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Abstract

It was proved by Karch and Pilarczyk that Landau solutions are asymptotically stable under any L2-
perturbation. In our earlier work with L. Li, we have classified all (—1)-homogeneous axisymmetric no-
swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth
on the unit sphere minus the south and north poles. In this paper, we study the asymptotic stability of the
least singular solutions among these solutions other than Landau solutions, and prove that such solutions
are asymptotically stable under any Lz—perturbation.
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Consider the incompressible stationary Navier-Stokes Equations in R3,

—Au+w-Vu+Vp=0,
divu =0.
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These equations are invariant under the scaling u(x) — Au(Ax) and p(x) — A2 p(Ax), A > 0and
it is natural to study solutions which are invariant under this scaling. These solutions are referred
to as (—1)-homogeneous solutions (although p is (—2)-homogeneous).

Let x = (x1, x2, x3) be Euclidean coordinates and e¢; = (1,0, 0),e» = (0, 1,0),e3 = (0,0, 1)
be the corresponding unit normal vectors. Denote x’ = (x1, x2). Let (r, 0, ¢) be the spherical
coordinates, where r is the radial distance from the origin, 6 is the angle between the radius
vector and the positive x3-axis, and ¢ is the meridian angle about the x3-axis. A vector field u
can be written as

U=urer +upeg +ugpegp,

where
sinf cos ¢ cos 6 cos ¢ —sing
e,=| sinfsing |, ey=| cosOsing |, ep=/| cos¢
cos 6 —sinf 0

A vector field u is called axisymmetric if u,, ug and uy are independent of ¢, and is called
no-swirl if uy = 0.

In 1944, L.D. Landau [7] discovered a 3-parameter family of explicit (—1)-homogeneous so-
lutions of the stationary NSE in C % (R3\ {0}). These solutions, now called Landau solutions, are
axisymmetric with no-swirl and have exactly one singularity at the origin. Tian and Xin proved
in [23] that all (—1)-homogeneous, axisymmetric nonzero solutions of (1) in C>®(R3\ {0}) are
Landau solutions. Sverak proved in [21] that all (-1)-homogeneous nonzero solutions of (1) in
C*®(R3\ {0}) are Landau solutions. There have also been works on (— 1)-homogeneous solutions
of (1), see [2,14-17,19,20,24,25]. In [10-12], the (—1)-homogeneous axisymmetric solutions of
(1) in C®(R3\ {(x1, x2) = 0}) with a possible singular ray {(x1, x2) = 0} was studied, where
such solutions with no-swirl were classified in [10] and [11], and existence of such solutions
with nonzero swirl was proved in [10] and [12].

There has been much work in literature on the existence of weak solutions and L2-decay of
weak solutions of the evolutionary Navier-Stokes equations, see e.g. [1,3,6,8,9,13,18,22] and the
references therein. Such L2-decay of weak solutions can be viewed as the asymptotically stability
of the zero stationary solution of (1). The asymptotic stability problem has been studied for other
nonzero stationary solutions of (1) with some possible singularities in R3. Karch and Pilarczyk
proved in [4] that small Landau solutions are asymptotically stable under L2-perturbations. The
L? asymptotic stability of other solutions with singularities is also studied in [5]. With special
(—1)-homogeneous solutions which are different from Landau solutions obtained in [10-12], it
is worth to explore the asymptotic stability or instability of these solutions. In this paper, we start
this study for a family of solutions which are the simplest and least singular solutions among the
solutions found in [10-12].

Denote U = u - r sinf and y = cos 6. By the divergence free property of # we have u, = %Ué’,.
For (-1)-homogeneous axisymmetric no-swirl solutions, (1) can be reduced to

1
(1 —yHUy +2yUp + 5U§ =ci(1—y) + (14 y) +c3(1 —y?). )
Forc; > —1landcp > —1, let
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c3(cr, ) =

(Vita+Vite) (Vita+V/T+a+2),

where c1, ¢2, c3 are real numbers. Denote ¢ = (c1, ¢2, ¢3) and

1
2

Ji={ceR¥c1=—1,c0> —1,¢3 = &(c1, )}

In [11], it was proved that there exist y~, y T € CO(J,R), satisfying y ~(c) < yT(¢) if ¢3 >
c3(cy, ¢2), and y~(c) = y T (c) if c3 = ¢3(cy, c2), such that equation (2) has a unique solution
UyV in C®(—1,1) N CO[—1, 1] satisfying Uy" (0) = y for every ¢ in J and y ~(c) <y <
yT(c). In particular, y*(0) > 0 and y ~(0) < 0. Moreover, let

c,y

: U
S’ =up e +uy¥eg = Uy er + ——eq,
sin@ 3)
er = Laer ~Laery = Lwery - Yo
Poma T ma 2sin26

