few observations:
(P1) Id.
(P2) For any compact subset of , there exists such that is smooth

in .
(P3) and . To see this, pick any geodesic

emanating from (so that ). Then is parallel along
, i.e., . As was chosen arbitrarily, this gives

. Likewise, .
(P4) It holds that

(2.11)

To see this, take any covector and let .
Then and so

Since is arbitrary, this implies the asserted identity.
Note that (2.11) implies that
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Y. Y. LI AND L. NGUYEN1570  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 17

which further implies that

and

(2.12)

PROOF OF PROPOSITION 2.6. We start with a decomposition of the leading-
order term in Ric . We compute

An analogous calculation also gives

where is as defined in (2.10). Keeping in mind that

and
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GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 157118 Y. Y. LI AND L. NGUYEN

we thus deduce that

where, here and below, denotes some constant such that lim .
We also have

where .
We thus have

tr

Since in loc (and uniformly if ), to establish the
result, it suffices to show that

(2.13) tr

where the -tensor is defined by

Ric

Let be some nonnegative symmetric -tensor with compact support
in . Define a -tensor defined by
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Then is symmetric and nonnegative, as it holds for any covector that

We have

In addition, since

tr

(2.12)

tr

we also have that

tr tr

tr

(2.11)

tr

tr

tr
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It hence follows that

tr

tr

Now since Ric in the weak sense (by Proposition 2.5) and is
nonnegative definite, we arrive at

tr

from which (2.13) is readily seen. This completes the proof. !

2.5 Volume comparison
We are now ready to give the proof of the relative volume comparison theorem

for continuous and conformally metrics with lower Ricci bounds.

PROOF OF THEOREM 1.3. By Propositions 2.4 and 2.6, there exists a sequence
of smooth functions such that, as , locally uniformly in , and

satisfies an integral Ricci lower bound

lim max Ric

for any open and any .
Let

max Ric

Then, for , the relative volume comparison theorem of Petersen and Wei [47,
theorem 1.1] (see also [56]) implies for that

Vol Vol

(Here we assume if .) Sending we obtain the first conclu-
sion.

We turn to the second conclusion. By another theorem of Petersen and Wei [48,
theorem 1.5], there is a map that preserves the distance
function. We need to show that and are smooth.

We represent as a ball equipped with a confor-
mally flat metric can flat where flat is the flat metric on and is a
smooth function. Let be a local coordinate system on relative to
which is smooth. Let denote a standard coordinate system on .
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Y. Y. LI AND L. NGUYEN1574  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 21

Observe that considered as a map from into flat
is locally Lipschitz-continuous (since is locally bounded). Hence is differ-
entiable almost everywhere. Likewise, is differentiable almost every-
where.

We claim that flat , i.e.,

(2.14) a.e. in

We will use the following formula (see, e.g., [5, theorem 2.7.6]) for the length
of a Lipschitz curve in a metric space where the distance
function is generated by a metric where is continuous and is smooth:

Length

(Here we are using that

lim lim

at points where is differentiable.)
We note that, since preserves the distance, it preserves lengths of curves.

Hence if is a Lipschitz curve, then

flat

Length
flat

Length

Now, for each , consider the family of curves

where the hat above indicates that this entry is absent. We then have

for almost all and for all such that

This implies that, for every ,

a.e. in
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Similarly, by considering the family of curves tangential to , we have, for
every ,

a.e. in

The claim (2.14) follows from the above two equations.
For and , consider the functional

flat flat flat can can can

Similarly, for and , consider

Observe that, by convexity, for each , the function on
satisfies, for , that

for all such that on

Noting that , and using the fact that the change-of-variable
formula holds for Lipschitz transformation (see, e.g., [15, p. 99]), we have, for

,

for all such that on

It follows that satisfies

(2.15) div in

Noting also that flat , we can find such that
in . It follows that equation (2.15) is a uniformly elliptic quasilinear
equation. A regularity result of Ladyzhenskaya and Uraltseva for quasilinear and
uniformly elliptic (scalar) equations in divergence form [31, chap. 4]) implies that

belongs to loc and loc for some . (The regularity also
follows from [12, 14, 34, 52, 53] where is allowed to vanish.) We then
recast equation (2.15) in nondivergence form,

which is understood in the almost everywhere sense and where the coefficients
are uniformly elliptic. Now, as a function of , is continuous,
and so elliptic regularity implies that is . The smoothness of follows
from bootstrapping. Recalling that can , we deduce that is smooth
and conclude the proof. !
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3 Nonexistence of Green’s Functions for
In this section, we prove part (ii) of Theorem 1.2. In fact, we have:

THEOREM 3.1. Let be an -dimensional smooth compact Riemannian man-
ifold with . Assume that satisfies (1.2) and (1.3) and that in .
Let be a nonempty finite subset of distinct points of and

. If , then the following are equivalent
(i) there exists a function such that

and in

lim(3.1)

where denotes the distance function with respect to the metric ;
(ii) is conformal to the standard sphere and .

