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Abstract

It was proved by Karch and Pilarczyk that Landau solutions are asymptotically stable under any L2-
perturbation. In our earlier work with L. Li, we have classified all (−1)-homogeneous axisymmetric no-
swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth 
on the unit sphere minus the south and north poles. In this paper, we study the asymptotic stability of the 
least singular solutions among these solutions other than Landau solutions, and prove that such solutions 
are asymptotically stable under any L2-perturbation.
 2021 Elsevier Inc. All rights reserved.

1. Introduction

Consider the incompressible stationary Navier-Stokes Equations in R3,

{ − !u + (u · ∇)u + ∇p = 0,

divu = 0.
(1)
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These equations are invariant under the scaling u(x) → λu(λx) and p(x) → λ2p(λx), λ > 0 and 
it is natural to study solutions which are invariant under this scaling. These solutions are referred 
to as (−1)-homogeneous solutions (although p is (−2)-homogeneous).

Let x = (x1, x2, x3) be Euclidean coordinates and e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)

be the corresponding unit normal vectors. Denote x′ = (x1, x2). Let (r, θ, φ) be the spherical 
coordinates, where r is the radial distance from the origin, θ is the angle between the radius 
vector and the positive x3-axis, and φ is the meridian angle about the x3-axis. A vector field u
can be written as

u = urer + uθeθ + uφeφ,

where

er =




sin θ cosφ

sin θ sinφ

cos θ



 , eθ =




cos θ cosφ

cos θ sinφ

− sin θ



 , eφ =




− sinφ

cosφ

0



 .

A vector field u is called axisymmetric if ur , uθ and uφ are independent of φ, and is called 
no-swirl if uφ = 0.

In 1944, L.D. Landau [7] discovered a 3-parameter family of explicit (−1)-homogeneous so-
lutions of the stationary NSE in C∞(R3 \ {0}). These solutions, now called Landau solutions, are 
axisymmetric with no-swirl and have exactly one singularity at the origin. Tian and Xin proved 
in [23] that all (−1)-homogeneous, axisymmetric nonzero solutions of (1) in C∞(R3 \ {0}) are 
Landau solutions. Šverák proved in [21] that all (-1)-homogeneous nonzero solutions of (1) in 
C∞(R3 \{0}) are Landau solutions. There have also been works on (−1)-homogeneous solutions 
of (1), see [2,14–17,19,20,24,25]. In [10–12], the (−1)-homogeneous axisymmetric solutions of 
(1) in C∞(R3 \ {(x1, x2) = 0}) with a possible singular ray {(x1, x2) = 0} was studied, where 
such solutions with no-swirl were classified in [10] and [11], and existence of such solutions 
with nonzero swirl was proved in [10] and [12].

There has been much work in literature on the existence of weak solutions and L2-decay of 
weak solutions of the evolutionary Navier-Stokes equations, see e.g. [1,3,6,8,9,13,18,22] and the 
references therein. Such L2-decay of weak solutions can be viewed as the asymptotically stability 
of the zero stationary solution of (1). The asymptotic stability problem has been studied for other 
nonzero stationary solutions of (1) with some possible singularities in R3. Karch and Pilarczyk 
proved in [4] that small Landau solutions are asymptotically stable under L2-perturbations. The 
L2 asymptotic stability of other solutions with singularities is also studied in [5]. With special 
(−1)-homogeneous solutions which are different from Landau solutions obtained in [10–12], it 
is worth to explore the asymptotic stability or instability of these solutions. In this paper, we start 
this study for a family of solutions which are the simplest and least singular solutions among the 
solutions found in [10–12].

Denote U = u · r sin θ and y = cos θ . By the divergence free property of u we have ur = 1
r U ′

θ . 
For (-1)-homogeneous axisymmetric no-swirl solutions, (1) can be reduced to

(1 − y2)U ′
θ + 2yUθ + 1

2
U2

θ = c1(1 − y) + c2(1 + y) + c3(1 − y2). (2)

For c1 ≥ −1 and c2 ≥ −1, let
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c̄3(c1, c2) := −1
2

(√
1 + c1 +

√
1 + c2

)(√
1 + c1 +

√
1 + c2 + 2

)
,

where c1, c2, c3 are real numbers. Denote c = (c1, c2, c3) and

J := {c ∈ R3 | c1 ≥ −1, c2 ≥ −1, c3 ≥ c̄3(c1, c2)}.

In [11], it was proved that there exist γ −, γ + ∈ C0(J, R), satisfying γ −(c) < γ +(c) if c3 >
c̄3(c1, c2), and γ −(c) = γ +(c) if c3 = c̄3(c1, c2), such that equation (2) has a unique solution 
U

c,γ
θ in C∞(−1, 1) ∩ C0[−1, 1] satisfying Uc,γ

θ (0) = γ for every c in J and γ −(c) ≤ γ ≤
γ +(c). In particular, γ +(0) > 0 and γ −(0) < 0. Moreover, let

uc,γ ≡ u
c,γ
r er + u

c,γ
θ eθ = (U

c,γ
θ )′er + U

c,γ
θ

sin θ
eθ ,

pc,γ = 1
r2 (u

c,γ
r − 1

2
(u

c,γ
θ )2) = 1

r2 ((U
c,γ
θ )′ − (U

c,γ
θ )2

2 sin2 θ
).