{W”,p"Ylce J,y~(c) <y <yTt(c)} are all (—1)-homogeneous axisymmetric no-swirl so-
lutions of (1) in C*®°(R3 \ {(x1, x2) = 0}). It was also obtained in [11] that

USY (—1) = 2+4+2J/1+c;, wheny=y"(c),
6 “)12-2JT+¢;, otherwise,

ver (= | 2 2VIEa, wheny =y7(),
0 | =2+2/1+c2, otherwise.

As mentioned earlier, we would like to study the asymptotic stability or instability of the
(—1)-homogeneous axisymmetric stationary solutions found in [10-12]. Different from Landau
solutions, these solutions are singular at the north pole N and/or south pole S. These solutions
u satisfy either 0 < limsup |x||x'||Vu(x)| < co or limsup |x/|2|Vu(x)| > 0, while Landau

|x]=1,x'—0 [x|=1,x"=0
solutions satisfy sup Ix|?|Vu| < oc. In this paper, we study the stability of (—1)-homogeneous
[x|=1
axisymmetric no-swirl solutions satisfying 0 < limsup |x||x’||Vu(x)| < oo. These solutions are
x'—0

the family {(uY, p©7) | (c, y) € M}, where
M:={(c,y)lci=c2=0,c3> -4,y (0) <y <yT(0)}. (4)

For any (c,y) e M, Ug’y satisfies

1
(1= YUY + 25U + 5(U§”>2 =c3(1—y%), —1<y<l,

5
Ug(0)=y.
Proposition 1.1. Let (¢, y) € M, then (u®Y (x), p©Y (x)) satisfies
— AuS? +uSY - Vu©Y + Vpc’y = (4mcsln |X3|8x35(0’0’x3) — bc’y80)63, X € R3, ©)
divu®’ =0, xeR3,
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where
1

2 2
bc,V=/<y|U9’|2_ 1_§2U9— l_yytez)dy. %)

Equations (6) and (7) are understood in the following distribution sense: for any ¢ € C° (RY),
Jj=123,

]

/(VUjV(P — Uit Oy — poy; @) =[4mcs / In[x3|9x;¢(0, 0, x3)dx3 — b7 9(0)183€3, (8)

R3 —00

and

/ U’ Ve =0. )
]RS

We now study the stability of the family of solutions {u®" | (¢, y) € M}. Let H'(R3) denote
the closure of C§°(R3, R3) under the norm [ VullL2®3), and for 1 < p < oo,

LPRY) ={ueL?R?) |divu =0}, H!'R® ={uecH' R? |divu=0},

and

lull o sy = Nl ooy Nl sy = 190l 2y
For a given solution (u“?, p©") of (1), let u = u(x, t) denote a solution of

ur—Au+ w-Vyu+Vp

= (47rc3 10 |x310558(0.0.03) — D7 S0)es, (x,1) € R3 x (0, 00),
divu =0, (x,1) € R? x (0, 00), (o
u(x,0) =u? + wo,

where wo € L2 (R?) and b7 is given by (7). Then w(x, 1) = u(x, t) — u®? and 7w (x) = p(x) —
p©Y (x) satisfy the initial value problem

w; — Aw + (w - V)w + (w - VuS? + @S - VYw+Vr =0, (x,1) € R? x (0, 00),
divw =0, (x,1) € R? x (0, 00), (11

w(x, 0) = wo(x).

We study the existence and asymptotic behavior of global-in-time weak solutions of (11). Let the
energy space
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X := L*([0, 00), L2 (R*)) N L%([0, 00), H}),

and for w in X

lwllx := ||w||L°°([0,oo),L(2,(R3)) + ”w”LZ([O,oo),I-'I{})'

Let (-, -) denote the L2-inner product,i.e. (f,g) = ng fgdx. A vector w € X is a weak solution
of (1) if forany 0 <s <t < oo and ¢ € C ([0, o0), H}(R3) N C([0, 00), L2 (R?)),

t
(w(@), p(t)) + /[(Vw, Vo) + (w-Vw, @)+ (w-Vu®Y,9)+ " - Vw, p)ldt

t
— (w(s), 9(s) + f (w. go)d.