PROOF. It is clear that (ii) implies (i). Conversely, assume that (i) holds. Then,
by the relative volume comparison theorem (Theorem 1.3), for any , the
function

Vol

is nonincreasing, where is the volume of the unit -dimensional Euclidean
unit ball. On the other hand, as , the above function tends to , and,
as , it tends to (thanks to (3.1)). It follows that and that
Vol for all . By the rigidity part of the relative vol-
ume comparison theorem, we have that is smooth and is isometric
to the Euclidean space . We then proceed as in [23, sec. 7.6]: The metric is
conformally flat on and so is locally conformally flat on by the vanishing
of the Weyl tensor for and of the Cotton tensor for . In addition, ,
being a one-point compactification of , is homeomorphic to , and hence is
simply connected. A theorem of Kuiper [29, theorem 6] then implies that
is conformally equivalent to the standard sphere. !

4 Existence and Uniqueness of Green’s Functions for
In this section we prove part (i) of Theorem 1.2. For simplicity, we will only

present the proof in the case where consists of a single point and . The
proof can be easily adapted to treat the general case.

4.1 Nondegenerate elliptic Dirichlet boundary value problems
Let satisfy (1.2) and (1.3) and satisfy (1.4)–(1.6). It is easily seen that

equation (1.7) is the same as

on

We will eventually regularize this equation by replacing the right-hand side by
small positive constants.
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THEOREM 4.1. Let be an integer and be an -dimensional smooth
compact Riemannian manifold with nonempty smooth boundary . Assume that

satisfies (1.2)–(1.3) and (1.4)–(1.6). Let , , and
. Assume that there exists a function such that

on and
in

Then, there exists a solution (with in ) to the
boundary value problem

in(4.1)
on(4.2)

Moreover, there exists a constant depending only on , , , ,
ln and such that

ln

and for every compact subset of and every , there exists depending
only on , , , , , , ln , and so that

ln

When , the result was proved in Guan [20]. In fact, in this
case, the proof therein yields a -estimate up to the boundary. We chose to forgo
such an estimate in full generality as it is not needed for our current purpose. We
instead circumvent the issue by “opening up” to larger cones where a double
normal derivative estimate for can be obtained fairly easily. The procedure
in [20] can then be applied to prove the existence of solutions corresponding to
those cones . Letting converge back to , we obtain Theorem 4.1 above.

PROOF. Replacing by if necessary, we may assume that . Let
be the solution to

in
on

By (1.3), u is a subsolution to (4.1). In particular . We will construct
a solution to (4.1)–(4.2) that satisfies . We will argue according to
whether or not.

Step 1. Assume for the moment that . We adapt the argument
in [20] to the case at hand.

By means of a degree-theoretic argument (and Evans-Krylov estimates), it suf-
fices to show that there exists a constant such that if is a solution to (4.1)–(4.2)
satisfying , then

(4.3)
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Since and is homogeneous of degree , there exists
such that for every compact set , there exists

such that, for all and ,

(4.4)

(This implies [20, eq. (1.13)].) Also, we claim that

(4.5) in

(This is equivalent to [20, eq. (1.10)].) To see this, let . For every
and , we have due to (1.2)–(1.3). The concavity of

then gives . Dividing by and letting ,
we obtain (4.5) in view of the homogeneity of .

In view of (4.5), the proof of [20, theorem 3.3 and theorem 3.4] can be applied
directly to the present setting yielding

max ln and max ln

where depends on , , max ln , max ln and depends
on , , max ln , and max ln . (To dispel confusion,
note that the function appearing in [20] is ln in our present setting. Also, the
parameters and therein are taken to be .) As is pinched between and ,
max ln is bounded in terms of , , and , where is the unit
normal to . Thus, to establish (4.3), it suffices to show that

(4.6) on

where depends on , , , , , and .
For , let be an orthonormal frame about obtained by par-

allel transporting an orthonormal local frame on and the inward-
pointing unit normal to along geodesics perpendicular to .

