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Abstract. We consider the Monge-Ampére equation det(D?u) = f in R”, where f is a
positive bounded periodic function. We prove that u must be the sum of a quadratic
polynomial and a periodic function. For f = 1, this is the classic result by Jérgens,
Calabi and Pogorelov. For f € C%, this was proved by Caffarelli and the first named
author.
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1 Introduction

A classic theorem of Jorgens [17], Calabi [11] and Pogorelov [20] states that any classical
convex solution of

det(D*u) =1 in R"

must be a quadratic polynomial.

A simpler and more analytical proof, along the lines of affine geometry, was later
given by Cheng and Yau [12]. The theorem was extended by Caffarelli [1] to viscosity
solutions. Another proof of the theorem was given by Jost and Xin [18]. Trudinger and
Wang [21] proved that if () is an open convex subset of R” and u is a convex C? solution
of det(D?u) = 1in Q with lim, 30 u(x) = oo, then Q = R". Ferrer, Martinez and
Milédn [14, 15] extended the above Liouville type theorem in dimension two. Caffarelli
and the first named author [8,9] made two extensions, and one of them includes periodic
data.

More specificly, assume for some ay, - - - ,a, > 0, f satisfies

f(x+aje;) = f(x), VxeR", 1<i<n, (1.1)
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wheree; = (1,0,---,0),--- ,e, = (0,---,0,1).
Consider the Monge-Ampere equation

det(D*u) = f in R". (1.2)

Theorem A ([9]). Let f € C*(R"), 0 < a < 1 with f > 0 satisfy (1.1), and let u € C*(R")
be a convex solution of (1.2). Then there exist b € R" and a symmetric positive definite n X n
matrix A with

detA = f,
H]Sign [O/ai]

such that .
v::u—ExTAx—b-x

is a;-periodic in i-th variable, i.e.,
v(x+ae;) =v(x), VxeR", 1<i<n.

For applications, it is desirable to study the problem with less regularity assumption
on f. It was conjectured in [9], see Remark 0.5 there, that Theorem A remains valid for
f € L*(R") satisfying

0 <inff <supf < co.
R" R™

We confirm the conjecture in Theorem 1.2 below.
We first recall the definition of a solution of (1.2) in the Alexandrov sense.
Let u be a convex function in an open set () of R". For y € (), denote

Vu(y) ={p € R"|u(x) > u(y) +p- (x —y), Vx € Q}

the generalized gradient of u at y.
For f € L*(Q) with f > 0 a.e., u is called a solution of

det(D*u) = f in O

in the Alexandrov sense if u is a convex function in Q) and [Vu(O)| = [, f, for every
open set O C ().
Similarly, for a symmetric 7 X n matrix A, we say that v € C*!(Q) is a solution

det(A+D%*) = f in Q
in the Alexandrov sense if u := %xTAx + v is convex in () and satisfies
det(D*u) = f in Q

in the Alexandrov sense.
Our first result is the existence and uniqueness of periodic solutions for f € L.
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Theorem 1.1. Let f € L*(R") with

O<inff <supf <oo
R” R7

satisfy (1.1) a.e., and let A be a symmetric positive definite n X n matrix satisfying

det A =
[Ti<i<n(0a:]

Then there exists a unique (up to addition of constants) v € CO(R") which is a;-periodic in the
i-th variable, such that

det(A+D%*v) = f in R" (1.3)
in the Alexandrov sense. Moreover, v € CY*(R") for some 0 < & < 1.

Remark 1.1. If f > 0, the existence part still holds by passing to limit.

Remark 1.2. If the smoothness assumption of f in Theorem 1.1 is strengthened to f €
Ch*(R™), k > 0,0 < a < 1, there exists a solution v € Ck*2#(R"). For k > 4, the method
in [19] is applicable; for 0 < k < 3, this can be established by a smooth approximation of
f based on the 2 theory of Caffarelli in [3], together with the CO estimate of solutions
in [19]. A different proof of these results under the assumption that 0 < f € Ck*(IR"),
k>0,0 <« <1,was givenin [5]. Monge-Ampeére equations on Hessian manifolds were
studied in [13] and [10].