(3)

{(uc,γ , pc,γ ) | c ∈ J, γ −(c) ≤ γ ≤ γ +(c)} are all (−1)-homogeneous axisymmetric no-swirl so-
lutions of (1) in C∞(R3 \ {(x1, x2) = 0}). It was also obtained in [11] that

U
c,γ
θ (−1) =

{
2 + 2

√
1 + c1, when γ = γ +(c),

2 − 2
√

1 + c1, otherwise,

U
c,γ
θ (1) =

{ −2 − 2
√

1 + c2, when γ = γ −(c),

−2 + 2
√

1 + c2, otherwise.

As mentioned earlier, we would like to study the asymptotic stability or instability of the 
(−1)-homogeneous axisymmetric stationary solutions found in [10–12]. Different from Landau 
solutions, these solutions are singular at the north pole N and/or south pole S. These solutions 
u satisfy either 0 < lim sup

|x|=1,x′→0
|x||x′||∇u(x)| < ∞ or lim sup

|x|=1,x′→0
|x′|2|∇u(x)| > 0, while Landau 

solutions satisfy sup
|x|=1

|x|2|∇u| < ∞. In this paper, we study the stability of (−1)-homogeneous 

axisymmetric no-swirl solutions satisfying 0 < lim sup
x′→0

|x||x′||∇u(x)| < ∞. These solutions are 

the family {(uc,γ , pc,γ ) | (c, γ ) ∈ M}, where

M := {(c,γ ) | c1 = c2 = 0, c3 > −4,γ −(c) < γ < γ +(c)}. (4)

For any (c, γ ) ∈ M , Uc,γ
θ satisfies





(1 − y2)(U

c,γ
θ )′ + 2yU

c,γ
θ + 1

2
(U

c,γ
θ )2 = c3(1 − y2),−1 < y < 1,

Uθ (0) = γ .

(5)

Proposition 1.1. Let (c, γ ) ∈ M , then (uc,γ (x), pc,γ (x)) satisfies

{
− !uc,γ + uc,γ · ∇uc,γ + ∇pc,γ = (4πc3 ln |x3|∂x3δ(0,0,x3) − bc,γ δ0)e3, x ∈ R3,

divuc,γ = 0, x ∈ R3,
(6)
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where

bc,γ =
1∫

−1

(
y|U ′

θ |2 − 2 − y2

1 − y2 Uθ − y

1 − y2 U2
θ

)
dy. (7)

Equations (6) and (7) are understood in the following distribution sense: for any ϕ ∈ C∞
c (R3), 

j = 1, 2, 3,

∫

R3

(∇uj∇ϕ − uiuj∂xi ϕ − p∂xj ϕ) = [4πc3

∞∫

−∞
ln |x3|∂x3ϕ(0,0, x3)dx3 − bc,γ ϕ(0)]δj3e3, (8)

and
∫

R3

uc,γ · ∇ϕ = 0. (9)

We now study the stability of the family of solutions {uc,γ | (c, γ ) ∈ M}. Let Ḣ 1(R3) denote 
the closure of C∞

c (R3, R3) under the norm ‖∇u‖L2(R3), and for 1 ≤ p < ∞,

Lp
σ (R3) = {u ∈ Lp(R3) | divu = 0}, Ḣ 1

σ (R3) = {u ∈ Ḣ 1(R3) | divu = 0},

and

‖u‖L
p
σ (R3) := ‖u‖Lp(R3), ‖u‖Ḣ 1

σ (R3) = ‖∇u‖L2(R3).

For a given solution (uc,γ , pc,γ ) of (1), let u = u(x, t) denote a solution of






ut − !u + (u · ∇)u + ∇p

= (4πc3 ln |x3|∂x3δ(0,0,x3) − bc,γ δ0)e3, (x, t) ∈R3 × (0,∞),

divu = 0, (x, t) ∈R3 × (0,∞),

u(x,0) = uc,γ + w0,

(10)

where w0 ∈ L2
σ (R3) and bc,γ is given by (7). Then w(x, t) = u(x, t) − uc,γ and π(x) = p(x) −

pc,γ (x) satisfy the initial value problem






wt − !w + (w · ∇)w + (w · ∇)uc,γ + (uc,γ · ∇)w + ∇π = 0, (x, t) ∈ R3 × (0,∞),

divw = 0, (x, t) ∈ R3 × (0,∞),

w(x,0) = w0(x).

(11)

We study the existence and asymptotic behavior of global-in-time weak solutions of (11). Let the 
energy space
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X := L∞([0,∞),L2
σ (R3)) ∩ L2([0,∞), Ḣ 1

σ ),

and for w in X

‖w‖X := ‖w‖L∞([0,∞),L2
σ (R3)) + ‖w‖L2([0,∞),Ḣ 1

σ ).

Let (·, ·) denote the L2-inner product, i.e. (f, g) =
∫
R3 fgdx. A vector w ∈ X is a weak solution 

of (11) if for any 0 ≤ s ≤ t < ∞ and ϕ ∈ C([0, ∞), H 1
σ (R3) ∩ C1([0, ∞), L2

σ (R3)),

(w(t),ϕ(t)) +
t∫

s

[(∇w,∇ϕ) + (w · ∇w,ϕ) + (w · ∇uc,γ ,ϕ) + (uc,γ · ∇w,ϕ)]dτ

= (w(s),ϕ(s)) +
t∫

s

(w,ϕτ )dτ.

Theorem 1.1. There exists some µ0 > 0, such that for any c = (0, 0, c3), |(c, γ )| < µ0, w0 ∈
L2

σ (R3), there exists a weak solution w of (11) in the energy space X. Moreover, w is weakly 
continuous from [0, ∞) to L2

σ (R3), and satisfies that

‖w(t)‖2
2 +

t∫

s

‖∇ ⊗ w(τ )‖2
2dτ ≤ ‖w(s)‖2

2 (12)

for almost all s ≥ 0, including s = 0 and all t ≥ s.