Let L be the principal part of the linearized operator for
at . Using (4.4), one can check that [20, lemma 2.2] holds in the

present setting: For any , there exist small positive constants and and a
large positive constant such that the function

ln ln

satisfies
L

We can now follow the proof of [20, eqs. (2.10) and (2.12)] to obtain

provided
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Since is superharmonic (with respect to the conformal Laplacian), this implies
that

and

It remains to give an upper bound for , where our argument differs
from (and is much easier than) that in [20] (where some algebraic properties of
the -equation play more of a role). Since , there exists some

such that if for and , then
and .

If , we are done. Otherwise, we have

This implies that . We have thus estab-
lished (4.6), and thus established the theorem when .

Step 2. We now return to the general case where may or may not
belong to . For , define

where

It was proved in [38] that also satisfies (1.4)-(1.5).
Note that for as .

Furthermore, we have and so satisfies

in

Thus, for , there exists such that in , on ,
and

in

As mentioned above, ln is uniformly bounded as . Further-
more, as , known interior first derivative estimates [10, 22], [37, theorem
1.10], [55], and interior second derivative estimates in [22] and [38, theorem 1.20]
give

ln

for every compact subset of and every , where is some constant
independent of . Consequently, along a sequence , converges in

loc to some solution of (4.1)–(4.2). The proof is
complete. !
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4.2 Construction of supersolutions
The following gives a supersolution for Green’s functions with a single pole

of unit strength. It is clear that a similar construction can be done for any finite
number of poles.

PROPOSITION 4.2. Let be an -dimensional smooth compact Riemannian
manifold with . Let satisfy (1.2) and (1.3) and that . Assume
that in . Then, for every , there exists a function

such that

and in(4.7)

lim

Furthermore, for every and and for every suffi-
ciently small , one can arrange, for some , that

(4.8)
for

for

PROOF. Fix . Let . Fix some and
. Consider, for , the functions

We will show that there exists some and such that

(4.9) in for all

where signifies that the eigenvalues are computed with respect to .
We adapt the proof of [41, lemma 3.5]; the main difference is to allow the

possibility that . In the sequel, denotes some positive constant that
will always be independent of . Observe that, in local normal coordinates

at , the -Schouten tensor of the metric satisfies

err err

 10970312, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22044 by R

utgers U
niversity Libraries, W

iley O
nline Library on [09/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 158128 Y. Y. LI AND L. NGUYEN

where ,

and

err

err

As , we can assume that is sufficiently large and is sufficiently
small such that

It is important to note that, as ,

and so, as (where we have used ), we have

We would like to turn the above relation into a more quantitative form so that it can
be used to control the error term.

We have

(4.10) err

For sufficiently large and sufficiently small , the right-hand side of (4.10) is
smaller than . Thus, as in and is compact, there exists
such that

err err wherever
Thus, by Lemma B.1, we have

in

We assume henceforth that . We have, as ,
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which implies in view of the definition of and the fact that that

dist min

and, as ,

(4.11) dist min

The eigenvalues of with respect to the metric
satisfy (cf. [41, lemma A.1])

err err

Hence, in view of (4.11), we deduce that there is some and such
that in for . As , the assertion (4.9) is then
readily seen from Lemma B.1.

We now turn to the construction of . Fix some . In what follows,
the constants will be also independent of . We assume also that is
sufficiently small so that

(4.12)
and

in for all

Fix some such that in and define

To conclude the proof it suffices to check that, for some sufficiently large ,

(4.13) in

Using (4.12), we compute in ,

Thus, we can write
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We now choose sufficiently small such that in and
then fix some max (recall (4.12)). The above computation is
then valid, yielding (4.13) as desired. !
4.3 Existence

Fix and let . Let be the unique smooth solution of

and in

lim

It is well known that such exists and furthermore (cf. [32]),

(4.14) as

It should be clear that , where is the Green’s function for
the conformal Laplacian with pole at .