Now we state our main theorem.
Theorem 1.2. Let f € L*(R") with
O<inff <supf < oo
R™ R

satisfy (1.1) a.e., and let u be a solution of (1.2) in the Alexandrov sense. Then there exist b € R"
and a symmetric positive definite n X n matrix A with

det A = ][ f,
[Ti<i<n[0.a:]

such that )
v::u—ExTAx—b-x

is a;-periodic in the i-th variable. Moreover, v € C'*(IR") for some 0 < a < 1.

Question 1.1. Does the conclusion of the theorem, except for the C* regularity of v, still
hold if f > 0?
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The main difficulty in proving Theorem 1.2 is that C? estimates on u are no longer
valid since f is only bounded, which can be seen from the counter examples in [22]. The
proof in [9] for Theorem A makes use of the fact that D2u is uniformly bounded in a
non-trivial way, thus we can not carry out the same proof in the current setting. The key
observation in our proof is that we can still prove the main propositions in [9] without
the uniform bounds of D?u, which also enables us to simplify the proof of Theorem A in
several ways. The proof of Theorem 1.2 follows closely the main steps in [9].

The organization of the paper is as follows: in Section 2, we state two theorems on
linearized Monge-Ampere equations established by Caffarelli and Gutiérrez [7] which
play crucial roles in the proof of Theorem 1.2. In Section 3, we prove Theorem 1.1 about
the existence and uniqueness of solutions on T" which is used in the proof of Theorem
1.2. In Section 4, we give the proof of Theorem 1.2. We will mainly focus on the part that
is different from [9].

2 Preliminary

In this section, we state two theorems on linearized Monge-Ampere equations.

Theorem B ([7]). Let Q) be an open convex subset of R" satisfying By C Q2 C By, n > 2, and
let ¢ € C*(QY) be a convex function satisfying, for some constants A and A,

0<A<det(D?*¢) <A<o inQ,
=0 on dQ).

Let a;; = det(D?¢)¢' be the linearization of the Monge-Ampere operator at ¢.
(1) Assume that v € C?(Q) satisfies

al']'l)i]' Z f, (% Z 0 in Q.

Then for any p > 0,r > s > 0, there exists some C(n,A, A, p,,s) > 0, such that

Sup v<C (HUHLP(er, dist(x,90)>s) T I flLn(xeq, dist(x, aQ)>s)) .
x€Q), dist(x, 0Q))>r

(2) Assume that v € C%(Q) satisfies
az-]-vz-]- S f, (% Z 0 in Q.

Then for r > s > 0, there exist pg > 0and C(n, A, A, po,1,s) > 0, such that

9]l Lo (xeq, dist(xp0)>s) < C <xe0, dijtf(li 80)>rv + 1 fllLrxeo, dist(x, aQ)>s)> -
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Proof. To prove the theorem, one needs to use sections of the convex function ¢ instead of
cubes. More precisely, we notice that Theorem 1 and Theorem 4 in [7] hold for supersolu-
tions, and thus the measure part of the proof of Lemma 4.1 in [7] holds for subsolutions,
the rest follows exactly those of Theorem 4.8 in [6]. We remark that (1) is called local
maximum principle and (2) is called weak Harnack inequality in literature. O

Theorem C ([7]). Let Q2 and Q) be open convex subsets of R" satisfying By C Q,Q) C By,

n > 2,andlet ¢ € C*2(Q)) and ¢ € C*(Q)) be convex functions satisfying, for some constants A
and A\,

{0<A§det(D24>) <A<oo inQ,

=0 on 0Q),
0<A<det(D?*¢) <A<oo in (),
$=0 on 9Q).

Let
ajj = det(D*¢)¢"  and & = det(D*$)¢"

be the linearizations of the Monge-Ampere operator at ¢ and ¢ respectively.
Assume that v € C?(Q) with v > 0 satisfies

aijvij > 0 in Q,
ﬁi]'ZJZ']' < 0 in Q

Let O c O c QONQ bean open set, then there exist constants a(n, A, A,O) and C(n, A, A, O)
such that

supv < Cinfo,
o) O
[7llceoy < C-
Proof. Apply (1) and (2) of Theorem B to v with f = 0, we obtain

supv < Cinfo
o) O

for an open set O satisfying

It follows that

Thus, we complete the proof. O
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3 Proof of Theorem 1.1

We now prove Theorem 1.1. This is based on the result in [19], together with the regular-
ity theory of Caffarelli [4].