Recall that γ +(0) > 0 and γ −(0) < 0. So there is some µ′
0, such that {(c, γ ) | c1 = c2 = 0,

|(c3, γ )| ≤ µ′
0} ⊂ M . We also have

Theorem 1.2. There exists some µ0 > 0, such that for any c = (0, 0, c3), |(c, γ )| < µ0 and weak 
solution w ∈ X of (11) satisfying (12),

lim
t→∞‖w(t)‖2 = 0.

Moreover, if w0 ∈ Lp(R3) ∩L2
σ (R3) for some 6

5 < p < 2, then there exists some constant C > 0, 

depending only on (c, γ ), n, p and ‖w0‖p , such that ‖w(t)‖2 ≤ Ct
− 3

2 ( 1
p − 1

2 ), for all t > 0.

Theorem 1.1 and Theorem 1.2 can be established using the same arguments as [4], as long as 
the special stationary solutions uc,γ satisfy the following condition

|
∫

R3

(v · ∇uc,γ ) · wdx| ≤ K‖∇w‖L2‖∇v‖L2, (13)

for some constant K small enough, for any divergence free v, w ∈ C∞
c (R3). In [4], (13) is proved 

by Hardy’s inequality when uc,γ is replaced by small Landau solutions. In this paper, we analyze 
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the solutions uc,γ where (c, γ ) ∈ M , and obtain |∇uc,γ | ≤ C(|c| + |γ |)/(|x||x′|). So (13) is true 
if we have

∫

R3

|v|2
|x||x′|dx ≤ K‖∇v‖2

L2, (14)

for any v ∈ C∞
c (R3). Notice (14) cannot be proved by the classical Hardy’s inequality. In Sec-

tion 4, we prove the following extended Hardy-type inequality, which includes (14).

Theorem 1.3. Let n ≥ 2, 1 ≤ p < n, u ∈ C1
c (Rn), αp > 1 − n, (α + β)p > −n, then there exists 

some constant C, depending on p, α and β , such that

‖|x|β |x′|αu‖Lp(Rn) ≤ C‖|x|β+α−α′ |x′|α′+1∇u‖Lp(Rn), (15)

for all α′ ≤ α. Moreover, for any α′ > α and any C > 0, (15) fails in general.

Estimate (14) is the special case of (15) with p = 2, α = α′ = β = − 1
2 . Then we also have 

(13). Given (13), Theorem 1.1 and Theorem 1.2 can be proved by the same arguments used in 
[4], see also [5]. So in this paper we will only prove Theorem 1.3 and (13).

Remark 1.1. In [5], Karch, Pilarczyk and Schonbek proved the asymptotic stability of a class of 
general time-dependent solutions u of (10) using Fourier analysis, where (13) with uc,γ replaced 
by u is an essential assumption. A list of spaces were given in [5] where (13) is true if uc,γ is in 
one of those spaces. But the solutions uc,γ we discuss here are not in those spaces.

We will analyze in Section 2 the singular behaviors of uc,γ , (c, γ ) ∈ M . In Section 3 we study 
the force of uc,γ , (c, γ ) ∈ M . Theorem 1.3 will be proved in Section 4. Then as stated above, 
Theorem 1.1 and Theorem 1.2 follow with the same arguments as in [4].

Acknowledgment. We thank Vladimír Šverák for bringing to our attention the work [4] of Karch 
and Pilarczyk.

2. Estimate of the special solutions uc,γ

Lemma 2.1. Let K be a compact subset of M . Then there exists some positive constant C, de-
pending only on K , such that for any (c, γ ) in K and −1 ≤ y ≤ 1,

U
c,γ
θ (y) = −c3

2
sgn(y)(1 − y2) ln(1 − y2) + O(1)(|c| + |γ |)(1 − y2), (16)

(U
c,γ
θ )′(y) = c3 ln(1 − y2) + O(1)(|c| + |γ |), (17)

and

(U
c,γ
θ )′′(y) = − 2c3y

1 − y2 + O(1)(|c| + |γ |)(| ln(1 − y2)|2), (18)

where O(1) denotes some quantity satisfying |O(1)| ≤ C for some positive constant C depending 
only on K .
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Proof. For convenience, let C be a constant depending only on K , O(1) be a function satisfying 
|O(1)| ≤ C for all −1 ≤ y ≤ 1, and C and O(1) may vary from line to line. It is easy to see 
from (5) that U(0,0,c3),γ

θ (y) and −U
(0,0,c3),−γ
θ (−y) satisfy the same equation and have the same 

value at y = 0 and therefore they are identically the same. So we only need to prove (16)-(18)
for −1 < y ≤ 0.

By Theorem 1.5 in [11], there exists some constant C, such that

|∇c,γ U
c,γ
θ (y)| ≤ C, ∀ − 1 < y < 1.

Using this and the fact that U0,0
θ = 0, we have that for all −1 < y < 1,

|Uc,γ
θ (y)| = |Uc,γ

θ (y) − U0,0
θ (y)| ≤ sup

(c,γ )∈K,−1<y<1
|∇c,γ U

c,γ
θ (y) · (c,γ )| ≤ C(|c| + |γ |).

Thus

‖Uc,γ
θ ‖L∞(−1,1) ≤ C(|c| + |γ |). (19)

For simplicity we use Uθ to denote Uc,γ
θ . By (5), we have

U ′
θ + Uθ − 4

2(1 − y2)
Uθ = c3 − 2Uθ

1 − y
.