Theorem 1.1. There exists some (o > 0, such that for any ¢ = (0,0, ¢3), |(c,y)| < Mo, wo €
L(ZT (R3), there exists a weak solution w of (11) in the energy space X. Moreover, w is weakly
continuous from [0, 00) to L?, (R3), and satisfies that

t
||w<r>||%+/||V®w(r)n%drs lw(s)2 (12)

for almost all s > 0, including s =0 and all t > s.

Recall that y+(0) > 0 and ¥ ~(0) < 0. So there is some ug, such that {(c,y) | c1 =2 =0,
[(c3, ¥)| < o) C M. We also have

Theorem 1.2. There exists some o > 0, such that for any c = (0, 0, ¢3), |(c, ¥)| < o and weak
solution w € X of (11) satisfying (12),

lim [[w(®)[l2 =0.
[—>0o0

Moreover; if wyg € LP(R*) N L?, (R3) for some g < p <2, then there exists some constant C > 0,
3,1 1
depending only on (c,y), n, p and |[wol| p, such that |w(®)|2 < Ct_f(ﬁ_f),for allt > 0.

Theorem 1.1 and Theorem 1.2 can be established using the same arguments as [4], as long as
the special stationary solutions u“? satisfy the following condition

I/(UVMC”’)-deISKIIVwIILZIIVvlle, 13)
R3

for some constant K small enough, for any divergence free v, w € CZ° (R3).In [4], (13) is proved
by Hardy’s inequality when u“" is replaced by small Landau solutions. In this paper, we analyze
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the solutions u“Y where (c, y) € M, and obtain |Vu“?| < C(|c| + |y |)/(x||x’]). So (13) is true
if we have

v]? 2
|X||X/|a’xSKHVUIILz, (14)
R'ﬁ

for any v € C2° (R3). Notice (14) cannot be proved by the classical Hardy’s inequality. In Sec-
tion 4, we prove the following extended Hardy-type inequality, which includes (14).

Theorem 1.3. Letn >2, 1 <p <n,u € CCl R™), ap > 1 —n, (e + B)p > —n, then there exists
some constant C, depending on p, a and B, such that
|ﬁ+cc—ol’ |x/|0l/+l

1P 1'%l Lo gy < Cll|x Vil Lr®n). as)

for all o’ < a. Moreover, for any o' > o and any C > 0, (15) fails in general.

Estimate (14) is the special case of (15) with p =2, a =o' =8 = —%. Then we also have
(13). Given (13), Theorem 1.1 and Theorem 1.2 can be proved by the same arguments used in
[4], see also [5]. So in this paper we will only prove Theorem 1.3 and (13).

Remark 1.1. In [5], Karch, Pilarczyk and Schonbek proved the asymptotic stability of a class of
general time-dependent solutions « of (10) using Fourier analysis, where (13) with u®? replaced
by u is an essential assumption. A list of spaces were given in [5] where (13) is true if u®? is in
one of those spaces. But the solutions #“” we discuss here are not in those spaces.

We will analyze in Section 2 the singular behaviors of u“?, (¢, y) € M. In Section 3 we study
the force of u“?, (c,y) € M. Theorem 1.3 will be proved in Section 4. Then as stated above,
Theorem 1.1 and Theorem 1.2 follow with the same arguments as in [4].

Acknowledgment. We thank Vladimir Sverak for bringing to our attention the work [4] of Karch
and Pilarczyk.

2. Estimate of the special solutions u¢”

Lemma 2.1. Let K be a compact subset of M. Then there exists some positive constant C, de-
pending only on K, such that for any (c,y) in K and —1 <y <1,

Ug” (y) = —%sgn(y)(l —yHIn(l —y») + 0D (el + Iy (1 — y?), (16)
(Us"Y (y) = e3In(1 — y*) + 0 () (le| + Iy D), (17)
and
c " 2
7Y ) = =5 + OWel + Iy DIl = )P, (18)

where O(1) denotes some quantity satisfying |0 (1)| < C for some positive constant C depending
only on K.
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Proof. For convenience, let C be a constant depending only on K, O (1) be a function satisfying
[O(1)] < C forall =1 <y <1,and C and O(1) may vary from line to line. It is easy to see

from (5) that UQ(O’O’C3)’y(y) and —Uéo’o’“)’_y(—y) satisfy the same equation and have the same
value at y = 0 and therefore they are identically the same. So we only need to prove (16)-(18)
for —1 <y <O.