Proof. Since Monge-Ampere equations are affine invariant, we may assume without loss
of generality that a; = 1 for all ;, and f satisfies

f=1
[0,1]"
For convenience, we identify periodic functions as functions on T".

We first establish the existence part. Let

p € CZ(B1), p=1
By

Fore > 0, pe(x) = e "p(ex), let

fox) = [ pelx=y)ft)dy @)

be the mollification of f. It is clear that f. is periodic. Define

fezfe—f{nfe+detA.

It follows that

fe — det A.
T

By Theorem 2.2 in [19], there exists a unique function 7. € C*(T") with
(A+ D?3¢) >0, /nﬁezo,

satisfying
det(A + D*3.) = f on T"

and |3c| + |V@e| < C(A) on T". Passing to a subsequence, % — v in C°(T") and v
is a solution of (1.3) in the Alexandrov sense, see e.g., Proposition 2.6 in [16]. The Cla
regularity of v for some a € (0,1) follows from Theorem 2 in [4].

Now we establish the uniqueness part. Suppose that there exist two solutions v and
0. Without loss of generality, assume

rr%ln(v —9)=0.



134 Y. Liand S. Lu / Anal. Theory Appl., 38 (2022), pp. 128-147

Then
1 7 N 1 - R
u(x) == 5% Ax+v(x) and d(x):= 5% Ax +9(x)

are solutions of (1.2) in the Alexandrov sense.
Since v is bounded, we can find M > 0 large enough such that

Op = {x € R"|u(x) < M}

contains [—2,2]".
Let
ue € CO(Q) NC® ()

be the solution of the following Dirichlet problem (see e.g., Proposition 2.4 in [8])

det(D%uc(x)) = fe(x) in Qy,
ue(x) =M on Q.

By a barrier argument,

ue(x) — M > —Cdist(x, BQM)%,
if n > 3 and

ue(x) — M > —Cdist(x, 90 )"
for some 0 < & < 1if n = 2, see e.g., [2] or Lemma A.1 in [8]. Since f. — f in L}(Qy) as
€ — 0, it follows that u, — 7 in CO(QM) along a subsequence as € — 0. As mentioned
earlier I satisfies det(D?#) = f in the Alexandrov sense. By the uniqueness of solution

to Dirichlet problem in the Alexandrov sense, e.g., Corollary 2.11 in [16], we have i = u.
Similarly there exists a convex solution 1. € C®([—2,2]") satisfying

det(D*le(x)) = fo(x) in [-2,2]"

with . — 4 in C°([-2,2]").
For any function w, denote

_OF
o awl‘]' !

F(Dzw):det%(Dzw) and Pi]'(Dzw)

since F is concave, we have
F(D*0c) < F(D?ue) + F;j(D*uc)ij(fle — ue),

ie.,
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Similarly,
F(D*uc) < F(D*ic) + F;j(D*ie )95 (ue — fie),
ie.,
F;j(D*0e)0;i(ue — fle) > 0
Let
0 = [{régfn(ue — ),
then

ue_ﬁe_ég ZO on [_2,2]7[.
Now by Theorem B and Theorem C, we have

[r_r};fll?l(ue —fe—06.) <C [Er&r]ln(ue — e — 0¢).

Lete — 0, we have

limé. =0 on T" as min(v—19) =
€—0 T

It follows that

[1311?1)]("(” —1)<C [1_1}%{1]11(14 — 1) =0.

Thus u = 71 on [—1, 1]". It follows that v = 9 on T". The theorem is now proved. O

4 Proof of Theorem 1.2

We now start to prove Theorem 1.2. As mentioned in the introduction, we will follow the
main steps in [9].
By the affine invariance of the problem, we may assume without loss of generality
that a; = 1 for all 7, and f satisfies
| or-1
[0,1]"

We first note that Proposition 2.1 and its proof in [9] still hold in the current setting.