If , we are done. Assume from now on that .
Let be as in Proposition A.1.
Let be as in Proposition 4.2 for some . By (4.8) and (4.14), there

exists some such that in . On the other hand, by
(4.7),

in

Hence, by the maximum principle,

(4.15) in

For small , let

min

(Here we have used the smoothness of to establish the positivity of .) By
Theorem 4.1, for every , there exists a function

satisfying

and in(4.16)

on(4.17)

Furthermore, ln is uniformly bounded in

and loc

It follows that, along a sequence , converges in loc to
some smooth functions satisfying

and in(4.18)
on
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Using (4.7), (4.18) and the maximum principle, we see that

in

Hence, for each compact subset of , there exist constants and
such that

provided

By known first and second derivative estimates, for every compact subset of ,
there holds

for all
where is independent of . Sending to zero, we obtain that

In other words, the family is bounded in loc . Hence, there is some
such that converges in loc for any to some

loc .
As , we have in . On the other hand, by (4.16),

in

In view of (4.15), (4.17), and the maximum principle, we thus have
in . It follows that in . On one hand, this implies
(1.8). On the other hand, this implies in , and so by (4.18) and the
convergence of to , we obtain (1.7). We have thus proved the existence of a
solution to (1.7)–(1.8).

Remark 4.3. By construction, we have . Hence, for any
, one has

lim inf lim sup

If there are multiple poles with multiple strengths, we have

lim inf lim sup

When , this is in a sense sharp. See [42, theorem 1.2], where it is

shown that if
Euc

on a punctured ball of the flat space Euc

and if and , then can be expressed in the form

for some nonnegative bounded function that is either positive or identically zero.
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4.4 Uniqueness
In this subsection, we prove that (1.7)–(1.8) has a unique continuous viscosity

solution. Let loc be the solution to (1.7)–(1.8) that was constructed
in Section 4.3. Assume that loc is also a solution to (1.7)–(1.8).

Step 1. We show that . To this end, we show that for all .
By construction, there exist sequences , , and

such that converges to in loc and

and in(4.19)

lim sup lim inf(4.20)

Clearly, by (1.8) and (4.20), for sufficiently large , on .
We claim that in . Indeed, if this is not true, there are
some and such that in and

. As and is smooth, it follows that

which contradicts (4.19). We have thus shown that in .
Sending and then , we arrive at in .

Step 2. We show that . Similar to the previous step, we in fact show that
for all .

Clearly, there exists some such that

in

Let be as before in Step 1. It is more convenient to work with ,

, and . We then have

in

in(4.21)

where here and below signifies that the eigenvalues are computed with respect
to the metric and

As converges in loc to , which is positive on , there
exists some such that, for all sufficiently large ,

in

Fix some for the moment. We have

 10970312, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22044 by R

utgers U
niversity Libraries, W

iley O
nline Library on [09/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Y. Y. LI AND L. NGUYEN1586  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 33

As is compact and , there is some such that

in

We now write,

On the other hand, by (4.21) and the fact that is uniformly bounded in

in for all sufficiently large . Invoking Lemma B.1 again, we thus
have

(4.22) in for all sufficiently large

Using (4.22), we can argue as in Step 1 to show that, for all sufficiently large ,

in

Sending and then , we obtain that

in

Recalling the definition of , we conclude that in , which upon
letting yields in .

Combining Step 1 and Step 2, we conclude that ; i.e., the solution to (1.7)–
(1.8) is unique. This completes the proof of Theorem 1.2. !

5 Green’s Functions as Solutions to Nonlinear Equations
with Dirac Delta Measures on the Right-Hand Side

In this section, we illustrate that Green’s functions may show up as suitable
rescaled limits for certain blowup solutions to the nonlinear Yamabe problem

(5.1) and

More general scenarios of blowup will be considered elsewhere.
Let be a compact Riemannian manifold and its injectivity radius.

Suppose for some that is a sequence of smooth solutions
to (5.1) on some balls in such that max
and as . We say that has an isolated blowup point if

(H1) there exists independent of such that in
.

We say that has tame geometry in if
(H2) there exist and independent of such that

(5.2) Ric max in
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Note that, by [42, prop. B.1], for with , (5.2) can be replaced
by

max in

When in (H2), we say that has bounded geometry. It should be noted
that, by [41], when is not conformal to the standard sphere, equation (5.1)
on has no blowup sequence of solutions with bounded geometry on the whole
of .

It should also be noted that, under (H1), it is easy to show (in view of estimate
(5.4) and Lemma 5.2) that estimate (5.2) holds with , i.e.,

Ric max in

It is clear from the above that, under (H1), if (H2) holds for some , then it
holds for all , after a shrinking . We do not know yet whether (H1)
implies (H2) in general.