Let

w(y) :=
y∫

0

Uθ − 4
2(1 − s2)

ds = ln
1 − y

1 + y
+

y∫

0

Uθ (s)

2(1 − s2)
ds. (20)

Since Uθ (0) = γ , we have

Uθ (y) = γ e−w + e−w

y∫

0

ew(c3 − 2Uθ

1 − s
)ds. (21)

By (19), for any fixed 0 < ε < 1/2,

‖Uθ‖L∞(−1,1) < 4ε, ∀|(c,γ )| < ε/C.

By the above and (20), we have that for −1 < y < 0,

|w(y) + ln
1 + y

1 − y
| ≤ 2ε

0∫

y

ds

1 − s2 = ε ln
1 − y

1 + y
.

So
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ew ≤ 4(1 + y)−1−ε, e−w ≤ (1 + y)1−ε, −1 < y ≤ 0.

By (19), (21) and the above, we have

|Uθ | ≤ Cγ (1 + y)1−ε + C(|c| + |γ |)e−w(y)

0∫

y

ew(s)ds ≤ C

ε
(|c| + |γ |)(1 + y)1−2ε . (22)

Denote µ1 =
∫ −1

0
Uθ (s)

2(1−s2)
ds. By (22) we have µ1 = O(1)(|c| + |γ |)/ε. Then by (20) and (22), 

we have

w(y) = ln
1 − y

1 + y
+ µ1 +

y∫

−1

Uθ (s)

2(1 − s2)
ds = ln

1 − y

1 + y
+ µ1 + O(1)

|c| + |γ |
ε

(1 + y)1−2ε .

Then we have

ew = 1 − y

1 + y
eµ1(1 + O(1)

|c| + |γ |
ε

(1 + y)1−2ε),

e−w = 1 + y

1 − y
e−µ1(1 + O(1)

|c| + |γ |
ε

(1 + y)1−2ε).

Using the above, (21) and (22), we have that for −1 < y ≤ 0,

Uθ (y) = γ e−w(y) + c3e
−w(y)

y∫

0

ew(s)ds − e−w(y)

y∫

0

ew(s) 2Uθ

1 − s
ds

= c3(1 + y) ln(1 + y) + O(1)
|c| + |γ |

ε
(1 + y).

Estimate (16) is established.
Next, we make the estimate of U ′

θ and prove (17). By (5) and (16), we have that for −1 < y ≤
0,

U ′
θ = c3 − 1

1 − y2 (
1
2
U2

θ + 2yUθ ) = c3 ln(1 + y) + O(1)(|c| + |γ |).

Estimate (17) is established.
Differentiating (5), and using (16) and (17), we have for −1 < y ≤ 0 that

(1 − y2)U ′′
θ = −2c3y − UθU

′
θ − 2Uθ = 2c3 + O(1)(|c| + |γ |)(1 + y)| ln(1 + y)|2.

Estimate (18) follows immediately. The lemma is proved. !
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Corollary 2.1. Let K be a compact subset of M . Then there exists some positive constant C, 
depending only on K , such that for all (c, γ ) in K , and x in R3 \ {x′ = 0}.

u
c,γ
θ (x) = −c3sgn(x3)|x′|

|x|2 ln
|x′|
|x| + O(1)(|c| + |γ |)|x′|

|x|2 , (23)

u
c,γ
r (x) = 2c3

|x| ln
|x′|
|x| + O(1)(|c| + |γ |)

|x| , (24)

and

|∇u(x)| = 2|c3|
|x||x′| + O(1)(|c| + |γ |)

|x|2 ln
|x|
|x′| . (25)

Proof. For convenience write uc,γ = u. By definition, u = urer + uθeθ , where ur = 1
r U ′

θ , uθ =
1

r sin θ Uθ . Denote y = cos θ , by Lemma 2.1, we have

U
c,γ
θ (y) = −c3sgn(cos θ) sin2 θ ln sin θ + O(1)(|c| + |γ |) sin2 θ .

Since r = |x| and |x′| = |x| sin θ , estimate (23) follows from the above. Estimate (24) follows 
from (17).

Next, we compute

∇u = ∇urer + ur∇er + ∇uθeθ + uθ∇eθ .

By (16) and (17), we have

|∇ur | = |∂ur

∂r
er + 1

r

∂ur

∂θ
eθ | = | − 1

r2 U ′
θ (y)er + 1

r2 U ′′
θ (y)(− sin θ)eθ |

= 2|c3|
r2 sin θ

+ O(1)
(|c| + |γ |)

r2 ln sin θ = 2|c3|
|x||x′| + O(1)

|c| + |γ |
|x|2 ln

|x|
|x′| ,

and

|∇uθ | = |∂uθ

∂r
er + 1

r

∂uθ

∂θ
eθ | = | − 1

r2 Uθer + 1
r2 U ′

θ (− sin θ)eθ |

≤ C(|c| + |γ |)
|x|2

|x′|
|x| ln

|x|
|x′| .

Since |∇er | + |∇eθ | ≤ C/r , estimate (25) follows from the above. !