Proposition 4.1. There exist a symmetric positive definite n x n matrix A with det A = 1 and
postive constants 6 and Cy, such that

1
u(x) — ExTAx < Ci|x*%, Vx| >1.
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For nonzero e € R", as in [9], we define the second incremental quotient,

suty) = HOE M0 )

where ||e|| denotes the Euclidean norm of e.
Let

E = {kie1 + - - - + kney; ki,-- -, k, are integers, k% 4+ +ki > 0}.
The following is analogous to Lemma 2.4 in [9].
Proposition 4.2.

7 := sup sup AZu(y) < .
ecE yeR”

Proof. We will follow the main steps as in [9], with some modifications.
For any large M > 0, define

Op = {x € R"u(x) < M}.
By John's lemma, there exists an affine transformation
Apm = apx + by,

such that

with detay; = 1. Denote

1
OM = EQM(QM)
Define
1 -1
upm(x) = ﬁu(aM (Rx)), x€Op.

Now fore € Eandy € R”, let x = %apm(y). Take M large so that y € Q%. It follows from

Proposition 4.1 that

dist(x,00p) > i,
Co

where Cy depends only on #,inf f and sup f.
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Let & = xapm(e), then

_u(y+e)+uly—e) —2u(y)

Aeuly) = eT?
(gt (R(x + ) + ulayh (R(x — ) — 2u(az} (Rx)
el
R
=T 24 )
a e 2
I g, )

In the rest of the proof, we use C to denote various positive constants depending only on
n,inf f,sup f and the constants § and C; in Proposition 4.1.
By Proposition 4.1,

M
Cl<3<C laul <C

The proposition will follow as long as A2uy(x) < C for dist(x,d0u) > C%
We now prove AZuy(x) < C.
Note that u;(x) satisfies

M

{det(DzuM(x)) = f(ay (Rx)) in Oy,
TR

up(x) on dOp.
Let fe be the mollification of f given by (3.1) and let ¢ (x) be the solution of the follow-
ing Dirichlet problem

M

R

det(D%upe(x)) = fe(ay (Rx)) in Op,
on BOM

Upe(x)
As in the proof of Theorem 1.1, we have uy e — 1y in C°(Op) as € — 0.

By Lemma 2.2 in [9], up ¢ satisfies

Fi(D?uy, c(x))3; (A2upg, o(x)) >0, x€Qy, dist(x, 30y) > % @.1)
0

By Lemma A.1 in [9], we have

AZuy (x) < C.

/erM,dist(x, 90M)> 15
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Together with Theorem B, we have
Ae%u M, e (X ) <C

for x € Oy with

dist(x, 00p) > 220.

Let e — 0, we have
AZup(x) < C

for x € Oy with

1
dist(x,00p) > —.
Co

The proposition is now proved. O

For A > 1 and any function v, let

Denote

Qx) = %xTAx.

Lemma 4.1. There exists a constant y € (0,1) such that,
ut = Q in Cll(;f(IR”) as A — oo.

Proof. By Proposition 4.1, u* — Q in C? (R") as A — co. For r > 0, denote D, = {x €

loc

R"|Q(x) < r?}. There exists A; > 0 such that for A > A4,
D% C {I/l/\ < 4} =: 04,)\ C Dg.
We know that
det(D*ut) = f(Ax)

in Q4 ) in the Alexandrov sense. By Theorem 2 in [4], there exist ' € (0,1) and C > 1
depending only on #, inf f, sup f and A such that

””)‘HCLM(D%) <C.

Thus we have u* — Q in C#(Dy) for 0 < u < p/ < 1. The lemma follows given the fact

that
MA(X) — a2u/\a (g)

foralla,A > 0and x € R". O
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The following proposition is Proposition 2.3 in [9].

Proposition 4.3.
/
A
sup A2y = ¢ ;, Ve € E
R lel
Proof. Denote
/
A
a=supAiu, B= e—i.
R el

For A > 0, ¢ = £, by strict convexity (see e.g., [2]) and Proposition 4.2, we have
0 < AZut(x) = A2u(Ax) <a < oo, x€ R

By Lemma A.2 in [9] and Lemma 4.1, we have

A—o0

lim | Alutdx = / Bdx = B|By|.
B, B,
Thus « > B. Now suppose v > B,let p < p’ < &’ < &’ < a, we have

lim sup (zx’\{A%u)‘ >a'}N Bll) < )}1_{20/3 AZ2utdx = B|By.
1

A—00

Thus for all large A, we have
o [{A5u’ 2 o'} VB < BB,

ie.,

[{A%ut < o'} N By - o —p
|B1 - oa

For M > 0, denote
Oy = {x € R"|u?(x) < M}.