THEOREM 5.1. Let be an -dimensional smooth compact Riemannian man-
ifold with . Suppose that satisfies (1.2)–(1.6) and that . Sup-
pose that is a sequence of solutions to (5.1) on some balls
with independent of which has an isolated blowup point
and has tame geometry (i.e., (H1) and (H2) hold). Then, upon extracting a sub-
sequence, converges in loc for every

to a positive function satisfying

in

lim

Furthermore, if for some , then
weakly* converges in in the space of measures to a Dirac measure

with an explicit .

The conclusion of the above theorem holds if we replace the right-hand side of
(5.1) by a smooth positive function , in which case the limit measure changes
to .

The rest of this section contains two subsections. The proof of Theorem 5.1
is given in Section 5.1. We first show that (H1) and (H2) rule out a phenomenon
usually known as bubbles on top of bubbles; see Lemma 5.3. Using a suitable
barrier construction, we then show a suboptimal upper bound for (see (5.7))
which is sufficient to establish the weak* convergence of
and to identify its limit; see Lemma 5.4 and Corollary 5.5. Exploiting further
condition (H2), we then derive a sharper upper bound for in Lemma 5.7 and
deduce the convergence of , which concludes the proof. In Section 5.2, we use
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the divergence structure associated with the operator to prove a compensated-
compactness-type result for the equation (see Proposition 5.10). This is not
directly related to the proof of Theorem 5.1 but may be relevant in the study of
Green’s functions.

5.1 Isolated blowup sequences with tame geometry
Let be a sequence of smooth local solutions to the nonlinear Yamabe equa-

tion (5.1)

and on some ball

with . We suppose that has an isolated blowup point and
has tame geometry, i.e. we have that max , ,
and that conditions (H1) and hold.

We aim to show that converges to a solution of
(in fact ) with near for

some constant and, when , to identify the weak*

limit of the sequence .

Preliminary analysis
We start with some well-known facts. By local gradient and second-derivative

estimates [10, 22, 37, 38, 55], we have

(5.4) ln in for

For and , let

where denotes the Euclidean norm and is a (normalizing) positive
constant so that

on for all

where denotes the Euclidean metric on .
Define a map by

exp

and let

Then satisfies

(5.5) in

where and is the injectivity radius of . It
is clear that in loc . Furthermore, and in

 10970312, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22044 by R

utgers U
niversity Libraries, W

iley O
nline Library on [09/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 158936 Y. Y. LI AND L. NGUYEN

. By known local first- and second-derivative estimates, it
follows that ln is uniformly bounded in on any compact subset of . By
Evans-Krylov’s theorem and the Schauder theory, is uniformly bounded in
on any compact subset of and converges, along a subsequence, in loc to
some positive that satisfies max and

on

By the Liouville theorem [39, theorem 1.3], we have . In particular,
passing to another subsequence if necessary, we have for an arbitrarily fixed
that and

(5.6) lim

LEMMA 5.2. Under the assumptions of Theorem 5.1 except for (H2), there exists
(independent of ) such that, after passing to a subsequence,

in

PROOF. In the sequel, denotes some positive constant that will always be
independent of .

Let denote the conformal Laplacian of . We have that
. A calculation shows that there exist large and small such that, for

every near , the function

satisfies (see, e.g., [41, lemma 3.3])

in

Now note that, by (5.6) and with , we have for large that

on

Clearly on . An application of the
maximum principle then shows that

in

The conclusion follows from the gradient estimate (5.4). !

Simplicity of blowup sequences
In this subsection, we show that if has only one isolated blowup point and

has tame geometry, then is simple in the sense that
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(H3) there exists independent of such that the functions

are nonincreasing in .

LEMMA 5.3. Under the assumptions of Theorem 5.1, the sequence is simple,
namely (H3) holds.

The proof is by contradiction. We suppose that the sequence is not simple
and rescale it to a situation in which simplicity holds and appeal to the following
result.

LEMMA 5.4. Let be an -dimensional smooth compact Riemannian man-
ifold with . Suppose that satisfies (1.2)–(1.3) and (1.4)–(1.6) and
that . Suppose that is a sequence of solutions to (5.1) on some balls

with independent of that has an isolated
simple blowup point, i.e., (H1) and (H3) hold. Then, for any , there
exists (independent of ) such that, after passing to a subsequence,

(5.7)

in

An immediate consequence of the above result for is that

This together with (5.6) gives the following:

COROLLARY 5.5. Under the assumptions of Theorem 5.1 and with

we have for any fixed that

To prove Lemma 5.4 before that of Lemma 5.3, we will need the following
lemma.