By Theorem 1.5 in [11], there exists some constant C, such that

|Vc,yU§’V(y)| <C, V-l<y<l.
Using this and the fact that Ug’o =0, we have that forall —1 <y < 1,

US| =057 (3) = U’ ()] < sup Ve, USY () - (e, )| < Clle] + [y D).
(c,y)eK,—1<y<l

Thus

1Ug" llzoo=1,1) < C(lcl + |y D). (19)

For simplicity we use Uy to denote Uec’y. By (5), we have

U+ Ug —4 U 2Uy
—Usg=c3— .
TR R A S
Let
r 4 1 r (s)
Up — -y / Ug(s
= | ————ds=1 ds. 20
wiy) /2(1—s2) =yt aam o (20)
0 0
Since Uy (0) = y, we have
r 2U,
Ug(y):yefw—i-e*w/ew(q - l—g)ds. 2D
-5
0

By (19), for any fixed 0 <€ < 1/2,

lUgllLoo(—1,1) <4e€, Vl(c,y)l <€/C.

By the above and (20), we have that for —1 <y <0,

0
1 d 1—
[w(y) +In +y|§26/ S el —2.
I—y 1—s? I+y
y

So
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e <41+ e <14+, —1<y<o.
By (19), (21) and the above, we have

0
C
|Usl < Cy(1+ '+ C(lc| + ly e f e"Wds < — el +1yD+ T (22

y

Denote 11 = f; ' 52280 ds. By (22) we have 11 = O(1)(le| + |y |)/e. Then by (20) and (22),

2(1—52)
we have
| [ Us(s) - ||+| |
-y [A%) Y 1—2¢
=1 ds=In—2 oM<y .
w(y) =In - y+u1+/2(1_s2) +y+ 1+ 0 (I+y)
—1
Then we have
-
o = y“1(1+0(1)w(1+y)1—2€>,
14y
1
eV = ”_Li *H1(1+0(1)L+|”|(1+y)‘*26).

Using the above, (21) and (22), we have that for —1 <y <0,

¥ y
Up(y) =ye " +C3e_w(-V)/ew(S)ds _e—w<y)/ w(s) 12U0 ds
— S

0 0

lel + vl
€

=c3(1+y)In(l +y)+ O(1) 1+ y).

Estimate (16) is established.
Next, we make the estimate of U and prove (17). By (5) and (16), we have that for —1 <y <
07

1 1
Up=c3— —y2(§ug2 +2yUp) = c3In(1 + y) + O(D)(Ic| + [y ]).

1—

Estimate (17) is established.
Differentiating (5), and using (16) and (17), we have for —1 < y <0 that

(1= y)Ug = =2c3y = UpUy — 2Up =2¢5 + O(1)(lc| + ly D(1 + p) | In(1 + y) .
Estimate (18) follows immediately. The lemma is proved. O
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Corollary 2.1. Let K be a compact subset of M. Then there exists some positive constant C,
depending only on K, such that for all (¢, y) in K, and x in R3\ {x’ = 0}.

/ / 0 l /
WS (x) = _CsSgn(xzs)lx L n (M| +2|)/|)Ix I’ 23)
x| x| x|

W (2 )_% |x_||+ 0(1)(||i||+|y|)’ o1

and

2esl | OWlel +1yDh  Ixl
[ 2 T

[Vu(x)| = (25)

Proof For convenience write u? = u. By definition, u = u,e, + ugeg, where u, = %Ué, Uy =

rsme Up. Denote y = cos6, by Lemma 2.1, we have

Ug? (y) = —c3sgn(cos ) sin? @ Insin + O (1)(Ic| + |y ) sin? 6.
Since r = |x| and |x’| = |x|sin@, estimate (23) follows from the above. Estimate (24) follows

from (17).
Next, we compute

Vu=Vu,e, +u,Ve, + Vugeg +ugVey.