3. Force of uc,γ , (c, γ ) ∈ M

In this section, we study the force of the special solutions uc,γ and prove Proposition 1.1, 
where (c, γ ) in M and M is the set defined by (4). Recall that (r, θ, φ) are the polar coordinates, 
let ρ = r sin θ , (ρ, φ, z) be the cylindrical coordinates, y = cos θ . Recall (uc,γ , pc,γ ) are given 
by (3), where Uc,γ

θ (y) is a solution of (5). For convenience, denote u = uc,γ , p = pc,γ and 
Uθ = U

c,γ
θ . In Euclidean coordinates, x = (x1, x2, x3) and u = (u1, u2, u3).
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Proof of Proposition 1.1. Let (c, γ ) ∈ M . For any R > 0, let

0 := {x ∈R3||x′| ≤ R,−R < x3 < R}. (26)

We prove (8) and (9) for any ϕ ∈ C∞
c (0). Throughout the proof we denote O(1) as some quantity 

satisfying |O(1)| ≤ C for some C > 0 depending only on (c, γ ), R and ϕ.
By Lemma 2.1,

|Uθ (y)| = O(1) sin2 θ | ln sin θ |, |(Uθ )
′(y)| = O(1)| ln sin θ |, |(Uθ )

′′(y)| = O(1)

sin2 θ
. (27)

Recall that here “ ′ ” denotes the derivative with respect to y. By Corollary 2.1 and (3), we have

|uθ | =
O(1) sin θ | ln sin θ |

r
, |ur | =

O(1)| ln sin θ |
r

, |∇u| = O(1)

r2 sin θ
, |p| = O(1)| ln sin θ |

r2 .

(28)
We first prove (9). For any ε > 0, denote

0ε := {x ∈ R3||x′| ≤ ε,−R < x3 < R}.

Let oε(1) be a function where oε(1) → 0 as ε → 0. Since u ∈ C∞(R3 \ {x′ = 0}), we have 
divu = 0 in R3 \ {x′ = 0}. Therefore

∫

R3

u · ∇ϕdx =
∫

0\0ε

u · ∇ϕdx +
∫

0ε

u · ∇ϕdx = −
∫

∂0ε∩{|x′|=ε}

u · ∇ϕdx +
∫

0ε

u · ∇ϕdx.

By (28), we have |u| ≤ C/|x|. So

∫

∂0ε

|u · ∇ϕ|dx ≤
∫

∂0ε

C

|x|dσ (x) ≤ Cε| ln ε|,
∫

0ε

|u · ∇ϕ|dx ≤
∫

0ε

C

|x|dx ≤ Cε2| ln ε|.

Sending ε to 0 in the above leads to (9).
Next, we prove (8). Denote the stress tensor

Tij (u) := pδij + uiuj − (∂xj ui + ∂xi uj ).

Then (8) is equivalent to

∫

0

Tij (u)∂xi ϕdx = [4πc3

R∫

−R

ln |x3|∂x3ϕ(0,0, x3)dx3 − bϕ(0)]δj3e3, ∀ϕ ∈ C∞
c (0), (29)

where b = bc,γ is given by (7).
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Claim 1. Tij (u) ∈ L
q
loc(R

3), for any q < 3
2 .

To prove the Claim, notice that by (28), we have that

|Tij | ≤ |p| + |u|2 + 2|∇u| ≤ C

r2 sin θ
. (30)

So for any R > 0 and 0 defined by (26), we have, using q < 3
2 ,

∫

0

|Tij |q ≤ C

∫

B2R

1
r2q | sin θ |q dx = C

R∫

0

π∫

0

2π∫

0

1
r2q−2| sin θ |q−1 r2 sin θdφdθdr ≤ C.

The Claim is proved.
Using Claim 1 and the fact that ∂xi Tij = 0 in R3 \ {x′ = 0} for any 1 ≤ j ≤ 3, we have that

−
∫

0

Tij∂xi ϕdx = −
∫

0\0ε

Tij∂xi ϕdx −
∫

0ε

Tij∂xi ϕdx =
∫

∂0ε

Tij · νiϕdx −
∫

0ε

Tij∂xi ϕdx.

Let

Lj :=
∫

∂0ε

Tij · νiϕdx.

Since Tij ∈ L1(0), we have 
∫
0ε

Tij∂xi ϕdx = oε(1). So for each j = 1, 2, 3,

−
∫

0

Tij∂xi ϕdx = Lj + oε(1). (31)

By computation

Lj =
∫

∂0ε∩{|x′|=ε}

Tij · νiϕ(0,0, x3) + O(1)ε

∫

∂0ε∩{|x′|=ε}

|Tij | =: L(1)
j + L

(2)
j .

By (30), we have that for j = 1, 2, 3,

|L(2)
j | ≤ Cε

∫

∂0ε∩{|x′|=ε}

|Tij |dσ ≤ C

R∫

−R

ε
√

ε2 + x2
3

dx3 ≤ Cε| ln ε| → 0, as ε → 0. (32)

Lemma 3.1.

L
(1)
j = 0, j = 1,2.
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Proof. We will show that Tij · νi = F(|x′|, x3)xj for some function F(|x′|, x3), j = 1, 2, 
so its integral on any cylinder {|x′| = ε} vanishes. Let x′ = (x1, x2), u′ = (u1, u2), ∇′ =
(∂1, ∂2), (ρ, φ, z) be the cylindrical coordinates, and the unit normal eρ = (cosφ, sinφ, 0), eφ =
(− sinφ, cosφ, 0), ez = (0, 0, 1). So we have x = ρeρ + zez, x′ = ρeρ . Notice u is axisymmet-
ric no-swirl, we can write u = uρeρ + uzez, where uρ and uz are both independent of φ. By 
computation,

x′ · u′ = ρuρ, x′ · ∇′u = ρ
∂uρ

∂ρ
eρ + ρ

∂uz

∂ρ
ez,

and

∇(x′ · u′) = ∇(ρuρ) = ∂(ρuρ)

∂ρ
eρ + ∂(ρuρ)

∂z
ez.