By Lemma 4.1, there exist M, A1 such that for A > A1, we have By C Q5.
As in the proof of Proposition 4.2, let f. be the mollification of f given by (3.1), let
1} (x) be the solution of the following Dirichlet problem

det(D?u}y (x)) = fe(Ax) in Qppp,
u}dle(x) M on 9Oy ).
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Then we have ”R/L . — utin C%(Qypy 2) as € — 0, see in the proof of Theorem 1.1.
For € small enough, we have

[{MJujy c <@’} Bi| o/ — B
| By -

By (4.1), Aeguﬁ,ll . is a subsolution of the linearized Monge-Ampere equation at u%/l,e‘
Apply Theorem B, we have, for some pp > 0and C > 0,

[l — A%u?w,e\!LPo(Blﬂ{Aﬁ

2.4 . 2.4
why <a'}) < [la— AéuM,eHLVO(B]) < Canf (“ - Aé”M,e) .

4

Consequently,

1
(a —a”)|By N {A3ufy . <&} < CiBnaf (D( — A%uf\‘ﬂle) :

4
Therefore,

sup A%“?\L/I,e <a—C!
By
4

forall A > Aq. Lete — 0, then

sup A?u = sup Au* <a —C!

B, B,
2 2

forall A > Aq.

This contradicts the definition of «. Thus we have
e’ Ae
sup A2u = —
R? el

This completes the proof. O
To proceed, we choose b € R" such that
wley) =w(—er), 1<k<mn,

where
1

w(x) :=u(x) — ExTAx —b-x.

By Theorem 1.1, there exists v € C%!(IR") which is 1-periodic satisfying det(A + D?v) = f
in the Alexandrov sense. Choose v such that v(0) = w(0).
Define

h=w-—v. 4.2)

Then we have /1(0) = 0. We now prove that 4 is bounded from above.
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Lemma 4.2.

suph < co.
R

Proof. We follow the proof of Lemma 2.9 in [9]. On the other hand, since uniform C?
estimates are not available for f € L®, we need to provide new arguments in several
places.

Let

M;= sup h(x), i=1,2---

XE[—i,i|"
Suppose h is not bounded above, then we have

lim M; = oo.
i—00

We claim that for some constant C independent of i, we have
My, <4M,i1+C, Vi=12,---. (4.3)
First of all, since both w and v are locally Lipschitz and #(0) = 0, we have
|h(x)] <C, Vxe[-1,1]".

Now for x = (x1,- -+ ,x,) € [—m,m]", where m is an integer, let [x] be the integer part of
Xr. Define

1, if [x]isodd,
€ =
0, if [xi]iseven.

Then by Proposition 4.3, we have

A2h=MNw<0 in R", eccE. (4.4)
Thus
- =[x + ek
Y (] +enen) <2n(x—) ——e).
+h(x= ) ) <2n(x- L =5
Since

n

X — Z([xk] +er)ex € [—1,1]",
k*l

e e [ ]
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we have
It follows that

My, < 2Mpupay,; +C.

Taking m = 2, we have proved (4.3). Let

Hi(x) = hﬁ;), x e [-1,1]"

1 h(421
Hi(ifek)zﬁgo, 1<k<n i=12---. (4.5)
2 Mzi
By (4.3), we have
Mzz—l Mzi - C 1
H: = > — 4.6
S VAR A TVARES (+6)
for large i.
By the definition of H;,
H; <1 on [-1,1)"
and
h(0)
H;(0) = =~ =0.
l( ) Mz[

Claim: Let 0 < ¥’ < b < 1,if I(x) — H; > 0in [—b, b]" for a linear function /(x), then for
some positive constants « and C independent of i and I(x), we have

[fnb,%(l —H;) <C [_nlr;’i;)}n(l — H;),

and
||HZ ||Clx([_b//b/]n) S C.