By (16) and (17), we have

u, 1au, 1,
[Vu,|=|— oy r+— egl=1|— U@()’)er-i- 5 Uy (¥)(—sin6)eg]|
2|c3| (|C|+|J/|) ) 2|C3| el + 1yl Ix]
= o)~V Ging = o)LV XL
Zsing T OW Tz Insind =T+ O == In o
and
dug 1 dug 1 I, .
|Vu9|=|ye,+—¥ egl=|— 2U9€r+r—2U9(—Sm9)€9|
L G+ DI 1l
x| x| |x]

Since |Ve,| + |Vey| < C/r, estimate (25) follows from the above. O
3. Force of u®?, (c,y) e M

In this section, we study the force of the special solutions #“? and prove Proposition 1.1,
where (¢, y) in M and M is the set defined by (4). Recall that (r, 6, ¢) are the polar coordinates,
let p =rsinb, (p, ¢, z) be the cylindrical coordinates, y = cos6. Recall (u“?, p©?) are given
by (3), where U,"" (y) is a solution of (5). For convenience, denote u = u®?, p = p“¥ and
Up = Uy . In Euclidean coordinates, x = (x1, x2, x3) and u = (uy, ua, u3).
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Proof of Proposition 1.1. Let (¢, y) € M. For any R > 0, let

Q:={xeR®*||x'|<R,—R <x3 <R). (26)
We prove (8) and (9) for any ¢ € C2°(2). Throughout the proof we denote O (1) as some quantity

satisfying |O(1)| < C for some C > 0 depending only on (c, ¥), R and ¢.
By Lemma 2.1,

o(1)

[Us ()| = 0(1)sin® 0] Insin6], |(Up)' ()| = O(D)|Insin6|, |(Up)" (y)| = G20

27

Recall that here “’”” denotes the derivative with respect to y. By Corollary 2.1 and (3), we have

_ O(1)sinf|Insind|

O(1)|Insind| o) O(1)|Insind|
b |V’/l|= 2 . ’ |p|= 2 .
r r4sinf r

lug|

s |Mr| =
(28)
We first prove (9). For any € > 0, denote

Qe :={x eR3||x'| <€, —R < x3 < R}.

Let o.(1) be a function where o.(1) — 0 as € — 0. Since u € C®(R3 \ {x’ = 0}), we have
divu = 0in R3\ {x’ = 0}. Therefore

/u-V(pdx:/u-Vgodx—i—/ngodx:— / u-Vgodx—i—/wV(pdx.
R3 Q\ Q2 Qe AQeN{|x|=€} Qe
By (28), we have |u| < C/|x|. So
C C ’
lu-Voldx < ﬁda(x)SCellneL lu-Voldx < |—|dx§Ce |Ine€|.
X X
32 392 Qe Qe

Sending € to 0 in the above leads to (9).
Next, we prove (8). Denote the stress tensor

Tij(u) == péij +ujuj — (Ox;uj + Oy, j).
Then (8) is equivalent to

R

fTij(u)ax,wdx=[47TC3/1HIX3|3x3<p(0,0,X3)dX3—b¢(0)]5j363, Ve CP(Q), (29)
Q -R

where b = b7 is given by (7).
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Claim 1. T;; (u) € Lluc(R3)’ for any g < %
To prove the Claim, notice that by (28), we have that

Tij1 < Ipl+ [ul* +2|Vul <

. 30
r2sinf (30)

So for any R > 0 and 2 defined by (26), we have, using g < %,

2

R m
1
g _ -
/|sz| SC/ r24|sin9|qu_C/// T 2|s1n9|q S 2§in0d¢dodr < C.
Q 000

Bag

The Claim is proved.
Using Claim 1 and the fact that 9,; 7;; =0 in R3\ {x’ =0} forany 1 < j <3, we have that

—/Tijaxi(pdxz— / ]}jaxi(pdx—/ﬂjaxi(pdxz f 7}j~vi¢dx—f7}j8xi¢dx.
Q Q\Qe Qe 992 Qe

Let

Lj ::/Y}j~vi(pdx.
092

Since T;; € L'(€2), we have er T;j0x, dx = 0c(1). So for each j =1,2, 3,

—/ﬂjaxi(pdx:Lj—i—oe(]). 31
Q
By computation
- U = 7D @
Lj= f Tij - vi9(0,0,x3) + O(D)e / Tl =L + LY.
IQeN{|x’|=€} IQeN{|x’|=¢}