LEMMA 5.6. Let be a smooth compact Riemannian manifold of dimension
. Assume that satisfies (1.2)–(1.3) and (1.4)–(1.6) and that .
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For , there exist some and such that for every
and , the function

in where

satisfies

in

PROOF. In the sequel, denotes some positive constant that will always be
independent of . Observe that, in local normal coordinates

at , the Schouten tensor of the metric satisfies

err err

where ,

and

err

err

It follows that the eigenvalues (with respect to ) satisfy
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Noting that, as , . It thus follows, for sufficiently small
, that in and

in

which concludes the argument. !
PROOF OF LEMMA 5.4. In the sequel, denotes some positive constant that

will always be independent of .
Let . By (5.6), we have

on

Thus, by isolated simplicity and the gradient estimate (5.4),

(5.8)
in

It thus follows, for some constant , that

in

Let . By Lemma 5.6, for all the functions

satisfy for some sufficiently small that

(5.9) in

Fix some . We choose max and
for some large (which is independent of ) so that, in view of

(5.8), on and on . We then deduce from (5.8)–(5.9)
and the comparison principle that

(5.10) in

Recalling the isolated simplicity and the gradient estimate (5.4), we deduce from
(5.10) that

max
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in . Picking for some sufficiently large
and noting that , we deduce that , which

gives
max

We have thus shown that there is some so that

in

Estimate (5.7) follows from the above inequality, the gradient estimate (5.4) (ap-
plied in the region ), and (5.8) (applied in the region

). !

PROOF OF LEMMA 5.3. Let and

Suppose by contradiction that (H3) does not hold. Then, in view of (5.5), there
exist , such that is decreasing in and

Define a map by

exp

and let

Then satisfies

(5.11) in

where and is the injectivity radius of . Note that
converges in loc to the Euclidean metric on . Clearly,

(5.12) sup

As is an isolated blowup sequence, we have

sup sup

As has tame geometry, we also have for some that

(5.13) Ric in

 10970312, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22044 by R

utgers U
niversity Libraries, W

iley O
nline Library on [09/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Y. Y. LI AND L. NGUYEN1594  GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 41

Furthermore, if we let

then by the contradiction hypothesis,

(5.14) is decreasing in

and

(5.15)

In effect, in view of (5.12)–(5.14), we have rescaled to obtain an isolated
simple blowup sequence of solutions to (5.11) that has tame geometry. We can
then follow the proof of Lemma 5.4 to show that, for any ,

(5.16) in

Fix some with . Define

By (5.4), we have

ln in for

Hence, as , converges, along a subsequence, in loc to some
positive function loc , which in view of (5.11) and (5.16) satisfies

in

By the Liouville theorem [37, theorem 1.18] and the classification result [42, theo-
rem 2.2], we have

for some constants and with . By (5.14), we
have that is decreasing in and so . By (5.15), we have that

. So

(5.17) for some

On the other hand, by (5.13), we have

Ric in

In view of (5.16), we have as . This then implies (see [41,
sec. 3.1, step 6]) that

Ric in
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On the other hand, by (5.17), we have

and have thus reached a contradiction. !

Upper bound for and proof of Theorem 5.1
The following lemma gives the sharp upper bound for away from . Com-

pare Lemma 5.2.

LEMMA 5.7. Under the assumptions of Theorem 5.1, for every , there
exists (independent of ) such that, for all sufficiently large ,

in

PROOF. Fix some . Suppose by contradiction that there exists
with such that, along a subsequence,

Consider the sequence

We have , and by the first- and second-derivative estimates (5.4),
converges, along a subsequence, in loc to some positive
function loc . By (H2),

Ric max in

On the other hand, by Lemma 5.4, we have that

as

We claim that this implies is smooth in and

(5.18) Ric in

Indeed, from the above, we have that

in

where denotes some function that goes to uniformly as . The con-
vergence of to then implies that satisfies

on in the weak sense

Elliptic regularity theories then imply that is smooth on . We can
then follow [41, sec. 3.1, step 6] to obtain (5.18). The claim is proved.