We now prove the claim.
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Proof. Recall that v in (4.2) is the unique solution of det(A + D?v) = f in T" satisfying
v(0) = w(0).
As in the proof of Theorem 1.1, denote

fg - fg - ]{r fE +detA
Let 0. be the unique function with (A + D?3,) > 0 satisfying

{det(A+Dzz7€) =fe inT",
3e(0) = v(0) = w(0).
Since |Vve| < C(A) and fe — f in C°(T") as € — 0, by the uniqueness of solution of

det(A + D?v) = f on T" in the Alexandrov sense, we have 7. — v in C°(T") as € — 0.
For i fixed, denote

O; = {x € R"|u(x) < C2%71},

where C is a fixed constant greater than the largest eigenvalue of A. By Proposition 4.1,
we have [—2/,2']" C (); C [-C2',C2']", where C is another constant depending only on
A.
Let il be the solution of the following Dirichlet problem
det(D?%e(x)) = fe(x) in Q,
ie(x) =M on 0Q);.

As before, fe — fin C%(T") as € — 0, and we have @i, — u in C°(€);) as € — 0.
Denote

he(x) = dic(x) — %xTAx — bx — Te(x).

It follows that /1. — hin C%(€);) as € — 0.
Recall that

F(A+ D*3.) < F(D%ie) + F;j(D?ile) (Ajj + 9i0 — dijile),
ie.,
F;j(D%ii¢)0;ihe < 0. (4.7)
Similarly,

F(D*iic) < F(A+ D*0c) + F;j(A + D*0c) (0yile — Ajj — 040e),
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ie.,
Fl](A + Dzﬁe)al’ji’ie > 0. (4.8)
Define
. he(2ix)
Hei(x) = , xe[-1,1"
€1 le

Then H; — H;in C°([—1,1]") ase — 0. Forany § > 0, we have  + 6 — H,; is nonnegative
in [—b, b]" for all € small enough.
By (4.7) and (4.8), we have

By our choice of ();, we have
[-1,1]" C 5;0 C [-C,C]".

By Theorem C, we have

[Hbl/%a)'(} (I+6—Hg) <C(I+6— He(0)) <2C,
||l + 5 - Hel'Hctx([ib/,b/]n) S C,

where a, C only depends on 11, A, A and A, in particular, a, C does not depend on € and
i. The claim is now proved after sending € to 0. O

It follows that there exist some 0 < &’ < &« < 1 and H such that

H;— H in C"‘,([ -3, %}H) along a subsequence i — oo.

By (4.6), we have
max H > 1 (4.9)
SEU
By (4.5), we have
1
— < <k<n. .
H(izek)_O, 1<k<n (4.10)
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We also know that
H(0) = lim H;(0) = 0.

i—00
By (4.4),
AZh

2
AszeHi =
2;

Ve € E.

It follows that H is concave. We can then find a linear function ! such that — H > 0 in

[—3,2]" with [(0) = 0. By the convergence of H; to H, there exist constants §; — 0 such

that [;(x) = I(x) + 9 satlsflesl — H; > 0in [—3, 2]". Applying the earlier claim to /; —

with b = 2 and b’ = , and then sending i to o0, we conclude that
max (I - H) < C(1(0) — H(0)) = 0.
(=2,
Thus
Z 1 19
H= -z
k; CkXp  on [ 5 2]
Now by (4.10), we conclude that ¢, = 0, i.e., H = 0. However, this violates (4.9). The
lemma is now proved. O

Proof of Theorem 1.2. By Lemma 4.2, there exists some constant a such that
1]Rnnf(a —h)=0.

Since )

_ i
T e 1 C.) B
My M,

by the earlier claim, there exists some constant C such that

a a
max —H'> < C min ( —H'>
34" (sz )T A\ My

max (a—h)<C min (a—h)
[_21‘—1,2i—1}n [,21—1/21—1]71

for all large i.
Namely,

for all large i.
It follows that

sup(a —h) < Cinf(a—h) = 0.
R" R

Thush =a,ie.,
1
= ExTAx+b-x+a+v.

Thus, we complete the proof. O
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