By (30), we have that for j =1, 2, 3,

ILP) < Ce —— dx3<Ce|lne| >0, ase —>0.  (32)

R
| maesc [
/.2
3QeN{|x'| =€) "R V€ +x3

Lemma 3.1.
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Proof. We will show that 7;; - v; = F(|x'|, x3)x; for some function F(|x'[,x3), j = 1,2,
so its integral on any cylinder {|x’| = €} vanishes. Let x' = (x1, x2), v’ = (uy,uz), V' =
(91, 02), (p, ¢, z) be the cylindrical coordinates, and the unit normal e, = (cos ¢, sing, 0), ey =
(—sing, cos¢,0),e; = (0,0, 1). So we have x = pe, + ze, x' = pe,. Notice u is axisymmet-
ric no-swirl, we can write u = u,e, + uze;, where u, and u, are both independent of ¢. By
computation,

du, ou,
x/-u/zpup, X/'V/szgep'i_pgeb
and
d(pup) d(pup)
Vi -u)=V(ou,) = Ple, + Pe..
( ) (p p) 90 o 37 z

On 92, N {|x’| = €}, the outer-normal v = %(xl , X2, 0). Since u is axisymmetric, u,, is indepen-
dent of ¢, so u1 =u,(p, z) cos ¢, and we have
1 / / / / / /
Tl-1~v,-:;(px1+x cu'uy —x -Vuy—o(x ~u)+u1)

1 oup d(pup)
=—| ppcoso + puyit, cos¢p — p— coS¢h — ———CoS¢ + u, cosP
P ap ap

=G(p,z)cos,
where
G(p,2) = % <pp + pupit —p% - 3(’8)_;‘“ +up)_
So
R 27
QDZ‘/YhW«lQ@WdU=€/(H€@¢MQQZszcm¢wﬁ=0
p=¢ “R 0

With similar argument we also have Lg) =0. The lemma is proved. O

Lemma 3.2.
R
tim L =47cs [ n]xafa 0.0, x3)dxs by 0.
€
—R

where b is the constant defined by (7).
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Proof. Recall

1
Lgl) =z /(T13X1 + T23x2)9(0, 0, x3),

p=€
and fori =1, 2,

81/!1 8u3
Tizs=uju 3—3—)63— Fye
1

Since u = (11, u, u3z) = %Uée, Upeg, we have

r sm9

ul(xl,xz,)%)— Ug(y)+ Ue(y)

us(x1,x2,Xx3) = Ue(Y) + Ue(y)

X3, 1
uz(xy, x2,x3) = r—ng()’) - ;Ue()’)

Recall that 12 = x2 + x2 +x2, p? =x2 +x2, y=cosf =2 = 5B By computation we
1 2 3P 1 22y ’ \/m y p
have
u;  Xxj Xix3 xl,o , 0uz X X X3 x,x2 ”
=Yy, -1y vy, 28ty ISy U
axs 3 0T ot 5 Ve ox; 30 AT .
So
02
2p x3 2p? p*(p* — )
ZTzzxz— B+ 2= vu- U9+ Uy - —Ug—riUé’ (33)

Since Uy satisfy (5), take derivative of the first equation of (5) both sides with respect to y, we
have

(1 = y)U} +2Up + UpUj = —2c3 .

Plug in U} = —ﬁ(zw) + UpU}, + 2c3y) in (33), we have

ZC3x3 0°X3 x2
ZTnxl— +< (U)? + 2Uf + de3) — z—r—gUe :

Let

2 x2
Gy="3 (|U9| 42U}, + 4c3) — g—r—gug. (34)

Now we have
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1
Lgl) =z / (T13x1 + T23x2)9(0, 0, x3)do

p=¢
1 2 1
=2 [ 52000000 + 7 [ Gp.0.1d0
€ r €
p=€ p=€
=:A+B.

Since ¢(0, 0, R) = ¢(0,0, —R) =0, we have

R R
A=—4rcs / — 00,0, x3)dx3 = 2 cs f In(€? + x3)dy, (0, 0, x3)dx3.
€2+ x3 :
—R —R
So
R
lim A =4y / In x3]95,0(0, 0, x3)dx3. (35)
€—>
R
Next, write

B:é / G(x)p(0,0, x3)do

p=€
1 1
=< f G(x)¢(0)do + < / G(x)(¢(0,0,x3) — ¢(0))do
p=€ p=€
=: B + B».