Since in , we have
for some constant and some function smooth in , where
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is the Green’s function for the conformal Laplacian with pole at . By
Lemma 5.3, . Note also that, by (H2),

and max in

We now follow an argument in [35] (see the equations (2.14)–(2.18) there) to reach
a contradiction. Indeed, multiplying the above equation by and integrat-
ing over a ball with , we get on one hand that

lim sup lim sup

and on the other hand that, by Lemma 5.4 and for ,

max

which amounts to a contradiction. !
PROOF OF THEOREM 5.1. By Lemma 5.7, is bounded in

loc

By estimate (5.4), converges along a subsequence in loc
to some positive function loc . Moreover,

the same argument giving (5.18) shows that
and

in

We claim that

lim exists and is positive

First, by Lemma 5.2,

lim inf is finite and positive.
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The claim is then proved by following step 4 in the proof of [41, theorem 1.3],
which we briefly outline here for readers’ convenience. By (5.4), this implies that

lim sup is finite and nonnegative.

Now if , then by performing a blowup argument at , we would obtain a
function loc satisfying in and

min sup

which would contradict the symmetry result [37, theorem 1.18]. We conclude that
and so exists as desired; see [41] for details.

By Corollary 5.5, the restriction of to weakly*
converges to with (see also Proposition 5.10)

The proof is complete. !

5.2 A divergence identity and its consequences
In this subsection, we present a divergence identity for the Newton tensors as-

sociated with the -Schouten tensor.
For a symmetric -tensor , the symmetric functions are

defined by

det

It is clear that . The Newton tensors , ,
of are defined by

It is well-known that

and, for ,

tr(5.19)

(5.20)

tr(5.21)
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In the sequel, for a given metric , we use to denote the Newton tensors
of the -Schouten tensor .

When is locally conformally flat, it is well-known that has a di-
vergence structure; see [54]. The following lemma gives a generalization of that
statement.

LEMMA 5.8. Let be an -dimensional manifold with or without boundary, be
a smooth Riemannian metric on , and let . For any smooth positive
function on , we have

(5.22)

where is the covariant derivative of , and and are the Weyl and Cotton
tensors of , and, for or , the summation on the right-hand side is
trivial.

Remark 5.9. If we let denote the covariant derivative of , then (5.22) is equiv-
alent to

(5.23)

(In particular, if is locally conformally flat or or , is
divergence-free with respect to .) Similarly, identity (5.25) below is equivalent
to

(5.24)

In view of the identity tr , the identities (5.23) and (5.24)
give a div-curl structure for the operator.

As an application of Lemma 5.8, we establish the following compensated com-
pactness result for the equation.
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PROPOSITION 5.10. Let be a compact -dimensional manifold with or without
boundary, be a smooth Riemannian metric on , and let . Sup-
pose is a sequence of smooth positive functions on which converges in

for some and weakly in to some positive func-
tion . Then, for all satisfying on

,

lim

COROLLARY 5.11. Under the assumptions of Proposition 5.10, one has for all
and satisfying on that

lim

PROOF OF LEMMA 5.8. It is more convenient to work with so that
the -Schouten tensor of is given by

where is the -Schouten tensor of .
In the proof, indices are lowered and raised using .
Fix a point and let be a geodesic normal coordinate system at .

In particular, . The following computation is done at .
First, we have

(5.25) Riem

where Riem is the Riemann curvature tensor of and where we have used the Ricci
decomposition Riem .
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Using (5.19), (5.20), and (5.25), we compute

(5.26)

(5.20)

(5.25)

(5.19)
(5.20)

Identity (5.22) then follows from an induction on using (5.26). !

PROOF OF PROPOSITION 5.10. The result is clear for . Suppose that
.

Using a partition of unity if necessary, we may assume for simplicity that is
contained in a single chart.

Let and denote the -Schouten tensor of and , and and
denote the th Newton tensor of or , respectively.

By the hypotheses, converges weakly in to . Also, for

, is bounded in and so converges weakly in to

some .

We first show that for by an induction on . For
, the assertion holds due to the weak convergence of to . Assume that the

assertion holds for some . Recall that, by Lemma 5.8, the divergence of

each column of is bounded in , and by (5.25), the curl of each row of
is bounded in . An application of the div-curl lemma [46] then implies
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that converges to in the sense of distribution. In view of (5.20)–

(5.21), this implies that converges to in the sense of distribution,

from which we conclude that .