On ∂0ε ∩ {|x′| = ε}, the outer-normal ν = 1
ρ (x1, x2, 0). Since u is axisymmetric, uρ is indepen-

dent of φ, so u1 = uρ(ρ, z) cosφ, and we have

Ti1 · νi = 1
ρ

(
px1 + x′ · u′u1 − x′ · ∇′u1 − ∂1(x

′ · u′) + u1
)

= 1
ρ

(
pρ cosφ + ρuρuρ cosφ − ρ

∂uρ

∂ρ
cosφ − ∂(ρuρ)

∂ρ
cosφ + uρ cosφ

)

= G(ρ, z) cosφ,

where

G(ρ, z) = 1
ρ

(
pρ + ρuρuρ − ρ

∂uρ

∂ρ
− ∂(ρuρ)

∂ρ
+ uρ

)
.

So

L
(1)
1 =

∫

ρ=ε

Ti1ϕ1(0,0, z)νidσ = ε

R∫

−R

G(ε, z)ϕ1(0,0, z)dz

2π∫

0

cosφdφ = 0

With similar argument we also have L(1)
2 = 0. The lemma is proved. !

Lemma 3.2.

lim
ε→0

L
(1)
3 = 4πc3

R∫

−R

ln |x3|∂x3ϕ(0,0, x3)dx3 − bϕ(0),

where b is the constant defined by (7).
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Proof. Recall

L
(1)
3 = 1

ε

∫

ρ=ε

(T13x1 + T23x2)ϕ(0,0, x3),

and for i = 1, 2,

Ti3 = uiu3 − ∂ui

∂x3
− ∂u3

∂xi
.

Since u = (u1, u2, u3) = 1
r U ′

θer + 1
r sin θ Uθeθ , we have

u1(x1, x2, x3) = x1

r2 U ′
θ (y) + x1x3

rρ2 Uθ (y),

u2(x1, x2, x3) = x2

r2 U ′
θ (y) + x2x3

rρ2 Uθ (y),

u3(x1, x2, x3) = x3

r2 U ′
θ (y) − 1

r
Uθ (y).

Recall that r2 = x2
1 + x2

2 + x2
3 , ρ2 = x2

1 + x2
2 , y = cos θ = x3

r = x3√
x2

1+x2
2+x2

3

. By computation we 

have

∂ui

∂x3
= xi

r3 Uθ − xix3

r4 U ′
θ + xiρ

2

r5 U ′′
θ ,

∂u3

∂xi
= xi

r3 Uθ − xix3

r4 U ′
θ − xix

2
3

r5 U ′′
θ .

So

2∑

i=1

Ti3xi = ρ2x3

r4 |U ′
θ |2 + x2

3 − ρ2

r3 UθU
′
θ − x3

r2 U2
θ + 2ρ2x3

r4 U ′
θ − 2ρ2

r3 Uθ − ρ2(ρ2 − x2
3)

r5 U ′′
θ . (33)

Since Uθ satisfy (5), take derivative of the first equation of (5) both sides with respect to y, we 
have

(1 − y2)U ′′
θ + 2Uθ + UθU

′
θ = −2c3y.

Plug in U ′′
θ = − 1

1−y2 (2Uθ + UθU
′
θ + 2c3y) in (33), we have

2∑

i=1

Ti3xi = −2c3x3

r2 +
(

ρ2x3

r4 (|U ′
θ |2 + 2U ′

θ + 4c3) − x3

r2 U2
θ − x2

3

r3 Uθ

)

.

Let

G(x) = ρ2x3

r4 (|U ′
θ |2 + 2U ′

θ + 4c3) − x3

r2 U2
θ − x2

3

r3 Uθ . (34)

Now we have
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L
(1)
3 = 1

ε

∫

ρ=ε

(T13x1 + T23x2)ϕ(0,0, x3)dσ

= −1
ε

∫

ρ=ε

2c3x3

r2 ϕ(0,0, x3)dσ + 1
ε

∫

ρ=ε

G(x)ϕ(0,0, x3)dσ

=: A + B.

Since ϕ(0, 0, R) = ϕ(0, 0, −R) = 0, we have

A = −4πc3

R∫

−R

x3

ε2 + x2
3
ϕ(0,0, x3)dx3 = 2πc3

R∫

−R

ln(ε2 + x2
3)∂x3ϕ(0,0, x3)dx3.

So

lim
ε→0

A = 4πc3

R∫

−R

ln |x3|∂x3ϕ(0,0, x3)dx3. (35)

Next, write

B = 1
ε

∫

ρ=ε

G(x)ϕ(0,0, x3)dσ

= 1
ε

∫

ρ=ε

G(x)ϕ(0)dσ + 1
ε

∫

ρ=ε

G(x)(ϕ(0,0, x3) − ϕ(0))dσ

=: B1 + B2.

We have |B2| ≤ C
∫ R
−R |G(x)x3|dx3 By (27) and (34), we have that for |x′| = ε, −R ≤ x3 ≤ R,

|G(x)x3| ≤ C
ρ2x2

3

r4 (| ln
ρ

r
|2 + | ln

ρ

r
|) ≤ ε2

ε2 + x2
3
(| ln

ε
√

ε2 + x2
3

|2 + | ln
ε

√
ε2 + x2

3

|).