We have |B;| < Cf_RR |G (x)x3|dx3 By (27) and (34), we have that for [x'| =€, —R < x3 < R,

2.2 2
X € €
Gl =2 (2R 4 m ) < = (m ?+In

€
4 2
r €+ x3 1/ez—i-x32 ,/62+x32

So lime_,0 |G (x)x3] =0 a.e. x3 € [—R, R], and |G(x)x3]| < C for —R < x3 < R. By the domi-
nated convergence theorem, we have

D-

lim B, = 0. (36)
e—0

Next, let b, = é fp:e G(x)dx. We have B] = b.¢(0). Let § = R/+/€2 4+ R?, wehave 0 < § <
1.On{p=¢},r=,/€2 +x§, therefore y = cos@ = x3/r =x3/+/€2 + RZ, we have

e? r?
dy = 73dX3, SO d.X3 = _Zdy (37)
(€2 +x3)2 €
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We also have /1 — y2 =sinf = ¢/r. By (27), (34) and (37), we have

3

€2y 712 / y 2 r
be = r—3(|U9| +2U, +4C3)—;(U9 + yUy) e_zdy

y
(y(IUé|2 +2U)) — W(Uﬁ + yU9)> dy

‘L\aoo Cl”\oa

2_ 2
=28(U9(8)+U9(—8))+/<y|U9’|2— l—ing_ 1_yy2U02)dy'

Ase — 0,8 = 1,50 8(Uy(8) + Up(—9)) = 2(Up(1) + Us(—1)) = 0. By (27),

1
2—y? y
b:= lim b = Uli2— Uy — U?)dy.
GE}}) € /(}’| 0| 1_y2 0 1_y2 0 y
—1

Recall By = b.¢(0), we have
lim By = bp(0). (38)
e—0

Lemma 3.2 follows from (35), (36) and (38). O
Proposition 1.1 follows from (29), (31), (32), Lemma 3.1 and Lemma 3.2. O
4. Proof of Theorem 1.3
Proof of Theorem 1.3. For convenience, let C denote a constant depending only on p, «, B, &’

and n, which may vary from line to line. We first prove that if (15) holds for some C, then o’ < «.
Let 0 < § < 1, f5(x’) be a smooth function of x’, such that

/ 1, 28<x'| <36,
()=

0, |x'|<8orl|x|>46,

and |V, f| < C/$. Let g(x;,) be a smooth function such that

I, 2<|x,| <3,
g(xy) ==
0, |xul<1or|x,| >4,

and |g'(x,)| < C. Define us(x) := f5(x’)g(xy), then us is in CLI. (R™). By computation,
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3
-1
|||x|ﬂ|x/|au5”ip(Rn) z/ / |x|ﬂ[’|x/|(1[7dx/dxn > 801[7"1‘" /C
2

25<|x'|<36
On the other hand, since § < 1,

BHa—a' | s’ +1
x|

x| Vusll? g,

s
< / f | B2 || DP (v £ (Y PGl + |5 @)IP L8 o)l ) d
1 8<|x/|<48
<C / o [@HTDP (T f5 ()P + | f5 ()P )dx

8<|x’|<46

<C / x| @tDrs=r gy’ < cs¥ Pl

d=<|x'|<48

Since us satisfies (15), we have §*P1—1 < C§%'P+n=1 for any 0 < § < 1, therefore o’ < .
Next, we prove (15) for o’ < a. Since |x’| < |x|, we only need to prove it for &’ = «, i.e.

Ix 121 1%ull Loy < ClHXIP 11T Val| o o, (39)

We introduce the spherical coordinates in R”. Let r > 0, 6y, ..., 6,7 € [0, 7] and 6, € [0, 27].
Denote