The argument above in fact also shows that converges to in
the sense of distribution. By (5.21), this implies that converges to
in the sense of distribution. Recalling that is bounded in , we
are done. !

Appendix A Smooth Concave Defining Functions of Cones
In this appendix, we construct for every given satisfying (1.2)–(1.3) a function
satisfying (1.4)–(1.5), which was used in the proof of Theorem 1.2(i).

PROPOSITION A.1. Let satisfy (1.2)–(1.3). Then there exists a concave function
satisfying (1.4)–(1.5). If in addition , then

there exists such that

(A.1) for all and

We note that condition (A.1) is related to the strict ellipticity of equation (5.1).

PROOF. If , the result is obvious. We assume that . Then the set
is bounded and convex. It is well-known

that admits a concave defining function such that in and on
(see, e.g., [25, sec. 2.1]). Furthermore, can be chosen in

(see, e.g., [11, theorem 7]). (In fact, one can have with if
and if , but this is not needed in the present argument;

see [6, lemma 1].)
By considering

is a permutation of

instead of , we can assume without loss of generality that is symmetric.
Let denote the gradient on . Observe that for and , the

concavity of implies that

(A.2)

Let
any number in if

if
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and . By (A.2), we have

for any and
(A.3)

Note that the right-hand side of (A.3) is nonnegative and is zero if and only if
(i.e., ) and .

Define by

We now show that and is concave in .
Let

and

We compute

(A.4)

where . Since , it follows that . Hence, by (A.3),

(A.5) in

If , then , and so the right-hand side of (A.5) is larger
or equal to . If , then and so the
right-hand side of (A.5) is larger or equal to . In either case, we
have

in
To prove the concavity of , we calculate its Hessian. We have

Hence, for any , we have

 10970312, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22044 by R

utgers U
niversity Libraries, W

iley O
nline Library on [09/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



GREEN’S FUNCTIONS FOR NONLINEAR YAMABE PROBLEMS 160350 Y. Y. LI AND L. NGUYEN

where we have used . As , in . Therefore,
in ; i.e., is concave in .

Finally, assume that is in ; we show that (A.1) holds. For any
, define by

Note that is a linear function, and hence is harmonic with respect to the metric
induced on by the Euclidean metric on . Furthermore, by (A.2), is
positive in . Since all , it follows from the Harnack inequality
that there is some constant depending only on such that

for all

Recalling (A.4), we obtain that

for all

which implies (A.1). !
PROPOSITION A.2. Let satisfy (1.2)–(1.3). If , then there is
no function satisfying simultaneously (1.4)–(1.6) and (A.1).

PROOF. Suppose by contradiction that there is some sat-
isfying simultaneously (1.4)–(1.6) and (A.1). By (1.5) and (A.1), it follows that
there is some constant such that

(A.6) for all

Let and denote the gradient
on . Then is bounded and convex and is a positive concave
defining function for .

We write and . Then with (see (A.4)),

(A.7)

For any , define by

By (A.6)–(A.7), we have that

for all

In particular, since is a linear function, we have that

for all

where is the interior of the convex hull of the points . In
particular, we have

for all
(A.8)
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On the other hand, by the concavity of on and the definition of , we have

for all

It follows that . Returning to (A.8), we
obtain

for all

Sending for example, this implies that

which is absurd. The proposition is proved. !

Appendix B Convexity of Sets of Symmetric Matrices
and Sets of Eigenvalues

We give a presumably well-known statement on eigenvalues of sums of matrices
which is used in the body of the paper.

LEMMA B.1. Let be a symmetric subset of and Sym be the
set of real symmetric matrices whose eigenvalues belong to . Then is
convex if and only if is convex.

PROOF. It is clear that is convex if is convex. To prove the converse, it
suffices to show that, for any symmetric matrices and with eigenvalues and

, respectively, the eigenvalues of belongs to the convex hull of the
set consisting of the permutations of and .

Note that there exist orthogonal matrices and such that

(B.1)

Consider the matrix defined by . As is orthogonal, is doubly
stochastic (i.e., the entries of are nonnegative and each of its rows and columns
sums to ), and hence by the Birkhoff–von Neumann theorem, is a linear combi-
nation of permutation matrices. It follows that the vector belongs to the convex
hull of the permutations of .

Noting that , we deduce from the foregoing paragraph and
(B.1) that belongs to the convex hull of , as desired. !
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