So limε→0 |G(x)x3| = 0 a.e. x3 ∈ [−R, R], and |G(x)x3| ≤ C for −R ≤ x3 ≤ R. By the domi-
nated convergence theorem, we have

lim
ε→0

B2 = 0. (36)

Next, let bε = 1
ε

∫
ρ=ε G(x)dx. We have B1 = bεϕ(0). Let δ = R/

√
ε2 + R2, we have 0 < δ <

1. On {ρ = ε}, r =
√

ε2 + x2
3 , therefore y = cos θ = x3/r = x3/

√
ε2 + R2, we have

dy = ε2

(ε2 + x2
3)

3
2

dx3, so dx3 = r3

ε2 dy. (37)
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We also have 
√

1 − y2 = sin θ = ε/r . By (27), (34) and (37), we have

bε =
δ∫

−δ

(
ε2y

r3 (|U ′
θ |2 + 2U ′

θ + 4c3) − y

r
(U2

θ + yUθ )

)
r3

ε2 dy

=
δ∫

−δ

(
y(|U ′

θ |2 + 2U ′
θ ) − y

1 − y2 (U2
θ + yUθ )

)
dy

= 2δ(Uθ (δ) + Uθ (−δ)) +
δ∫

−δ

(
y|U ′

θ |2 − 2 − y2

1 − y2 Uθ − y

1 − y2 U2
θ

)
dy.

As ε → 0, δ → 1, so δ(Uθ (δ) + Uθ (−δ)) → 2(Uθ (1) + Uθ (−1)) = 0. By (27),

b := lim
ε→0

bε =
1∫

−1

(
y|U ′

θ |2 − 2 − y2

1 − y2 Uθ − y

1 − y2 U2
θ

)
dy.

Recall B1 = bεϕ(0), we have

lim
ε→0

B1 = bϕ(0). (38)

Lemma 3.2 follows from (35), (36) and (38). !

Proposition 1.1 follows from (29), (31), (32), Lemma 3.1 and Lemma 3.2. !

4. Proof of Theorem 1.3

Proof of Theorem 1.3. For convenience, let C denote a constant depending only on p, α, β, α′

and n, which may vary from line to line. We first prove that if (15) holds for some C, then α′ ≤ α.
Let 0 < δ < 1, fδ(x

′) be a smooth function of x′, such that

fδ(x
′) :=

{
1, 2δ ≤ |x′| ≤ 3δ,

0, |x′| ≤ δ or |x′| ≥ 4δ,

and |∇x′f | ≤ C/δ. Let g(xn) be a smooth function such that

g(xn) :=
{

1, 2 ≤ |xn| ≤ 3,

0, |xn| ≤ 1 or |xn| ≥ 4,

and |g′(xn)| ≤ C. Define uδ(x) := fδ(x
′)g(xn), then uδ is in C1

c (Rn). By computation,
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‖|x|β |x′|αuδ‖p
Lp(Rn)

≥
3∫

2

∫

2δ≤|x′|≤3δ

|x|βp|x′|αpdx′dxn ≥ δαp+n−1/C.

On the other hand, since δ ≤ 1,

‖|x|β+α−α′ |x′|α′+1∇uδ‖p
Lp(Rn)

≤
4∫

1

∫

δ≤|x′|≤4δ

|x|(β+α−α′)p|x′|(α′+1)p(|∇x′fδ(x
′)|p|g(xn)|p + |fδ(x

′)|p|g′(xn)|p)dx′dxn

≤ C

∫

δ≤|x′|≤4δ

|x′|(α′+1)p(|∇x′fδ(x
′)|p + |fδ(x

′)|p)dx′

≤ C

∫

δ≤|x′|≤4δ

|x′|(α′+1)pδ−pdx′ ≤ Cδα′p+n−1.

Since uδ satisfies (15), we have δαp+n−1 ≤ Cδα′p+n−1 for any 0 < δ < 1, therefore α′ ≤ α.
Next, we prove (15) for α′ ≤ α. Since |x′| ≤ |x|, we only need to prove it for α′ = α, i.e.

‖|x|β |x′|αu‖Lp(Rn) ≤ C‖|x|β |x′|α+1∇u‖Lp(Rn). (39)

We introduce the spherical coordinates in Rn. Let r > 0, θ1, ..., θn−2 ∈ [0, π] and θn−1 ∈ [0, 2π]. 
Denote

x1 = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1,

x2 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1,

x3 = r sin θ1 sin θ2 · · · sin θn−3 cos θn−2,

· · ·
xn−1 = r sin θ1 cos θ2,

xn = r cos θ1.

Then |x′| = r sin θ1 and dx = rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2drdθ1 · · ·dθn−1. Let ω =
(θ1, ..., θn−1), ω′ = (θ2, ..., θn−1), 0 = sinn−2 θ1 · · · sin θn−2, and 0′ = sinn−3 θ2 · · · sin θn−2, 
E = {ω′ | 0 ≤ θi ≤ π, 2 ≤ i ≤ n − 2, 0 ≤ θn−1 ≤ 2π}. Denote dω = dθ1 · · ·dθn−1 and dω′ =
dθ2 · · ·dθn−1. We can express

∫

Rn

(|x|β |x′|α|u|)pdx =
∫

Rn

r(α+β)p+n−1| sin θ1|αp+n−2|u|p0′drdω

By assumption, λ := (α + β)p + n > 0. For each fixed ω ∈ [0, π]n−2 × [0, 2π], let û(s) :=
u(s1/λ, ω), it is well-known that
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∞∫

0

|û(s)|pds ≤ C(p)

∞∫

0

|û′(s)|pspds.

Namely,

∞∫

0

|u(r,ω)|pr(α+β)p+n−1dr ≤ C

∞∫

0

|∂ru|pr(α+β+1)p+n−1dr, ∀ω ∈ [0,π]n−2 × [0,2π].