Xx; =rsinf;sinb,---sinb,_psinb,,_1,
Xy =rsin6; siné; - - -sin6,_» cosH,,_1,

x3 =rsinf;siné, ---sinf,_3cosb,,_7,

Xp—1 =rsiné cosbs,

X, =1 cosf.
Then |x| = rsin6; and dx = r"~'sin" 26, sin" 26, - - -sinb,_rdrdd; ---db,_;. Let w =
61, ....,0,-1), & = (62, ....,0,_1), Q= sin" 2 0y ---sinf,_,, and Q' = sin" 3 6r---sinf,_»,
E={0]0<6, <m,2<i<n-—2,0<6,_1 <2m}. Denote dw =db---db,_1 and do’ =
d6, - --db,_1. We can express

f(|x|ﬁ|x’|“|u|)"dx=/r(“+ﬂ>f’+”—1|sin91|“f’+"—2|u|f’sz’drdw
R~ R~

By assumption, A := (¢ + B)p + n > 0. For each fixed w € [0, 71]”’2 x [0,2m], let i(s) :=
u(s'/*, w), it is well-known that
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00 00
/ li(s)|Pds < C(P)/ @' ()P s ds.
0 0
Namely,
00 00
/|u(r, w)|Pr@tBPpin=lg, < cf |8, u|Pr@tBEDPtn=lg, v e [0, 7172 x [0, 27].
0 0

Let 0 < € < /4 be fixed, the constant C also depends on €. By the above we have

T—€ o0

T—€ o0
/ / f lu|Pr@tBrn=100rdw'do, < C / / / |Vu|Pr@tB+Drtn=10 grdw'do;. (40)
e E O € E O

Similarly, we have

2¢ [ee)
/ f f lu|Pr@TPP=10drdw' do; < C
€ E O

So there exists some ) € [e, 2¢], such that

2¢

€

o0
/ f |Vu|Pr@tBH0rtn=10 grdw' do; .
E 0

o0
/ / lu(r, 0y, ) |PrOtPP=100 drda/
E O
41

2e 00
ng//|8,u|pr(“+’3+1)1’+”_1Q/drda/del.
€ E O

Notice for 61 € [0, %], 01 <sinf; < 26;. By computation, using ap + n > 1, for every fixed r
and o',

01
f (. 61, |7 sin 6|47+ 2dg;
0

él él
=/|Sin€’1|°‘p+"72 lu(r, él,w/)lp—/3z|u(r,t,w’)|pdl do,
0 0

0 61 t
<cC / 02 \u(r, 61, ) |Pd6) + C / lu(r, 1, )P~ du(r, 1, ') f 6:7 " a0 d
0 0 0
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3
< Clu(r, 0y, 0)|P + C/ Ising [P u(r, 1, )PV 0uldt
0

9| 91
_ 1
<Clu(r, el,a/)|1’+5[|u|P|sint|°’P+”*2dt+c/|sint|<a+1>P+”*2|a,u|Pd91.
0 0

Thus

01
/ lu(r, 61, @)|P|sin 6 [*PT" 246,
0

0y
<Clu(r, 01,0 + C/ | sin 6| @ FDPT=215, u(r, 01, ') |Pd6).
0

Multiply both sides of the above by r©@TAP+1=1Qy’ ‘and take integral with respect to r and «’'.
By (41), we have

PRI 5in gy |« D218y, u|P Q' drd o d6; (42)

[0,u|Pr@tBrDPE=10 1 d 0 d6,
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Similarly, we have

T—€ E

b3 o0

f / [u|Pr@tBPn=1 6in 9, 1P 2Q/ drd o' d6)
0 43
. (43)

<C / f / |Vu|Pr@TAHDP+n=1 gin g, | @+DPH =200 41 d W d6;

w—2€ E
By (40), (42) and (43), we have

/Iulpr(“+’3)p+"—1|sin01|°‘1’+”_2s2’drdw
R~

< C/ |Vu|pr(ol+/3+1)p+n71 | sin6; |(Ot+1)p+n729/drda)’
R7

which is equivalent to (39). The theorem is proved. O

Corollary 4.1. Let K be a compact subset of M, (c,y) € K. Then there exists some positive
constant C, depending only on K, such that for any w € H'(R?),

/ lw|*|Vu®? |dx + / [wu®? Pdx < C(le| + [y DI Vw7,
R3 R3

Proof. By Corollary 2.1, we have

wer) < CUE YD g ey L Clel+1yD
VI ]|

By Theorem 1.3 witha =8 = —%, p=2andn =3, we have

/|w|2|u”‘7’|2dx+/|w|2|Vu°"V|dx
R3 R3

5C(|c|+|y|)/|xr1|x/||w|2dx
]RS

Jw|
sc<|c|+|y|>/ —dx

el 2]
R3

<C(el+yDIVwl;,. O
Notice (13) follows from Corollary 4.1.
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