Let 0 < ε < π/4 be fixed, the constant C also depends on ε. By the above we have

π−ε∫

ε

∫

E

∞∫

0

|u|pr(α+β)p+n−10′drdω′dθ1 ≤ C

π−ε∫

ε

∫

E

∞∫

0

|∇u|pr(α+β+1)p+n−10′drdω′dθ1. (40)

Similarly, we have

2ε∫

ε

∫

E

∞∫

0

|u|pr(α+β)p+n−10′drdω′dθ1 ≤ C

2ε∫

ε

∫

E

∞∫

0

|∇u|pr(α+β+1)p+n−10′drdω′dθ1.

So there exists some θ̄1 ∈ [ε, 2ε], such that

∫

E

∞∫

0

|u(r, θ̄1,ω
′)|pr(α+β)p+n−10′drdω′

≤ C

2ε∫

ε

∫

E

∞∫

0

|∂ru|pr(α+β+1)p+n−10′drdω′dθ1.

(41)

Notice for θ1 ∈ [0, π2 ], θ1 ≤ sin θ1 ≤ 2θ1. By computation, using αp + n > 1, for every fixed r
and ω′,

θ̄1∫

0

|u(r, θ1,ω
′)|p| sin θ1|αp+n−2dθ1

=
θ̄1∫

0

| sin θ1|αp+n−2



|u(r, θ̄1,ω
′)|p −

θ̄1∫

θ1

∂t |u(r, t,ω′)|pdt



dθ1

≤ C

θ̄1∫

0

θ
αp+n−2
1 |u(r, θ̄1,ω

′)|pdθ1 + C

θ̄1∫

0

|u(r, t,ω′)|p−1|∂t u(r, t,ω′|)
t∫

0

θ
αp+n−2
1 dθ1dt
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≤ C|u(r, θ̄1,ω
′)|p + C

θ̄1∫

0

| sin t |αp+n−1|u(r, t,ω′)|p−1|∂t u|dt

≤ C|u(r, θ̄1,ω
′)|p + 1

2

θ̄1∫

0

|u|p| sin t |αp+n−2dt + C

θ̄1∫

0

| sin t |(α+1)p+n−2|∂t u|pdθ1.

Thus

θ̄1∫

0

|u(r, θ1,ω
′)|p| sin θ1|αp+n−2dθ1

≤ C|u(r, θ̄1,ω
′)|p + C

θ̄1∫

0

| sin θ1|(α+1)p+n−2|∂θ1u(r, θ1,ω
′)|pdθ1.

Multiply both sides of the above by r(α+β)p+n−10′, and take integral with respect to r and ω′. 
By (41), we have

ε∫

0

∫

E

∞∫

0

|u|pr(α+β)p+n−1| sin θ1|αp+n−20′drdω′dθ1

≤
θ̄1∫

0

∫

E

∞∫

0

|u|pr(α+β)p+n−1| sin θ1|αp+n−20′drdω′dθ1

≤ C

∫

E

∞∫

0

|u(r, θ̄1,ω
′)|pr(α+β)p+n−10′drdω′

+ C

θ̄1∫

0

∫

E

∞∫

0

r(α+β)p+n−1| sin θ1|(α+1)p+n−2|∂θ1u|p0′drdω′dθ1

≤ C

2ε∫

ε

∫

E

∞∫

0

|∂ru|pr(α+β+1)p+n−10′drdω′dθ1

+ C

θ̄1∫

0

∫

E

∞∫

0

r(α+β)p+n−1| sin θ1|(α+1)p+n−2|∂θ1u|p0′drdω′dθ1

≤ C

2ε∫

0

∫

E

∞∫

0

|∇u|pr(α+β+1)p+n−1| sin θ1|(α+1)p+n−20′drdω′dθ1

(42)
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Similarly, we have

π∫

π−ε

∫

E

∞∫

0

|u|pr(α+β)p+n−1| sin θ1|αp+n−20′drdω′dθ1

≤ C

π∫

π−2ε

∫

E

∞∫

0

|∇u|pr(α+β+1)p+n−1| sin θ1|(α+1)p+n−20′drdω′dθ1

(43)

By (40), (42) and (43), we have

∫

Rn

|u|pr(α+β)p+n−1| sin θ1|αp+n−20′drdω

≤ C

∫

Rn

|∇u|pr(α+β+1)p+n−1| sin θ1|(α+1)p+n−20′drdω,

which is equivalent to (39). The theorem is proved. !

Corollary 4.1. Let K be a compact subset of M , (c, γ ) ∈ K . Then there exists some positive 
constant C, depending only on K , such that for any w ∈ Ḣ 1(R3),

∫

R3

|w|2|∇uc,γ |dx +
∫

R3

|w|2|uc,γ |2dx ≤ C(|c| + |γ |)‖∇w‖2
L2 .

Proof. By Corollary 2.1, we have

|uc,γ | ≤ C(|c| + |γ |)√|x||x′| , |∇uc,γ | ≤ C(|c| + |γ |)
|x||x′| .

By Theorem 1.3 with α = β = − 1
2 , p = 2 and n = 3, we have

∫

R3

|w|2|uc,γ |2dx +
∫

R3

|w|2|∇uc,γ |dx

≤ C(|c| + |γ |)
∫

R3

|w|2
|x||x′|dx ≤ C(|c| + |γ |)

∫

R3

|x|−1|x′||∇w|2dx

≤ C(|c| + |γ |)‖∇w‖2
L2 . !

Notice (13) follows from Corollary 4.1.
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